0
22
9
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
20 |
#define LEMON_BELLMAN_FORD_H |
|
21 |
|
|
22 |
/// \ingroup shortest_path |
|
23 |
/// \file |
|
24 |
/// \brief Bellman-Ford algorithm. |
|
25 |
|
|
26 |
#include <lemon/bits/path_dump.h> |
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/error.h> |
|
29 |
#include <lemon/maps.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
|
|
32 |
#include <limits> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
37 |
/// |
|
38 |
/// This operation traits class defines all computational operations |
|
39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
40 |
/// The default implementation is based on the \c numeric_limits class. |
|
41 |
/// If the numeric type does not have infinity value, then the maximum |
|
42 |
/// value is used as extremal infinity value. |
|
43 |
template < |
|
44 |
typename V, |
|
45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
46 |
struct BellmanFordDefaultOperationTraits { |
|
47 |
/// \e |
|
48 |
typedef V Value; |
|
49 |
/// \brief Gives back the zero value of the type. |
|
50 |
static Value zero() { |
|
51 |
return static_cast<Value>(0); |
|
52 |
} |
|
53 |
/// \brief Gives back the positive infinity value of the type. |
|
54 |
static Value infinity() { |
|
55 |
return std::numeric_limits<Value>::infinity(); |
|
56 |
} |
|
57 |
/// \brief Gives back the sum of the given two elements. |
|
58 |
static Value plus(const Value& left, const Value& right) { |
|
59 |
return left + right; |
|
60 |
} |
|
61 |
/// \brief Gives back \c true only if the first value is less than |
|
62 |
/// the second. |
|
63 |
static bool less(const Value& left, const Value& right) { |
|
64 |
return left < right; |
|
65 |
} |
|
66 |
}; |
|
67 |
|
|
68 |
template <typename V> |
|
69 |
struct BellmanFordDefaultOperationTraits<V, false> { |
|
70 |
typedef V Value; |
|
71 |
static Value zero() { |
|
72 |
return static_cast<Value>(0); |
|
73 |
} |
|
74 |
static Value infinity() { |
|
75 |
return std::numeric_limits<Value>::max(); |
|
76 |
} |
|
77 |
static Value plus(const Value& left, const Value& right) { |
|
78 |
if (left == infinity() || right == infinity()) return infinity(); |
|
79 |
return left + right; |
|
80 |
} |
|
81 |
static bool less(const Value& left, const Value& right) { |
|
82 |
return left < right; |
|
83 |
} |
|
84 |
}; |
|
85 |
|
|
86 |
/// \brief Default traits class of BellmanFord class. |
|
87 |
/// |
|
88 |
/// Default traits class of BellmanFord class. |
|
89 |
/// \param GR The type of the digraph. |
|
90 |
/// \param LEN The type of the length map. |
|
91 |
template<typename GR, typename LEN> |
|
92 |
struct BellmanFordDefaultTraits { |
|
93 |
/// The type of the digraph the algorithm runs on. |
|
94 |
typedef GR Digraph; |
|
95 |
|
|
96 |
/// \brief The type of the map that stores the arc lengths. |
|
97 |
/// |
|
98 |
/// The type of the map that stores the arc lengths. |
|
99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
100 |
typedef LEN LengthMap; |
|
101 |
|
|
102 |
/// The type of the arc lengths. |
|
103 |
typedef typename LEN::Value Value; |
|
104 |
|
|
105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
106 |
/// |
|
107 |
/// It defines the used operations and the infinity value for the |
|
108 |
/// given \c Value type. |
|
109 |
/// \see BellmanFordDefaultOperationTraits |
|
110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
111 |
|
|
112 |
/// \brief The type of the map that stores the last arcs of the |
|
113 |
/// shortest paths. |
|
114 |
/// |
|
115 |
/// The type of the map that stores the last |
|
116 |
/// arcs of the shortest paths. |
|
117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
119 |
|
|
120 |
/// \brief Instantiates a \c PredMap. |
|
121 |
/// |
|
122 |
/// This function instantiates a \ref PredMap. |
|
123 |
/// \param g is the digraph to which we would like to define the |
|
124 |
/// \ref PredMap. |
|
125 |
static PredMap *createPredMap(const GR& g) { |
|
126 |
return new PredMap(g); |
|
127 |
} |
|
128 |
|
|
129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
130 |
/// |
|
131 |
/// The type of the map that stores the distances of the nodes. |
|
132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
134 |
|
|
135 |
/// \brief Instantiates a \c DistMap. |
|
136 |
/// |
|
137 |
/// This function instantiates a \ref DistMap. |
|
138 |
/// \param g is the digraph to which we would like to define the |
|
139 |
/// \ref DistMap. |
|
140 |
static DistMap *createDistMap(const GR& g) { |
|
141 |
return new DistMap(g); |
|
142 |
} |
|
143 |
|
|
144 |
}; |
|
145 |
|
|
146 |
/// \brief %BellmanFord algorithm class. |
|
147 |
/// |
|
148 |
/// \ingroup shortest_path |
|
149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
151 |
/// <tt>O(ne)</tt>. |
|
152 |
/// |
|
153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
155 |
/// should not contain directed cycles with negative total length. |
|
156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
157 |
/// algorithm instead, since it is more efficient. |
|
158 |
/// |
|
159 |
/// The arc lengths are passed to the algorithm using a |
|
160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
161 |
/// kind of length. The type of the length values is determined by the |
|
162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
163 |
/// |
|
164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
166 |
/// it can be used easier. |
|
167 |
/// |
|
168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
169 |
/// The default type is \ref ListDigraph. |
|
170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
171 |
/// the lengths of the arcs. The default map type is |
|
172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
173 |
#ifdef DOXYGEN |
|
174 |
template <typename GR, typename LEN, typename TR> |
|
175 |
#else |
|
176 |
template <typename GR=ListDigraph, |
|
177 |
typename LEN=typename GR::template ArcMap<int>, |
|
178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
179 |
#endif |
|
180 |
class BellmanFord { |
|
181 |
public: |
|
182 |
|
|
183 |
///The type of the underlying digraph. |
|
184 |
typedef typename TR::Digraph Digraph; |
|
185 |
|
|
186 |
/// \brief The type of the arc lengths. |
|
187 |
typedef typename TR::LengthMap::Value Value; |
|
188 |
/// \brief The type of the map that stores the arc lengths. |
|
189 |
typedef typename TR::LengthMap LengthMap; |
|
190 |
/// \brief The type of the map that stores the last |
|
191 |
/// arcs of the shortest paths. |
|
192 |
typedef typename TR::PredMap PredMap; |
|
193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
194 |
typedef typename TR::DistMap DistMap; |
|
195 |
/// The type of the paths. |
|
196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
198 |
/// "operation traits class" of the algorithm. |
|
199 |
typedef typename TR::OperationTraits OperationTraits; |
|
200 |
|
|
201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
202 |
typedef TR Traits; |
|
203 |
|
|
204 |
private: |
|
205 |
|
|
206 |
typedef typename Digraph::Node Node; |
|
207 |
typedef typename Digraph::NodeIt NodeIt; |
|
208 |
typedef typename Digraph::Arc Arc; |
|
209 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
210 |
|
|
211 |
// Pointer to the underlying digraph. |
|
212 |
const Digraph *_gr; |
|
213 |
// Pointer to the length map |
|
214 |
const LengthMap *_length; |
|
215 |
// Pointer to the map of predecessors arcs. |
|
216 |
PredMap *_pred; |
|
217 |
// Indicates if _pred is locally allocated (true) or not. |
|
218 |
bool _local_pred; |
|
219 |
// Pointer to the map of distances. |
|
220 |
DistMap *_dist; |
|
221 |
// Indicates if _dist is locally allocated (true) or not. |
|
222 |
bool _local_dist; |
|
223 |
|
|
224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
225 |
MaskMap *_mask; |
|
226 |
|
|
227 |
std::vector<Node> _process; |
|
228 |
|
|
229 |
// Creates the maps if necessary. |
|
230 |
void create_maps() { |
|
231 |
if(!_pred) { |
|
232 |
_local_pred = true; |
|
233 |
_pred = Traits::createPredMap(*_gr); |
|
234 |
} |
|
235 |
if(!_dist) { |
|
236 |
_local_dist = true; |
|
237 |
_dist = Traits::createDistMap(*_gr); |
|
238 |
} |
|
239 |
_mask = new MaskMap(*_gr, false); |
|
240 |
} |
|
241 |
|
|
242 |
public : |
|
243 |
|
|
244 |
typedef BellmanFord Create; |
|
245 |
|
|
246 |
/// \name Named Template Parameters |
|
247 |
|
|
248 |
///@{ |
|
249 |
|
|
250 |
template <class T> |
|
251 |
struct SetPredMapTraits : public Traits { |
|
252 |
typedef T PredMap; |
|
253 |
static PredMap *createPredMap(const Digraph&) { |
|
254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
255 |
return 0; // ignore warnings |
|
256 |
} |
|
257 |
}; |
|
258 |
|
|
259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
260 |
/// \c PredMap type. |
|
261 |
/// |
|
262 |
/// \ref named-templ-param "Named parameter" for setting |
|
263 |
/// \c PredMap type. |
|
264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
265 |
template <class T> |
|
266 |
struct SetPredMap |
|
267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
|
268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
269 |
}; |
|
270 |
|
|
271 |
template <class T> |
|
272 |
struct SetDistMapTraits : public Traits { |
|
273 |
typedef T DistMap; |
|
274 |
static DistMap *createDistMap(const Digraph&) { |
|
275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
276 |
return 0; // ignore warnings |
|
277 |
} |
|
278 |
}; |
|
279 |
|
|
280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
281 |
/// \c DistMap type. |
|
282 |
/// |
|
283 |
/// \ref named-templ-param "Named parameter" for setting |
|
284 |
/// \c DistMap type. |
|
285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
286 |
template <class T> |
|
287 |
struct SetDistMap |
|
288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
|
289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
290 |
}; |
|
291 |
|
|
292 |
template <class T> |
|
293 |
struct SetOperationTraitsTraits : public Traits { |
|
294 |
typedef T OperationTraits; |
|
295 |
}; |
|
296 |
|
|
297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
298 |
/// \c OperationTraits type. |
|
299 |
/// |
|
300 |
/// \ref named-templ-param "Named parameter" for setting |
|
301 |
/// \c OperationTraits type. |
|
302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
303 |
template <class T> |
|
304 |
struct SetOperationTraits |
|
305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
|
306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
307 |
Create; |
|
308 |
}; |
|
309 |
|
|
310 |
///@} |
|
311 |
|
|
312 |
protected: |
|
313 |
|
|
314 |
BellmanFord() {} |
|
315 |
|
|
316 |
public: |
|
317 |
|
|
318 |
/// \brief Constructor. |
|
319 |
/// |
|
320 |
/// Constructor. |
|
321 |
/// \param g The digraph the algorithm runs on. |
|
322 |
/// \param length The length map used by the algorithm. |
|
323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
324 |
_gr(&g), _length(&length), |
|
325 |
_pred(0), _local_pred(false), |
|
326 |
_dist(0), _local_dist(false), _mask(0) {} |
|
327 |
|
|
328 |
///Destructor. |
|
329 |
~BellmanFord() { |
|
330 |
if(_local_pred) delete _pred; |
|
331 |
if(_local_dist) delete _dist; |
|
332 |
if(_mask) delete _mask; |
|
333 |
} |
|
334 |
|
|
335 |
/// \brief Sets the length map. |
|
336 |
/// |
|
337 |
/// Sets the length map. |
|
338 |
/// \return <tt>(*this)</tt> |
|
339 |
BellmanFord &lengthMap(const LengthMap &map) { |
|
340 |
_length = ↦ |
|
341 |
return *this; |
|
342 |
} |
|
343 |
|
|
344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
345 |
/// |
|
346 |
/// Sets the map that stores the predecessor arcs. |
|
347 |
/// If you don't use this function before calling \ref run() |
|
348 |
/// or \ref init(), an instance will be allocated automatically. |
|
349 |
/// The destructor deallocates this automatically allocated map, |
|
350 |
/// of course. |
|
351 |
/// \return <tt>(*this)</tt> |
|
352 |
BellmanFord &predMap(PredMap &map) { |
|
353 |
if(_local_pred) { |
|
354 |
delete _pred; |
|
355 |
_local_pred=false; |
|
356 |
} |
|
357 |
_pred = ↦ |
|
358 |
return *this; |
|
359 |
} |
|
360 |
|
|
361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
362 |
/// |
|
363 |
/// Sets the map that stores the distances of the nodes calculated |
|
364 |
/// by the algorithm. |
|
365 |
/// If you don't use this function before calling \ref run() |
|
366 |
/// or \ref init(), an instance will be allocated automatically. |
|
367 |
/// The destructor deallocates this automatically allocated map, |
|
368 |
/// of course. |
|
369 |
/// \return <tt>(*this)</tt> |
|
370 |
BellmanFord &distMap(DistMap &map) { |
|
371 |
if(_local_dist) { |
|
372 |
delete _dist; |
|
373 |
_local_dist=false; |
|
374 |
} |
|
375 |
_dist = ↦ |
|
376 |
return *this; |
|
377 |
} |
|
378 |
|
|
379 |
/// \name Execution Control |
|
380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
381 |
/// one of the member functions called \ref run().\n |
|
382 |
/// If you need better control on the execution, you have to call |
|
383 |
/// \ref init() first, then you can add several source nodes |
|
384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
385 |
/// performed with \ref start(), \ref checkedStart() or |
|
386 |
/// \ref limitedStart(). |
|
387 |
|
|
388 |
///@{ |
|
389 |
|
|
390 |
/// \brief Initializes the internal data structures. |
|
391 |
/// |
|
392 |
/// Initializes the internal data structures. The optional parameter |
|
393 |
/// is the initial distance of each node. |
|
394 |
void init(const Value value = OperationTraits::infinity()) { |
|
395 |
create_maps(); |
|
396 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
397 |
_pred->set(it, INVALID); |
|
398 |
_dist->set(it, value); |
|
399 |
} |
|
400 |
_process.clear(); |
|
401 |
if (OperationTraits::less(value, OperationTraits::infinity())) { |
|
402 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
403 |
_process.push_back(it); |
|
404 |
_mask->set(it, true); |
|
405 |
} |
|
406 |
} |
|
407 |
} |
|
408 |
|
|
409 |
/// \brief Adds a new source node. |
|
410 |
/// |
|
411 |
/// This function adds a new source node. The optional second parameter |
|
412 |
/// is the initial distance of the node. |
|
413 |
void addSource(Node source, Value dst = OperationTraits::zero()) { |
|
414 |
_dist->set(source, dst); |
|
415 |
if (!(*_mask)[source]) { |
|
416 |
_process.push_back(source); |
|
417 |
_mask->set(source, true); |
|
418 |
} |
|
419 |
} |
|
420 |
|
|
421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
422 |
/// |
|
423 |
/// If the algoritm calculated the distances in the previous round |
|
424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
425 |
/// will calculate the distances exactly for the paths of at most |
|
426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
427 |
/// calculates the shortest path distances exactly for the paths |
|
428 |
/// consisting of at most \c k arcs. |
|
429 |
/// |
|
430 |
/// \warning The paths with limited arc number cannot be retrieved |
|
431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
432 |
/// need the shortest paths and not only the distances, you should |
|
433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
434 |
/// and build the path manually. |
|
435 |
/// |
|
436 |
/// \return \c true when the algorithm have not found more shorter |
|
437 |
/// paths. |
|
438 |
/// |
|
439 |
/// \see ActiveIt |
|
440 |
bool processNextRound() { |
|
441 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
442 |
_mask->set(_process[i], false); |
|
443 |
} |
|
444 |
std::vector<Node> nextProcess; |
|
445 |
std::vector<Value> values(_process.size()); |
|
446 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
447 |
values[i] = (*_dist)[_process[i]]; |
|
448 |
} |
|
449 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
451 |
Node target = _gr->target(it); |
|
452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
454 |
_pred->set(target, it); |
|
455 |
_dist->set(target, relaxed); |
|
456 |
if (!(*_mask)[target]) { |
|
457 |
_mask->set(target, true); |
|
458 |
nextProcess.push_back(target); |
|
459 |
} |
|
460 |
} |
|
461 |
} |
|
462 |
} |
|
463 |
_process.swap(nextProcess); |
|
464 |
return _process.empty(); |
|
465 |
} |
|
466 |
|
|
467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
468 |
/// |
|
469 |
/// If the algorithm calculated the distances in the previous round |
|
470 |
/// at least for the paths of at most \c k arcs, then this function |
|
471 |
/// will calculate the distances at least for the paths of at most |
|
472 |
/// <tt>k+1</tt> arcs. |
|
473 |
/// This function does not make it possible to calculate the shortest |
|
474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
475 |
/// this is why it is called weak round. |
|
476 |
/// |
|
477 |
/// \return \c true when the algorithm have not found more shorter |
|
478 |
/// paths. |
|
479 |
/// |
|
480 |
/// \see ActiveIt |
|
481 |
bool processNextWeakRound() { |
|
482 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
483 |
_mask->set(_process[i], false); |
|
484 |
} |
|
485 |
std::vector<Node> nextProcess; |
|
486 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
488 |
Node target = _gr->target(it); |
|
489 |
Value relaxed = |
|
490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
492 |
_pred->set(target, it); |
|
493 |
_dist->set(target, relaxed); |
|
494 |
if (!(*_mask)[target]) { |
|
495 |
_mask->set(target, true); |
|
496 |
nextProcess.push_back(target); |
|
497 |
} |
|
498 |
} |
|
499 |
} |
|
500 |
} |
|
501 |
_process.swap(nextProcess); |
|
502 |
return _process.empty(); |
|
503 |
} |
|
504 |
|
|
505 |
/// \brief Executes the algorithm. |
|
506 |
/// |
|
507 |
/// Executes the algorithm. |
|
508 |
/// |
|
509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
510 |
/// in order to compute the shortest path to each node. |
|
511 |
/// |
|
512 |
/// The algorithm computes |
|
513 |
/// - the shortest path tree (forest), |
|
514 |
/// - the distance of each node from the root(s). |
|
515 |
/// |
|
516 |
/// \pre init() must be called and at least one root node should be |
|
517 |
/// added with addSource() before using this function. |
|
518 |
void start() { |
|
519 |
int num = countNodes(*_gr) - 1; |
|
520 |
for (int i = 0; i < num; ++i) { |
|
521 |
if (processNextWeakRound()) break; |
|
522 |
} |
|
523 |
} |
|
524 |
|
|
525 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
526 |
/// |
|
527 |
/// Executes the algorithm and checks the negative cycles. |
|
528 |
/// |
|
529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
530 |
/// in order to compute the shortest path to each node and also checks |
|
531 |
/// if the digraph contains cycles with negative total length. |
|
532 |
/// |
|
533 |
/// The algorithm computes |
|
534 |
/// - the shortest path tree (forest), |
|
535 |
/// - the distance of each node from the root(s). |
|
536 |
/// |
|
537 |
/// \return \c false if there is a negative cycle in the digraph. |
|
538 |
/// |
|
539 |
/// \pre init() must be called and at least one root node should be |
|
540 |
/// added with addSource() before using this function. |
|
541 |
bool checkedStart() { |
|
542 |
int num = countNodes(*_gr); |
|
543 |
for (int i = 0; i < num; ++i) { |
|
544 |
if (processNextWeakRound()) return true; |
|
545 |
} |
|
546 |
return _process.empty(); |
|
547 |
} |
|
548 |
|
|
549 |
/// \brief Executes the algorithm with arc number limit. |
|
550 |
/// |
|
551 |
/// Executes the algorithm with arc number limit. |
|
552 |
/// |
|
553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
554 |
/// in order to compute the shortest path distance for each node |
|
555 |
/// using only the paths consisting of at most \c num arcs. |
|
556 |
/// |
|
557 |
/// The algorithm computes |
|
558 |
/// - the limited distance of each node from the root(s), |
|
559 |
/// - the predecessor arc for each node. |
|
560 |
/// |
|
561 |
/// \warning The paths with limited arc number cannot be retrieved |
|
562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
563 |
/// need the shortest paths and not only the distances, you should |
|
564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
565 |
/// and build the path manually. |
|
566 |
/// |
|
567 |
/// \pre init() must be called and at least one root node should be |
|
568 |
/// added with addSource() before using this function. |
|
569 |
void limitedStart(int num) { |
|
570 |
for (int i = 0; i < num; ++i) { |
|
571 |
if (processNextRound()) break; |
|
572 |
} |
|
573 |
} |
|
574 |
|
|
575 |
/// \brief Runs the algorithm from the given root node. |
|
576 |
/// |
|
577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
578 |
/// node \c s in order to compute the shortest path to each node. |
|
579 |
/// |
|
580 |
/// The algorithm computes |
|
581 |
/// - the shortest path tree (forest), |
|
582 |
/// - the distance of each node from the root(s). |
|
583 |
/// |
|
584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
585 |
/// \code |
|
586 |
/// bf.init(); |
|
587 |
/// bf.addSource(s); |
|
588 |
/// bf.start(); |
|
589 |
/// \endcode |
|
590 |
void run(Node s) { |
|
591 |
init(); |
|
592 |
addSource(s); |
|
593 |
start(); |
|
594 |
} |
|
595 |
|
|
596 |
/// \brief Runs the algorithm from the given root node with arc |
|
597 |
/// number limit. |
|
598 |
/// |
|
599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
600 |
/// node \c s in order to compute the shortest path distance for each |
|
601 |
/// node using only the paths consisting of at most \c num arcs. |
|
602 |
/// |
|
603 |
/// The algorithm computes |
|
604 |
/// - the limited distance of each node from the root(s), |
|
605 |
/// - the predecessor arc for each node. |
|
606 |
/// |
|
607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
609 |
/// need the shortest paths and not only the distances, you should |
|
610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
611 |
/// and build the path manually. |
|
612 |
/// |
|
613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
614 |
/// \code |
|
615 |
/// bf.init(); |
|
616 |
/// bf.addSource(s); |
|
617 |
/// bf.limitedStart(num); |
|
618 |
/// \endcode |
|
619 |
void run(Node s, int num) { |
|
620 |
init(); |
|
621 |
addSource(s); |
|
622 |
limitedStart(num); |
|
623 |
} |
|
624 |
|
|
625 |
///@} |
|
626 |
|
|
627 |
/// \brief LEMON iterator for getting the active nodes. |
|
628 |
/// |
|
629 |
/// This class provides a common style LEMON iterator that traverses |
|
630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
631 |
/// phase. These nodes should be checked in the next phase to |
|
632 |
/// find augmenting arcs outgoing from them. |
|
633 |
class ActiveIt { |
|
634 |
public: |
|
635 |
|
|
636 |
/// \brief Constructor. |
|
637 |
/// |
|
638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
639 |
/// instance. |
|
640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
641 |
{ |
|
642 |
_index = _algorithm->_process.size() - 1; |
|
643 |
} |
|
644 |
|
|
645 |
/// \brief Invalid constructor. |
|
646 |
/// |
|
647 |
/// Invalid constructor. |
|
648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
|
649 |
|
|
650 |
/// \brief Conversion to \c Node. |
|
651 |
/// |
|
652 |
/// Conversion to \c Node. |
|
653 |
operator Node() const { |
|
654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
655 |
} |
|
656 |
|
|
657 |
/// \brief Increment operator. |
|
658 |
/// |
|
659 |
/// Increment operator. |
|
660 |
ActiveIt& operator++() { |
|
661 |
--_index; |
|
662 |
return *this; |
|
663 |
} |
|
664 |
|
|
665 |
bool operator==(const ActiveIt& it) const { |
|
666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
667 |
} |
|
668 |
bool operator!=(const ActiveIt& it) const { |
|
669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
670 |
} |
|
671 |
bool operator<(const ActiveIt& it) const { |
|
672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
673 |
} |
|
674 |
|
|
675 |
private: |
|
676 |
const BellmanFord* _algorithm; |
|
677 |
int _index; |
|
678 |
}; |
|
679 |
|
|
680 |
/// \name Query Functions |
|
681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
682 |
/// functions.\n |
|
683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
684 |
|
|
685 |
///@{ |
|
686 |
|
|
687 |
/// \brief The shortest path to the given node. |
|
688 |
/// |
|
689 |
/// Gives back the shortest path to the given node from the root(s). |
|
690 |
/// |
|
691 |
/// \warning \c t should be reached from the root(s). |
|
692 |
/// |
|
693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
694 |
/// using this function. |
|
695 |
Path path(Node t) const |
|
696 |
{ |
|
697 |
return Path(*_gr, *_pred, t); |
|
698 |
} |
|
699 |
|
|
700 |
/// \brief The distance of the given node from the root(s). |
|
701 |
/// |
|
702 |
/// Returns the distance of the given node from the root(s). |
|
703 |
/// |
|
704 |
/// \warning If node \c v is not reached from the root(s), then |
|
705 |
/// the return value of this function is undefined. |
|
706 |
/// |
|
707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
708 |
/// using this function. |
|
709 |
Value dist(Node v) const { return (*_dist)[v]; } |
|
710 |
|
|
711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
712 |
/// the given node. |
|
713 |
/// |
|
714 |
/// This function returns the 'previous arc' of the shortest path |
|
715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
717 |
/// is not reached from the root(s) or if \c v is a root. |
|
718 |
/// |
|
719 |
/// The shortest path tree used here is equal to the shortest path |
|
720 |
/// tree used in \ref predNode() and \predMap(). |
|
721 |
/// |
|
722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
723 |
/// using this function. |
|
724 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
|
725 |
|
|
726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
727 |
/// the given node. |
|
728 |
/// |
|
729 |
/// This function returns the 'previous node' of the shortest path |
|
730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
732 |
/// is not reached from the root(s) or if \c v is a root. |
|
733 |
/// |
|
734 |
/// The shortest path tree used here is equal to the shortest path |
|
735 |
/// tree used in \ref predArc() and \predMap(). |
|
736 |
/// |
|
737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
738 |
/// using this function. |
|
739 |
Node predNode(Node v) const { |
|
740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
741 |
} |
|
742 |
|
|
743 |
/// \brief Returns a const reference to the node map that stores the |
|
744 |
/// distances of the nodes. |
|
745 |
/// |
|
746 |
/// Returns a const reference to the node map that stores the distances |
|
747 |
/// of the nodes calculated by the algorithm. |
|
748 |
/// |
|
749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
750 |
/// using this function. |
|
751 |
const DistMap &distMap() const { return *_dist;} |
|
752 |
|
|
753 |
/// \brief Returns a const reference to the node map that stores the |
|
754 |
/// predecessor arcs. |
|
755 |
/// |
|
756 |
/// Returns a const reference to the node map that stores the predecessor |
|
757 |
/// arcs, which form the shortest path tree (forest). |
|
758 |
/// |
|
759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
760 |
/// using this function. |
|
761 |
const PredMap &predMap() const { return *_pred; } |
|
762 |
|
|
763 |
/// \brief Checks if a node is reached from the root(s). |
|
764 |
/// |
|
765 |
/// Returns \c true if \c v is reached from the root(s). |
|
766 |
/// |
|
767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
768 |
/// using this function. |
|
769 |
bool reached(Node v) const { |
|
770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
771 |
} |
|
772 |
|
|
773 |
/// \brief Gives back a negative cycle. |
|
774 |
/// |
|
775 |
/// This function gives back a directed cycle with negative total |
|
776 |
/// length if the algorithm has already found one. |
|
777 |
/// Otherwise it gives back an empty path. |
|
778 |
lemon::Path<Digraph> negativeCycle() { |
|
779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
780 |
lemon::Path<Digraph> cycle; |
|
781 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
782 |
if (state[_process[i]] != -1) continue; |
|
783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
784 |
v = _gr->source((*_pred)[v])) { |
|
785 |
if (state[v] == i) { |
|
786 |
cycle.addFront((*_pred)[v]); |
|
787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
788 |
u = _gr->source((*_pred)[u])) { |
|
789 |
cycle.addFront((*_pred)[u]); |
|
790 |
} |
|
791 |
return cycle; |
|
792 |
} |
|
793 |
else if (state[v] >= 0) { |
|
794 |
break; |
|
795 |
} |
|
796 |
state[v] = i; |
|
797 |
} |
|
798 |
} |
|
799 |
return cycle; |
|
800 |
} |
|
801 |
|
|
802 |
///@} |
|
803 |
}; |
|
804 |
|
|
805 |
/// \brief Default traits class of bellmanFord() function. |
|
806 |
/// |
|
807 |
/// Default traits class of bellmanFord() function. |
|
808 |
/// \tparam GR The type of the digraph. |
|
809 |
/// \tparam LEN The type of the length map. |
|
810 |
template <typename GR, typename LEN> |
|
811 |
struct BellmanFordWizardDefaultTraits { |
|
812 |
/// The type of the digraph the algorithm runs on. |
|
813 |
typedef GR Digraph; |
|
814 |
|
|
815 |
/// \brief The type of the map that stores the arc lengths. |
|
816 |
/// |
|
817 |
/// The type of the map that stores the arc lengths. |
|
818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
819 |
typedef LEN LengthMap; |
|
820 |
|
|
821 |
/// The type of the arc lengths. |
|
822 |
typedef typename LEN::Value Value; |
|
823 |
|
|
824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
825 |
/// |
|
826 |
/// It defines the used operations and the infinity value for the |
|
827 |
/// given \c Value type. |
|
828 |
/// \see BellmanFordDefaultOperationTraits |
|
829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
830 |
|
|
831 |
/// \brief The type of the map that stores the last |
|
832 |
/// arcs of the shortest paths. |
|
833 |
/// |
|
834 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
837 |
|
|
838 |
/// \brief Instantiates a \c PredMap. |
|
839 |
/// |
|
840 |
/// This function instantiates a \ref PredMap. |
|
841 |
/// \param g is the digraph to which we would like to define the |
|
842 |
/// \ref PredMap. |
|
843 |
static PredMap *createPredMap(const GR &g) { |
|
844 |
return new PredMap(g); |
|
845 |
} |
|
846 |
|
|
847 |
/// \brief The type of the map that stores the distances of the nodes. |
|
848 |
/// |
|
849 |
/// The type of the map that stores the distances of the nodes. |
|
850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
851 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
852 |
|
|
853 |
/// \brief Instantiates a \c DistMap. |
|
854 |
/// |
|
855 |
/// This function instantiates a \ref DistMap. |
|
856 |
/// \param g is the digraph to which we would like to define the |
|
857 |
/// \ref DistMap. |
|
858 |
static DistMap *createDistMap(const GR &g) { |
|
859 |
return new DistMap(g); |
|
860 |
} |
|
861 |
|
|
862 |
///The type of the shortest paths. |
|
863 |
|
|
864 |
///The type of the shortest paths. |
|
865 |
///It must meet the \ref concepts::Path "Path" concept. |
|
866 |
typedef lemon::Path<Digraph> Path; |
|
867 |
}; |
|
868 |
|
|
869 |
/// \brief Default traits class used by BellmanFordWizard. |
|
870 |
/// |
|
871 |
/// Default traits class used by BellmanFordWizard. |
|
872 |
/// \tparam GR The type of the digraph. |
|
873 |
/// \tparam LEN The type of the length map. |
|
874 |
template <typename GR, typename LEN> |
|
875 |
class BellmanFordWizardBase |
|
876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
|
877 |
|
|
878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
879 |
protected: |
|
880 |
// Type of the nodes in the digraph. |
|
881 |
typedef typename Base::Digraph::Node Node; |
|
882 |
|
|
883 |
// Pointer to the underlying digraph. |
|
884 |
void *_graph; |
|
885 |
// Pointer to the length map |
|
886 |
void *_length; |
|
887 |
// Pointer to the map of predecessors arcs. |
|
888 |
void *_pred; |
|
889 |
// Pointer to the map of distances. |
|
890 |
void *_dist; |
|
891 |
//Pointer to the shortest path to the target node. |
|
892 |
void *_path; |
|
893 |
//Pointer to the distance of the target node. |
|
894 |
void *_di; |
|
895 |
|
|
896 |
public: |
|
897 |
/// Constructor. |
|
898 |
|
|
899 |
/// This constructor does not require parameters, it initiates |
|
900 |
/// all of the attributes to default values \c 0. |
|
901 |
BellmanFordWizardBase() : |
|
902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
|
903 |
|
|
904 |
/// Constructor. |
|
905 |
|
|
906 |
/// This constructor requires two parameters, |
|
907 |
/// others are initiated to \c 0. |
|
908 |
/// \param gr The digraph the algorithm runs on. |
|
909 |
/// \param len The length map. |
|
910 |
BellmanFordWizardBase(const GR& gr, |
|
911 |
const LEN& len) : |
|
912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
914 |
_pred(0), _dist(0), _path(0), _di(0) {} |
|
915 |
|
|
916 |
}; |
|
917 |
|
|
918 |
/// \brief Auxiliary class for the function-type interface of the |
|
919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
920 |
/// |
|
921 |
/// This auxiliary class is created to implement the |
|
922 |
/// \ref bellmanFord() "function-type interface" of the |
|
923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
924 |
/// It does not have own \ref run() method, it uses the |
|
925 |
/// functions and features of the plain \ref BellmanFord. |
|
926 |
/// |
|
927 |
/// This class should only be used through the \ref bellmanFord() |
|
928 |
/// function, which makes it easier to use the algorithm. |
|
929 |
template<class TR> |
|
930 |
class BellmanFordWizard : public TR { |
|
931 |
typedef TR Base; |
|
932 |
|
|
933 |
typedef typename TR::Digraph Digraph; |
|
934 |
|
|
935 |
typedef typename Digraph::Node Node; |
|
936 |
typedef typename Digraph::NodeIt NodeIt; |
|
937 |
typedef typename Digraph::Arc Arc; |
|
938 |
typedef typename Digraph::OutArcIt ArcIt; |
|
939 |
|
|
940 |
typedef typename TR::LengthMap LengthMap; |
|
941 |
typedef typename LengthMap::Value Value; |
|
942 |
typedef typename TR::PredMap PredMap; |
|
943 |
typedef typename TR::DistMap DistMap; |
|
944 |
typedef typename TR::Path Path; |
|
945 |
|
|
946 |
public: |
|
947 |
/// Constructor. |
|
948 |
BellmanFordWizard() : TR() {} |
|
949 |
|
|
950 |
/// \brief Constructor that requires parameters. |
|
951 |
/// |
|
952 |
/// Constructor that requires parameters. |
|
953 |
/// These parameters will be the default values for the traits class. |
|
954 |
/// \param gr The digraph the algorithm runs on. |
|
955 |
/// \param len The length map. |
|
956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
957 |
: TR(gr, len) {} |
|
958 |
|
|
959 |
/// \brief Copy constructor |
|
960 |
BellmanFordWizard(const TR &b) : TR(b) {} |
|
961 |
|
|
962 |
~BellmanFordWizard() {} |
|
963 |
|
|
964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
965 |
/// |
|
966 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
967 |
/// node in order to compute the shortest path to each node. |
|
968 |
void run(Node s) { |
|
969 |
BellmanFord<Digraph,LengthMap,TR> |
|
970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
974 |
bf.run(s); |
|
975 |
} |
|
976 |
|
|
977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
978 |
/// between \c s and \c t. |
|
979 |
/// |
|
980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
981 |
/// in order to compute the shortest path to node \c t. |
|
982 |
/// Actually, it computes the shortest path to each node, but using |
|
983 |
/// this function you can retrieve the distance and the shortest path |
|
984 |
/// for a single target node easier. |
|
985 |
/// |
|
986 |
/// \return \c true if \c t is reachable form \c s. |
|
987 |
bool run(Node s, Node t) { |
|
988 |
BellmanFord<Digraph,LengthMap,TR> |
|
989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
993 |
bf.run(s); |
|
994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
996 |
return bf.reached(t); |
|
997 |
} |
|
998 |
|
|
999 |
template<class T> |
|
1000 |
struct SetPredMapBase : public Base { |
|
1001 |
typedef T PredMap; |
|
1002 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
|
1003 |
SetPredMapBase(const TR &b) : TR(b) {} |
|
1004 |
}; |
|
1005 |
|
|
1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1007 |
/// the predecessor map. |
|
1008 |
/// |
|
1009 |
/// \ref named-templ-param "Named parameter" for setting |
|
1010 |
/// the map that stores the predecessor arcs of the nodes. |
|
1011 |
template<class T> |
|
1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
|
1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
1015 |
} |
|
1016 |
|
|
1017 |
template<class T> |
|
1018 |
struct SetDistMapBase : public Base { |
|
1019 |
typedef T DistMap; |
|
1020 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
|
1021 |
SetDistMapBase(const TR &b) : TR(b) {} |
|
1022 |
}; |
|
1023 |
|
|
1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1025 |
/// the distance map. |
|
1026 |
/// |
|
1027 |
/// \ref named-templ-param "Named parameter" for setting |
|
1028 |
/// the map that stores the distances of the nodes calculated |
|
1029 |
/// by the algorithm. |
|
1030 |
template<class T> |
|
1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
|
1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
1034 |
} |
|
1035 |
|
|
1036 |
template<class T> |
|
1037 |
struct SetPathBase : public Base { |
|
1038 |
typedef T Path; |
|
1039 |
SetPathBase(const TR &b) : TR(b) {} |
|
1040 |
}; |
|
1041 |
|
|
1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1043 |
/// the shortest path to the target node. |
|
1044 |
/// |
|
1045 |
/// \ref named-func-param "Named parameter" for getting |
|
1046 |
/// the shortest path to the target node. |
|
1047 |
template<class T> |
|
1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
1049 |
{ |
|
1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
1052 |
} |
|
1053 |
|
|
1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1055 |
/// the distance of the target node. |
|
1056 |
/// |
|
1057 |
/// \ref named-func-param "Named parameter" for getting |
|
1058 |
/// the distance of the target node. |
|
1059 |
BellmanFordWizard dist(const Value &d) |
|
1060 |
{ |
|
1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
1062 |
return *this; |
|
1063 |
} |
|
1064 |
|
|
1065 |
}; |
|
1066 |
|
|
1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1068 |
/// algorithm. |
|
1069 |
/// |
|
1070 |
/// \ingroup shortest_path |
|
1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1072 |
/// algorithm. |
|
1073 |
/// |
|
1074 |
/// This function also has several \ref named-templ-func-param |
|
1075 |
/// "named parameters", they are declared as the members of class |
|
1076 |
/// \ref BellmanFordWizard. |
|
1077 |
/// The following examples show how to use these parameters. |
|
1078 |
/// \code |
|
1079 |
/// // Compute shortest path from node s to each node |
|
1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
1081 |
/// |
|
1082 |
/// // Compute shortest path from s to t |
|
1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
1084 |
/// \endcode |
|
1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
1086 |
/// to the end of the parameter list. |
|
1087 |
/// \sa BellmanFordWizard |
|
1088 |
/// \sa BellmanFord |
|
1089 |
template<typename GR, typename LEN> |
|
1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
1091 |
bellmanFord(const GR& digraph, |
|
1092 |
const LEN& length) |
|
1093 |
{ |
|
1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
1095 |
} |
|
1096 |
|
|
1097 |
} //END OF NAMESPACE LEMON |
|
1098 |
|
|
1099 |
#endif |
|
1100 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BINOM_HEAP_H |
|
20 |
#define LEMON_BINOM_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Binomial Heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
#include <lemon/counter.h> |
|
31 |
|
|
32 |
namespace lemon { |
|
33 |
|
|
34 |
/// \ingroup heaps |
|
35 |
/// |
|
36 |
///\brief Binomial heap data structure. |
|
37 |
/// |
|
38 |
/// This class implements the \e binomial \e heap data structure. |
|
39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
40 |
/// |
|
41 |
/// The methods \ref increase() and \ref erase() are not efficient |
|
42 |
/// in a binomial heap. In case of many calls of these operations, |
|
43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
|
44 |
/// "binary heap". |
|
45 |
/// |
|
46 |
/// \tparam PR Type of the priorities of the items. |
|
47 |
/// \tparam IM A read-writable item map with \c int values, used |
|
48 |
/// internally to handle the cross references. |
|
49 |
/// \tparam CMP A functor class for comparing the priorities. |
|
50 |
/// The default is \c std::less<PR>. |
|
51 |
#ifdef DOXYGEN |
|
52 |
template <typename PR, typename IM, typename CMP> |
|
53 |
#else |
|
54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 |
#endif |
|
56 |
class BinomHeap { |
|
57 |
public: |
|
58 |
/// Type of the item-int map. |
|
59 |
typedef IM ItemIntMap; |
|
60 |
/// Type of the priorities. |
|
61 |
typedef PR Prio; |
|
62 |
/// Type of the items stored in the heap. |
|
63 |
typedef typename ItemIntMap::Key Item; |
|
64 |
/// Functor type for comparing the priorities. |
|
65 |
typedef CMP Compare; |
|
66 |
|
|
67 |
/// \brief Type to represent the states of the items. |
|
68 |
/// |
|
69 |
/// Each item has a state associated to it. It can be "in heap", |
|
70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 |
/// heap's point of view, but may be useful to the user. |
|
72 |
/// |
|
73 |
/// The item-int map must be initialized in such way that it assigns |
|
74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
75 |
enum State { |
|
76 |
IN_HEAP = 0, ///< = 0. |
|
77 |
PRE_HEAP = -1, ///< = -1. |
|
78 |
POST_HEAP = -2 ///< = -2. |
|
79 |
}; |
|
80 |
|
|
81 |
private: |
|
82 |
class Store; |
|
83 |
|
|
84 |
std::vector<Store> _data; |
|
85 |
int _min, _head; |
|
86 |
ItemIntMap &_iim; |
|
87 |
Compare _comp; |
|
88 |
int _num_items; |
|
89 |
|
|
90 |
public: |
|
91 |
/// \brief Constructor. |
|
92 |
/// |
|
93 |
/// Constructor. |
|
94 |
/// \param map A map that assigns \c int values to the items. |
|
95 |
/// It is used internally to handle the cross references. |
|
96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
97 |
explicit BinomHeap(ItemIntMap &map) |
|
98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {} |
|
99 |
|
|
100 |
/// \brief Constructor. |
|
101 |
/// |
|
102 |
/// Constructor. |
|
103 |
/// \param map A map that assigns \c int values to the items. |
|
104 |
/// It is used internally to handle the cross references. |
|
105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
106 |
/// \param comp The function object used for comparing the priorities. |
|
107 |
BinomHeap(ItemIntMap &map, const Compare &comp) |
|
108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} |
|
109 |
|
|
110 |
/// \brief The number of items stored in the heap. |
|
111 |
/// |
|
112 |
/// This function returns the number of items stored in the heap. |
|
113 |
int size() const { return _num_items; } |
|
114 |
|
|
115 |
/// \brief Check if the heap is empty. |
|
116 |
/// |
|
117 |
/// This function returns \c true if the heap is empty. |
|
118 |
bool empty() const { return _num_items==0; } |
|
119 |
|
|
120 |
/// \brief Make the heap empty. |
|
121 |
/// |
|
122 |
/// This functon makes the heap empty. |
|
123 |
/// It does not change the cross reference map. If you want to reuse |
|
124 |
/// a heap that is not surely empty, you should first clear it and |
|
125 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
126 |
/// for each item. |
|
127 |
void clear() { |
|
128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
|
129 |
} |
|
130 |
|
|
131 |
/// \brief Set the priority of an item or insert it, if it is |
|
132 |
/// not stored in the heap. |
|
133 |
/// |
|
134 |
/// This method sets the priority of the given item if it is |
|
135 |
/// already stored in the heap. Otherwise it inserts the given |
|
136 |
/// item into the heap with the given priority. |
|
137 |
/// \param item The item. |
|
138 |
/// \param value The priority. |
|
139 |
void set (const Item& item, const Prio& value) { |
|
140 |
int i=_iim[item]; |
|
141 |
if ( i >= 0 && _data[i].in ) { |
|
142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
|
143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
|
144 |
} else push(item, value); |
|
145 |
} |
|
146 |
|
|
147 |
/// \brief Insert an item into the heap with the given priority. |
|
148 |
/// |
|
149 |
/// This function inserts the given item into the heap with the |
|
150 |
/// given priority. |
|
151 |
/// \param item The item to insert. |
|
152 |
/// \param value The priority of the item. |
|
153 |
/// \pre \e item must not be stored in the heap. |
|
154 |
void push (const Item& item, const Prio& value) { |
|
155 |
int i=_iim[item]; |
|
156 |
if ( i<0 ) { |
|
157 |
int s=_data.size(); |
|
158 |
_iim.set( item,s ); |
|
159 |
Store st; |
|
160 |
st.name=item; |
|
161 |
st.prio=value; |
|
162 |
_data.push_back(st); |
|
163 |
i=s; |
|
164 |
} |
|
165 |
else { |
|
166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
|
167 |
_data[i].degree=0; |
|
168 |
_data[i].in=true; |
|
169 |
_data[i].prio=value; |
|
170 |
} |
|
171 |
|
|
172 |
if( 0==_num_items ) { |
|
173 |
_head=i; |
|
174 |
_min=i; |
|
175 |
} else { |
|
176 |
merge(i); |
|
177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
|
178 |
} |
|
179 |
++_num_items; |
|
180 |
} |
|
181 |
|
|
182 |
/// \brief Return the item having minimum priority. |
|
183 |
/// |
|
184 |
/// This function returns the item having minimum priority. |
|
185 |
/// \pre The heap must be non-empty. |
|
186 |
Item top() const { return _data[_min].name; } |
|
187 |
|
|
188 |
/// \brief The minimum priority. |
|
189 |
/// |
|
190 |
/// This function returns the minimum priority. |
|
191 |
/// \pre The heap must be non-empty. |
|
192 |
Prio prio() const { return _data[_min].prio; } |
|
193 |
|
|
194 |
/// \brief The priority of the given item. |
|
195 |
/// |
|
196 |
/// This function returns the priority of the given item. |
|
197 |
/// \param item The item. |
|
198 |
/// \pre \e item must be in the heap. |
|
199 |
const Prio& operator[](const Item& item) const { |
|
200 |
return _data[_iim[item]].prio; |
|
201 |
} |
|
202 |
|
|
203 |
/// \brief Remove the item having minimum priority. |
|
204 |
/// |
|
205 |
/// This function removes the item having minimum priority. |
|
206 |
/// \pre The heap must be non-empty. |
|
207 |
void pop() { |
|
208 |
_data[_min].in=false; |
|
209 |
|
|
210 |
int head_child=-1; |
|
211 |
if ( _data[_min].child!=-1 ) { |
|
212 |
int child=_data[_min].child; |
|
213 |
int neighb; |
|
214 |
while( child!=-1 ) { |
|
215 |
neighb=_data[child].right_neighbor; |
|
216 |
_data[child].parent=-1; |
|
217 |
_data[child].right_neighbor=head_child; |
|
218 |
head_child=child; |
|
219 |
child=neighb; |
|
220 |
} |
|
221 |
} |
|
222 |
|
|
223 |
if ( _data[_head].right_neighbor==-1 ) { |
|
224 |
// there was only one root |
|
225 |
_head=head_child; |
|
226 |
} |
|
227 |
else { |
|
228 |
// there were more roots |
|
229 |
if( _head!=_min ) { unlace(_min); } |
|
230 |
else { _head=_data[_head].right_neighbor; } |
|
231 |
merge(head_child); |
|
232 |
} |
|
233 |
_min=findMin(); |
|
234 |
--_num_items; |
|
235 |
} |
|
236 |
|
|
237 |
/// \brief Remove the given item from the heap. |
|
238 |
/// |
|
239 |
/// This function removes the given item from the heap if it is |
|
240 |
/// already stored. |
|
241 |
/// \param item The item to delete. |
|
242 |
/// \pre \e item must be in the heap. |
|
243 |
void erase (const Item& item) { |
|
244 |
int i=_iim[item]; |
|
245 |
if ( i >= 0 && _data[i].in ) { |
|
246 |
decrease( item, _data[_min].prio-1 ); |
|
247 |
pop(); |
|
248 |
} |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Decrease the priority of an item to the given value. |
|
252 |
/// |
|
253 |
/// This function decreases the priority of an item to the given value. |
|
254 |
/// \param item The item. |
|
255 |
/// \param value The priority. |
|
256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
|
257 |
void decrease (Item item, const Prio& value) { |
|
258 |
int i=_iim[item]; |
|
259 |
int p=_data[i].parent; |
|
260 |
_data[i].prio=value; |
|
261 |
|
|
262 |
while( p!=-1 && _comp(value, _data[p].prio) ) { |
|
263 |
_data[i].name=_data[p].name; |
|
264 |
_data[i].prio=_data[p].prio; |
|
265 |
_data[p].name=item; |
|
266 |
_data[p].prio=value; |
|
267 |
_iim[_data[i].name]=i; |
|
268 |
i=p; |
|
269 |
p=_data[p].parent; |
|
270 |
} |
|
271 |
_iim[item]=i; |
|
272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
|
273 |
} |
|
274 |
|
|
275 |
/// \brief Increase the priority of an item to the given value. |
|
276 |
/// |
|
277 |
/// This function increases the priority of an item to the given value. |
|
278 |
/// \param item The item. |
|
279 |
/// \param value The priority. |
|
280 |
/// \pre \e item must be stored in the heap with priority at most \e value. |
|
281 |
void increase (Item item, const Prio& value) { |
|
282 |
erase(item); |
|
283 |
push(item, value); |
|
284 |
} |
|
285 |
|
|
286 |
/// \brief Return the state of an item. |
|
287 |
/// |
|
288 |
/// This method returns \c PRE_HEAP if the given item has never |
|
289 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
290 |
/// and \c POST_HEAP otherwise. |
|
291 |
/// In the latter case it is possible that the item will get back |
|
292 |
/// to the heap again. |
|
293 |
/// \param item The item. |
|
294 |
State state(const Item &item) const { |
|
295 |
int i=_iim[item]; |
|
296 |
if( i>=0 ) { |
|
297 |
if ( _data[i].in ) i=0; |
|
298 |
else i=-2; |
|
299 |
} |
|
300 |
return State(i); |
|
301 |
} |
|
302 |
|
|
303 |
/// \brief Set the state of an item in the heap. |
|
304 |
/// |
|
305 |
/// This function sets the state of the given item in the heap. |
|
306 |
/// It can be used to manually clear the heap when it is important |
|
307 |
/// to achive better time complexity. |
|
308 |
/// \param i The item. |
|
309 |
/// \param st The state. It should not be \c IN_HEAP. |
|
310 |
void state(const Item& i, State st) { |
|
311 |
switch (st) { |
|
312 |
case POST_HEAP: |
|
313 |
case PRE_HEAP: |
|
314 |
if (state(i) == IN_HEAP) { |
|
315 |
erase(i); |
|
316 |
} |
|
317 |
_iim[i] = st; |
|
318 |
break; |
|
319 |
case IN_HEAP: |
|
320 |
break; |
|
321 |
} |
|
322 |
} |
|
323 |
|
|
324 |
private: |
|
325 |
|
|
326 |
// Find the minimum of the roots |
|
327 |
int findMin() { |
|
328 |
if( _head!=-1 ) { |
|
329 |
int min_loc=_head, min_val=_data[_head].prio; |
|
330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
|
331 |
x=_data[x].right_neighbor ) { |
|
332 |
if( _comp( _data[x].prio,min_val ) ) { |
|
333 |
min_val=_data[x].prio; |
|
334 |
min_loc=x; |
|
335 |
} |
|
336 |
} |
|
337 |
return min_loc; |
|
338 |
} |
|
339 |
else return -1; |
|
340 |
} |
|
341 |
|
|
342 |
// Merge the heap with another heap starting at the given position |
|
343 |
void merge(int a) { |
|
344 |
if( _head==-1 || a==-1 ) return; |
|
345 |
if( _data[a].right_neighbor==-1 && |
|
346 |
_data[a].degree<=_data[_head].degree ) { |
|
347 |
_data[a].right_neighbor=_head; |
|
348 |
_head=a; |
|
349 |
} else { |
|
350 |
interleave(a); |
|
351 |
} |
|
352 |
if( _data[_head].right_neighbor==-1 ) return; |
|
353 |
|
|
354 |
int x=_head; |
|
355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
|
356 |
while( x_next!=-1 ) { |
|
357 |
if( _data[x].degree!=_data[x_next].degree || |
|
358 |
( _data[x_next].right_neighbor!=-1 && |
|
359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { |
|
360 |
x_prev=x; |
|
361 |
x=x_next; |
|
362 |
} |
|
363 |
else { |
|
364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) { |
|
365 |
if( x_prev==-1 ) { |
|
366 |
_head=x_next; |
|
367 |
} else { |
|
368 |
_data[x_prev].right_neighbor=x_next; |
|
369 |
} |
|
370 |
fuse(x,x_next); |
|
371 |
x=x_next; |
|
372 |
} |
|
373 |
else { |
|
374 |
_data[x].right_neighbor=_data[x_next].right_neighbor; |
|
375 |
fuse(x_next,x); |
|
376 |
} |
|
377 |
} |
|
378 |
x_next=_data[x].right_neighbor; |
|
379 |
} |
|
380 |
} |
|
381 |
|
|
382 |
// Interleave the elements of the given list into the list of the roots |
|
383 |
void interleave(int a) { |
|
384 |
int p=_head, q=a; |
|
385 |
int curr=_data.size(); |
|
386 |
_data.push_back(Store()); |
|
387 |
|
|
388 |
while( p!=-1 || q!=-1 ) { |
|
389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { |
|
390 |
_data[curr].right_neighbor=p; |
|
391 |
curr=p; |
|
392 |
p=_data[p].right_neighbor; |
|
393 |
} |
|
394 |
else { |
|
395 |
_data[curr].right_neighbor=q; |
|
396 |
curr=q; |
|
397 |
q=_data[q].right_neighbor; |
|
398 |
} |
|
399 |
} |
|
400 |
|
|
401 |
_head=_data.back().right_neighbor; |
|
402 |
_data.pop_back(); |
|
403 |
} |
|
404 |
|
|
405 |
// Lace node a under node b |
|
406 |
void fuse(int a, int b) { |
|
407 |
_data[a].parent=b; |
|
408 |
_data[a].right_neighbor=_data[b].child; |
|
409 |
_data[b].child=a; |
|
410 |
|
|
411 |
++_data[b].degree; |
|
412 |
} |
|
413 |
|
|
414 |
// Unlace node a (if it has siblings) |
|
415 |
void unlace(int a) { |
|
416 |
int neighb=_data[a].right_neighbor; |
|
417 |
int other=_head; |
|
418 |
|
|
419 |
while( _data[other].right_neighbor!=a ) |
|
420 |
other=_data[other].right_neighbor; |
|
421 |
_data[other].right_neighbor=neighb; |
|
422 |
} |
|
423 |
|
|
424 |
private: |
|
425 |
|
|
426 |
class Store { |
|
427 |
friend class BinomHeap; |
|
428 |
|
|
429 |
Item name; |
|
430 |
int parent; |
|
431 |
int right_neighbor; |
|
432 |
int child; |
|
433 |
int degree; |
|
434 |
bool in; |
|
435 |
Prio prio; |
|
436 |
|
|
437 |
Store() : parent(-1), right_neighbor(-1), child(-1), degree(0), |
|
438 |
in(true) {} |
|
439 |
}; |
|
440 |
}; |
|
441 |
|
|
442 |
} //namespace lemon |
|
443 |
|
|
444 |
#endif //LEMON_BINOM_HEAP_H |
|
445 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BUCKET_HEAP_H |
|
20 |
#define LEMON_BUCKET_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Bucket heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
namespace _bucket_heap_bits { |
|
33 |
|
|
34 |
template <bool MIN> |
|
35 |
struct DirectionTraits { |
|
36 |
static bool less(int left, int right) { |
|
37 |
return left < right; |
|
38 |
} |
|
39 |
static void increase(int& value) { |
|
40 |
++value; |
|
41 |
} |
|
42 |
}; |
|
43 |
|
|
44 |
template <> |
|
45 |
struct DirectionTraits<false> { |
|
46 |
static bool less(int left, int right) { |
|
47 |
return left > right; |
|
48 |
} |
|
49 |
static void increase(int& value) { |
|
50 |
--value; |
|
51 |
} |
|
52 |
}; |
|
53 |
|
|
54 |
} |
|
55 |
|
|
56 |
/// \ingroup heaps |
|
57 |
/// |
|
58 |
/// \brief Bucket heap data structure. |
|
59 |
/// |
|
60 |
/// This class implements the \e bucket \e heap data structure. |
|
61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
|
62 |
/// but it has some limitations. |
|
63 |
/// |
|
64 |
/// The bucket heap is a very simple structure. It can store only |
|
65 |
/// \c int priorities and it maintains a list of items for each priority |
|
66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
|
67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
|
68 |
/// |
|
69 |
/// \tparam IM A read-writable item map with \c int values, used |
|
70 |
/// internally to handle the cross references. |
|
71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
74 |
/// functions deal with the item having maximum priority instead of the |
|
75 |
/// minimum. |
|
76 |
/// |
|
77 |
/// \sa SimpleBucketHeap |
|
78 |
template <typename IM, bool MIN = true> |
|
79 |
class BucketHeap { |
|
80 |
|
|
81 |
public: |
|
82 |
|
|
83 |
/// Type of the item-int map. |
|
84 |
typedef IM ItemIntMap; |
|
85 |
/// Type of the priorities. |
|
86 |
typedef int Prio; |
|
87 |
/// Type of the items stored in the heap. |
|
88 |
typedef typename ItemIntMap::Key Item; |
|
89 |
/// Type of the item-priority pairs. |
|
90 |
typedef std::pair<Item,Prio> Pair; |
|
91 |
|
|
92 |
private: |
|
93 |
|
|
94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
95 |
|
|
96 |
public: |
|
97 |
|
|
98 |
/// \brief Type to represent the states of the items. |
|
99 |
/// |
|
100 |
/// Each item has a state associated to it. It can be "in heap", |
|
101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
102 |
/// heap's point of view, but may be useful to the user. |
|
103 |
/// |
|
104 |
/// The item-int map must be initialized in such way that it assigns |
|
105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
106 |
enum State { |
|
107 |
IN_HEAP = 0, ///< = 0. |
|
108 |
PRE_HEAP = -1, ///< = -1. |
|
109 |
POST_HEAP = -2 ///< = -2. |
|
110 |
}; |
|
111 |
|
|
112 |
public: |
|
113 |
|
|
114 |
/// \brief Constructor. |
|
115 |
/// |
|
116 |
/// Constructor. |
|
117 |
/// \param map A map that assigns \c int values to the items. |
|
118 |
/// It is used internally to handle the cross references. |
|
119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
|
121 |
|
|
122 |
/// \brief The number of items stored in the heap. |
|
123 |
/// |
|
124 |
/// This function returns the number of items stored in the heap. |
|
125 |
int size() const { return _data.size(); } |
|
126 |
|
|
127 |
/// \brief Check if the heap is empty. |
|
128 |
/// |
|
129 |
/// This function returns \c true if the heap is empty. |
|
130 |
bool empty() const { return _data.empty(); } |
|
131 |
|
|
132 |
/// \brief Make the heap empty. |
|
133 |
/// |
|
134 |
/// This functon makes the heap empty. |
|
135 |
/// It does not change the cross reference map. If you want to reuse |
|
136 |
/// a heap that is not surely empty, you should first clear it and |
|
137 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
138 |
/// for each item. |
|
139 |
void clear() { |
|
140 |
_data.clear(); _first.clear(); _minimum = 0; |
|
141 |
} |
|
142 |
|
|
143 |
private: |
|
144 |
|
|
145 |
void relocateLast(int idx) { |
|
146 |
if (idx + 1 < int(_data.size())) { |
|
147 |
_data[idx] = _data.back(); |
|
148 |
if (_data[idx].prev != -1) { |
|
149 |
_data[_data[idx].prev].next = idx; |
|
150 |
} else { |
|
151 |
_first[_data[idx].value] = idx; |
|
152 |
} |
|
153 |
if (_data[idx].next != -1) { |
|
154 |
_data[_data[idx].next].prev = idx; |
|
155 |
} |
|
156 |
_iim[_data[idx].item] = idx; |
|
157 |
} |
|
158 |
_data.pop_back(); |
|
159 |
} |
|
160 |
|
|
161 |
void unlace(int idx) { |
|
162 |
if (_data[idx].prev != -1) { |
|
163 |
_data[_data[idx].prev].next = _data[idx].next; |
|
164 |
} else { |
|
165 |
_first[_data[idx].value] = _data[idx].next; |
|
166 |
} |
|
167 |
if (_data[idx].next != -1) { |
|
168 |
_data[_data[idx].next].prev = _data[idx].prev; |
|
169 |
} |
|
170 |
} |
|
171 |
|
|
172 |
void lace(int idx) { |
|
173 |
if (int(_first.size()) <= _data[idx].value) { |
|
174 |
_first.resize(_data[idx].value + 1, -1); |
|
175 |
} |
|
176 |
_data[idx].next = _first[_data[idx].value]; |
|
177 |
if (_data[idx].next != -1) { |
|
178 |
_data[_data[idx].next].prev = idx; |
|
179 |
} |
|
180 |
_first[_data[idx].value] = idx; |
|
181 |
_data[idx].prev = -1; |
|
182 |
} |
|
183 |
|
|
184 |
public: |
|
185 |
|
|
186 |
/// \brief Insert a pair of item and priority into the heap. |
|
187 |
/// |
|
188 |
/// This function inserts \c p.first to the heap with priority |
|
189 |
/// \c p.second. |
|
190 |
/// \param p The pair to insert. |
|
191 |
/// \pre \c p.first must not be stored in the heap. |
|
192 |
void push(const Pair& p) { |
|
193 |
push(p.first, p.second); |
|
194 |
} |
|
195 |
|
|
196 |
/// \brief Insert an item into the heap with the given priority. |
|
197 |
/// |
|
198 |
/// This function inserts the given item into the heap with the |
|
199 |
/// given priority. |
|
200 |
/// \param i The item to insert. |
|
201 |
/// \param p The priority of the item. |
|
202 |
/// \pre \e i must not be stored in the heap. |
|
203 |
void push(const Item &i, const Prio &p) { |
|
204 |
int idx = _data.size(); |
|
205 |
_iim[i] = idx; |
|
206 |
_data.push_back(BucketItem(i, p)); |
|
207 |
lace(idx); |
|
208 |
if (Direction::less(p, _minimum)) { |
|
209 |
_minimum = p; |
|
210 |
} |
|
211 |
} |
|
212 |
|
|
213 |
/// \brief Return the item having minimum priority. |
|
214 |
/// |
|
215 |
/// This function returns the item having minimum priority. |
|
216 |
/// \pre The heap must be non-empty. |
|
217 |
Item top() const { |
|
218 |
while (_first[_minimum] == -1) { |
|
219 |
Direction::increase(_minimum); |
|
220 |
} |
|
221 |
return _data[_first[_minimum]].item; |
|
222 |
} |
|
223 |
|
|
224 |
/// \brief The minimum priority. |
|
225 |
/// |
|
226 |
/// This function returns the minimum priority. |
|
227 |
/// \pre The heap must be non-empty. |
|
228 |
Prio prio() const { |
|
229 |
while (_first[_minimum] == -1) { |
|
230 |
Direction::increase(_minimum); |
|
231 |
} |
|
232 |
return _minimum; |
|
233 |
} |
|
234 |
|
|
235 |
/// \brief Remove the item having minimum priority. |
|
236 |
/// |
|
237 |
/// This function removes the item having minimum priority. |
|
238 |
/// \pre The heap must be non-empty. |
|
239 |
void pop() { |
|
240 |
while (_first[_minimum] == -1) { |
|
241 |
Direction::increase(_minimum); |
|
242 |
} |
|
243 |
int idx = _first[_minimum]; |
|
244 |
_iim[_data[idx].item] = -2; |
|
245 |
unlace(idx); |
|
246 |
relocateLast(idx); |
|
247 |
} |
|
248 |
|
|
249 |
/// \brief Remove the given item from the heap. |
|
250 |
/// |
|
251 |
/// This function removes the given item from the heap if it is |
|
252 |
/// already stored. |
|
253 |
/// \param i The item to delete. |
|
254 |
/// \pre \e i must be in the heap. |
|
255 |
void erase(const Item &i) { |
|
256 |
int idx = _iim[i]; |
|
257 |
_iim[_data[idx].item] = -2; |
|
258 |
unlace(idx); |
|
259 |
relocateLast(idx); |
|
260 |
} |
|
261 |
|
|
262 |
/// \brief The priority of the given item. |
|
263 |
/// |
|
264 |
/// This function returns the priority of the given item. |
|
265 |
/// \param i The item. |
|
266 |
/// \pre \e i must be in the heap. |
|
267 |
Prio operator[](const Item &i) const { |
|
268 |
int idx = _iim[i]; |
|
269 |
return _data[idx].value; |
|
270 |
} |
|
271 |
|
|
272 |
/// \brief Set the priority of an item or insert it, if it is |
|
273 |
/// not stored in the heap. |
|
274 |
/// |
|
275 |
/// This method sets the priority of the given item if it is |
|
276 |
/// already stored in the heap. Otherwise it inserts the given |
|
277 |
/// item into the heap with the given priority. |
|
278 |
/// \param i The item. |
|
279 |
/// \param p The priority. |
|
280 |
void set(const Item &i, const Prio &p) { |
|
281 |
int idx = _iim[i]; |
|
282 |
if (idx < 0) { |
|
283 |
push(i, p); |
|
284 |
} else if (Direction::less(p, _data[idx].value)) { |
|
285 |
decrease(i, p); |
|
286 |
} else { |
|
287 |
increase(i, p); |
|
288 |
} |
|
289 |
} |
|
290 |
|
|
291 |
/// \brief Decrease the priority of an item to the given value. |
|
292 |
/// |
|
293 |
/// This function decreases the priority of an item to the given value. |
|
294 |
/// \param i The item. |
|
295 |
/// \param p The priority. |
|
296 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
297 |
void decrease(const Item &i, const Prio &p) { |
|
298 |
int idx = _iim[i]; |
|
299 |
unlace(idx); |
|
300 |
_data[idx].value = p; |
|
301 |
if (Direction::less(p, _minimum)) { |
|
302 |
_minimum = p; |
|
303 |
} |
|
304 |
lace(idx); |
|
305 |
} |
|
306 |
|
|
307 |
/// \brief Increase the priority of an item to the given value. |
|
308 |
/// |
|
309 |
/// This function increases the priority of an item to the given value. |
|
310 |
/// \param i The item. |
|
311 |
/// \param p The priority. |
|
312 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
313 |
void increase(const Item &i, const Prio &p) { |
|
314 |
int idx = _iim[i]; |
|
315 |
unlace(idx); |
|
316 |
_data[idx].value = p; |
|
317 |
lace(idx); |
|
318 |
} |
|
319 |
|
|
320 |
/// \brief Return the state of an item. |
|
321 |
/// |
|
322 |
/// This method returns \c PRE_HEAP if the given item has never |
|
323 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
324 |
/// and \c POST_HEAP otherwise. |
|
325 |
/// In the latter case it is possible that the item will get back |
|
326 |
/// to the heap again. |
|
327 |
/// \param i The item. |
|
328 |
State state(const Item &i) const { |
|
329 |
int idx = _iim[i]; |
|
330 |
if (idx >= 0) idx = 0; |
|
331 |
return State(idx); |
|
332 |
} |
|
333 |
|
|
334 |
/// \brief Set the state of an item in the heap. |
|
335 |
/// |
|
336 |
/// This function sets the state of the given item in the heap. |
|
337 |
/// It can be used to manually clear the heap when it is important |
|
338 |
/// to achive better time complexity. |
|
339 |
/// \param i The item. |
|
340 |
/// \param st The state. It should not be \c IN_HEAP. |
|
341 |
void state(const Item& i, State st) { |
|
342 |
switch (st) { |
|
343 |
case POST_HEAP: |
|
344 |
case PRE_HEAP: |
|
345 |
if (state(i) == IN_HEAP) { |
|
346 |
erase(i); |
|
347 |
} |
|
348 |
_iim[i] = st; |
|
349 |
break; |
|
350 |
case IN_HEAP: |
|
351 |
break; |
|
352 |
} |
|
353 |
} |
|
354 |
|
|
355 |
private: |
|
356 |
|
|
357 |
struct BucketItem { |
|
358 |
BucketItem(const Item& _item, int _value) |
|
359 |
: item(_item), value(_value) {} |
|
360 |
|
|
361 |
Item item; |
|
362 |
int value; |
|
363 |
|
|
364 |
int prev, next; |
|
365 |
}; |
|
366 |
|
|
367 |
ItemIntMap& _iim; |
|
368 |
std::vector<int> _first; |
|
369 |
std::vector<BucketItem> _data; |
|
370 |
mutable int _minimum; |
|
371 |
|
|
372 |
}; // class BucketHeap |
|
373 |
|
|
374 |
/// \ingroup heaps |
|
375 |
/// |
|
376 |
/// \brief Simplified bucket heap data structure. |
|
377 |
/// |
|
378 |
/// This class implements a simplified \e bucket \e heap data |
|
379 |
/// structure. It does not provide some functionality, but it is |
|
380 |
/// faster and simpler than BucketHeap. The main difference is |
|
381 |
/// that BucketHeap stores a doubly-linked list for each key while |
|
382 |
/// this class stores only simply-linked lists. It supports erasing |
|
383 |
/// only for the item having minimum priority and it does not support |
|
384 |
/// key increasing and decreasing. |
|
385 |
/// |
|
386 |
/// Note that this implementation does not conform to the |
|
387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
388 |
/// functionality. |
|
389 |
/// |
|
390 |
/// \tparam IM A read-writable item map with \c int values, used |
|
391 |
/// internally to handle the cross references. |
|
392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
|
393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
|
394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
|
395 |
/// functions deal with the item having maximum priority instead of the |
|
396 |
/// minimum. |
|
397 |
/// |
|
398 |
/// \sa BucketHeap |
|
399 |
template <typename IM, bool MIN = true > |
|
400 |
class SimpleBucketHeap { |
|
401 |
|
|
402 |
public: |
|
403 |
|
|
404 |
/// Type of the item-int map. |
|
405 |
typedef IM ItemIntMap; |
|
406 |
/// Type of the priorities. |
|
407 |
typedef int Prio; |
|
408 |
/// Type of the items stored in the heap. |
|
409 |
typedef typename ItemIntMap::Key Item; |
|
410 |
/// Type of the item-priority pairs. |
|
411 |
typedef std::pair<Item,Prio> Pair; |
|
412 |
|
|
413 |
private: |
|
414 |
|
|
415 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
|
416 |
|
|
417 |
public: |
|
418 |
|
|
419 |
/// \brief Type to represent the states of the items. |
|
420 |
/// |
|
421 |
/// Each item has a state associated to it. It can be "in heap", |
|
422 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
423 |
/// heap's point of view, but may be useful to the user. |
|
424 |
/// |
|
425 |
/// The item-int map must be initialized in such way that it assigns |
|
426 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
427 |
enum State { |
|
428 |
IN_HEAP = 0, ///< = 0. |
|
429 |
PRE_HEAP = -1, ///< = -1. |
|
430 |
POST_HEAP = -2 ///< = -2. |
|
431 |
}; |
|
432 |
|
|
433 |
public: |
|
434 |
|
|
435 |
/// \brief Constructor. |
|
436 |
/// |
|
437 |
/// Constructor. |
|
438 |
/// \param map A map that assigns \c int values to the items. |
|
439 |
/// It is used internally to handle the cross references. |
|
440 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
441 |
explicit SimpleBucketHeap(ItemIntMap &map) |
|
442 |
: _iim(map), _free(-1), _num(0), _minimum(0) {} |
|
443 |
|
|
444 |
/// \brief The number of items stored in the heap. |
|
445 |
/// |
|
446 |
/// This function returns the number of items stored in the heap. |
|
447 |
int size() const { return _num; } |
|
448 |
|
|
449 |
/// \brief Check if the heap is empty. |
|
450 |
/// |
|
451 |
/// This function returns \c true if the heap is empty. |
|
452 |
bool empty() const { return _num == 0; } |
|
453 |
|
|
454 |
/// \brief Make the heap empty. |
|
455 |
/// |
|
456 |
/// This functon makes the heap empty. |
|
457 |
/// It does not change the cross reference map. If you want to reuse |
|
458 |
/// a heap that is not surely empty, you should first clear it and |
|
459 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
460 |
/// for each item. |
|
461 |
void clear() { |
|
462 |
_data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; |
|
463 |
} |
|
464 |
|
|
465 |
/// \brief Insert a pair of item and priority into the heap. |
|
466 |
/// |
|
467 |
/// This function inserts \c p.first to the heap with priority |
|
468 |
/// \c p.second. |
|
469 |
/// \param p The pair to insert. |
|
470 |
/// \pre \c p.first must not be stored in the heap. |
|
471 |
void push(const Pair& p) { |
|
472 |
push(p.first, p.second); |
|
473 |
} |
|
474 |
|
|
475 |
/// \brief Insert an item into the heap with the given priority. |
|
476 |
/// |
|
477 |
/// This function inserts the given item into the heap with the |
|
478 |
/// given priority. |
|
479 |
/// \param i The item to insert. |
|
480 |
/// \param p The priority of the item. |
|
481 |
/// \pre \e i must not be stored in the heap. |
|
482 |
void push(const Item &i, const Prio &p) { |
|
483 |
int idx; |
|
484 |
if (_free == -1) { |
|
485 |
idx = _data.size(); |
|
486 |
_data.push_back(BucketItem(i)); |
|
487 |
} else { |
|
488 |
idx = _free; |
|
489 |
_free = _data[idx].next; |
|
490 |
_data[idx].item = i; |
|
491 |
} |
|
492 |
_iim[i] = idx; |
|
493 |
if (p >= int(_first.size())) _first.resize(p + 1, -1); |
|
494 |
_data[idx].next = _first[p]; |
|
495 |
_first[p] = idx; |
|
496 |
if (Direction::less(p, _minimum)) { |
|
497 |
_minimum = p; |
|
498 |
} |
|
499 |
++_num; |
|
500 |
} |
|
501 |
|
|
502 |
/// \brief Return the item having minimum priority. |
|
503 |
/// |
|
504 |
/// This function returns the item having minimum priority. |
|
505 |
/// \pre The heap must be non-empty. |
|
506 |
Item top() const { |
|
507 |
while (_first[_minimum] == -1) { |
|
508 |
Direction::increase(_minimum); |
|
509 |
} |
|
510 |
return _data[_first[_minimum]].item; |
|
511 |
} |
|
512 |
|
|
513 |
/// \brief The minimum priority. |
|
514 |
/// |
|
515 |
/// This function returns the minimum priority. |
|
516 |
/// \pre The heap must be non-empty. |
|
517 |
Prio prio() const { |
|
518 |
while (_first[_minimum] == -1) { |
|
519 |
Direction::increase(_minimum); |
|
520 |
} |
|
521 |
return _minimum; |
|
522 |
} |
|
523 |
|
|
524 |
/// \brief Remove the item having minimum priority. |
|
525 |
/// |
|
526 |
/// This function removes the item having minimum priority. |
|
527 |
/// \pre The heap must be non-empty. |
|
528 |
void pop() { |
|
529 |
while (_first[_minimum] == -1) { |
|
530 |
Direction::increase(_minimum); |
|
531 |
} |
|
532 |
int idx = _first[_minimum]; |
|
533 |
_iim[_data[idx].item] = -2; |
|
534 |
_first[_minimum] = _data[idx].next; |
|
535 |
_data[idx].next = _free; |
|
536 |
_free = idx; |
|
537 |
--_num; |
|
538 |
} |
|
539 |
|
|
540 |
/// \brief The priority of the given item. |
|
541 |
/// |
|
542 |
/// This function returns the priority of the given item. |
|
543 |
/// \param i The item. |
|
544 |
/// \pre \e i must be in the heap. |
|
545 |
/// \warning This operator is not a constant time function because |
|
546 |
/// it scans the whole data structure to find the proper value. |
|
547 |
Prio operator[](const Item &i) const { |
|
548 |
for (int k = 0; k < int(_first.size()); ++k) { |
|
549 |
int idx = _first[k]; |
|
550 |
while (idx != -1) { |
|
551 |
if (_data[idx].item == i) { |
|
552 |
return k; |
|
553 |
} |
|
554 |
idx = _data[idx].next; |
|
555 |
} |
|
556 |
} |
|
557 |
return -1; |
|
558 |
} |
|
559 |
|
|
560 |
/// \brief Return the state of an item. |
|
561 |
/// |
|
562 |
/// This method returns \c PRE_HEAP if the given item has never |
|
563 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
564 |
/// and \c POST_HEAP otherwise. |
|
565 |
/// In the latter case it is possible that the item will get back |
|
566 |
/// to the heap again. |
|
567 |
/// \param i The item. |
|
568 |
State state(const Item &i) const { |
|
569 |
int idx = _iim[i]; |
|
570 |
if (idx >= 0) idx = 0; |
|
571 |
return State(idx); |
|
572 |
} |
|
573 |
|
|
574 |
private: |
|
575 |
|
|
576 |
struct BucketItem { |
|
577 |
BucketItem(const Item& _item) |
|
578 |
: item(_item) {} |
|
579 |
|
|
580 |
Item item; |
|
581 |
int next; |
|
582 |
}; |
|
583 |
|
|
584 |
ItemIntMap& _iim; |
|
585 |
std::vector<int> _first; |
|
586 |
std::vector<BucketItem> _data; |
|
587 |
int _free, _num; |
|
588 |
mutable int _minimum; |
|
589 |
|
|
590 |
}; // class SimpleBucketHeap |
|
591 |
|
|
592 |
} |
|
593 |
|
|
594 |
#endif |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FIB_HEAP_H |
|
20 |
#define LEMON_FIB_HEAP_H |
|
21 |
|
|
22 |
///\file |
|
23 |
///\ingroup heaps |
|
24 |
///\brief Fibonacci heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
#include <lemon/math.h> |
|
30 |
|
|
31 |
namespace lemon { |
|
32 |
|
|
33 |
/// \ingroup heaps |
|
34 |
/// |
|
35 |
/// \brief Fibonacci heap data structure. |
|
36 |
/// |
|
37 |
/// This class implements the \e Fibonacci \e heap data structure. |
|
38 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
39 |
/// |
|
40 |
/// The methods \ref increase() and \ref erase() are not efficient in a |
|
41 |
/// Fibonacci heap. In case of many calls of these operations, it is |
|
42 |
/// better to use other heap structure, e.g. \ref BinHeap "binary heap". |
|
43 |
/// |
|
44 |
/// \tparam PR Type of the priorities of the items. |
|
45 |
/// \tparam IM A read-writable item map with \c int values, used |
|
46 |
/// internally to handle the cross references. |
|
47 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 |
/// The default is \c std::less<PR>. |
|
49 |
#ifdef DOXYGEN |
|
50 |
template <typename PR, typename IM, typename CMP> |
|
51 |
#else |
|
52 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 |
#endif |
|
54 |
class FibHeap { |
|
55 |
public: |
|
56 |
|
|
57 |
/// Type of the item-int map. |
|
58 |
typedef IM ItemIntMap; |
|
59 |
/// Type of the priorities. |
|
60 |
typedef PR Prio; |
|
61 |
/// Type of the items stored in the heap. |
|
62 |
typedef typename ItemIntMap::Key Item; |
|
63 |
/// Type of the item-priority pairs. |
|
64 |
typedef std::pair<Item,Prio> Pair; |
|
65 |
/// Functor type for comparing the priorities. |
|
66 |
typedef CMP Compare; |
|
67 |
|
|
68 |
private: |
|
69 |
class Store; |
|
70 |
|
|
71 |
std::vector<Store> _data; |
|
72 |
int _minimum; |
|
73 |
ItemIntMap &_iim; |
|
74 |
Compare _comp; |
|
75 |
int _num; |
|
76 |
|
|
77 |
public: |
|
78 |
|
|
79 |
/// \brief Type to represent the states of the items. |
|
80 |
/// |
|
81 |
/// Each item has a state associated to it. It can be "in heap", |
|
82 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
83 |
/// heap's point of view, but may be useful to the user. |
|
84 |
/// |
|
85 |
/// The item-int map must be initialized in such way that it assigns |
|
86 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
87 |
enum State { |
|
88 |
IN_HEAP = 0, ///< = 0. |
|
89 |
PRE_HEAP = -1, ///< = -1. |
|
90 |
POST_HEAP = -2 ///< = -2. |
|
91 |
}; |
|
92 |
|
|
93 |
/// \brief Constructor. |
|
94 |
/// |
|
95 |
/// Constructor. |
|
96 |
/// \param map A map that assigns \c int values to the items. |
|
97 |
/// It is used internally to handle the cross references. |
|
98 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
99 |
explicit FibHeap(ItemIntMap &map) |
|
100 |
: _minimum(0), _iim(map), _num() {} |
|
101 |
|
|
102 |
/// \brief Constructor. |
|
103 |
/// |
|
104 |
/// Constructor. |
|
105 |
/// \param map A map that assigns \c int values to the items. |
|
106 |
/// It is used internally to handle the cross references. |
|
107 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
108 |
/// \param comp The function object used for comparing the priorities. |
|
109 |
FibHeap(ItemIntMap &map, const Compare &comp) |
|
110 |
: _minimum(0), _iim(map), _comp(comp), _num() {} |
|
111 |
|
|
112 |
/// \brief The number of items stored in the heap. |
|
113 |
/// |
|
114 |
/// This function returns the number of items stored in the heap. |
|
115 |
int size() const { return _num; } |
|
116 |
|
|
117 |
/// \brief Check if the heap is empty. |
|
118 |
/// |
|
119 |
/// This function returns \c true if the heap is empty. |
|
120 |
bool empty() const { return _num==0; } |
|
121 |
|
|
122 |
/// \brief Make the heap empty. |
|
123 |
/// |
|
124 |
/// This functon makes the heap empty. |
|
125 |
/// It does not change the cross reference map. If you want to reuse |
|
126 |
/// a heap that is not surely empty, you should first clear it and |
|
127 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
128 |
/// for each item. |
|
129 |
void clear() { |
|
130 |
_data.clear(); _minimum = 0; _num = 0; |
|
131 |
} |
|
132 |
|
|
133 |
/// \brief Insert an item into the heap with the given priority. |
|
134 |
/// |
|
135 |
/// This function inserts the given item into the heap with the |
|
136 |
/// given priority. |
|
137 |
/// \param item The item to insert. |
|
138 |
/// \param prio The priority of the item. |
|
139 |
/// \pre \e item must not be stored in the heap. |
|
140 |
void push (const Item& item, const Prio& prio) { |
|
141 |
int i=_iim[item]; |
|
142 |
if ( i < 0 ) { |
|
143 |
int s=_data.size(); |
|
144 |
_iim.set( item, s ); |
|
145 |
Store st; |
|
146 |
st.name=item; |
|
147 |
_data.push_back(st); |
|
148 |
i=s; |
|
149 |
} else { |
|
150 |
_data[i].parent=_data[i].child=-1; |
|
151 |
_data[i].degree=0; |
|
152 |
_data[i].in=true; |
|
153 |
_data[i].marked=false; |
|
154 |
} |
|
155 |
|
|
156 |
if ( _num ) { |
|
157 |
_data[_data[_minimum].right_neighbor].left_neighbor=i; |
|
158 |
_data[i].right_neighbor=_data[_minimum].right_neighbor; |
|
159 |
_data[_minimum].right_neighbor=i; |
|
160 |
_data[i].left_neighbor=_minimum; |
|
161 |
if ( _comp( prio, _data[_minimum].prio) ) _minimum=i; |
|
162 |
} else { |
|
163 |
_data[i].right_neighbor=_data[i].left_neighbor=i; |
|
164 |
_minimum=i; |
|
165 |
} |
|
166 |
_data[i].prio=prio; |
|
167 |
++_num; |
|
168 |
} |
|
169 |
|
|
170 |
/// \brief Return the item having minimum priority. |
|
171 |
/// |
|
172 |
/// This function returns the item having minimum priority. |
|
173 |
/// \pre The heap must be non-empty. |
|
174 |
Item top() const { return _data[_minimum].name; } |
|
175 |
|
|
176 |
/// \brief The minimum priority. |
|
177 |
/// |
|
178 |
/// This function returns the minimum priority. |
|
179 |
/// \pre The heap must be non-empty. |
|
180 |
Prio prio() const { return _data[_minimum].prio; } |
|
181 |
|
|
182 |
/// \brief Remove the item having minimum priority. |
|
183 |
/// |
|
184 |
/// This function removes the item having minimum priority. |
|
185 |
/// \pre The heap must be non-empty. |
|
186 |
void pop() { |
|
187 |
/*The first case is that there are only one root.*/ |
|
188 |
if ( _data[_minimum].left_neighbor==_minimum ) { |
|
189 |
_data[_minimum].in=false; |
|
190 |
if ( _data[_minimum].degree!=0 ) { |
|
191 |
makeRoot(_data[_minimum].child); |
|
192 |
_minimum=_data[_minimum].child; |
|
193 |
balance(); |
|
194 |
} |
|
195 |
} else { |
|
196 |
int right=_data[_minimum].right_neighbor; |
|
197 |
unlace(_minimum); |
|
198 |
_data[_minimum].in=false; |
|
199 |
if ( _data[_minimum].degree > 0 ) { |
|
200 |
int left=_data[_minimum].left_neighbor; |
|
201 |
int child=_data[_minimum].child; |
|
202 |
int last_child=_data[child].left_neighbor; |
|
203 |
|
|
204 |
makeRoot(child); |
|
205 |
|
|
206 |
_data[left].right_neighbor=child; |
|
207 |
_data[child].left_neighbor=left; |
|
208 |
_data[right].left_neighbor=last_child; |
|
209 |
_data[last_child].right_neighbor=right; |
|
210 |
} |
|
211 |
_minimum=right; |
|
212 |
balance(); |
|
213 |
} // the case where there are more roots |
|
214 |
--_num; |
|
215 |
} |
|
216 |
|
|
217 |
/// \brief Remove the given item from the heap. |
|
218 |
/// |
|
219 |
/// This function removes the given item from the heap if it is |
|
220 |
/// already stored. |
|
221 |
/// \param item The item to delete. |
|
222 |
/// \pre \e item must be in the heap. |
|
223 |
void erase (const Item& item) { |
|
224 |
int i=_iim[item]; |
|
225 |
|
|
226 |
if ( i >= 0 && _data[i].in ) { |
|
227 |
if ( _data[i].parent!=-1 ) { |
|
228 |
int p=_data[i].parent; |
|
229 |
cut(i,p); |
|
230 |
cascade(p); |
|
231 |
} |
|
232 |
_minimum=i; //As if its prio would be -infinity |
|
233 |
pop(); |
|
234 |
} |
|
235 |
} |
|
236 |
|
|
237 |
/// \brief The priority of the given item. |
|
238 |
/// |
|
239 |
/// This function returns the priority of the given item. |
|
240 |
/// \param item The item. |
|
241 |
/// \pre \e item must be in the heap. |
|
242 |
Prio operator[](const Item& item) const { |
|
243 |
return _data[_iim[item]].prio; |
|
244 |
} |
|
245 |
|
|
246 |
/// \brief Set the priority of an item or insert it, if it is |
|
247 |
/// not stored in the heap. |
|
248 |
/// |
|
249 |
/// This method sets the priority of the given item if it is |
|
250 |
/// already stored in the heap. Otherwise it inserts the given |
|
251 |
/// item into the heap with the given priority. |
|
252 |
/// \param item The item. |
|
253 |
/// \param prio The priority. |
|
254 |
void set (const Item& item, const Prio& prio) { |
|
255 |
int i=_iim[item]; |
|
256 |
if ( i >= 0 && _data[i].in ) { |
|
257 |
if ( _comp(prio, _data[i].prio) ) decrease(item, prio); |
|
258 |
if ( _comp(_data[i].prio, prio) ) increase(item, prio); |
|
259 |
} else push(item, prio); |
|
260 |
} |
|
261 |
|
|
262 |
/// \brief Decrease the priority of an item to the given value. |
|
263 |
/// |
|
264 |
/// This function decreases the priority of an item to the given value. |
|
265 |
/// \param item The item. |
|
266 |
/// \param prio The priority. |
|
267 |
/// \pre \e item must be stored in the heap with priority at least \e prio. |
|
268 |
void decrease (const Item& item, const Prio& prio) { |
|
269 |
int i=_iim[item]; |
|
270 |
_data[i].prio=prio; |
|
271 |
int p=_data[i].parent; |
|
272 |
|
|
273 |
if ( p!=-1 && _comp(prio, _data[p].prio) ) { |
|
274 |
cut(i,p); |
|
275 |
cascade(p); |
|
276 |
} |
|
277 |
if ( _comp(prio, _data[_minimum].prio) ) _minimum=i; |
|
278 |
} |
|
279 |
|
|
280 |
/// \brief Increase the priority of an item to the given value. |
|
281 |
/// |
|
282 |
/// This function increases the priority of an item to the given value. |
|
283 |
/// \param item The item. |
|
284 |
/// \param prio The priority. |
|
285 |
/// \pre \e item must be stored in the heap with priority at most \e prio. |
|
286 |
void increase (const Item& item, const Prio& prio) { |
|
287 |
erase(item); |
|
288 |
push(item, prio); |
|
289 |
} |
|
290 |
|
|
291 |
/// \brief Return the state of an item. |
|
292 |
/// |
|
293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
295 |
/// and \c POST_HEAP otherwise. |
|
296 |
/// In the latter case it is possible that the item will get back |
|
297 |
/// to the heap again. |
|
298 |
/// \param item The item. |
|
299 |
State state(const Item &item) const { |
|
300 |
int i=_iim[item]; |
|
301 |
if( i>=0 ) { |
|
302 |
if ( _data[i].in ) i=0; |
|
303 |
else i=-2; |
|
304 |
} |
|
305 |
return State(i); |
|
306 |
} |
|
307 |
|
|
308 |
/// \brief Set the state of an item in the heap. |
|
309 |
/// |
|
310 |
/// This function sets the state of the given item in the heap. |
|
311 |
/// It can be used to manually clear the heap when it is important |
|
312 |
/// to achive better time complexity. |
|
313 |
/// \param i The item. |
|
314 |
/// \param st The state. It should not be \c IN_HEAP. |
|
315 |
void state(const Item& i, State st) { |
|
316 |
switch (st) { |
|
317 |
case POST_HEAP: |
|
318 |
case PRE_HEAP: |
|
319 |
if (state(i) == IN_HEAP) { |
|
320 |
erase(i); |
|
321 |
} |
|
322 |
_iim[i] = st; |
|
323 |
break; |
|
324 |
case IN_HEAP: |
|
325 |
break; |
|
326 |
} |
|
327 |
} |
|
328 |
|
|
329 |
private: |
|
330 |
|
|
331 |
void balance() { |
|
332 |
|
|
333 |
int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; |
|
334 |
|
|
335 |
std::vector<int> A(maxdeg,-1); |
|
336 |
|
|
337 |
/* |
|
338 |
*Recall that now minimum does not point to the minimum prio element. |
|
339 |
*We set minimum to this during balance(). |
|
340 |
*/ |
|
341 |
int anchor=_data[_minimum].left_neighbor; |
|
342 |
int next=_minimum; |
|
343 |
bool end=false; |
|
344 |
|
|
345 |
do { |
|
346 |
int active=next; |
|
347 |
if ( anchor==active ) end=true; |
|
348 |
int d=_data[active].degree; |
|
349 |
next=_data[active].right_neighbor; |
|
350 |
|
|
351 |
while (A[d]!=-1) { |
|
352 |
if( _comp(_data[active].prio, _data[A[d]].prio) ) { |
|
353 |
fuse(active,A[d]); |
|
354 |
} else { |
|
355 |
fuse(A[d],active); |
|
356 |
active=A[d]; |
|
357 |
} |
|
358 |
A[d]=-1; |
|
359 |
++d; |
|
360 |
} |
|
361 |
A[d]=active; |
|
362 |
} while ( !end ); |
|
363 |
|
|
364 |
|
|
365 |
while ( _data[_minimum].parent >=0 ) |
|
366 |
_minimum=_data[_minimum].parent; |
|
367 |
int s=_minimum; |
|
368 |
int m=_minimum; |
|
369 |
do { |
|
370 |
if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; |
|
371 |
s=_data[s].right_neighbor; |
|
372 |
} while ( s != m ); |
|
373 |
} |
|
374 |
|
|
375 |
void makeRoot(int c) { |
|
376 |
int s=c; |
|
377 |
do { |
|
378 |
_data[s].parent=-1; |
|
379 |
s=_data[s].right_neighbor; |
|
380 |
} while ( s != c ); |
|
381 |
} |
|
382 |
|
|
383 |
void cut(int a, int b) { |
|
384 |
/* |
|
385 |
*Replacing a from the children of b. |
|
386 |
*/ |
|
387 |
--_data[b].degree; |
|
388 |
|
|
389 |
if ( _data[b].degree !=0 ) { |
|
390 |
int child=_data[b].child; |
|
391 |
if ( child==a ) |
|
392 |
_data[b].child=_data[child].right_neighbor; |
|
393 |
unlace(a); |
|
394 |
} |
|
395 |
|
|
396 |
|
|
397 |
/*Lacing a to the roots.*/ |
|
398 |
int right=_data[_minimum].right_neighbor; |
|
399 |
_data[_minimum].right_neighbor=a; |
|
400 |
_data[a].left_neighbor=_minimum; |
|
401 |
_data[a].right_neighbor=right; |
|
402 |
_data[right].left_neighbor=a; |
|
403 |
|
|
404 |
_data[a].parent=-1; |
|
405 |
_data[a].marked=false; |
|
406 |
} |
|
407 |
|
|
408 |
void cascade(int a) { |
|
409 |
if ( _data[a].parent!=-1 ) { |
|
410 |
int p=_data[a].parent; |
|
411 |
|
|
412 |
if ( _data[a].marked==false ) _data[a].marked=true; |
|
413 |
else { |
|
414 |
cut(a,p); |
|
415 |
cascade(p); |
|
416 |
} |
|
417 |
} |
|
418 |
} |
|
419 |
|
|
420 |
void fuse(int a, int b) { |
|
421 |
unlace(b); |
|
422 |
|
|
423 |
/*Lacing b under a.*/ |
|
424 |
_data[b].parent=a; |
|
425 |
|
|
426 |
if (_data[a].degree==0) { |
|
427 |
_data[b].left_neighbor=b; |
|
428 |
_data[b].right_neighbor=b; |
|
429 |
_data[a].child=b; |
|
430 |
} else { |
|
431 |
int child=_data[a].child; |
|
432 |
int last_child=_data[child].left_neighbor; |
|
433 |
_data[child].left_neighbor=b; |
|
434 |
_data[b].right_neighbor=child; |
|
435 |
_data[last_child].right_neighbor=b; |
|
436 |
_data[b].left_neighbor=last_child; |
|
437 |
} |
|
438 |
|
|
439 |
++_data[a].degree; |
|
440 |
|
|
441 |
_data[b].marked=false; |
|
442 |
} |
|
443 |
|
|
444 |
/* |
|
445 |
*It is invoked only if a has siblings. |
|
446 |
*/ |
|
447 |
void unlace(int a) { |
|
448 |
int leftn=_data[a].left_neighbor; |
|
449 |
int rightn=_data[a].right_neighbor; |
|
450 |
_data[leftn].right_neighbor=rightn; |
|
451 |
_data[rightn].left_neighbor=leftn; |
|
452 |
} |
|
453 |
|
|
454 |
|
|
455 |
class Store { |
|
456 |
friend class FibHeap; |
|
457 |
|
|
458 |
Item name; |
|
459 |
int parent; |
|
460 |
int left_neighbor; |
|
461 |
int right_neighbor; |
|
462 |
int child; |
|
463 |
int degree; |
|
464 |
bool marked; |
|
465 |
bool in; |
|
466 |
Prio prio; |
|
467 |
|
|
468 |
Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} |
|
469 |
}; |
|
470 |
}; |
|
471 |
|
|
472 |
} //namespace lemon |
|
473 |
|
|
474 |
#endif //LEMON_FIB_HEAP_H |
|
475 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_FOURARY_HEAP_H |
|
20 |
#define LEMON_FOURARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Fourary heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
///\brief Fourary heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e fourary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
38 |
/// |
|
39 |
/// The fourary heap is a specialization of the \ref KaryHeap "K-ary heap" |
|
40 |
/// for <tt>K=4</tt>. It is similar to the \ref BinHeap "binary heap", |
|
41 |
/// but its nodes have at most four children, instead of two. |
|
42 |
/// |
|
43 |
/// \tparam PR Type of the priorities of the items. |
|
44 |
/// \tparam IM A read-writable item map with \c int values, used |
|
45 |
/// internally to handle the cross references. |
|
46 |
/// \tparam CMP A functor class for comparing the priorities. |
|
47 |
/// The default is \c std::less<PR>. |
|
48 |
/// |
|
49 |
///\sa BinHeap |
|
50 |
///\sa KaryHeap |
|
51 |
#ifdef DOXYGEN |
|
52 |
template <typename PR, typename IM, typename CMP> |
|
53 |
#else |
|
54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
55 |
#endif |
|
56 |
class FouraryHeap { |
|
57 |
public: |
|
58 |
/// Type of the item-int map. |
|
59 |
typedef IM ItemIntMap; |
|
60 |
/// Type of the priorities. |
|
61 |
typedef PR Prio; |
|
62 |
/// Type of the items stored in the heap. |
|
63 |
typedef typename ItemIntMap::Key Item; |
|
64 |
/// Type of the item-priority pairs. |
|
65 |
typedef std::pair<Item,Prio> Pair; |
|
66 |
/// Functor type for comparing the priorities. |
|
67 |
typedef CMP Compare; |
|
68 |
|
|
69 |
/// \brief Type to represent the states of the items. |
|
70 |
/// |
|
71 |
/// Each item has a state associated to it. It can be "in heap", |
|
72 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
73 |
/// heap's point of view, but may be useful to the user. |
|
74 |
/// |
|
75 |
/// The item-int map must be initialized in such way that it assigns |
|
76 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
77 |
enum State { |
|
78 |
IN_HEAP = 0, ///< = 0. |
|
79 |
PRE_HEAP = -1, ///< = -1. |
|
80 |
POST_HEAP = -2 ///< = -2. |
|
81 |
}; |
|
82 |
|
|
83 |
private: |
|
84 |
std::vector<Pair> _data; |
|
85 |
Compare _comp; |
|
86 |
ItemIntMap &_iim; |
|
87 |
|
|
88 |
public: |
|
89 |
/// \brief Constructor. |
|
90 |
/// |
|
91 |
/// Constructor. |
|
92 |
/// \param map A map that assigns \c int values to the items. |
|
93 |
/// It is used internally to handle the cross references. |
|
94 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
95 |
explicit FouraryHeap(ItemIntMap &map) : _iim(map) {} |
|
96 |
|
|
97 |
/// \brief Constructor. |
|
98 |
/// |
|
99 |
/// Constructor. |
|
100 |
/// \param map A map that assigns \c int values to the items. |
|
101 |
/// It is used internally to handle the cross references. |
|
102 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
103 |
/// \param comp The function object used for comparing the priorities. |
|
104 |
FouraryHeap(ItemIntMap &map, const Compare &comp) |
|
105 |
: _iim(map), _comp(comp) {} |
|
106 |
|
|
107 |
/// \brief The number of items stored in the heap. |
|
108 |
/// |
|
109 |
/// This function returns the number of items stored in the heap. |
|
110 |
int size() const { return _data.size(); } |
|
111 |
|
|
112 |
/// \brief Check if the heap is empty. |
|
113 |
/// |
|
114 |
/// This function returns \c true if the heap is empty. |
|
115 |
bool empty() const { return _data.empty(); } |
|
116 |
|
|
117 |
/// \brief Make the heap empty. |
|
118 |
/// |
|
119 |
/// This functon makes the heap empty. |
|
120 |
/// It does not change the cross reference map. If you want to reuse |
|
121 |
/// a heap that is not surely empty, you should first clear it and |
|
122 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
123 |
/// for each item. |
|
124 |
void clear() { _data.clear(); } |
|
125 |
|
|
126 |
private: |
|
127 |
static int parent(int i) { return (i-1)/4; } |
|
128 |
static int firstChild(int i) { return 4*i+1; } |
|
129 |
|
|
130 |
bool less(const Pair &p1, const Pair &p2) const { |
|
131 |
return _comp(p1.second, p2.second); |
|
132 |
} |
|
133 |
|
|
134 |
void bubbleUp(int hole, Pair p) { |
|
135 |
int par = parent(hole); |
|
136 |
while( hole>0 && less(p,_data[par]) ) { |
|
137 |
move(_data[par],hole); |
|
138 |
hole = par; |
|
139 |
par = parent(hole); |
|
140 |
} |
|
141 |
move(p, hole); |
|
142 |
} |
|
143 |
|
|
144 |
void bubbleDown(int hole, Pair p, int length) { |
|
145 |
if( length>1 ) { |
|
146 |
int child = firstChild(hole); |
|
147 |
while( child+3<length ) { |
|
148 |
int min=child; |
|
149 |
if( less(_data[++child], _data[min]) ) min=child; |
|
150 |
if( less(_data[++child], _data[min]) ) min=child; |
|
151 |
if( less(_data[++child], _data[min]) ) min=child; |
|
152 |
if( !less(_data[min], p) ) |
|
153 |
goto ok; |
|
154 |
move(_data[min], hole); |
|
155 |
hole = min; |
|
156 |
child = firstChild(hole); |
|
157 |
} |
|
158 |
if ( child<length ) { |
|
159 |
int min = child; |
|
160 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
161 |
if( ++child<length && less(_data[child], _data[min]) ) min=child; |
|
162 |
if( less(_data[min], p) ) { |
|
163 |
move(_data[min], hole); |
|
164 |
hole = min; |
|
165 |
} |
|
166 |
} |
|
167 |
} |
|
168 |
ok: |
|
169 |
move(p, hole); |
|
170 |
} |
|
171 |
|
|
172 |
void move(const Pair &p, int i) { |
|
173 |
_data[i] = p; |
|
174 |
_iim.set(p.first, i); |
|
175 |
} |
|
176 |
|
|
177 |
public: |
|
178 |
/// \brief Insert a pair of item and priority into the heap. |
|
179 |
/// |
|
180 |
/// This function inserts \c p.first to the heap with priority |
|
181 |
/// \c p.second. |
|
182 |
/// \param p The pair to insert. |
|
183 |
/// \pre \c p.first must not be stored in the heap. |
|
184 |
void push(const Pair &p) { |
|
185 |
int n = _data.size(); |
|
186 |
_data.resize(n+1); |
|
187 |
bubbleUp(n, p); |
|
188 |
} |
|
189 |
|
|
190 |
/// \brief Insert an item into the heap with the given priority. |
|
191 |
/// |
|
192 |
/// This function inserts the given item into the heap with the |
|
193 |
/// given priority. |
|
194 |
/// \param i The item to insert. |
|
195 |
/// \param p The priority of the item. |
|
196 |
/// \pre \e i must not be stored in the heap. |
|
197 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
198 |
|
|
199 |
/// \brief Return the item having minimum priority. |
|
200 |
/// |
|
201 |
/// This function returns the item having minimum priority. |
|
202 |
/// \pre The heap must be non-empty. |
|
203 |
Item top() const { return _data[0].first; } |
|
204 |
|
|
205 |
/// \brief The minimum priority. |
|
206 |
/// |
|
207 |
/// This function returns the minimum priority. |
|
208 |
/// \pre The heap must be non-empty. |
|
209 |
Prio prio() const { return _data[0].second; } |
|
210 |
|
|
211 |
/// \brief Remove the item having minimum priority. |
|
212 |
/// |
|
213 |
/// This function removes the item having minimum priority. |
|
214 |
/// \pre The heap must be non-empty. |
|
215 |
void pop() { |
|
216 |
int n = _data.size()-1; |
|
217 |
_iim.set(_data[0].first, POST_HEAP); |
|
218 |
if (n>0) bubbleDown(0, _data[n], n); |
|
219 |
_data.pop_back(); |
|
220 |
} |
|
221 |
|
|
222 |
/// \brief Remove the given item from the heap. |
|
223 |
/// |
|
224 |
/// This function removes the given item from the heap if it is |
|
225 |
/// already stored. |
|
226 |
/// \param i The item to delete. |
|
227 |
/// \pre \e i must be in the heap. |
|
228 |
void erase(const Item &i) { |
|
229 |
int h = _iim[i]; |
|
230 |
int n = _data.size()-1; |
|
231 |
_iim.set(_data[h].first, POST_HEAP); |
|
232 |
if( h<n ) { |
|
233 |
if( less(_data[parent(h)], _data[n]) ) |
|
234 |
bubbleDown(h, _data[n], n); |
|
235 |
else |
|
236 |
bubbleUp(h, _data[n]); |
|
237 |
} |
|
238 |
_data.pop_back(); |
|
239 |
} |
|
240 |
|
|
241 |
/// \brief The priority of the given item. |
|
242 |
/// |
|
243 |
/// This function returns the priority of the given item. |
|
244 |
/// \param i The item. |
|
245 |
/// \pre \e i must be in the heap. |
|
246 |
Prio operator[](const Item &i) const { |
|
247 |
int idx = _iim[i]; |
|
248 |
return _data[idx].second; |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief Set the priority of an item or insert it, if it is |
|
252 |
/// not stored in the heap. |
|
253 |
/// |
|
254 |
/// This method sets the priority of the given item if it is |
|
255 |
/// already stored in the heap. Otherwise it inserts the given |
|
256 |
/// item into the heap with the given priority. |
|
257 |
/// \param i The item. |
|
258 |
/// \param p The priority. |
|
259 |
void set(const Item &i, const Prio &p) { |
|
260 |
int idx = _iim[i]; |
|
261 |
if( idx < 0 ) |
|
262 |
push(i,p); |
|
263 |
else if( _comp(p, _data[idx].second) ) |
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
265 |
else |
|
266 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
267 |
} |
|
268 |
|
|
269 |
/// \brief Decrease the priority of an item to the given value. |
|
270 |
/// |
|
271 |
/// This function decreases the priority of an item to the given value. |
|
272 |
/// \param i The item. |
|
273 |
/// \param p The priority. |
|
274 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
275 |
void decrease(const Item &i, const Prio &p) { |
|
276 |
int idx = _iim[i]; |
|
277 |
bubbleUp(idx, Pair(i,p)); |
|
278 |
} |
|
279 |
|
|
280 |
/// \brief Increase the priority of an item to the given value. |
|
281 |
/// |
|
282 |
/// This function increases the priority of an item to the given value. |
|
283 |
/// \param i The item. |
|
284 |
/// \param p The priority. |
|
285 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
286 |
void increase(const Item &i, const Prio &p) { |
|
287 |
int idx = _iim[i]; |
|
288 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
289 |
} |
|
290 |
|
|
291 |
/// \brief Return the state of an item. |
|
292 |
/// |
|
293 |
/// This method returns \c PRE_HEAP if the given item has never |
|
294 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
295 |
/// and \c POST_HEAP otherwise. |
|
296 |
/// In the latter case it is possible that the item will get back |
|
297 |
/// to the heap again. |
|
298 |
/// \param i The item. |
|
299 |
State state(const Item &i) const { |
|
300 |
int s = _iim[i]; |
|
301 |
if (s>=0) s=0; |
|
302 |
return State(s); |
|
303 |
} |
|
304 |
|
|
305 |
/// \brief Set the state of an item in the heap. |
|
306 |
/// |
|
307 |
/// This function sets the state of the given item in the heap. |
|
308 |
/// It can be used to manually clear the heap when it is important |
|
309 |
/// to achive better time complexity. |
|
310 |
/// \param i The item. |
|
311 |
/// \param st The state. It should not be \c IN_HEAP. |
|
312 |
void state(const Item& i, State st) { |
|
313 |
switch (st) { |
|
314 |
case POST_HEAP: |
|
315 |
case PRE_HEAP: |
|
316 |
if (state(i) == IN_HEAP) erase(i); |
|
317 |
_iim[i] = st; |
|
318 |
break; |
|
319 |
case IN_HEAP: |
|
320 |
break; |
|
321 |
} |
|
322 |
} |
|
323 |
|
|
324 |
/// \brief Replace an item in the heap. |
|
325 |
/// |
|
326 |
/// This function replaces item \c i with item \c j. |
|
327 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
328 |
/// After calling this method, item \c i will be out of the |
|
329 |
/// heap and \c j will be in the heap with the same prioriority |
|
330 |
/// as item \c i had before. |
|
331 |
void replace(const Item& i, const Item& j) { |
|
332 |
int idx = _iim[i]; |
|
333 |
_iim.set(i, _iim[j]); |
|
334 |
_iim.set(j, idx); |
|
335 |
_data[idx].first = j; |
|
336 |
} |
|
337 |
|
|
338 |
}; // class FouraryHeap |
|
339 |
|
|
340 |
} // namespace lemon |
|
341 |
|
|
342 |
#endif // LEMON_FOURARY_HEAP_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_KARY_HEAP_H |
|
20 |
#define LEMON_KARY_HEAP_H |
|
21 |
|
|
22 |
///\ingroup heaps |
|
23 |
///\file |
|
24 |
///\brief Fourary heap implementation. |
|
25 |
|
|
26 |
#include <vector> |
|
27 |
#include <utility> |
|
28 |
#include <functional> |
|
29 |
|
|
30 |
namespace lemon { |
|
31 |
|
|
32 |
/// \ingroup heaps |
|
33 |
/// |
|
34 |
///\brief K-ary heap data structure. |
|
35 |
/// |
|
36 |
/// This class implements the \e K-ary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
38 |
/// |
|
39 |
/// The \ref KaryHeap "K-ary heap" is a generalization of the |
|
40 |
/// \ref BinHeap "binary heap" structure, its nodes have at most |
|
41 |
/// \c K children, instead of two. |
|
42 |
/// \ref BinHeap and \ref FouraryHeap are specialized implementations |
|
43 |
/// of this structure for <tt>K=2</tt> and <tt>K=4</tt>, respectively. |
|
44 |
/// |
|
45 |
/// \tparam PR Type of the priorities of the items. |
|
46 |
/// \tparam IM A read-writable item map with \c int values, used |
|
47 |
/// internally to handle the cross references. |
|
48 |
/// \tparam K The degree of the heap, each node have at most \e K |
|
49 |
/// children. The default is 16. Powers of two are suggested to use |
|
50 |
/// so that the multiplications and divisions needed to traverse the |
|
51 |
/// nodes of the heap could be performed faster. |
|
52 |
/// \tparam CMP A functor class for comparing the priorities. |
|
53 |
/// The default is \c std::less<PR>. |
|
54 |
/// |
|
55 |
///\sa BinHeap |
|
56 |
///\sa FouraryHeap |
|
57 |
#ifdef DOXYGEN |
|
58 |
template <typename PR, typename IM, int K, typename CMP> |
|
59 |
#else |
|
60 |
template <typename PR, typename IM, int K = 16, |
|
61 |
typename CMP = std::less<PR> > |
|
62 |
#endif |
|
63 |
class KaryHeap { |
|
64 |
public: |
|
65 |
/// Type of the item-int map. |
|
66 |
typedef IM ItemIntMap; |
|
67 |
/// Type of the priorities. |
|
68 |
typedef PR Prio; |
|
69 |
/// Type of the items stored in the heap. |
|
70 |
typedef typename ItemIntMap::Key Item; |
|
71 |
/// Type of the item-priority pairs. |
|
72 |
typedef std::pair<Item,Prio> Pair; |
|
73 |
/// Functor type for comparing the priorities. |
|
74 |
typedef CMP Compare; |
|
75 |
|
|
76 |
/// \brief Type to represent the states of the items. |
|
77 |
/// |
|
78 |
/// Each item has a state associated to it. It can be "in heap", |
|
79 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
80 |
/// heap's point of view, but may be useful to the user. |
|
81 |
/// |
|
82 |
/// The item-int map must be initialized in such way that it assigns |
|
83 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
|
84 |
enum State { |
|
85 |
IN_HEAP = 0, ///< = 0. |
|
86 |
PRE_HEAP = -1, ///< = -1. |
|
87 |
POST_HEAP = -2 ///< = -2. |
|
88 |
}; |
|
89 |
|
|
90 |
private: |
|
91 |
std::vector<Pair> _data; |
|
92 |
Compare _comp; |
|
93 |
ItemIntMap &_iim; |
|
94 |
|
|
95 |
public: |
|
96 |
/// \brief Constructor. |
|
97 |
/// |
|
98 |
/// Constructor. |
|
99 |
/// \param map A map that assigns \c int values to the items. |
|
100 |
/// It is used internally to handle the cross references. |
|
101 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
102 |
explicit KaryHeap(ItemIntMap &map) : _iim(map) {} |
|
103 |
|
|
104 |
/// \brief Constructor. |
|
105 |
/// |
|
106 |
/// Constructor. |
|
107 |
/// \param map A map that assigns \c int values to the items. |
|
108 |
/// It is used internally to handle the cross references. |
|
109 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
110 |
/// \param comp The function object used for comparing the priorities. |
|
111 |
KaryHeap(ItemIntMap &map, const Compare &comp) |
|
112 |
: _iim(map), _comp(comp) {} |
|
113 |
|
|
114 |
/// \brief The number of items stored in the heap. |
|
115 |
/// |
|
116 |
/// This function returns the number of items stored in the heap. |
|
117 |
int size() const { return _data.size(); } |
|
118 |
|
|
119 |
/// \brief Check if the heap is empty. |
|
120 |
/// |
|
121 |
/// This function returns \c true if the heap is empty. |
|
122 |
bool empty() const { return _data.empty(); } |
|
123 |
|
|
124 |
/// \brief Make the heap empty. |
|
125 |
/// |
|
126 |
/// This functon makes the heap empty. |
|
127 |
/// It does not change the cross reference map. If you want to reuse |
|
128 |
/// a heap that is not surely empty, you should first clear it and |
|
129 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
130 |
/// for each item. |
|
131 |
void clear() { _data.clear(); } |
|
132 |
|
|
133 |
private: |
|
134 |
int parent(int i) { return (i-1)/K; } |
|
135 |
int firstChild(int i) { return K*i+1; } |
|
136 |
|
|
137 |
bool less(const Pair &p1, const Pair &p2) const { |
|
138 |
return _comp(p1.second, p2.second); |
|
139 |
} |
|
140 |
|
|
141 |
void bubbleUp(int hole, Pair p) { |
|
142 |
int par = parent(hole); |
|
143 |
while( hole>0 && less(p,_data[par]) ) { |
|
144 |
move(_data[par],hole); |
|
145 |
hole = par; |
|
146 |
par = parent(hole); |
|
147 |
} |
|
148 |
move(p, hole); |
|
149 |
} |
|
150 |
|
|
151 |
void bubbleDown(int hole, Pair p, int length) { |
|
152 |
if( length>1 ) { |
|
153 |
int child = firstChild(hole); |
|
154 |
while( child+K<=length ) { |
|
155 |
int min=child; |
|
156 |
for (int i=1; i<K; ++i) { |
|
157 |
if( less(_data[child+i], _data[min]) ) |
|
158 |
min=child+i; |
|
159 |
} |
|
160 |
if( !less(_data[min], p) ) |
|
161 |
goto ok; |
|
162 |
move(_data[min], hole); |
|
163 |
hole = min; |
|
164 |
child = firstChild(hole); |
|
165 |
} |
|
166 |
if ( child<length ) { |
|
167 |
int min = child; |
|
168 |
while (++child < length) { |
|
169 |
if( less(_data[child], _data[min]) ) |
|
170 |
min=child; |
|
171 |
} |
|
172 |
if( less(_data[min], p) ) { |
|
173 |
move(_data[min], hole); |
|
174 |
hole = min; |
|
175 |
} |
|
176 |
} |
|
177 |
} |
|
178 |
ok: |
|
179 |
move(p, hole); |
|
180 |
} |
|
181 |
|
|
182 |
void move(const Pair &p, int i) { |
|
183 |
_data[i] = p; |
|
184 |
_iim.set(p.first, i); |
|
185 |
} |
|
186 |
|
|
187 |
public: |
|
188 |
/// \brief Insert a pair of item and priority into the heap. |
|
189 |
/// |
|
190 |
/// This function inserts \c p.first to the heap with priority |
|
191 |
/// \c p.second. |
|
192 |
/// \param p The pair to insert. |
|
193 |
/// \pre \c p.first must not be stored in the heap. |
|
194 |
void push(const Pair &p) { |
|
195 |
int n = _data.size(); |
|
196 |
_data.resize(n+1); |
|
197 |
bubbleUp(n, p); |
|
198 |
} |
|
199 |
|
|
200 |
/// \brief Insert an item into the heap with the given priority. |
|
201 |
/// |
|
202 |
/// This function inserts the given item into the heap with the |
|
203 |
/// given priority. |
|
204 |
/// \param i The item to insert. |
|
205 |
/// \param p The priority of the item. |
|
206 |
/// \pre \e i must not be stored in the heap. |
|
207 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
|
208 |
|
|
209 |
/// \brief Return the item having minimum priority. |
|
210 |
/// |
|
211 |
/// This function returns the item having minimum priority. |
|
212 |
/// \pre The heap must be non-empty. |
|
213 |
Item top() const { return _data[0].first; } |
|
214 |
|
|
215 |
/// \brief The minimum priority. |
|
216 |
/// |
|
217 |
/// This function returns the minimum priority. |
|
218 |
/// \pre The heap must be non-empty. |
|
219 |
Prio prio() const { return _data[0].second; } |
|
220 |
|
|
221 |
/// \brief Remove the item having minimum priority. |
|
222 |
/// |
|
223 |
/// This function removes the item having minimum priority. |
|
224 |
/// \pre The heap must be non-empty. |
|
225 |
void pop() { |
|
226 |
int n = _data.size()-1; |
|
227 |
_iim.set(_data[0].first, POST_HEAP); |
|
228 |
if (n>0) bubbleDown(0, _data[n], n); |
|
229 |
_data.pop_back(); |
|
230 |
} |
|
231 |
|
|
232 |
/// \brief Remove the given item from the heap. |
|
233 |
/// |
|
234 |
/// This function removes the given item from the heap if it is |
|
235 |
/// already stored. |
|
236 |
/// \param i The item to delete. |
|
237 |
/// \pre \e i must be in the heap. |
|
238 |
void erase(const Item &i) { |
|
239 |
int h = _iim[i]; |
|
240 |
int n = _data.size()-1; |
|
241 |
_iim.set(_data[h].first, POST_HEAP); |
|
242 |
if( h<n ) { |
|
243 |
if( less(_data[parent(h)], _data[n]) ) |
|
244 |
bubbleDown(h, _data[n], n); |
|
245 |
else |
|
246 |
bubbleUp(h, _data[n]); |
|
247 |
} |
|
248 |
_data.pop_back(); |
|
249 |
} |
|
250 |
|
|
251 |
/// \brief The priority of the given item. |
|
252 |
/// |
|
253 |
/// This function returns the priority of the given item. |
|
254 |
/// \param i The item. |
|
255 |
/// \pre \e i must be in the heap. |
|
256 |
Prio operator[](const Item &i) const { |
|
257 |
int idx = _iim[i]; |
|
258 |
return _data[idx].second; |
|
259 |
} |
|
260 |
|
|
261 |
/// \brief Set the priority of an item or insert it, if it is |
|
262 |
/// not stored in the heap. |
|
263 |
/// |
|
264 |
/// This method sets the priority of the given item if it is |
|
265 |
/// already stored in the heap. Otherwise it inserts the given |
|
266 |
/// item into the heap with the given priority. |
|
267 |
/// \param i The item. |
|
268 |
/// \param p The priority. |
|
269 |
void set(const Item &i, const Prio &p) { |
|
270 |
int idx = _iim[i]; |
|
271 |
if( idx<0 ) |
|
272 |
push(i,p); |
|
273 |
else if( _comp(p, _data[idx].second) ) |
|
274 |
bubbleUp(idx, Pair(i,p)); |
|
275 |
else |
|
276 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
277 |
} |
|
278 |
|
|
279 |
/// \brief Decrease the priority of an item to the given value. |
|
280 |
/// |
|
281 |
/// This function decreases the priority of an item to the given value. |
|
282 |
/// \param i The item. |
|
283 |
/// \param p The priority. |
|
284 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
285 |
void decrease(const Item &i, const Prio &p) { |
|
286 |
int idx = _iim[i]; |
|
287 |
bubbleUp(idx, Pair(i,p)); |
|
288 |
} |
|
289 |
|
|
290 |
/// \brief Increase the priority of an item to the given value. |
|
291 |
/// |
|
292 |
/// This function increases the priority of an item to the given value. |
|
293 |
/// \param i The item. |
|
294 |
/// \param p The priority. |
|
295 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
296 |
void increase(const Item &i, const Prio &p) { |
|
297 |
int idx = _iim[i]; |
|
298 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
299 |
} |
|
300 |
|
|
301 |
/// \brief Return the state of an item. |
|
302 |
/// |
|
303 |
/// This method returns \c PRE_HEAP if the given item has never |
|
304 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
305 |
/// and \c POST_HEAP otherwise. |
|
306 |
/// In the latter case it is possible that the item will get back |
|
307 |
/// to the heap again. |
|
308 |
/// \param i The item. |
|
309 |
State state(const Item &i) const { |
|
310 |
int s = _iim[i]; |
|
311 |
if (s>=0) s=0; |
|
312 |
return State(s); |
|
313 |
} |
|
314 |
|
|
315 |
/// \brief Set the state of an item in the heap. |
|
316 |
/// |
|
317 |
/// This function sets the state of the given item in the heap. |
|
318 |
/// It can be used to manually clear the heap when it is important |
|
319 |
/// to achive better time complexity. |
|
320 |
/// \param i The item. |
|
321 |
/// \param st The state. It should not be \c IN_HEAP. |
|
322 |
void state(const Item& i, State st) { |
|
323 |
switch (st) { |
|
324 |
case POST_HEAP: |
|
325 |
case PRE_HEAP: |
|
326 |
if (state(i) == IN_HEAP) erase(i); |
|
327 |
_iim[i] = st; |
|
328 |
break; |
|
329 |
case IN_HEAP: |
|
330 |
break; |
|
331 |
} |
|
332 |
} |
|
333 |
|
|
334 |
/// \brief Replace an item in the heap. |
|
335 |
/// |
|
336 |
/// This function replaces item \c i with item \c j. |
|
337 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
338 |
/// After calling this method, item \c i will be out of the |
|
339 |
/// heap and \c j will be in the heap with the same prioriority |
|
340 |
/// as item \c i had before. |
|
341 |
void replace(const Item& i, const Item& j) { |
|
342 |
int idx=_iim[i]; |
|
343 |
_iim.set(i, _iim[j]); |
|
344 |
_iim.set(j, idx); |
|
345 |
_data[idx].first=j; |
|
346 |
} |
|
347 |
|
|
348 |
}; // class KaryHeap |
|
349 |
|
|
350 |
} // namespace lemon |
|
351 |
|
|
352 |
#endif // LEMON_KARY_HEAP_H |
... | ... |
@@ -181,352 +181,395 @@ |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
198 | 198 |
.run(); |
199 | 199 |
\endcode |
200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
202 | 202 |
and the previously created map. The composed map is a proper function to |
203 | 203 |
get the color of each node. |
204 | 204 |
|
205 | 205 |
The usage with class type algorithms is little bit harder. In this |
206 | 206 |
case the function type map adaptors can not be used, because the |
207 | 207 |
function map adaptors give back temporary objects. |
208 | 208 |
\code |
209 | 209 |
Digraph graph; |
210 | 210 |
|
211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
212 | 212 |
DoubleArcMap length(graph); |
213 | 213 |
DoubleArcMap speed(graph); |
214 | 214 |
|
215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
216 | 216 |
TimeMap time(length, speed); |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 |
@defgroup matrices Matrices |
|
230 |
@ingroup datas |
|
231 |
\brief Two dimensional data storages implemented in LEMON. |
|
232 |
|
|
233 |
This group contains two dimensional data storages implemented in LEMON. |
|
234 |
*/ |
|
235 |
|
|
236 |
/** |
|
237 | 229 |
@defgroup paths Path Structures |
238 | 230 |
@ingroup datas |
239 | 231 |
\brief %Path structures implemented in LEMON. |
240 | 232 |
|
241 | 233 |
This group contains the path structures implemented in LEMON. |
242 | 234 |
|
243 | 235 |
LEMON provides flexible data structures to work with paths. |
244 | 236 |
All of them have similar interfaces and they can be copied easily with |
245 | 237 |
assignment operators and copy constructors. This makes it easy and |
246 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
247 | 239 |
any kind of path structure. |
248 | 240 |
|
249 |
\sa |
|
241 |
\sa \ref concepts::Path "Path concept" |
|
242 |
*/ |
|
243 |
|
|
244 |
/** |
|
245 |
@defgroup heaps Heap Structures |
|
246 |
@ingroup datas |
|
247 |
\brief %Heap structures implemented in LEMON. |
|
248 |
|
|
249 |
This group contains the heap structures implemented in LEMON. |
|
250 |
|
|
251 |
LEMON provides several heap classes. They are efficient implementations |
|
252 |
of the abstract data type \e priority \e queue. They store items with |
|
253 |
specified values called \e priorities in such a way that finding and |
|
254 |
removing the item with minimum priority are efficient. |
|
255 |
The basic operations are adding and erasing items, changing the priority |
|
256 |
of an item, etc. |
|
257 |
|
|
258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
259 |
The heap implementations have the same interface, thus any of them can be |
|
260 |
used easily in such algorithms. |
|
261 |
|
|
262 |
\sa \ref concepts::Heap "Heap concept" |
|
263 |
*/ |
|
264 |
|
|
265 |
/** |
|
266 |
@defgroup matrices Matrices |
|
267 |
@ingroup datas |
|
268 |
\brief Two dimensional data storages implemented in LEMON. |
|
269 |
|
|
270 |
This group contains two dimensional data storages implemented in LEMON. |
|
250 | 271 |
*/ |
251 | 272 |
|
252 | 273 |
/** |
253 | 274 |
@defgroup auxdat Auxiliary Data Structures |
254 | 275 |
@ingroup datas |
255 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
256 | 277 |
|
257 | 278 |
This group contains some data structures implemented in LEMON in |
258 | 279 |
order to make it easier to implement combinatorial algorithms. |
259 | 280 |
*/ |
260 | 281 |
|
261 | 282 |
/** |
283 |
@defgroup geomdat Geometric Data Structures |
|
284 |
@ingroup auxdat |
|
285 |
\brief Geometric data structures implemented in LEMON. |
|
286 |
|
|
287 |
This group contains geometric data structures implemented in LEMON. |
|
288 |
|
|
289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
290 |
vector with the usual operations. |
|
291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
293 |
"dim2::Point"'s. |
|
294 |
*/ |
|
295 |
|
|
296 |
/** |
|
297 |
@defgroup matrices Matrices |
|
298 |
@ingroup auxdat |
|
299 |
\brief Two dimensional data storages implemented in LEMON. |
|
300 |
|
|
301 |
This group contains two dimensional data storages implemented in LEMON. |
|
302 |
*/ |
|
303 |
|
|
304 |
/** |
|
262 | 305 |
@defgroup algs Algorithms |
263 | 306 |
\brief This group contains the several algorithms |
264 | 307 |
implemented in LEMON. |
265 | 308 |
|
266 | 309 |
This group contains the several algorithms |
267 | 310 |
implemented in LEMON. |
268 | 311 |
*/ |
269 | 312 |
|
270 | 313 |
/** |
271 | 314 |
@defgroup search Graph Search |
272 | 315 |
@ingroup algs |
273 | 316 |
\brief Common graph search algorithms. |
274 | 317 |
|
275 | 318 |
This group contains the common graph search algorithms, namely |
276 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
277 | 320 |
*/ |
278 | 321 |
|
279 | 322 |
/** |
280 | 323 |
@defgroup shortest_path Shortest Path Algorithms |
281 | 324 |
@ingroup algs |
282 | 325 |
\brief Algorithms for finding shortest paths. |
283 | 326 |
|
284 | 327 |
This group contains the algorithms for finding shortest paths in digraphs. |
285 | 328 |
|
286 | 329 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
287 | 330 |
when all arc lengths are non-negative. |
288 | 331 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
289 | 332 |
from a source node when arc lenghts can be either positive or negative, |
290 | 333 |
but the digraph should not contain directed cycles with negative total |
291 | 334 |
length. |
292 | 335 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
293 | 336 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
294 | 337 |
lenghts can be either positive or negative, but the digraph should |
295 | 338 |
not contain directed cycles with negative total length. |
296 | 339 |
- \ref Suurballe A successive shortest path algorithm for finding |
297 | 340 |
arc-disjoint paths between two nodes having minimum total length. |
298 | 341 |
*/ |
299 | 342 |
|
300 | 343 |
/** |
344 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
345 |
@ingroup algs |
|
346 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
347 |
|
|
348 |
This group contains the algorithms for finding minimum cost spanning |
|
349 |
trees and arborescences. |
|
350 |
*/ |
|
351 |
|
|
352 |
/** |
|
301 | 353 |
@defgroup max_flow Maximum Flow Algorithms |
302 | 354 |
@ingroup algs |
303 | 355 |
\brief Algorithms for finding maximum flows. |
304 | 356 |
|
305 | 357 |
This group contains the algorithms for finding maximum flows and |
306 | 358 |
feasible circulations. |
307 | 359 |
|
308 | 360 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
309 | 361 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
310 | 362 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
311 | 363 |
\f$s, t \in V\f$ source and target nodes. |
312 | 364 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
313 | 365 |
following optimization problem. |
314 | 366 |
|
315 | 367 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
316 | 368 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
317 | 369 |
\quad \forall u\in V\setminus\{s,t\} \f] |
318 | 370 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
319 | 371 |
|
320 | 372 |
LEMON contains several algorithms for solving maximum flow problems: |
321 | 373 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
322 | 374 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
323 | 375 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
324 | 376 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
325 | 377 |
|
326 | 378 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
327 | 379 |
fastest method for computing a maximum flow. All implementations |
328 | 380 |
also provide functions to query the minimum cut, which is the dual |
329 | 381 |
problem of maximum flow. |
330 | 382 |
|
331 | 383 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
332 | 384 |
for finding feasible circulations, which is a somewhat different problem, |
333 | 385 |
but it is strongly related to maximum flow. |
334 | 386 |
For more information, see \ref Circulation. |
335 | 387 |
*/ |
336 | 388 |
|
337 | 389 |
/** |
338 | 390 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
339 | 391 |
@ingroup algs |
340 | 392 |
|
341 | 393 |
\brief Algorithms for finding minimum cost flows and circulations. |
342 | 394 |
|
343 | 395 |
This group contains the algorithms for finding minimum cost flows and |
344 | 396 |
circulations. For more information about this problem and its dual |
345 | 397 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
346 | 398 |
|
347 | 399 |
LEMON contains several algorithms for this problem. |
348 | 400 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
349 | 401 |
pivot strategies. |
350 | 402 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
351 | 403 |
cost scaling. |
352 | 404 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
353 | 405 |
capacity scaling. |
354 | 406 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
355 | 407 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
356 | 408 |
|
357 | 409 |
In general NetworkSimplex is the most efficient implementation, |
358 | 410 |
but in special cases other algorithms could be faster. |
359 | 411 |
For example, if the total supply and/or capacities are rather small, |
360 | 412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
361 | 413 |
*/ |
362 | 414 |
|
363 | 415 |
/** |
364 | 416 |
@defgroup min_cut Minimum Cut Algorithms |
365 | 417 |
@ingroup algs |
366 | 418 |
|
367 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
368 | 420 |
|
369 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
370 | 422 |
|
371 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
372 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
373 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
374 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
375 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
376 | 428 |
|
377 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
378 |
\sum_{uv\in A |
|
430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
|
379 | 431 |
|
380 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
381 | 433 |
|
382 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
383 | 435 |
in directed graphs. |
384 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
385 | 437 |
calculating minimum cut in undirected graphs. |
386 | 438 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
387 | 439 |
all-pairs minimum cut in undirected graphs. |
388 | 440 |
|
389 | 441 |
If you want to find minimum cut just between two distinict nodes, |
390 | 442 |
see the \ref max_flow "maximum flow problem". |
391 | 443 |
*/ |
392 | 444 |
|
393 | 445 |
/** |
394 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
395 |
@ingroup algs |
|
396 |
\brief Algorithms for discovering the graph properties |
|
397 |
|
|
398 |
This group contains the algorithms for discovering the graph properties |
|
399 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
400 |
|
|
401 |
\image html edge_biconnected_components.png |
|
402 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
403 |
*/ |
|
404 |
|
|
405 |
/** |
|
406 |
@defgroup planar Planarity Embedding and Drawing |
|
407 |
@ingroup algs |
|
408 |
\brief Algorithms for planarity checking, embedding and drawing |
|
409 |
|
|
410 |
This group contains the algorithms for planarity checking, |
|
411 |
embedding and drawing. |
|
412 |
|
|
413 |
\image html planar.png |
|
414 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
415 |
*/ |
|
416 |
|
|
417 |
/** |
|
418 | 446 |
@defgroup matching Matching Algorithms |
419 | 447 |
@ingroup algs |
420 | 448 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
421 | 449 |
|
422 | 450 |
This group contains the algorithms for calculating |
423 | 451 |
matchings in graphs and bipartite graphs. The general matching problem is |
424 | 452 |
finding a subset of the edges for which each node has at most one incident |
425 | 453 |
edge. |
426 | 454 |
|
427 | 455 |
There are several different algorithms for calculate matchings in |
428 | 456 |
graphs. The matching problems in bipartite graphs are generally |
429 | 457 |
easier than in general graphs. The goal of the matching optimization |
430 | 458 |
can be finding maximum cardinality, maximum weight or minimum cost |
431 | 459 |
matching. The search can be constrained to find perfect or |
432 | 460 |
maximum cardinality matching. |
433 | 461 |
|
434 | 462 |
The matching algorithms implemented in LEMON: |
435 | 463 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
436 | 464 |
for calculating maximum cardinality matching in bipartite graphs. |
437 | 465 |
- \ref PrBipartiteMatching Push-relabel algorithm |
438 | 466 |
for calculating maximum cardinality matching in bipartite graphs. |
439 | 467 |
- \ref MaxWeightedBipartiteMatching |
440 | 468 |
Successive shortest path algorithm for calculating maximum weighted |
441 | 469 |
matching and maximum weighted bipartite matching in bipartite graphs. |
442 | 470 |
- \ref MinCostMaxBipartiteMatching |
443 | 471 |
Successive shortest path algorithm for calculating minimum cost maximum |
444 | 472 |
matching in bipartite graphs. |
445 | 473 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
446 | 474 |
maximum cardinality matching in general graphs. |
447 | 475 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
448 | 476 |
maximum weighted matching in general graphs. |
449 | 477 |
- \ref MaxWeightedPerfectMatching |
450 | 478 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
451 | 479 |
perfect matching in general graphs. |
452 | 480 |
|
453 | 481 |
\image html bipartite_matching.png |
454 | 482 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
455 | 483 |
*/ |
456 | 484 |
|
457 | 485 |
/** |
458 |
@defgroup |
|
486 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
459 | 487 |
@ingroup algs |
460 |
\brief Algorithms for |
|
488 |
\brief Algorithms for discovering the graph properties |
|
461 | 489 |
|
462 |
This group contains the algorithms for finding minimum cost spanning |
|
463 |
trees and arborescences. |
|
490 |
This group contains the algorithms for discovering the graph properties |
|
491 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
492 |
|
|
493 |
\image html connected_components.png |
|
494 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
495 |
*/ |
|
496 |
|
|
497 |
/** |
|
498 |
@defgroup planar Planarity Embedding and Drawing |
|
499 |
@ingroup algs |
|
500 |
\brief Algorithms for planarity checking, embedding and drawing |
|
501 |
|
|
502 |
This group contains the algorithms for planarity checking, |
|
503 |
embedding and drawing. |
|
504 |
|
|
505 |
\image html planar.png |
|
506 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
507 |
*/ |
|
508 |
|
|
509 |
/** |
|
510 |
@defgroup approx Approximation Algorithms |
|
511 |
@ingroup algs |
|
512 |
\brief Approximation algorithms. |
|
513 |
|
|
514 |
This group contains the approximation and heuristic algorithms |
|
515 |
implemented in LEMON. |
|
464 | 516 |
*/ |
465 | 517 |
|
466 | 518 |
/** |
467 | 519 |
@defgroup auxalg Auxiliary Algorithms |
468 | 520 |
@ingroup algs |
469 | 521 |
\brief Auxiliary algorithms implemented in LEMON. |
470 | 522 |
|
471 | 523 |
This group contains some algorithms implemented in LEMON |
472 | 524 |
in order to make it easier to implement complex algorithms. |
473 | 525 |
*/ |
474 | 526 |
|
475 | 527 |
/** |
476 |
@defgroup approx Approximation Algorithms |
|
477 |
@ingroup algs |
|
478 |
\brief Approximation algorithms. |
|
479 |
|
|
480 |
This group contains the approximation and heuristic algorithms |
|
481 |
implemented in LEMON. |
|
482 |
*/ |
|
483 |
|
|
484 |
/** |
|
485 | 528 |
@defgroup gen_opt_group General Optimization Tools |
486 | 529 |
\brief This group contains some general optimization frameworks |
487 | 530 |
implemented in LEMON. |
488 | 531 |
|
489 | 532 |
This group contains some general optimization frameworks |
490 | 533 |
implemented in LEMON. |
491 | 534 |
*/ |
492 | 535 |
|
493 | 536 |
/** |
494 | 537 |
@defgroup lp_group Lp and Mip Solvers |
495 | 538 |
@ingroup gen_opt_group |
496 | 539 |
\brief Lp and Mip solver interfaces for LEMON. |
497 | 540 |
|
498 | 541 |
This group contains Lp and Mip solver interfaces for LEMON. The |
499 | 542 |
various LP solvers could be used in the same manner with this |
500 | 543 |
interface. |
501 | 544 |
*/ |
502 | 545 |
|
503 | 546 |
/** |
504 | 547 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
505 | 548 |
@ingroup lp_group |
506 | 549 |
\brief Helper tools to the Lp and Mip solvers. |
507 | 550 |
|
508 | 551 |
This group adds some helper tools to general optimization framework |
509 | 552 |
implemented in LEMON. |
510 | 553 |
*/ |
511 | 554 |
|
512 | 555 |
/** |
513 | 556 |
@defgroup metah Metaheuristics |
514 | 557 |
@ingroup gen_opt_group |
515 | 558 |
\brief Metaheuristics for LEMON library. |
516 | 559 |
|
517 | 560 |
This group contains some metaheuristic optimization tools. |
518 | 561 |
*/ |
519 | 562 |
|
520 | 563 |
/** |
521 | 564 |
@defgroup utils Tools and Utilities |
522 | 565 |
\brief Tools and utilities for programming in LEMON |
523 | 566 |
|
524 | 567 |
Tools and utilities for programming in LEMON. |
525 | 568 |
*/ |
526 | 569 |
|
527 | 570 |
/** |
528 | 571 |
@defgroup gutils Basic Graph Utilities |
529 | 572 |
@ingroup utils |
530 | 573 |
\brief Simple basic graph utilities. |
531 | 574 |
|
532 | 575 |
This group contains some simple basic graph utilities. |
... | ... |
@@ -542,131 +585,131 @@ |
542 | 585 |
*/ |
543 | 586 |
|
544 | 587 |
/** |
545 | 588 |
@defgroup timecount Time Measuring and Counting |
546 | 589 |
@ingroup misc |
547 | 590 |
\brief Simple tools for measuring the performance of algorithms. |
548 | 591 |
|
549 | 592 |
This group contains simple tools for measuring the performance |
550 | 593 |
of algorithms. |
551 | 594 |
*/ |
552 | 595 |
|
553 | 596 |
/** |
554 | 597 |
@defgroup exceptions Exceptions |
555 | 598 |
@ingroup utils |
556 | 599 |
\brief Exceptions defined in LEMON. |
557 | 600 |
|
558 | 601 |
This group contains the exceptions defined in LEMON. |
559 | 602 |
*/ |
560 | 603 |
|
561 | 604 |
/** |
562 | 605 |
@defgroup io_group Input-Output |
563 | 606 |
\brief Graph Input-Output methods |
564 | 607 |
|
565 | 608 |
This group contains the tools for importing and exporting graphs |
566 | 609 |
and graph related data. Now it supports the \ref lgf-format |
567 | 610 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
568 | 611 |
postscript (EPS) format. |
569 | 612 |
*/ |
570 | 613 |
|
571 | 614 |
/** |
572 | 615 |
@defgroup lemon_io LEMON Graph Format |
573 | 616 |
@ingroup io_group |
574 | 617 |
\brief Reading and writing LEMON Graph Format. |
575 | 618 |
|
576 | 619 |
This group contains methods for reading and writing |
577 | 620 |
\ref lgf-format "LEMON Graph Format". |
578 | 621 |
*/ |
579 | 622 |
|
580 | 623 |
/** |
581 | 624 |
@defgroup eps_io Postscript Exporting |
582 | 625 |
@ingroup io_group |
583 | 626 |
\brief General \c EPS drawer and graph exporter |
584 | 627 |
|
585 | 628 |
This group contains general \c EPS drawing methods and special |
586 | 629 |
graph exporting tools. |
587 | 630 |
*/ |
588 | 631 |
|
589 | 632 |
/** |
590 |
@defgroup dimacs_group DIMACS |
|
633 |
@defgroup dimacs_group DIMACS Format |
|
591 | 634 |
@ingroup io_group |
592 | 635 |
\brief Read and write files in DIMACS format |
593 | 636 |
|
594 | 637 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
595 | 638 |
*/ |
596 | 639 |
|
597 | 640 |
/** |
598 | 641 |
@defgroup nauty_group NAUTY Format |
599 | 642 |
@ingroup io_group |
600 | 643 |
\brief Read \e Nauty format |
601 | 644 |
|
602 | 645 |
Tool to read graphs from \e Nauty format data. |
603 | 646 |
*/ |
604 | 647 |
|
605 | 648 |
/** |
606 | 649 |
@defgroup concept Concepts |
607 | 650 |
\brief Skeleton classes and concept checking classes |
608 | 651 |
|
609 | 652 |
This group contains the data/algorithm skeletons and concept checking |
610 | 653 |
classes implemented in LEMON. |
611 | 654 |
|
612 | 655 |
The purpose of the classes in this group is fourfold. |
613 | 656 |
|
614 | 657 |
- These classes contain the documentations of the %concepts. In order |
615 | 658 |
to avoid document multiplications, an implementation of a concept |
616 | 659 |
simply refers to the corresponding concept class. |
617 | 660 |
|
618 | 661 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
619 | 662 |
implementation of the %concepts should provide, however completely |
620 | 663 |
without implementations and real data structures behind the |
621 | 664 |
interface. On the other hand they should provide nothing else. All |
622 | 665 |
the algorithms working on a data structure meeting a certain concept |
623 | 666 |
should compile with these classes. (Though it will not run properly, |
624 | 667 |
of course.) In this way it is easily to check if an algorithm |
625 | 668 |
doesn't use any extra feature of a certain implementation. |
626 | 669 |
|
627 | 670 |
- The concept descriptor classes also provide a <em>checker class</em> |
628 | 671 |
that makes it possible to check whether a certain implementation of a |
629 | 672 |
concept indeed provides all the required features. |
630 | 673 |
|
631 | 674 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
632 | 675 |
*/ |
633 | 676 |
|
634 | 677 |
/** |
635 | 678 |
@defgroup graph_concepts Graph Structure Concepts |
636 | 679 |
@ingroup concept |
637 | 680 |
\brief Skeleton and concept checking classes for graph structures |
638 | 681 |
|
639 | 682 |
This group contains the skeletons and concept checking classes of LEMON's |
640 | 683 |
graph structures and helper classes used to implement these. |
641 | 684 |
*/ |
642 | 685 |
|
643 | 686 |
/** |
644 | 687 |
@defgroup map_concepts Map Concepts |
645 | 688 |
@ingroup concept |
646 | 689 |
\brief Skeleton and concept checking classes for maps |
647 | 690 |
|
648 | 691 |
This group contains the skeletons and concept checking classes of maps. |
649 | 692 |
*/ |
650 | 693 |
|
651 | 694 |
/** |
695 |
@defgroup tools Standalone Utility Applications |
|
696 |
|
|
697 |
Some utility applications are listed here. |
|
698 |
|
|
699 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
700 |
them, as well. |
|
701 |
*/ |
|
702 |
|
|
703 |
/** |
|
652 | 704 |
\anchor demoprograms |
653 | 705 |
|
654 | 706 |
@defgroup demos Demo Programs |
655 | 707 |
|
656 | 708 |
Some demo programs are listed here. Their full source codes can be found in |
657 | 709 |
the \c demo subdirectory of the source tree. |
658 | 710 |
|
659 | 711 |
In order to compile them, use the <tt>make demo</tt> or the |
660 | 712 |
<tt>make check</tt> commands. |
661 | 713 |
*/ |
662 | 714 |
|
663 |
/** |
|
664 |
@defgroup tools Standalone Utility Applications |
|
665 |
|
|
666 |
Some utility applications are listed here. |
|
667 |
|
|
668 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
669 |
them, as well. |
|
670 |
*/ |
|
671 |
|
|
672 | 715 |
} |
... | ... |
@@ -12,123 +12,130 @@ |
12 | 12 |
lemon/base.cc \ |
13 | 13 |
lemon/color.cc \ |
14 | 14 |
lemon/lp_base.cc \ |
15 | 15 |
lemon/lp_skeleton.cc \ |
16 | 16 |
lemon/random.cc \ |
17 | 17 |
lemon/bits/windows.cc |
18 | 18 |
|
19 | 19 |
nodist_lemon_HEADERS = lemon/config.h |
20 | 20 |
|
21 | 21 |
lemon_libemon_la_CXXFLAGS = \ |
22 | 22 |
$(AM_CXXFLAGS) \ |
23 | 23 |
$(GLPK_CFLAGS) \ |
24 | 24 |
$(CPLEX_CFLAGS) \ |
25 | 25 |
$(SOPLEX_CXXFLAGS) \ |
26 | 26 |
$(CLP_CXXFLAGS) \ |
27 | 27 |
$(CBC_CXXFLAGS) |
28 | 28 |
|
29 | 29 |
lemon_libemon_la_LDFLAGS = \ |
30 | 30 |
$(GLPK_LIBS) \ |
31 | 31 |
$(CPLEX_LIBS) \ |
32 | 32 |
$(SOPLEX_LIBS) \ |
33 | 33 |
$(CLP_LIBS) \ |
34 | 34 |
$(CBC_LIBS) |
35 | 35 |
|
36 | 36 |
if HAVE_GLPK |
37 | 37 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
38 | 38 |
endif |
39 | 39 |
|
40 | 40 |
if HAVE_CPLEX |
41 | 41 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
42 | 42 |
endif |
43 | 43 |
|
44 | 44 |
if HAVE_SOPLEX |
45 | 45 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
46 | 46 |
endif |
47 | 47 |
|
48 | 48 |
if HAVE_CLP |
49 | 49 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
50 | 50 |
endif |
51 | 51 |
|
52 | 52 |
if HAVE_CBC |
53 | 53 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
54 | 54 |
endif |
55 | 55 |
|
56 | 56 |
lemon_HEADERS += \ |
57 | 57 |
lemon/adaptors.h \ |
58 | 58 |
lemon/arg_parser.h \ |
59 | 59 |
lemon/assert.h \ |
60 |
lemon/bellman_ford.h \ |
|
60 | 61 |
lemon/bfs.h \ |
61 | 62 |
lemon/bin_heap.h \ |
63 |
lemon/binom_heap.h \ |
|
64 |
lemon/bucket_heap.h \ |
|
62 | 65 |
lemon/cbc.h \ |
63 | 66 |
lemon/circulation.h \ |
64 | 67 |
lemon/clp.h \ |
65 | 68 |
lemon/color.h \ |
66 | 69 |
lemon/concept_check.h \ |
67 | 70 |
lemon/connectivity.h \ |
68 | 71 |
lemon/counter.h \ |
69 | 72 |
lemon/core.h \ |
70 | 73 |
lemon/cplex.h \ |
71 | 74 |
lemon/dfs.h \ |
72 | 75 |
lemon/dijkstra.h \ |
73 | 76 |
lemon/dim2.h \ |
74 | 77 |
lemon/dimacs.h \ |
75 | 78 |
lemon/edge_set.h \ |
76 | 79 |
lemon/elevator.h \ |
77 | 80 |
lemon/error.h \ |
78 | 81 |
lemon/euler.h \ |
82 |
lemon/fib_heap.h \ |
|
83 |
lemon/fourary_heap.h \ |
|
79 | 84 |
lemon/full_graph.h \ |
80 | 85 |
lemon/glpk.h \ |
81 | 86 |
lemon/gomory_hu.h \ |
82 | 87 |
lemon/graph_to_eps.h \ |
83 | 88 |
lemon/grid_graph.h \ |
84 | 89 |
lemon/hypercube_graph.h \ |
90 |
lemon/kary_heap.h \ |
|
85 | 91 |
lemon/kruskal.h \ |
86 | 92 |
lemon/hao_orlin.h \ |
87 | 93 |
lemon/lgf_reader.h \ |
88 | 94 |
lemon/lgf_writer.h \ |
89 | 95 |
lemon/list_graph.h \ |
90 | 96 |
lemon/lp.h \ |
91 | 97 |
lemon/lp_base.h \ |
92 | 98 |
lemon/lp_skeleton.h \ |
93 |
lemon/list_graph.h \ |
|
94 | 99 |
lemon/maps.h \ |
95 | 100 |
lemon/matching.h \ |
96 | 101 |
lemon/math.h \ |
97 | 102 |
lemon/min_cost_arborescence.h \ |
98 | 103 |
lemon/nauty_reader.h \ |
99 | 104 |
lemon/network_simplex.h \ |
105 |
lemon/pairing_heap.h \ |
|
100 | 106 |
lemon/path.h \ |
101 | 107 |
lemon/preflow.h \ |
108 |
lemon/radix_heap.h \ |
|
102 | 109 |
lemon/radix_sort.h \ |
103 | 110 |
lemon/random.h \ |
104 | 111 |
lemon/smart_graph.h \ |
105 | 112 |
lemon/soplex.h \ |
106 | 113 |
lemon/suurballe.h \ |
107 | 114 |
lemon/time_measure.h \ |
108 | 115 |
lemon/tolerance.h \ |
109 | 116 |
lemon/unionfind.h \ |
110 | 117 |
lemon/bits/windows.h |
111 | 118 |
|
112 | 119 |
bits_HEADERS += \ |
113 | 120 |
lemon/bits/alteration_notifier.h \ |
114 | 121 |
lemon/bits/array_map.h \ |
115 | 122 |
lemon/bits/bezier.h \ |
116 | 123 |
lemon/bits/default_map.h \ |
117 | 124 |
lemon/bits/edge_set_extender.h \ |
118 | 125 |
lemon/bits/enable_if.h \ |
119 | 126 |
lemon/bits/graph_adaptor_extender.h \ |
120 | 127 |
lemon/bits/graph_extender.h \ |
121 | 128 |
lemon/bits/map_extender.h \ |
122 | 129 |
lemon/bits/path_dump.h \ |
123 | 130 |
lemon/bits/solver_bits.h \ |
124 | 131 |
lemon/bits/traits.h \ |
125 | 132 |
lemon/bits/variant.h \ |
126 | 133 |
lemon/bits/vector_map.h |
127 | 134 |
|
128 | 135 |
concept_HEADERS += \ |
129 | 136 |
lemon/concepts/digraph.h \ |
130 | 137 |
lemon/concepts/graph.h \ |
131 | 138 |
lemon/concepts/graph_components.h \ |
132 | 139 |
lemon/concepts/heap.h \ |
133 | 140 |
lemon/concepts/maps.h \ |
134 | 141 |
lemon/concepts/path.h |
... | ... |
@@ -369,98 +369,98 @@ |
369 | 369 |
local_reached=false; |
370 | 370 |
} |
371 | 371 |
_reached = &m; |
372 | 372 |
return *this; |
373 | 373 |
} |
374 | 374 |
|
375 | 375 |
///Sets the map that indicates which nodes are processed. |
376 | 376 |
|
377 | 377 |
///Sets the map that indicates which nodes are processed. |
378 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
379 | 379 |
///or \ref init(), an instance will be allocated automatically. |
380 | 380 |
///The destructor deallocates this automatically allocated map, |
381 | 381 |
///of course. |
382 | 382 |
///\return <tt> (*this) </tt> |
383 | 383 |
Bfs &processedMap(ProcessedMap &m) |
384 | 384 |
{ |
385 | 385 |
if(local_processed) { |
386 | 386 |
delete _processed; |
387 | 387 |
local_processed=false; |
388 | 388 |
} |
389 | 389 |
_processed = &m; |
390 | 390 |
return *this; |
391 | 391 |
} |
392 | 392 |
|
393 | 393 |
///Sets the map that stores the distances of the nodes. |
394 | 394 |
|
395 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
396 | 396 |
///the algorithm. |
397 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
398 | 398 |
///or \ref init(), an instance will be allocated automatically. |
399 | 399 |
///The destructor deallocates this automatically allocated map, |
400 | 400 |
///of course. |
401 | 401 |
///\return <tt> (*this) </tt> |
402 | 402 |
Bfs &distMap(DistMap &m) |
403 | 403 |
{ |
404 | 404 |
if(local_dist) { |
405 | 405 |
delete _dist; |
406 | 406 |
local_dist=false; |
407 | 407 |
} |
408 | 408 |
_dist = &m; |
409 | 409 |
return *this; |
410 | 410 |
} |
411 | 411 |
|
412 | 412 |
public: |
413 | 413 |
|
414 | 414 |
///\name Execution Control |
415 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
416 | 416 |
///member functions called \ref run(Node) "run()".\n |
417 |
///If you need more control on the execution, first you have to call |
|
418 |
///\ref init(), then you can add several source nodes with |
|
417 |
///If you need better control on the execution, you have to call |
|
418 |
///\ref init() first, then you can add several source nodes with |
|
419 | 419 |
///\ref addSource(). Finally the actual path computation can be |
420 | 420 |
///performed with one of the \ref start() functions. |
421 | 421 |
|
422 | 422 |
///@{ |
423 | 423 |
|
424 | 424 |
///\brief Initializes the internal data structures. |
425 | 425 |
/// |
426 | 426 |
///Initializes the internal data structures. |
427 | 427 |
void init() |
428 | 428 |
{ |
429 | 429 |
create_maps(); |
430 | 430 |
_queue.resize(countNodes(*G)); |
431 | 431 |
_queue_head=_queue_tail=0; |
432 | 432 |
_curr_dist=1; |
433 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
434 | 434 |
_pred->set(u,INVALID); |
435 | 435 |
_reached->set(u,false); |
436 | 436 |
_processed->set(u,false); |
437 | 437 |
} |
438 | 438 |
} |
439 | 439 |
|
440 | 440 |
///Adds a new source node. |
441 | 441 |
|
442 | 442 |
///Adds a new source node to the set of nodes to be processed. |
443 | 443 |
/// |
444 | 444 |
void addSource(Node s) |
445 | 445 |
{ |
446 | 446 |
if(!(*_reached)[s]) |
447 | 447 |
{ |
448 | 448 |
_reached->set(s,true); |
449 | 449 |
_pred->set(s,INVALID); |
450 | 450 |
_dist->set(s,0); |
451 | 451 |
_queue[_queue_head++]=s; |
452 | 452 |
_queue_next_dist=_queue_head; |
453 | 453 |
} |
454 | 454 |
} |
455 | 455 |
|
456 | 456 |
///Processes the next node. |
457 | 457 |
|
458 | 458 |
///Processes the next node. |
459 | 459 |
/// |
460 | 460 |
///\return The processed node. |
461 | 461 |
/// |
462 | 462 |
///\pre The queue must not be empty. |
463 | 463 |
Node processNextNode() |
464 | 464 |
{ |
465 | 465 |
if(_queue_tail==_queue_next_dist) { |
466 | 466 |
_curr_dist++; |
... | ... |
@@ -1377,98 +1377,98 @@ |
1377 | 1377 |
/// |
1378 | 1378 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1379 | 1379 |
template <class T> |
1380 | 1380 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1381 | 1381 |
SetReachedMapTraits<T> > { |
1382 | 1382 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1383 | 1383 |
}; |
1384 | 1384 |
///@} |
1385 | 1385 |
|
1386 | 1386 |
public: |
1387 | 1387 |
|
1388 | 1388 |
/// \brief Constructor. |
1389 | 1389 |
/// |
1390 | 1390 |
/// Constructor. |
1391 | 1391 |
/// |
1392 | 1392 |
/// \param digraph The digraph the algorithm runs on. |
1393 | 1393 |
/// \param visitor The visitor object of the algorithm. |
1394 | 1394 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1395 | 1395 |
: _digraph(&digraph), _visitor(&visitor), |
1396 | 1396 |
_reached(0), local_reached(false) {} |
1397 | 1397 |
|
1398 | 1398 |
/// \brief Destructor. |
1399 | 1399 |
~BfsVisit() { |
1400 | 1400 |
if(local_reached) delete _reached; |
1401 | 1401 |
} |
1402 | 1402 |
|
1403 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
1404 | 1404 |
/// |
1405 | 1405 |
/// Sets the map that indicates which nodes are reached. |
1406 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1407 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
1408 | 1408 |
/// The destructor deallocates this automatically allocated map, |
1409 | 1409 |
/// of course. |
1410 | 1410 |
/// \return <tt> (*this) </tt> |
1411 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) { |
1412 | 1412 |
if(local_reached) { |
1413 | 1413 |
delete _reached; |
1414 | 1414 |
local_reached = false; |
1415 | 1415 |
} |
1416 | 1416 |
_reached = &m; |
1417 | 1417 |
return *this; |
1418 | 1418 |
} |
1419 | 1419 |
|
1420 | 1420 |
public: |
1421 | 1421 |
|
1422 | 1422 |
/// \name Execution Control |
1423 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1424 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
1425 |
/// If you need more control on the execution, first you have to call |
|
1426 |
/// \ref init(), then you can add several source nodes with |
|
1425 |
/// If you need better control on the execution, you have to call |
|
1426 |
/// \ref init() first, then you can add several source nodes with |
|
1427 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
1428 | 1428 |
/// performed with one of the \ref start() functions. |
1429 | 1429 |
|
1430 | 1430 |
/// @{ |
1431 | 1431 |
|
1432 | 1432 |
/// \brief Initializes the internal data structures. |
1433 | 1433 |
/// |
1434 | 1434 |
/// Initializes the internal data structures. |
1435 | 1435 |
void init() { |
1436 | 1436 |
create_maps(); |
1437 | 1437 |
_list.resize(countNodes(*_digraph)); |
1438 | 1438 |
_list_front = _list_back = -1; |
1439 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1440 | 1440 |
_reached->set(u, false); |
1441 | 1441 |
} |
1442 | 1442 |
} |
1443 | 1443 |
|
1444 | 1444 |
/// \brief Adds a new source node. |
1445 | 1445 |
/// |
1446 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
1447 | 1447 |
void addSource(Node s) { |
1448 | 1448 |
if(!(*_reached)[s]) { |
1449 | 1449 |
_reached->set(s,true); |
1450 | 1450 |
_visitor->start(s); |
1451 | 1451 |
_visitor->reach(s); |
1452 | 1452 |
_list[++_list_back] = s; |
1453 | 1453 |
} |
1454 | 1454 |
} |
1455 | 1455 |
|
1456 | 1456 |
/// \brief Processes the next node. |
1457 | 1457 |
/// |
1458 | 1458 |
/// Processes the next node. |
1459 | 1459 |
/// |
1460 | 1460 |
/// \return The processed node. |
1461 | 1461 |
/// |
1462 | 1462 |
/// \pre The queue must not be empty. |
1463 | 1463 |
Node processNextNode() { |
1464 | 1464 |
Node n = _list[++_list_front]; |
1465 | 1465 |
_visitor->process(n); |
1466 | 1466 |
Arc e; |
1467 | 1467 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1468 | 1468 |
Node m = _digraph->target(e); |
1469 | 1469 |
if (!(*_reached)[m]) { |
1470 | 1470 |
_visitor->discover(e); |
1471 | 1471 |
_visitor->reach(m); |
1472 | 1472 |
_reached->set(m, true); |
1473 | 1473 |
_list[++_list_back] = m; |
1474 | 1474 |
} else { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BIN_HEAP_H |
20 | 20 |
#define LEMON_BIN_HEAP_H |
21 | 21 |
|
22 |
///\ingroup |
|
22 |
///\ingroup heaps |
|
23 | 23 |
///\file |
24 |
///\brief Binary |
|
24 |
///\brief Binary heap implementation. |
|
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 |
///\ingroup |
|
32 |
/// \ingroup heaps |
|
33 | 33 |
/// |
34 |
///\brief |
|
34 |
/// \brief Binary heap data structure. |
|
35 | 35 |
/// |
36 |
///This class implements the \e binary \e heap data structure. |
|
37 |
/// |
|
38 |
///A \e heap is a data structure for storing items with specified values |
|
39 |
///called \e priorities in such a way that finding the item with minimum |
|
40 |
///priority is efficient. \c Comp specifies the ordering of the priorities. |
|
41 |
///In a heap one can change the priority of an item, add or erase an |
|
42 |
/// |
|
36 |
/// This class implements the \e binary \e heap data structure. |
|
37 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
|
43 | 38 |
/// |
44 |
///\tparam PR Type of the priority of the items. |
|
45 |
///\tparam IM A read and writable item map with int values, used internally |
|
46 |
///to handle the cross references. |
|
47 |
///\tparam Comp A functor class for the ordering of the priorities. |
|
48 |
///The default is \c std::less<PR>. |
|
49 |
/// |
|
50 |
///\sa FibHeap |
|
51 |
///\sa Dijkstra |
|
52 |
|
|
39 |
/// \tparam PR Type of the priorities of the items. |
|
40 |
/// \tparam IM A read-writable item map with \c int values, used |
|
41 |
/// internally to handle the cross references. |
|
42 |
/// \tparam CMP A functor class for comparing the priorities. |
|
43 |
/// The default is \c std::less<PR>. |
|
44 |
#ifdef DOXYGEN |
|
45 |
template <typename PR, typename IM, typename CMP> |
|
46 |
#else |
|
47 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
48 |
#endif |
|
53 | 49 |
class BinHeap { |
50 |
public: |
|
54 | 51 |
|
55 |
public: |
|
56 |
///\e |
|
52 |
/// Type of the item-int map. |
|
57 | 53 |
typedef IM ItemIntMap; |
58 |
/// |
|
54 |
/// Type of the priorities. |
|
59 | 55 |
typedef PR Prio; |
60 |
/// |
|
56 |
/// Type of the items stored in the heap. |
|
61 | 57 |
typedef typename ItemIntMap::Key Item; |
62 |
/// |
|
58 |
/// Type of the item-priority pairs. |
|
63 | 59 |
typedef std::pair<Item,Prio> Pair; |
64 |
///\e |
|
65 |
typedef Comp Compare; |
|
60 |
/// Functor type for comparing the priorities. |
|
61 |
typedef CMP Compare; |
|
66 | 62 |
|
67 |
/// \brief Type to represent the |
|
63 |
/// \brief Type to represent the states of the items. |
|
68 | 64 |
/// |
69 |
/// Each Item element have a state associated to it. It may be "in heap", |
|
70 |
/// "pre heap" or "post heap". The latter two are indifferent from the |
|
65 |
/// Each item has a state associated to it. It can be "in heap", |
|
66 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
71 | 67 |
/// heap's point of view, but may be useful to the user. |
72 | 68 |
/// |
73 | 69 |
/// The item-int map must be initialized in such way that it assigns |
74 | 70 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 71 |
enum State { |
76 | 72 |
IN_HEAP = 0, ///< = 0. |
77 | 73 |
PRE_HEAP = -1, ///< = -1. |
78 | 74 |
POST_HEAP = -2 ///< = -2. |
79 | 75 |
}; |
80 | 76 |
|
81 | 77 |
private: |
82 | 78 |
std::vector<Pair> _data; |
83 | 79 |
Compare _comp; |
84 | 80 |
ItemIntMap &_iim; |
85 | 81 |
|
86 | 82 |
public: |
87 |
|
|
83 |
|
|
84 |
/// \brief Constructor. |
|
88 | 85 |
/// |
89 |
/// The constructor. |
|
90 |
/// \param map should be given to the constructor, since it is used |
|
91 |
/// internally to handle the cross references. The value of the map |
|
92 |
/// must be \c PRE_HEAP (<tt>-1</tt>) for every item. |
|
86 |
/// Constructor. |
|
87 |
/// \param map A map that assigns \c int values to the items. |
|
88 |
/// It is used internally to handle the cross references. |
|
89 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
93 | 90 |
explicit BinHeap(ItemIntMap &map) : _iim(map) {} |
94 | 91 |
|
95 |
/// \brief |
|
92 |
/// \brief Constructor. |
|
96 | 93 |
/// |
97 |
/// The constructor. |
|
98 |
/// \param map should be given to the constructor, since it is used |
|
99 |
/// internally to handle the cross references. The value of the map |
|
100 |
/// should be PRE_HEAP (-1) for each element. |
|
101 |
/// |
|
102 |
/// \param comp The comparator function object. |
|
94 |
/// Constructor. |
|
95 |
/// \param map A map that assigns \c int values to the items. |
|
96 |
/// It is used internally to handle the cross references. |
|
97 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
98 |
/// \param comp The function object used for comparing the priorities. |
|
103 | 99 |
BinHeap(ItemIntMap &map, const Compare &comp) |
104 | 100 |
: _iim(map), _comp(comp) {} |
105 | 101 |
|
106 | 102 |
|
107 |
/// The number of items stored in the heap. |
|
103 |
/// \brief The number of items stored in the heap. |
|
108 | 104 |
/// |
109 |
/// |
|
105 |
/// This function returns the number of items stored in the heap. |
|
110 | 106 |
int size() const { return _data.size(); } |
111 | 107 |
|
112 |
/// \brief |
|
108 |
/// \brief Check if the heap is empty. |
|
113 | 109 |
/// |
114 |
/// |
|
110 |
/// This function returns \c true if the heap is empty. |
|
115 | 111 |
bool empty() const { return _data.empty(); } |
116 | 112 |
|
117 |
/// \brief Make |
|
113 |
/// \brief Make the heap empty. |
|
118 | 114 |
/// |
119 |
/// Make empty this heap. It does not change the cross reference map. |
|
120 |
/// If you want to reuse what is not surely empty you should first clear |
|
121 |
/// the heap and after that you should set the cross reference map for |
|
122 |
/// each item to \c PRE_HEAP. |
|
115 |
/// This functon makes the heap empty. |
|
116 |
/// It does not change the cross reference map. If you want to reuse |
|
117 |
/// a heap that is not surely empty, you should first clear it and |
|
118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
119 |
/// for each item. |
|
123 | 120 |
void clear() { |
124 | 121 |
_data.clear(); |
125 | 122 |
} |
126 | 123 |
|
127 | 124 |
private: |
128 | 125 |
static int parent(int i) { return (i-1)/2; } |
129 | 126 |
|
130 |
static int |
|
127 |
static int secondChild(int i) { return 2*i+2; } |
|
131 | 128 |
bool less(const Pair &p1, const Pair &p2) const { |
132 | 129 |
return _comp(p1.second, p2.second); |
133 | 130 |
} |
134 | 131 |
|
135 |
int |
|
132 |
int bubbleUp(int hole, Pair p) { |
|
136 | 133 |
int par = parent(hole); |
137 | 134 |
while( hole>0 && less(p,_data[par]) ) { |
138 | 135 |
move(_data[par],hole); |
139 | 136 |
hole = par; |
140 | 137 |
par = parent(hole); |
141 | 138 |
} |
142 | 139 |
move(p, hole); |
143 | 140 |
return hole; |
144 | 141 |
} |
145 | 142 |
|
146 |
int bubble_down(int hole, Pair p, int length) { |
|
147 |
int child = second_child(hole); |
|
143 |
int bubbleDown(int hole, Pair p, int length) { |
|
144 |
int child = secondChild(hole); |
|
148 | 145 |
while(child < length) { |
149 | 146 |
if( less(_data[child-1], _data[child]) ) { |
150 | 147 |
--child; |
151 | 148 |
} |
152 | 149 |
if( !less(_data[child], p) ) |
153 | 150 |
goto ok; |
154 | 151 |
move(_data[child], hole); |
155 | 152 |
hole = child; |
156 |
child = |
|
153 |
child = secondChild(hole); |
|
157 | 154 |
} |
158 | 155 |
child--; |
159 | 156 |
if( child<length && less(_data[child], p) ) { |
160 | 157 |
move(_data[child], hole); |
161 | 158 |
hole=child; |
162 | 159 |
} |
163 | 160 |
ok: |
164 | 161 |
move(p, hole); |
165 | 162 |
return hole; |
166 | 163 |
} |
167 | 164 |
|
168 | 165 |
void move(const Pair &p, int i) { |
169 | 166 |
_data[i] = p; |
170 | 167 |
_iim.set(p.first, i); |
171 | 168 |
} |
172 | 169 |
|
173 | 170 |
public: |
171 |
|
|
174 | 172 |
/// \brief Insert a pair of item and priority into the heap. |
175 | 173 |
/// |
176 |
/// |
|
174 |
/// This function inserts \c p.first to the heap with priority |
|
175 |
/// \c p.second. |
|
177 | 176 |
/// \param p The pair to insert. |
177 |
/// \pre \c p.first must not be stored in the heap. |
|
178 | 178 |
void push(const Pair &p) { |
179 | 179 |
int n = _data.size(); |
180 | 180 |
_data.resize(n+1); |
181 |
|
|
181 |
bubbleUp(n, p); |
|
182 | 182 |
} |
183 | 183 |
|
184 |
/// \brief Insert an item into the heap with the given |
|
184 |
/// \brief Insert an item into the heap with the given priority. |
|
185 | 185 |
/// |
186 |
/// |
|
186 |
/// This function inserts the given item into the heap with the |
|
187 |
/// given priority. |
|
187 | 188 |
/// \param i The item to insert. |
188 | 189 |
/// \param p The priority of the item. |
190 |
/// \pre \e i must not be stored in the heap. |
|
189 | 191 |
void push(const Item &i, const Prio &p) { push(Pair(i,p)); } |
190 | 192 |
|
191 |
/// \brief |
|
193 |
/// \brief Return the item having minimum priority. |
|
192 | 194 |
/// |
193 |
/// This method returns the item with minimum priority relative to \c |
|
194 |
/// Compare. |
|
195 |
/// |
|
195 |
/// This function returns the item having minimum priority. |
|
196 |
/// \pre The heap must be non-empty. |
|
196 | 197 |
Item top() const { |
197 | 198 |
return _data[0].first; |
198 | 199 |
} |
199 | 200 |
|
200 |
/// \brief |
|
201 |
/// \brief The minimum priority. |
|
201 | 202 |
/// |
202 |
/// It returns the minimum priority relative to \c Compare. |
|
203 |
/// \pre The heap must be nonempty. |
|
203 |
/// This function returns the minimum priority. |
|
204 |
/// \pre The heap must be non-empty. |
|
204 | 205 |
Prio prio() const { |
205 | 206 |
return _data[0].second; |
206 | 207 |
} |
207 | 208 |
|
208 |
/// \brief |
|
209 |
/// \brief Remove the item having minimum priority. |
|
209 | 210 |
/// |
210 |
/// This method deletes the item with minimum priority relative to \c |
|
211 |
/// Compare from the heap. |
|
211 |
/// This function removes the item having minimum priority. |
|
212 | 212 |
/// \pre The heap must be non-empty. |
213 | 213 |
void pop() { |
214 | 214 |
int n = _data.size()-1; |
215 | 215 |
_iim.set(_data[0].first, POST_HEAP); |
216 | 216 |
if (n > 0) { |
217 |
|
|
217 |
bubbleDown(0, _data[n], n); |
|
218 | 218 |
} |
219 | 219 |
_data.pop_back(); |
220 | 220 |
} |
221 | 221 |
|
222 |
/// \brief |
|
222 |
/// \brief Remove the given item from the heap. |
|
223 | 223 |
/// |
224 |
/// This method deletes item \c i from the heap. |
|
225 |
/// \param i The item to erase. |
|
226 |
/// |
|
224 |
/// This function removes the given item from the heap if it is |
|
225 |
/// already stored. |
|
226 |
/// \param i The item to delete. |
|
227 |
/// \pre \e i must be in the heap. |
|
227 | 228 |
void erase(const Item &i) { |
228 | 229 |
int h = _iim[i]; |
229 | 230 |
int n = _data.size()-1; |
230 | 231 |
_iim.set(_data[h].first, POST_HEAP); |
231 | 232 |
if( h < n ) { |
232 |
if ( bubble_up(h, _data[n]) == h) { |
|
233 |
bubble_down(h, _data[n], n); |
|
233 |
if ( bubbleUp(h, _data[n]) == h) { |
|
234 |
bubbleDown(h, _data[n], n); |
|
234 | 235 |
} |
235 | 236 |
} |
236 | 237 |
_data.pop_back(); |
237 | 238 |
} |
238 | 239 |
|
239 |
|
|
240 |
/// \brief Returns the priority of \c i. |
|
240 |
/// \brief The priority of the given item. |
|
241 | 241 |
/// |
242 |
/// This function returns the priority of |
|
242 |
/// This function returns the priority of the given item. |
|
243 | 243 |
/// \param i The item. |
244 |
/// \pre \ |
|
244 |
/// \pre \e i must be in the heap. |
|
245 | 245 |
Prio operator[](const Item &i) const { |
246 | 246 |
int idx = _iim[i]; |
247 | 247 |
return _data[idx].second; |
248 | 248 |
} |
249 | 249 |
|
250 |
/// \brief \c i gets to the heap with priority \c p independently |
|
251 |
/// if \c i was already there. |
|
250 |
/// \brief Set the priority of an item or insert it, if it is |
|
251 |
/// not stored in the heap. |
|
252 | 252 |
/// |
253 |
/// This method calls \ref push(\c i, \c p) if \c i is not stored |
|
254 |
/// in the heap and sets the priority of \c i to \c p otherwise. |
|
253 |
/// This method sets the priority of the given item if it is |
|
254 |
/// already stored in the heap. Otherwise it inserts the given |
|
255 |
/// item into the heap with the given priority. |
|
255 | 256 |
/// \param i The item. |
256 | 257 |
/// \param p The priority. |
257 | 258 |
void set(const Item &i, const Prio &p) { |
258 | 259 |
int idx = _iim[i]; |
259 | 260 |
if( idx < 0 ) { |
260 | 261 |
push(i,p); |
261 | 262 |
} |
262 | 263 |
else if( _comp(p, _data[idx].second) ) { |
263 |
|
|
264 |
bubbleUp(idx, Pair(i,p)); |
|
264 | 265 |
} |
265 | 266 |
else { |
266 |
|
|
267 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
267 | 268 |
} |
268 | 269 |
} |
269 | 270 |
|
270 |
/// \brief |
|
271 |
/// \brief Decrease the priority of an item to the given value. |
|
271 | 272 |
/// |
272 |
/// This |
|
273 |
/// This function decreases the priority of an item to the given value. |
|
273 | 274 |
/// \param i The item. |
274 | 275 |
/// \param p The priority. |
275 |
/// \pre \c i must be stored in the heap with priority at least \c |
|
276 |
/// p relative to \c Compare. |
|
276 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
277 | 277 |
void decrease(const Item &i, const Prio &p) { |
278 | 278 |
int idx = _iim[i]; |
279 |
|
|
279 |
bubbleUp(idx, Pair(i,p)); |
|
280 | 280 |
} |
281 | 281 |
|
282 |
/// \brief |
|
282 |
/// \brief Increase the priority of an item to the given value. |
|
283 | 283 |
/// |
284 |
/// This |
|
284 |
/// This function increases the priority of an item to the given value. |
|
285 | 285 |
/// \param i The item. |
286 | 286 |
/// \param p The priority. |
287 |
/// \pre \c i must be stored in the heap with priority at most \c |
|
288 |
/// p relative to \c Compare. |
|
287 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
289 | 288 |
void increase(const Item &i, const Prio &p) { |
290 | 289 |
int idx = _iim[i]; |
291 |
|
|
290 |
bubbleDown(idx, Pair(i,p), _data.size()); |
|
292 | 291 |
} |
293 | 292 |
|
294 |
/// \brief Returns if \c item is in, has already been in, or has |
|
295 |
/// never been in the heap. |
|
293 |
/// \brief Return the state of an item. |
|
296 | 294 |
/// |
297 |
/// This method returns PRE_HEAP if \c item has never been in the |
|
298 |
/// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP |
|
299 |
/// otherwise. In the latter case it is possible that \c item will |
|
300 |
/// get back to the heap again. |
|
295 |
/// This method returns \c PRE_HEAP if the given item has never |
|
296 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
|
297 |
/// and \c POST_HEAP otherwise. |
|
298 |
/// In the latter case it is possible that the item will get back |
|
299 |
/// to the heap again. |
|
301 | 300 |
/// \param i The item. |
302 | 301 |
State state(const Item &i) const { |
303 | 302 |
int s = _iim[i]; |
304 | 303 |
if( s>=0 ) |
305 | 304 |
s=0; |
306 | 305 |
return State(s); |
307 | 306 |
} |
308 | 307 |
|
309 |
/// \brief |
|
308 |
/// \brief Set the state of an item in the heap. |
|
310 | 309 |
/// |
311 |
/// Sets the state of the \c item in the heap. It can be used to |
|
312 |
/// manually clear the heap when it is important to achive the |
|
313 |
/// |
|
310 |
/// This function sets the state of the given item in the heap. |
|
311 |
/// It can be used to manually clear the heap when it is important |
|
312 |
/// to achive better time complexity. |
|
314 | 313 |
/// \param i The item. |
315 | 314 |
/// \param st The state. It should not be \c IN_HEAP. |
316 | 315 |
void state(const Item& i, State st) { |
317 | 316 |
switch (st) { |
318 | 317 |
case POST_HEAP: |
319 | 318 |
case PRE_HEAP: |
320 | 319 |
if (state(i) == IN_HEAP) { |
321 | 320 |
erase(i); |
322 | 321 |
} |
323 | 322 |
_iim[i] = st; |
324 | 323 |
break; |
325 | 324 |
case IN_HEAP: |
326 | 325 |
break; |
327 | 326 |
} |
328 | 327 |
} |
329 | 328 |
|
330 |
/// \brief |
|
329 |
/// \brief Replace an item in the heap. |
|
331 | 330 |
/// |
332 |
/// The \c i item is replaced with \c j item. The \c i item should |
|
333 |
/// be in the heap, while the \c j should be out of the heap. The |
|
334 |
/// \c i item will out of the heap and \c j will be in the heap |
|
335 |
/// with the same prioriority as prevoiusly the \c i item. |
|
331 |
/// This function replaces item \c i with item \c j. |
|
332 |
/// Item \c i must be in the heap, while \c j must be out of the heap. |
|
333 |
/// After calling this method, item \c i will be out of the |
|
334 |
/// heap and \c j will be in the heap with the same prioriority |
|
335 |
/// as item \c i had before. |
|
336 | 336 |
void replace(const Item& i, const Item& j) { |
337 | 337 |
int idx = _iim[i]; |
338 | 338 |
_iim.set(i, _iim[j]); |
339 | 339 |
_iim.set(j, idx); |
340 | 340 |
_data[idx].first = j; |
341 | 341 |
} |
342 | 342 |
|
343 | 343 |
}; // class BinHeap |
344 | 344 |
|
345 | 345 |
} // namespace lemon |
346 | 346 |
|
347 | 347 |
#endif // LEMON_BIN_HEAP_H |
... | ... |
@@ -492,121 +492,121 @@ |
492 | 492 |
// \brief Base node of the iterator |
493 | 493 |
// |
494 | 494 |
// Returns the base node (ie. the source in this case) of the iterator |
495 | 495 |
Node baseNode(const OutArcIt &e) const { |
496 | 496 |
return Parent::source(static_cast<const Arc&>(e)); |
497 | 497 |
} |
498 | 498 |
// \brief Running node of the iterator |
499 | 499 |
// |
500 | 500 |
// Returns the running node (ie. the target in this case) of the |
501 | 501 |
// iterator |
502 | 502 |
Node runningNode(const OutArcIt &e) const { |
503 | 503 |
return Parent::target(static_cast<const Arc&>(e)); |
504 | 504 |
} |
505 | 505 |
|
506 | 506 |
// \brief Base node of the iterator |
507 | 507 |
// |
508 | 508 |
// Returns the base node (ie. the target in this case) of the iterator |
509 | 509 |
Node baseNode(const InArcIt &e) const { |
510 | 510 |
return Parent::target(static_cast<const Arc&>(e)); |
511 | 511 |
} |
512 | 512 |
// \brief Running node of the iterator |
513 | 513 |
// |
514 | 514 |
// Returns the running node (ie. the source in this case) of the |
515 | 515 |
// iterator |
516 | 516 |
Node runningNode(const InArcIt &e) const { |
517 | 517 |
return Parent::source(static_cast<const Arc&>(e)); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
// Base node of the iterator |
521 | 521 |
// |
522 | 522 |
// Returns the base node of the iterator |
523 | 523 |
Node baseNode(const IncEdgeIt &e) const { |
524 | 524 |
return e.direction ? u(e) : v(e); |
525 | 525 |
} |
526 | 526 |
// Running node of the iterator |
527 | 527 |
// |
528 | 528 |
// Returns the running node of the iterator |
529 | 529 |
Node runningNode(const IncEdgeIt &e) const { |
530 | 530 |
return e.direction ? v(e) : u(e); |
531 | 531 |
} |
532 | 532 |
|
533 | 533 |
|
534 | 534 |
template <typename _Value> |
535 | 535 |
class ArcMap |
536 | 536 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
537 | 537 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
538 | 538 |
|
539 | 539 |
public: |
540 |
ArcMap(const Graph& _g) |
|
540 |
explicit ArcMap(const Graph& _g) |
|
541 | 541 |
: Parent(_g) {} |
542 | 542 |
ArcMap(const Graph& _g, const _Value& _v) |
543 | 543 |
: Parent(_g, _v) {} |
544 | 544 |
|
545 | 545 |
ArcMap& operator=(const ArcMap& cmap) { |
546 | 546 |
return operator=<ArcMap>(cmap); |
547 | 547 |
} |
548 | 548 |
|
549 | 549 |
template <typename CMap> |
550 | 550 |
ArcMap& operator=(const CMap& cmap) { |
551 | 551 |
Parent::operator=(cmap); |
552 | 552 |
return *this; |
553 | 553 |
} |
554 | 554 |
|
555 | 555 |
}; |
556 | 556 |
|
557 | 557 |
|
558 | 558 |
template <typename _Value> |
559 | 559 |
class EdgeMap |
560 | 560 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
561 | 561 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
562 | 562 |
|
563 | 563 |
public: |
564 |
EdgeMap(const Graph& _g) |
|
564 |
explicit EdgeMap(const Graph& _g) |
|
565 | 565 |
: Parent(_g) {} |
566 | 566 |
|
567 | 567 |
EdgeMap(const Graph& _g, const _Value& _v) |
568 | 568 |
: Parent(_g, _v) {} |
569 | 569 |
|
570 | 570 |
EdgeMap& operator=(const EdgeMap& cmap) { |
571 | 571 |
return operator=<EdgeMap>(cmap); |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
template <typename CMap> |
575 | 575 |
EdgeMap& operator=(const CMap& cmap) { |
576 | 576 |
Parent::operator=(cmap); |
577 | 577 |
return *this; |
578 | 578 |
} |
579 | 579 |
|
580 | 580 |
}; |
581 | 581 |
|
582 | 582 |
|
583 | 583 |
// Alteration extension |
584 | 584 |
|
585 | 585 |
Edge addEdge(const Node& from, const Node& to) { |
586 | 586 |
Edge edge = Parent::addEdge(from, to); |
587 | 587 |
notifier(Edge()).add(edge); |
588 | 588 |
std::vector<Arc> arcs; |
589 | 589 |
arcs.push_back(Parent::direct(edge, true)); |
590 | 590 |
arcs.push_back(Parent::direct(edge, false)); |
591 | 591 |
notifier(Arc()).add(arcs); |
592 | 592 |
return edge; |
593 | 593 |
} |
594 | 594 |
|
595 | 595 |
void clear() { |
596 | 596 |
notifier(Arc()).clear(); |
597 | 597 |
notifier(Edge()).clear(); |
598 | 598 |
Parent::clear(); |
599 | 599 |
} |
600 | 600 |
|
601 | 601 |
void erase(const Edge& edge) { |
602 | 602 |
std::vector<Arc> arcs; |
603 | 603 |
arcs.push_back(Parent::direct(edge, true)); |
604 | 604 |
arcs.push_back(Parent::direct(edge, false)); |
605 | 605 |
notifier(Arc()).erase(arcs); |
606 | 606 |
notifier(Edge()).erase(edge); |
607 | 607 |
Parent::erase(edge); |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
|
611 | 611 |
EdgeSetExtender() { |
612 | 612 |
arc_notifier.setContainer(*this); |
... | ... |
@@ -559,145 +559,145 @@ |
559 | 559 |
// |
560 | 560 |
// Returns the base node (ie. the source in this case) of the iterator |
561 | 561 |
Node baseNode(const OutArcIt &arc) const { |
562 | 562 |
return Parent::source(static_cast<const Arc&>(arc)); |
563 | 563 |
} |
564 | 564 |
// \brief Running node of the iterator |
565 | 565 |
// |
566 | 566 |
// Returns the running node (ie. the target in this case) of the |
567 | 567 |
// iterator |
568 | 568 |
Node runningNode(const OutArcIt &arc) const { |
569 | 569 |
return Parent::target(static_cast<const Arc&>(arc)); |
570 | 570 |
} |
571 | 571 |
|
572 | 572 |
// \brief Base node of the iterator |
573 | 573 |
// |
574 | 574 |
// Returns the base node (ie. the target in this case) of the iterator |
575 | 575 |
Node baseNode(const InArcIt &arc) const { |
576 | 576 |
return Parent::target(static_cast<const Arc&>(arc)); |
577 | 577 |
} |
578 | 578 |
// \brief Running node of the iterator |
579 | 579 |
// |
580 | 580 |
// Returns the running node (ie. the source in this case) of the |
581 | 581 |
// iterator |
582 | 582 |
Node runningNode(const InArcIt &arc) const { |
583 | 583 |
return Parent::source(static_cast<const Arc&>(arc)); |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
// Base node of the iterator |
587 | 587 |
// |
588 | 588 |
// Returns the base node of the iterator |
589 | 589 |
Node baseNode(const IncEdgeIt &edge) const { |
590 | 590 |
return edge._direction ? u(edge) : v(edge); |
591 | 591 |
} |
592 | 592 |
// Running node of the iterator |
593 | 593 |
// |
594 | 594 |
// Returns the running node of the iterator |
595 | 595 |
Node runningNode(const IncEdgeIt &edge) const { |
596 | 596 |
return edge._direction ? v(edge) : u(edge); |
597 | 597 |
} |
598 | 598 |
|
599 | 599 |
// Mappable extension |
600 | 600 |
|
601 | 601 |
template <typename _Value> |
602 | 602 |
class NodeMap |
603 | 603 |
: public MapExtender<DefaultMap<Graph, Node, _Value> > { |
604 | 604 |
typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent; |
605 | 605 |
|
606 | 606 |
public: |
607 |
NodeMap(const Graph& graph) |
|
607 |
explicit NodeMap(const Graph& graph) |
|
608 | 608 |
: Parent(graph) {} |
609 | 609 |
NodeMap(const Graph& graph, const _Value& value) |
610 | 610 |
: Parent(graph, value) {} |
611 | 611 |
|
612 | 612 |
private: |
613 | 613 |
NodeMap& operator=(const NodeMap& cmap) { |
614 | 614 |
return operator=<NodeMap>(cmap); |
615 | 615 |
} |
616 | 616 |
|
617 | 617 |
template <typename CMap> |
618 | 618 |
NodeMap& operator=(const CMap& cmap) { |
619 | 619 |
Parent::operator=(cmap); |
620 | 620 |
return *this; |
621 | 621 |
} |
622 | 622 |
|
623 | 623 |
}; |
624 | 624 |
|
625 | 625 |
template <typename _Value> |
626 | 626 |
class ArcMap |
627 | 627 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
628 | 628 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
629 | 629 |
|
630 | 630 |
public: |
631 |
ArcMap(const Graph& graph) |
|
631 |
explicit ArcMap(const Graph& graph) |
|
632 | 632 |
: Parent(graph) {} |
633 | 633 |
ArcMap(const Graph& graph, const _Value& value) |
634 | 634 |
: Parent(graph, value) {} |
635 | 635 |
|
636 | 636 |
private: |
637 | 637 |
ArcMap& operator=(const ArcMap& cmap) { |
638 | 638 |
return operator=<ArcMap>(cmap); |
639 | 639 |
} |
640 | 640 |
|
641 | 641 |
template <typename CMap> |
642 | 642 |
ArcMap& operator=(const CMap& cmap) { |
643 | 643 |
Parent::operator=(cmap); |
644 | 644 |
return *this; |
645 | 645 |
} |
646 | 646 |
}; |
647 | 647 |
|
648 | 648 |
|
649 | 649 |
template <typename _Value> |
650 | 650 |
class EdgeMap |
651 | 651 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
652 | 652 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
653 | 653 |
|
654 | 654 |
public: |
655 |
EdgeMap(const Graph& graph) |
|
655 |
explicit EdgeMap(const Graph& graph) |
|
656 | 656 |
: Parent(graph) {} |
657 | 657 |
|
658 | 658 |
EdgeMap(const Graph& graph, const _Value& value) |
659 | 659 |
: Parent(graph, value) {} |
660 | 660 |
|
661 | 661 |
private: |
662 | 662 |
EdgeMap& operator=(const EdgeMap& cmap) { |
663 | 663 |
return operator=<EdgeMap>(cmap); |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
template <typename CMap> |
667 | 667 |
EdgeMap& operator=(const CMap& cmap) { |
668 | 668 |
Parent::operator=(cmap); |
669 | 669 |
return *this; |
670 | 670 |
} |
671 | 671 |
|
672 | 672 |
}; |
673 | 673 |
|
674 | 674 |
// Alteration extension |
675 | 675 |
|
676 | 676 |
Node addNode() { |
677 | 677 |
Node node = Parent::addNode(); |
678 | 678 |
notifier(Node()).add(node); |
679 | 679 |
return node; |
680 | 680 |
} |
681 | 681 |
|
682 | 682 |
Edge addEdge(const Node& from, const Node& to) { |
683 | 683 |
Edge edge = Parent::addEdge(from, to); |
684 | 684 |
notifier(Edge()).add(edge); |
685 | 685 |
std::vector<Arc> ev; |
686 | 686 |
ev.push_back(Parent::direct(edge, true)); |
687 | 687 |
ev.push_back(Parent::direct(edge, false)); |
688 | 688 |
notifier(Arc()).add(ev); |
689 | 689 |
return edge; |
690 | 690 |
} |
691 | 691 |
|
692 | 692 |
void clear() { |
693 | 693 |
notifier(Arc()).clear(); |
694 | 694 |
notifier(Edge()).clear(); |
695 | 695 |
notifier(Node()).clear(); |
696 | 696 |
Parent::clear(); |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
template <typename Graph, typename NodeRefMap, typename EdgeRefMap> |
700 | 700 |
void build(const Graph& graph, NodeRefMap& nodeRef, |
701 | 701 |
EdgeRefMap& edgeRef) { |
702 | 702 |
Parent::build(graph, nodeRef, edgeRef); |
703 | 703 |
notifier(Node()).build(); |
... | ... |
@@ -27,114 +27,121 @@ |
27 | 27 |
///\file |
28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
29 | 29 |
/// |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Default traits class of Circulation class. |
33 | 33 |
/// |
34 | 34 |
/// Default traits class of Circulation class. |
35 | 35 |
/// |
36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
37 | 37 |
/// \tparam LM The type of the lower bound map. |
38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
39 | 39 |
/// \tparam SM The type of the supply map. |
40 | 40 |
template <typename GR, typename LM, |
41 | 41 |
typename UM, typename SM> |
42 | 42 |
struct CirculationDefaultTraits { |
43 | 43 |
|
44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
|
47 | 47 |
/// \brief The type of the lower bound map. |
48 | 48 |
/// |
49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
#ifdef DOXYGEN |
|
76 |
typedef GR::ArcMap<Value> FlowMap; |
|
77 |
#else |
|
75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 |
#endif |
|
76 | 80 |
|
77 | 81 |
/// \brief Instantiates a FlowMap. |
78 | 82 |
/// |
79 | 83 |
/// This function instantiates a \ref FlowMap. |
80 | 84 |
/// \param digraph The digraph for which we would like to define |
81 | 85 |
/// the flow map. |
82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 87 |
return new FlowMap(digraph); |
84 | 88 |
} |
85 | 89 |
|
86 | 90 |
/// \brief The elevator type used by the algorithm. |
87 | 91 |
/// |
88 | 92 |
/// The elevator type used by the algorithm. |
89 | 93 |
/// |
90 |
/// \sa Elevator |
|
91 |
/// \sa LinkedElevator |
|
94 |
/// \sa Elevator, LinkedElevator |
|
95 |
#ifdef DOXYGEN |
|
96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
97 |
#else |
|
92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 |
#endif |
|
93 | 100 |
|
94 | 101 |
/// \brief Instantiates an Elevator. |
95 | 102 |
/// |
96 | 103 |
/// This function instantiates an \ref Elevator. |
97 | 104 |
/// \param digraph The digraph for which we would like to define |
98 | 105 |
/// the elevator. |
99 | 106 |
/// \param max_level The maximum level of the elevator. |
100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
101 | 108 |
return new Elevator(digraph, max_level); |
102 | 109 |
} |
103 | 110 |
|
104 | 111 |
/// \brief The tolerance used by the algorithm |
105 | 112 |
/// |
106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
108 | 115 |
|
109 | 116 |
}; |
110 | 117 |
|
111 | 118 |
/** |
112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 120 |
|
114 | 121 |
\ingroup max_flow |
115 | 122 |
This class implements a push-relabel algorithm for the \e network |
116 | 123 |
\e circulation problem. |
117 | 124 |
It is to find a feasible circulation when lower and upper bounds |
118 | 125 |
are given for the flow values on the arcs and lower bounds are |
119 | 126 |
given for the difference between the outgoing and incoming flow |
120 | 127 |
at the nodes. |
121 | 128 |
|
122 | 129 |
The exact formulation of this problem is the following. |
123 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
124 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
125 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
126 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
127 | 134 |
denotes the signed supply values of the nodes. |
128 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
129 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
130 | 137 |
\f$-sup(u)\f$ demand. |
131 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
132 | 139 |
solution of the following problem. |
133 | 140 |
|
134 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
135 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
136 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
137 | 144 |
|
138 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
139 | 146 |
zero or negative in order to have a feasible solution (since the sum |
140 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
... | ... |
@@ -405,115 +412,117 @@ |
405 | 412 |
_supply = ↦ |
406 | 413 |
return *this; |
407 | 414 |
} |
408 | 415 |
|
409 | 416 |
/// \brief Sets the flow map. |
410 | 417 |
/// |
411 | 418 |
/// Sets the flow map. |
412 | 419 |
/// If you don't use this function before calling \ref run() or |
413 | 420 |
/// \ref init(), an instance will be allocated automatically. |
414 | 421 |
/// The destructor deallocates this automatically allocated map, |
415 | 422 |
/// of course. |
416 | 423 |
/// \return <tt>(*this)</tt> |
417 | 424 |
Circulation& flowMap(FlowMap& map) { |
418 | 425 |
if (_local_flow) { |
419 | 426 |
delete _flow; |
420 | 427 |
_local_flow = false; |
421 | 428 |
} |
422 | 429 |
_flow = ↦ |
423 | 430 |
return *this; |
424 | 431 |
} |
425 | 432 |
|
426 | 433 |
/// \brief Sets the elevator used by algorithm. |
427 | 434 |
/// |
428 | 435 |
/// Sets the elevator used by algorithm. |
429 | 436 |
/// If you don't use this function before calling \ref run() or |
430 | 437 |
/// \ref init(), an instance will be allocated automatically. |
431 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
432 | 439 |
/// of course. |
433 | 440 |
/// \return <tt>(*this)</tt> |
434 | 441 |
Circulation& elevator(Elevator& elevator) { |
435 | 442 |
if (_local_level) { |
436 | 443 |
delete _level; |
437 | 444 |
_local_level = false; |
438 | 445 |
} |
439 | 446 |
_level = &elevator; |
440 | 447 |
return *this; |
441 | 448 |
} |
442 | 449 |
|
443 | 450 |
/// \brief Returns a const reference to the elevator. |
444 | 451 |
/// |
445 | 452 |
/// Returns a const reference to the elevator. |
446 | 453 |
/// |
447 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
448 | 455 |
/// using this function. |
449 | 456 |
const Elevator& elevator() const { |
450 | 457 |
return *_level; |
451 | 458 |
} |
452 | 459 |
|
453 |
/// \brief Sets the tolerance used by algorithm. |
|
460 |
/// \brief Sets the tolerance used by the algorithm. |
|
454 | 461 |
/// |
455 |
/// Sets the tolerance used by algorithm. |
|
456 |
Circulation& tolerance(const Tolerance& tolerance) const { |
|
462 |
/// Sets the tolerance object used by the algorithm. |
|
463 |
/// \return <tt>(*this)</tt> |
|
464 |
Circulation& tolerance(const Tolerance& tolerance) { |
|
457 | 465 |
_tol = tolerance; |
458 | 466 |
return *this; |
459 | 467 |
} |
460 | 468 |
|
461 | 469 |
/// \brief Returns a const reference to the tolerance. |
462 | 470 |
/// |
463 |
/// Returns a const reference to the tolerance |
|
471 |
/// Returns a const reference to the tolerance object used by |
|
472 |
/// the algorithm. |
|
464 | 473 |
const Tolerance& tolerance() const { |
465 |
return |
|
474 |
return _tol; |
|
466 | 475 |
} |
467 | 476 |
|
468 | 477 |
/// \name Execution Control |
469 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
470 |
/// If you need more control on the initial solution or the execution, |
|
471 |
/// first you have to call one of the \ref init() functions, then |
|
479 |
/// If you need better control on the initial solution or the execution, |
|
480 |
/// you have to call one of the \ref init() functions first, then |
|
472 | 481 |
/// the \ref start() function. |
473 | 482 |
|
474 | 483 |
///@{ |
475 | 484 |
|
476 | 485 |
/// Initializes the internal data structures. |
477 | 486 |
|
478 | 487 |
/// Initializes the internal data structures and sets all flow values |
479 | 488 |
/// to the lower bound. |
480 | 489 |
void init() |
481 | 490 |
{ |
482 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
483 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
484 | 493 |
|
485 | 494 |
createStructures(); |
486 | 495 |
|
487 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) { |
488 | 497 |
(*_excess)[n] = (*_supply)[n]; |
489 | 498 |
} |
490 | 499 |
|
491 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) { |
492 | 501 |
_flow->set(e, (*_lo)[e]); |
493 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
494 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
495 | 504 |
} |
496 | 505 |
|
497 | 506 |
// global relabeling tested, but in general case it provides |
498 | 507 |
// worse performance for random digraphs |
499 | 508 |
_level->initStart(); |
500 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
501 | 510 |
_level->initAddItem(n); |
502 | 511 |
_level->initFinish(); |
503 | 512 |
for(NodeIt n(_g);n!=INVALID;++n) |
504 | 513 |
if(_tol.positive((*_excess)[n])) |
505 | 514 |
_level->activate(n); |
506 | 515 |
} |
507 | 516 |
|
508 | 517 |
/// Initializes the internal data structures using a greedy approach. |
509 | 518 |
|
510 | 519 |
/// Initializes the internal data structures using a greedy approach |
511 | 520 |
/// to construct the initial solution. |
512 | 521 |
void greedyInit() |
513 | 522 |
{ |
514 | 523 |
LEMON_DEBUG(checkBoundMaps(), |
515 | 524 |
"Upper bounds must be greater or equal to the lower bounds"); |
516 | 525 |
|
517 | 526 |
createStructures(); |
518 | 527 |
|
519 | 528 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
20 |
#define LEMON_CONCEPTS_HEAP_H |
|
21 |
|
|
19 | 22 |
///\ingroup concept |
20 | 23 |
///\file |
21 | 24 |
///\brief The concept of heaps. |
22 | 25 |
|
23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
|
24 |
#define LEMON_CONCEPTS_HEAP_H |
|
25 |
|
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief The heap concept. |
37 | 37 |
/// |
38 |
/// Concept class describing the main interface of heaps. A \e heap |
|
39 |
/// is a data structure for storing items with specified values called |
|
40 |
/// \e priorities in such a way that finding the item with minimum |
|
41 |
/// priority is efficient. In a heap one can change the priority of an |
|
42 |
/// |
|
38 |
/// This concept class describes the main interface of heaps. |
|
39 |
/// The various \ref heaps "heap structures" are efficient |
|
40 |
/// implementations of the abstract data type \e priority \e queue. |
|
41 |
/// They store items with specified values called \e priorities |
|
42 |
/// in such a way that finding and removing the item with minimum |
|
43 |
/// priority are efficient. The basic operations are adding and |
|
44 |
/// erasing items, changing the priority of an item, etc. |
|
43 | 45 |
/// |
44 |
/// \tparam PR Type of the priority of the items. |
|
45 |
/// \tparam IM A read and writable item map with int values, used |
|
46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
|
47 |
/// Any class that conforms to this concept can be used easily in such |
|
48 |
/// algorithms. |
|
49 |
/// |
|
50 |
/// \tparam PR Type of the priorities of the items. |
|
51 |
/// \tparam IM A read-writable item map with \c int values, used |
|
46 | 52 |
/// internally to handle the cross references. |
47 |
/// \tparam |
|
53 |
/// \tparam CMP A functor class for comparing the priorities. |
|
48 | 54 |
/// The default is \c std::less<PR>. |
49 | 55 |
#ifdef DOXYGEN |
50 |
template <typename PR, typename IM, typename |
|
56 |
template <typename PR, typename IM, typename CMP> |
|
51 | 57 |
#else |
52 |
template <typename PR, typename IM> |
|
58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
|
53 | 59 |
#endif |
54 | 60 |
class Heap { |
55 | 61 |
public: |
56 | 62 |
|
57 | 63 |
/// Type of the item-int map. |
58 | 64 |
typedef IM ItemIntMap; |
59 | 65 |
/// Type of the priorities. |
60 | 66 |
typedef PR Prio; |
61 | 67 |
/// Type of the items stored in the heap. |
62 | 68 |
typedef typename ItemIntMap::Key Item; |
63 | 69 |
|
64 | 70 |
/// \brief Type to represent the states of the items. |
65 | 71 |
/// |
66 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
67 |
/// "pre heap" or "post heap". The later two are indifferent |
|
68 |
/// from the point of view of the heap, but may be useful for |
|
69 |
/// |
|
73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
|
74 |
/// heap's point of view, but may be useful to the user. |
|
70 | 75 |
/// |
71 | 76 |
/// The item-int map must be initialized in such way that it assigns |
72 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
73 | 78 |
enum State { |
74 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
|
76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
|
80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
|
81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
|
77 | 82 |
}; |
78 | 83 |
|
79 |
/// \brief |
|
84 |
/// \brief Constructor. |
|
80 | 85 |
/// |
81 |
/// |
|
86 |
/// Constructor. |
|
82 | 87 |
/// \param map A map that assigns \c int values to keys of type |
83 | 88 |
/// \c Item. It is used internally by the heap implementations to |
84 | 89 |
/// handle the cross references. The assigned value must be |
85 |
/// \c PRE_HEAP (<tt>-1</tt>) for |
|
90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
86 | 91 |
explicit Heap(ItemIntMap &map) {} |
87 | 92 |
|
93 |
/// \brief Constructor. |
|
94 |
/// |
|
95 |
/// Constructor. |
|
96 |
/// \param map A map that assigns \c int values to keys of type |
|
97 |
/// \c Item. It is used internally by the heap implementations to |
|
98 |
/// handle the cross references. The assigned value must be |
|
99 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
|
100 |
/// \param comp The function object used for comparing the priorities. |
|
101 |
explicit Heap(ItemIntMap &map, const CMP &comp) {} |
|
102 |
|
|
88 | 103 |
/// \brief The number of items stored in the heap. |
89 | 104 |
/// |
90 |
/// |
|
105 |
/// This function returns the number of items stored in the heap. |
|
91 | 106 |
int size() const { return 0; } |
92 | 107 |
|
93 |
/// \brief |
|
108 |
/// \brief Check if the heap is empty. |
|
94 | 109 |
/// |
95 |
/// |
|
110 |
/// This function returns \c true if the heap is empty. |
|
96 | 111 |
bool empty() const { return false; } |
97 | 112 |
|
98 |
/// \brief |
|
113 |
/// \brief Make the heap empty. |
|
99 | 114 |
/// |
100 |
/// Makes the heap empty. |
|
101 |
void clear(); |
|
115 |
/// This functon makes the heap empty. |
|
116 |
/// It does not change the cross reference map. If you want to reuse |
|
117 |
/// a heap that is not surely empty, you should first clear it and |
|
118 |
/// then you should set the cross reference map to \c PRE_HEAP |
|
119 |
/// for each item. |
|
120 |
void clear() {} |
|
102 | 121 |
|
103 |
/// \brief |
|
122 |
/// \brief Insert an item into the heap with the given priority. |
|
104 | 123 |
/// |
105 |
/// |
|
124 |
/// This function inserts the given item into the heap with the |
|
125 |
/// given priority. |
|
106 | 126 |
/// \param i The item to insert. |
107 | 127 |
/// \param p The priority of the item. |
128 |
/// \pre \e i must not be stored in the heap. |
|
108 | 129 |
void push(const Item &i, const Prio &p) {} |
109 | 130 |
|
110 |
/// \brief |
|
131 |
/// \brief Return the item having minimum priority. |
|
111 | 132 |
/// |
112 |
/// |
|
133 |
/// This function returns the item having minimum priority. |
|
113 | 134 |
/// \pre The heap must be non-empty. |
114 | 135 |
Item top() const {} |
115 | 136 |
|
116 | 137 |
/// \brief The minimum priority. |
117 | 138 |
/// |
118 |
/// |
|
139 |
/// This function returns the minimum priority. |
|
119 | 140 |
/// \pre The heap must be non-empty. |
120 | 141 |
Prio prio() const {} |
121 | 142 |
|
122 |
/// \brief |
|
143 |
/// \brief Remove the item having minimum priority. |
|
123 | 144 |
/// |
124 |
/// |
|
145 |
/// This function removes the item having minimum priority. |
|
125 | 146 |
/// \pre The heap must be non-empty. |
126 | 147 |
void pop() {} |
127 | 148 |
|
128 |
/// \brief |
|
149 |
/// \brief Remove the given item from the heap. |
|
129 | 150 |
/// |
130 |
/// |
|
151 |
/// This function removes the given item from the heap if it is |
|
152 |
/// already stored. |
|
131 | 153 |
/// \param i The item to delete. |
154 |
/// \pre \e i must be in the heap. |
|
132 | 155 |
void erase(const Item &i) {} |
133 | 156 |
|
134 |
/// \brief The priority of |
|
157 |
/// \brief The priority of the given item. |
|
135 | 158 |
/// |
136 |
/// |
|
159 |
/// This function returns the priority of the given item. |
|
137 | 160 |
/// \param i The item. |
138 |
/// \pre \ |
|
161 |
/// \pre \e i must be in the heap. |
|
139 | 162 |
Prio operator[](const Item &i) const {} |
140 | 163 |
|
141 |
/// \brief |
|
164 |
/// \brief Set the priority of an item or insert it, if it is |
|
142 | 165 |
/// not stored in the heap. |
143 | 166 |
/// |
144 | 167 |
/// This method sets the priority of the given item if it is |
145 |
/// already stored in the heap. |
|
146 |
/// Otherwise it inserts the given item with the given priority. |
|
168 |
/// already stored in the heap. Otherwise it inserts the given |
|
169 |
/// item into the heap with the given priority. |
|
147 | 170 |
/// |
148 | 171 |
/// \param i The item. |
149 | 172 |
/// \param p The priority. |
150 | 173 |
void set(const Item &i, const Prio &p) {} |
151 | 174 |
|
152 |
/// \brief |
|
175 |
/// \brief Decrease the priority of an item to the given value. |
|
153 | 176 |
/// |
154 |
/// |
|
177 |
/// This function decreases the priority of an item to the given value. |
|
155 | 178 |
/// \param i The item. |
156 | 179 |
/// \param p The priority. |
157 |
/// \pre \ |
|
180 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
|
158 | 181 |
void decrease(const Item &i, const Prio &p) {} |
159 | 182 |
|
160 |
/// \brief |
|
183 |
/// \brief Increase the priority of an item to the given value. |
|
161 | 184 |
/// |
162 |
/// |
|
185 |
/// This function increases the priority of an item to the given value. |
|
163 | 186 |
/// \param i The item. |
164 | 187 |
/// \param p The priority. |
165 |
/// \pre \ |
|
188 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
|
166 | 189 |
void increase(const Item &i, const Prio &p) {} |
167 | 190 |
|
168 |
/// \brief Returns if an item is in, has already been in, or has |
|
169 |
/// never been in the heap. |
|
191 |
/// \brief Return the state of an item. |
|
170 | 192 |
/// |
171 | 193 |
/// This method returns \c PRE_HEAP if the given item has never |
172 | 194 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
173 | 195 |
/// and \c POST_HEAP otherwise. |
174 | 196 |
/// In the latter case it is possible that the item will get back |
175 | 197 |
/// to the heap again. |
176 | 198 |
/// \param i The item. |
177 | 199 |
State state(const Item &i) const {} |
178 | 200 |
|
179 |
/// \brief |
|
201 |
/// \brief Set the state of an item in the heap. |
|
180 | 202 |
/// |
181 |
/// Sets the state of the given item in the heap. It can be used |
|
182 |
/// to manually clear the heap when it is important to achive the |
|
183 |
/// |
|
203 |
/// This function sets the state of the given item in the heap. |
|
204 |
/// It can be used to manually clear the heap when it is important |
|
205 |
/// to achive better time complexity. |
|
184 | 206 |
/// \param i The item. |
185 | 207 |
/// \param st The state. It should not be \c IN_HEAP. |
186 | 208 |
void state(const Item& i, State st) {} |
187 | 209 |
|
188 | 210 |
|
189 | 211 |
template <typename _Heap> |
190 | 212 |
struct Constraints { |
191 | 213 |
public: |
192 | 214 |
void constraints() { |
193 | 215 |
typedef typename _Heap::Item OwnItem; |
194 | 216 |
typedef typename _Heap::Prio OwnPrio; |
195 | 217 |
typedef typename _Heap::State OwnState; |
196 | 218 |
|
197 | 219 |
Item item; |
198 | 220 |
Prio prio; |
199 | 221 |
item=Item(); |
200 | 222 |
prio=Prio(); |
201 | 223 |
ignore_unused_variable_warning(item); |
202 | 224 |
ignore_unused_variable_warning(prio); |
203 | 225 |
|
204 | 226 |
OwnItem own_item; |
205 | 227 |
OwnPrio own_prio; |
206 | 228 |
OwnState own_state; |
207 | 229 |
own_item=Item(); |
208 | 230 |
own_prio=Prio(); |
209 | 231 |
ignore_unused_variable_warning(own_item); |
210 | 232 |
ignore_unused_variable_warning(own_prio); |
211 | 233 |
ignore_unused_variable_warning(own_state); |
212 | 234 |
|
213 | 235 |
_Heap heap1(map); |
214 | 236 |
_Heap heap2 = heap1; |
215 | 237 |
ignore_unused_variable_warning(heap1); |
216 | 238 |
ignore_unused_variable_warning(heap2); |
217 | 239 |
|
218 | 240 |
int s = heap.size(); |
219 | 241 |
ignore_unused_variable_warning(s); |
220 | 242 |
bool e = heap.empty(); |
221 | 243 |
ignore_unused_variable_warning(e); |
222 | 244 |
|
223 | 245 |
prio = heap.prio(); |
224 | 246 |
item = heap.top(); |
225 | 247 |
prio = heap[item]; |
226 | 248 |
own_prio = heap.prio(); |
227 | 249 |
own_item = heap.top(); |
228 | 250 |
own_prio = heap[own_item]; |
229 | 251 |
|
230 | 252 |
heap.push(item, prio); |
231 | 253 |
heap.push(own_item, own_prio); |
... | ... |
@@ -367,98 +367,98 @@ |
367 | 367 |
local_reached=false; |
368 | 368 |
} |
369 | 369 |
_reached = &m; |
370 | 370 |
return *this; |
371 | 371 |
} |
372 | 372 |
|
373 | 373 |
///Sets the map that indicates which nodes are processed. |
374 | 374 |
|
375 | 375 |
///Sets the map that indicates which nodes are processed. |
376 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
377 | 377 |
///or \ref init(), an instance will be allocated automatically. |
378 | 378 |
///The destructor deallocates this automatically allocated map, |
379 | 379 |
///of course. |
380 | 380 |
///\return <tt> (*this) </tt> |
381 | 381 |
Dfs &processedMap(ProcessedMap &m) |
382 | 382 |
{ |
383 | 383 |
if(local_processed) { |
384 | 384 |
delete _processed; |
385 | 385 |
local_processed=false; |
386 | 386 |
} |
387 | 387 |
_processed = &m; |
388 | 388 |
return *this; |
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
///Sets the map that stores the distances of the nodes. |
392 | 392 |
|
393 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
394 | 394 |
///the algorithm. |
395 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
396 | 396 |
///or \ref init(), an instance will be allocated automatically. |
397 | 397 |
///The destructor deallocates this automatically allocated map, |
398 | 398 |
///of course. |
399 | 399 |
///\return <tt> (*this) </tt> |
400 | 400 |
Dfs &distMap(DistMap &m) |
401 | 401 |
{ |
402 | 402 |
if(local_dist) { |
403 | 403 |
delete _dist; |
404 | 404 |
local_dist=false; |
405 | 405 |
} |
406 | 406 |
_dist = &m; |
407 | 407 |
return *this; |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
public: |
411 | 411 |
|
412 | 412 |
///\name Execution Control |
413 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
414 | 414 |
///member functions called \ref run(Node) "run()".\n |
415 |
///If you need more control on the execution, first you have to call |
|
416 |
///\ref init(), then you can add a source node with \ref addSource() |
|
415 |
///If you need better control on the execution, you have to call |
|
416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
417 | 417 |
///and perform the actual computation with \ref start(). |
418 | 418 |
///This procedure can be repeated if there are nodes that have not |
419 | 419 |
///been reached. |
420 | 420 |
|
421 | 421 |
///@{ |
422 | 422 |
|
423 | 423 |
///\brief Initializes the internal data structures. |
424 | 424 |
/// |
425 | 425 |
///Initializes the internal data structures. |
426 | 426 |
void init() |
427 | 427 |
{ |
428 | 428 |
create_maps(); |
429 | 429 |
_stack.resize(countNodes(*G)); |
430 | 430 |
_stack_head=-1; |
431 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
432 | 432 |
_pred->set(u,INVALID); |
433 | 433 |
_reached->set(u,false); |
434 | 434 |
_processed->set(u,false); |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
|
438 | 438 |
///Adds a new source node. |
439 | 439 |
|
440 | 440 |
///Adds a new source node to the set of nodes to be processed. |
441 | 441 |
/// |
442 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
443 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
444 | 444 |
///except for the last one will not be visited and distances will |
445 | 445 |
///also be wrong.) |
446 | 446 |
void addSource(Node s) |
447 | 447 |
{ |
448 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
449 | 449 |
if(!(*_reached)[s]) |
450 | 450 |
{ |
451 | 451 |
_reached->set(s,true); |
452 | 452 |
_pred->set(s,INVALID); |
453 | 453 |
OutArcIt e(*G,s); |
454 | 454 |
if(e!=INVALID) { |
455 | 455 |
_stack[++_stack_head]=e; |
456 | 456 |
_dist->set(s,_stack_head); |
457 | 457 |
} |
458 | 458 |
else { |
459 | 459 |
_processed->set(s,true); |
460 | 460 |
_dist->set(s,0); |
461 | 461 |
} |
462 | 462 |
} |
463 | 463 |
} |
464 | 464 |
|
... | ... |
@@ -1319,98 +1319,98 @@ |
1319 | 1319 |
/// |
1320 | 1320 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1321 | 1321 |
template <class T> |
1322 | 1322 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1323 | 1323 |
SetReachedMapTraits<T> > { |
1324 | 1324 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1325 | 1325 |
}; |
1326 | 1326 |
///@} |
1327 | 1327 |
|
1328 | 1328 |
public: |
1329 | 1329 |
|
1330 | 1330 |
/// \brief Constructor. |
1331 | 1331 |
/// |
1332 | 1332 |
/// Constructor. |
1333 | 1333 |
/// |
1334 | 1334 |
/// \param digraph The digraph the algorithm runs on. |
1335 | 1335 |
/// \param visitor The visitor object of the algorithm. |
1336 | 1336 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1337 | 1337 |
: _digraph(&digraph), _visitor(&visitor), |
1338 | 1338 |
_reached(0), local_reached(false) {} |
1339 | 1339 |
|
1340 | 1340 |
/// \brief Destructor. |
1341 | 1341 |
~DfsVisit() { |
1342 | 1342 |
if(local_reached) delete _reached; |
1343 | 1343 |
} |
1344 | 1344 |
|
1345 | 1345 |
/// \brief Sets the map that indicates which nodes are reached. |
1346 | 1346 |
/// |
1347 | 1347 |
/// Sets the map that indicates which nodes are reached. |
1348 | 1348 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1349 | 1349 |
/// or \ref init(), an instance will be allocated automatically. |
1350 | 1350 |
/// The destructor deallocates this automatically allocated map, |
1351 | 1351 |
/// of course. |
1352 | 1352 |
/// \return <tt> (*this) </tt> |
1353 | 1353 |
DfsVisit &reachedMap(ReachedMap &m) { |
1354 | 1354 |
if(local_reached) { |
1355 | 1355 |
delete _reached; |
1356 | 1356 |
local_reached=false; |
1357 | 1357 |
} |
1358 | 1358 |
_reached = &m; |
1359 | 1359 |
return *this; |
1360 | 1360 |
} |
1361 | 1361 |
|
1362 | 1362 |
public: |
1363 | 1363 |
|
1364 | 1364 |
/// \name Execution Control |
1365 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1366 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
1367 |
/// If you need more control on the execution, first you have to call |
|
1368 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1367 |
/// If you need better control on the execution, you have to call |
|
1368 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
1369 | 1369 |
/// and perform the actual computation with \ref start(). |
1370 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
1371 | 1371 |
/// been reached. |
1372 | 1372 |
|
1373 | 1373 |
/// @{ |
1374 | 1374 |
|
1375 | 1375 |
/// \brief Initializes the internal data structures. |
1376 | 1376 |
/// |
1377 | 1377 |
/// Initializes the internal data structures. |
1378 | 1378 |
void init() { |
1379 | 1379 |
create_maps(); |
1380 | 1380 |
_stack.resize(countNodes(*_digraph)); |
1381 | 1381 |
_stack_head = -1; |
1382 | 1382 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1383 | 1383 |
_reached->set(u, false); |
1384 | 1384 |
} |
1385 | 1385 |
} |
1386 | 1386 |
|
1387 | 1387 |
/// \brief Adds a new source node. |
1388 | 1388 |
/// |
1389 | 1389 |
/// Adds a new source node to the set of nodes to be processed. |
1390 | 1390 |
/// |
1391 | 1391 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1392 | 1392 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
1393 | 1393 |
/// except for the last one will not be visited and distances will |
1394 | 1394 |
/// also be wrong.) |
1395 | 1395 |
void addSource(Node s) |
1396 | 1396 |
{ |
1397 | 1397 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1398 | 1398 |
if(!(*_reached)[s]) { |
1399 | 1399 |
_reached->set(s,true); |
1400 | 1400 |
_visitor->start(s); |
1401 | 1401 |
_visitor->reach(s); |
1402 | 1402 |
Arc e; |
1403 | 1403 |
_digraph->firstOut(e, s); |
1404 | 1404 |
if (e != INVALID) { |
1405 | 1405 |
_stack[++_stack_head] = e; |
1406 | 1406 |
} else { |
1407 | 1407 |
_visitor->leave(s); |
1408 | 1408 |
_visitor->stop(s); |
1409 | 1409 |
} |
1410 | 1410 |
} |
1411 | 1411 |
} |
1412 | 1412 |
|
1413 | 1413 |
/// \brief Processes the next arc. |
1414 | 1414 |
/// |
1415 | 1415 |
/// Processes the next arc. |
1416 | 1416 |
/// |
... | ... |
@@ -544,98 +544,98 @@ |
544 | 544 |
///\return <tt> (*this) </tt> |
545 | 545 |
Dijkstra &distMap(DistMap &m) |
546 | 546 |
{ |
547 | 547 |
if(local_dist) { |
548 | 548 |
delete _dist; |
549 | 549 |
local_dist=false; |
550 | 550 |
} |
551 | 551 |
_dist = &m; |
552 | 552 |
return *this; |
553 | 553 |
} |
554 | 554 |
|
555 | 555 |
///Sets the heap and the cross reference used by algorithm. |
556 | 556 |
|
557 | 557 |
///Sets the heap and the cross reference used by algorithm. |
558 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
559 | 559 |
///or \ref init(), heap and cross reference instances will be |
560 | 560 |
///allocated automatically. |
561 | 561 |
///The destructor deallocates these automatically allocated objects, |
562 | 562 |
///of course. |
563 | 563 |
///\return <tt> (*this) </tt> |
564 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
565 | 565 |
{ |
566 | 566 |
if(local_heap_cross_ref) { |
567 | 567 |
delete _heap_cross_ref; |
568 | 568 |
local_heap_cross_ref=false; |
569 | 569 |
} |
570 | 570 |
_heap_cross_ref = &cr; |
571 | 571 |
if(local_heap) { |
572 | 572 |
delete _heap; |
573 | 573 |
local_heap=false; |
574 | 574 |
} |
575 | 575 |
_heap = &hp; |
576 | 576 |
return *this; |
577 | 577 |
} |
578 | 578 |
|
579 | 579 |
private: |
580 | 580 |
|
581 | 581 |
void finalizeNodeData(Node v,Value dst) |
582 | 582 |
{ |
583 | 583 |
_processed->set(v,true); |
584 | 584 |
_dist->set(v, dst); |
585 | 585 |
} |
586 | 586 |
|
587 | 587 |
public: |
588 | 588 |
|
589 | 589 |
///\name Execution Control |
590 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
591 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
592 |
///If you need more control on the execution, first you have to call |
|
593 |
///\ref init(), then you can add several source nodes with |
|
592 |
///If you need better control on the execution, you have to call |
|
593 |
///\ref init() first, then you can add several source nodes with |
|
594 | 594 |
///\ref addSource(). Finally the actual path computation can be |
595 | 595 |
///performed with one of the \ref start() functions. |
596 | 596 |
|
597 | 597 |
///@{ |
598 | 598 |
|
599 | 599 |
///\brief Initializes the internal data structures. |
600 | 600 |
/// |
601 | 601 |
///Initializes the internal data structures. |
602 | 602 |
void init() |
603 | 603 |
{ |
604 | 604 |
create_maps(); |
605 | 605 |
_heap->clear(); |
606 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
607 | 607 |
_pred->set(u,INVALID); |
608 | 608 |
_processed->set(u,false); |
609 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
610 | 610 |
} |
611 | 611 |
} |
612 | 612 |
|
613 | 613 |
///Adds a new source node. |
614 | 614 |
|
615 | 615 |
///Adds a new source node to the priority heap. |
616 | 616 |
///The optional second parameter is the initial distance of the node. |
617 | 617 |
/// |
618 | 618 |
///The function checks if the node has already been added to the heap and |
619 | 619 |
///it is pushed to the heap only if either it was not in the heap |
620 | 620 |
///or the shortest path found till then is shorter than \c dst. |
621 | 621 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
622 | 622 |
{ |
623 | 623 |
if(_heap->state(s) != Heap::IN_HEAP) { |
624 | 624 |
_heap->push(s,dst); |
625 | 625 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
626 | 626 |
_heap->set(s,dst); |
627 | 627 |
_pred->set(s,INVALID); |
628 | 628 |
} |
629 | 629 |
} |
630 | 630 |
|
631 | 631 |
///Processes the next node in the priority heap |
632 | 632 |
|
633 | 633 |
///Processes the next node in the priority heap. |
634 | 634 |
/// |
635 | 635 |
///\return The processed node. |
636 | 636 |
/// |
637 | 637 |
///\warning The priority heap must not be empty. |
638 | 638 |
Node processNextNode() |
639 | 639 |
{ |
640 | 640 |
Node v=_heap->top(); |
641 | 641 |
Value oldvalue=_heap->prio(); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIM2_H |
20 | 20 |
#define LEMON_DIM2_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
|
24 |
///\ingroup |
|
24 |
///\ingroup geomdat |
|
25 | 25 |
///\file |
26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
27 |
/// |
|
28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
29 |
/// a two dimensional vector with the usual operations. |
|
30 |
/// |
|
31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
32 |
/// the rectangular bounding box of a set of |
|
33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
34 | 27 |
|
35 | 28 |
namespace lemon { |
36 | 29 |
|
37 | 30 |
///Tools for handling two dimensional coordinates |
38 | 31 |
|
39 | 32 |
///This namespace is a storage of several |
40 | 33 |
///tools for handling two dimensional coordinates |
41 | 34 |
namespace dim2 { |
42 | 35 |
|
43 |
/// \addtogroup |
|
36 |
/// \addtogroup geomdat |
|
44 | 37 |
/// @{ |
45 | 38 |
|
46 | 39 |
/// Two dimensional vector (plain vector) |
47 | 40 |
|
48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
49 | 42 |
/// with the usual vector operations. |
50 | 43 |
template<typename T> |
51 | 44 |
class Point { |
52 | 45 |
|
53 | 46 |
public: |
54 | 47 |
|
55 | 48 |
typedef T Value; |
56 | 49 |
|
57 | 50 |
///First coordinate |
58 | 51 |
T x; |
59 | 52 |
///Second coordinate |
60 | 53 |
T y; |
61 | 54 |
|
62 | 55 |
///Default constructor |
63 | 56 |
Point() {} |
64 | 57 |
|
65 | 58 |
///Construct an instance from coordinates |
66 | 59 |
Point(T a, T b) : x(a), y(b) { } |
67 | 60 |
|
68 | 61 |
///Returns the dimension of the vector (i.e. returns 2). |
69 | 62 |
|
70 | 63 |
///The dimension of the vector. |
71 | 64 |
///This function always returns 2. |
72 | 65 |
int size() const { return 2; } |
73 | 66 |
|
74 | 67 |
///Subscripting operator |
75 | 68 |
|
76 | 69 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
77 | 70 |
/// |
78 | 71 |
T& operator[](int idx) { return idx == 0 ? x : y; } |
79 | 72 |
|
80 | 73 |
///Const subscripting operator |
81 | 74 |
|
82 | 75 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
83 | 76 |
/// |
84 | 77 |
const T& operator[](int idx) const { return idx == 0 ? x : y; } |
85 | 78 |
|
86 | 79 |
///Conversion constructor |
87 | 80 |
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {} |
88 | 81 |
|
89 | 82 |
///Give back the square of the norm of the vector |
90 | 83 |
T normSquare() const { |
91 | 84 |
return x*x+y*y; |
... | ... |
@@ -314,197 +314,197 @@ |
314 | 314 |
} |
315 | 315 |
tn = (*_pred)[tn]; |
316 | 316 |
} else { |
317 | 317 |
if ((*_weight)[sn] <= value) { |
318 | 318 |
rn = sn; |
319 | 319 |
s_root = true; |
320 | 320 |
value = (*_weight)[sn]; |
321 | 321 |
} |
322 | 322 |
sn = (*_pred)[sn]; |
323 | 323 |
} |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
327 | 327 |
reached[_root] = true; |
328 | 328 |
cutMap.set(_root, !s_root); |
329 | 329 |
reached[rn] = true; |
330 | 330 |
cutMap.set(rn, s_root); |
331 | 331 |
|
332 | 332 |
std::vector<Node> st; |
333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
334 | 334 |
st.clear(); |
335 | 335 |
Node nn = n; |
336 | 336 |
while (!reached[nn]) { |
337 | 337 |
st.push_back(nn); |
338 | 338 |
nn = (*_pred)[nn]; |
339 | 339 |
} |
340 | 340 |
while (!st.empty()) { |
341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
342 | 342 |
st.pop_back(); |
343 | 343 |
} |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
return value; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
///@} |
350 | 350 |
|
351 | 351 |
friend class MinCutNodeIt; |
352 | 352 |
|
353 | 353 |
/// Iterate on the nodes of a minimum cut |
354 | 354 |
|
355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 358 |
/// |
359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 360 |
/// \c t. |
361 | 361 |
/// \code |
362 |
/// |
|
362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
363 | 363 |
/// gom.run(); |
364 | 364 |
/// int cnt=0; |
365 |
/// for( |
|
365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
366 | 366 |
/// \endcode |
367 | 367 |
class MinCutNodeIt |
368 | 368 |
{ |
369 | 369 |
bool _side; |
370 | 370 |
typename Graph::NodeIt _node_it; |
371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
372 | 372 |
public: |
373 | 373 |
/// Constructor |
374 | 374 |
|
375 | 375 |
/// Constructor. |
376 | 376 |
/// |
377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 378 |
///< The GomoryHu class. You must call its |
379 | 379 |
/// run() method |
380 | 380 |
/// before initializing this iterator. |
381 | 381 |
const Node& s, ///< The base node. |
382 | 382 |
const Node& t, |
383 | 383 |
///< The node you want to separate from node \c s. |
384 | 384 |
bool side=true |
385 | 385 |
///< If it is \c true (default) then the iterator lists |
386 | 386 |
/// the nodes of the component containing \c s, |
387 | 387 |
/// otherwise it lists the other component. |
388 | 388 |
/// \note As the minimum cut is not always unique, |
389 | 389 |
/// \code |
390 | 390 |
/// MinCutNodeIt(gomory, s, t, true); |
391 | 391 |
/// \endcode |
392 | 392 |
/// and |
393 | 393 |
/// \code |
394 | 394 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 395 |
/// \endcode |
396 | 396 |
/// does not necessarily give the same set of nodes. |
397 | 397 |
/// However it is ensured that |
398 | 398 |
/// \code |
399 | 399 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 400 |
/// \endcode |
401 | 401 |
/// and |
402 | 402 |
/// \code |
403 | 403 |
/// MinCutNodeIt(gomory, s, t, false); |
404 | 404 |
/// \endcode |
405 | 405 |
/// together list each node exactly once. |
406 | 406 |
) |
407 | 407 |
: _side(side), _cut(gomory._graph) |
408 | 408 |
{ |
409 | 409 |
gomory.minCutMap(s,t,_cut); |
410 | 410 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
411 | 411 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
412 | 412 |
++_node_it) {} |
413 | 413 |
} |
414 | 414 |
/// Conversion to \c Node |
415 | 415 |
|
416 | 416 |
/// Conversion to \c Node. |
417 | 417 |
/// |
418 | 418 |
operator typename Graph::Node() const |
419 | 419 |
{ |
420 | 420 |
return _node_it; |
421 | 421 |
} |
422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; } |
423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
424 | 424 |
/// Next node |
425 | 425 |
|
426 | 426 |
/// Next node. |
427 | 427 |
/// |
428 | 428 |
MinCutNodeIt &operator++() |
429 | 429 |
{ |
430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
/// Postfix incrementation |
434 | 434 |
|
435 | 435 |
/// Postfix incrementation. |
436 | 436 |
/// |
437 | 437 |
/// \warning This incrementation |
438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 439 |
/// expect. |
440 | 440 |
typename Graph::Node operator++(int) |
441 | 441 |
{ |
442 | 442 |
typename Graph::Node n=*this; |
443 | 443 |
++(*this); |
444 | 444 |
return n; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
friend class MinCutEdgeIt; |
449 | 449 |
|
450 | 450 |
/// Iterate on the edges of a minimum cut |
451 | 451 |
|
452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 455 |
/// |
456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 457 |
/// \c t. |
458 | 458 |
/// \code |
459 |
/// |
|
459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
460 | 460 |
/// gom.run(); |
461 | 461 |
/// int value=0; |
462 |
/// for( |
|
462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
463 | 463 |
/// value+=capacities[e]; |
464 | 464 |
/// \endcode |
465 | 465 |
/// The result will be the same as the value returned by |
466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 467 |
class MinCutEdgeIt |
468 | 468 |
{ |
469 | 469 |
bool _side; |
470 | 470 |
const Graph &_graph; |
471 | 471 |
typename Graph::NodeIt _node_it; |
472 | 472 |
typename Graph::OutArcIt _arc_it; |
473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
474 | 474 |
void step() |
475 | 475 |
{ |
476 | 476 |
++_arc_it; |
477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 478 |
{ |
479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 480 |
if(_node_it!=INVALID) |
481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
public: |
486 | 486 |
/// Constructor |
487 | 487 |
|
488 | 488 |
/// Constructor. |
489 | 489 |
/// |
490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
491 | 491 |
///< The GomoryHu class. You must call its |
492 | 492 |
/// run() method |
493 | 493 |
/// before initializing this iterator. |
494 | 494 |
const Node& s, ///< The base node. |
495 | 495 |
const Node& t, |
496 | 496 |
///< The node you want to separate from node \c s. |
497 | 497 |
bool side=true |
498 | 498 |
///< If it is \c true (default) then the listed arcs |
499 | 499 |
/// will be oriented from the |
500 | 500 |
/// nodes of the component containing \c s, |
501 | 501 |
/// otherwise they will be oriented in the opposite |
502 | 502 |
/// direction. |
503 | 503 |
) |
504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
505 | 505 |
{ |
506 | 506 |
gomory.minCutMap(s,t,_cut); |
507 | 507 |
if(!side) |
508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
509 | 509 |
_cut[n]=!_cut[n]; |
510 | 510 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 |
#include <map> |
|
25 | 26 |
|
26 | 27 |
#include <lemon/core.h> |
27 | 28 |
|
28 | 29 |
///\file |
29 | 30 |
///\ingroup maps |
30 | 31 |
///\brief Miscellaneous property maps |
31 | 32 |
|
32 |
#include <map> |
|
33 |
|
|
34 | 33 |
namespace lemon { |
35 | 34 |
|
36 | 35 |
/// \addtogroup maps |
37 | 36 |
/// @{ |
38 | 37 |
|
39 | 38 |
/// Base class of maps. |
40 | 39 |
|
41 | 40 |
/// Base class of maps. It provides the necessary type definitions |
42 | 41 |
/// required by the map %concepts. |
43 | 42 |
template<typename K, typename V> |
44 | 43 |
class MapBase { |
45 | 44 |
public: |
46 | 45 |
/// \brief The key type of the map. |
47 | 46 |
typedef K Key; |
48 | 47 |
/// \brief The value type of the map. |
49 | 48 |
/// (The type of objects associated with the keys). |
50 | 49 |
typedef V Value; |
51 | 50 |
}; |
52 | 51 |
|
53 | 52 |
|
54 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
55 | 54 |
|
56 | 55 |
/// This map can be used if you have to provide a map only for |
57 | 56 |
/// its type definitions, or if you have to provide a writable map, |
58 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
59 | 58 |
/// <tt>/dev/null</tt>). |
60 | 59 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
61 | 60 |
/// |
62 | 61 |
/// \sa ConstMap |
63 | 62 |
template<typename K, typename V> |
64 | 63 |
class NullMap : public MapBase<K, V> { |
65 | 64 |
public: |
66 | 65 |
///\e |
67 | 66 |
typedef K Key; |
68 | 67 |
///\e |
69 | 68 |
typedef V Value; |
70 | 69 |
|
71 | 70 |
/// Gives back a default constructed element. |
72 | 71 |
Value operator[](const Key&) const { return Value(); } |
73 | 72 |
/// Absorbs the value. |
74 | 73 |
void set(const Key&, const Value&) {} |
75 | 74 |
}; |
76 | 75 |
|
77 | 76 |
/// Returns a \c NullMap class |
78 | 77 |
|
79 | 78 |
/// This function just returns a \c NullMap class. |
80 | 79 |
/// \relates NullMap |
81 | 80 |
template <typename K, typename V> |
... | ... |
@@ -1773,364 +1772,383 @@ |
1773 | 1772 |
if (value) { |
1774 | 1773 |
*_end++ = key; |
1775 | 1774 |
} |
1776 | 1775 |
} |
1777 | 1776 |
|
1778 | 1777 |
private: |
1779 | 1778 |
Iterator _begin; |
1780 | 1779 |
Iterator _end; |
1781 | 1780 |
}; |
1782 | 1781 |
|
1783 | 1782 |
/// Returns a \c LoggerBoolMap class |
1784 | 1783 |
|
1785 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1786 | 1785 |
/// |
1787 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1788 | 1787 |
/// that were marked \c true by an algorithm. |
1789 | 1788 |
/// For example it makes easier to store the nodes in the processing |
1790 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1791 | 1790 |
/// \code |
1792 | 1791 |
/// std::vector<Node> v; |
1793 | 1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
1794 | 1793 |
/// \endcode |
1795 | 1794 |
/// \code |
1796 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1797 | 1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
1798 | 1797 |
/// \endcode |
1799 | 1798 |
/// |
1800 | 1799 |
/// \note The container of the iterator must contain enough space |
1801 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1802 | 1801 |
/// |
1803 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1804 | 1803 |
/// it cannot be used when a readable map is needed, for example as |
1805 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1806 | 1805 |
/// |
1807 | 1806 |
/// \relates LoggerBoolMap |
1808 | 1807 |
template<typename Iterator> |
1809 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1810 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1811 | 1810 |
} |
1812 | 1811 |
|
1813 | 1812 |
/// @} |
1814 | 1813 |
|
1815 | 1814 |
/// \addtogroup graph_maps |
1816 | 1815 |
/// @{ |
1817 | 1816 |
|
1818 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1819 | 1818 |
/// |
1820 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1821 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
|
1822 | 1821 |
/// - \b unique: different items get different ids, |
1823 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1824 | 1823 |
/// delete other nodes). |
1825 | 1824 |
/// |
1826 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1827 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1828 | 1827 |
/// function of the graph. This map can be inverted with its member |
1829 | 1828 |
/// class \c InverseMap or with the \c operator() member. |
1830 | 1829 |
/// |
1831 | 1830 |
/// \tparam GR The graph type. |
1832 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1833 | 1832 |
/// \c GR::Edge). |
1834 | 1833 |
/// |
1835 | 1834 |
/// \see RangeIdMap |
1836 | 1835 |
template <typename GR, typename K> |
1837 | 1836 |
class IdMap : public MapBase<K, int> { |
1838 | 1837 |
public: |
1839 | 1838 |
/// The graph type of IdMap. |
1840 | 1839 |
typedef GR Graph; |
1841 | 1840 |
typedef GR Digraph; |
1842 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1843 | 1842 |
typedef K Item; |
1844 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1845 | 1844 |
typedef K Key; |
1846 | 1845 |
/// The value type of IdMap. |
1847 | 1846 |
typedef int Value; |
1848 | 1847 |
|
1849 | 1848 |
/// \brief Constructor. |
1850 | 1849 |
/// |
1851 | 1850 |
/// Constructor of the map. |
1852 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1853 | 1852 |
|
1854 | 1853 |
/// \brief Gives back the \e id of the item. |
1855 | 1854 |
/// |
1856 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1857 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1858 | 1857 |
|
1859 | 1858 |
/// \brief Gives back the \e item by its id. |
1860 | 1859 |
/// |
1861 | 1860 |
/// Gives back the \e item by its id. |
1862 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1863 | 1862 |
|
1864 | 1863 |
private: |
1865 | 1864 |
const Graph* _graph; |
1866 | 1865 |
|
1867 | 1866 |
public: |
1868 | 1867 |
|
1869 | 1868 |
/// \brief This class represents the inverse of its owner (IdMap). |
1870 | 1869 |
/// |
1871 | 1870 |
/// This class represents the inverse of its owner (IdMap). |
1872 | 1871 |
/// \see inverse() |
1873 | 1872 |
class InverseMap { |
1874 | 1873 |
public: |
1875 | 1874 |
|
1876 | 1875 |
/// \brief Constructor. |
1877 | 1876 |
/// |
1878 | 1877 |
/// Constructor for creating an id-to-item map. |
1879 | 1878 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1880 | 1879 |
|
1881 | 1880 |
/// \brief Constructor. |
1882 | 1881 |
/// |
1883 | 1882 |
/// Constructor for creating an id-to-item map. |
1884 | 1883 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1885 | 1884 |
|
1886 | 1885 |
/// \brief Gives back the given item from its id. |
1887 | 1886 |
/// |
1888 | 1887 |
/// Gives back the given item from its id. |
1889 | 1888 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1890 | 1889 |
|
1891 | 1890 |
private: |
1892 | 1891 |
const Graph* _graph; |
1893 | 1892 |
}; |
1894 | 1893 |
|
1895 | 1894 |
/// \brief Gives back the inverse of the map. |
1896 | 1895 |
/// |
1897 | 1896 |
/// Gives back the inverse of the IdMap. |
1898 | 1897 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1899 | 1898 |
}; |
1900 | 1899 |
|
1901 | 1900 |
|
1902 | 1901 |
/// \brief General cross reference graph map type. |
1903 | 1902 |
|
1904 | 1903 |
/// This class provides simple invertable graph maps. |
1905 |
/// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" |
|
1906 |
/// and if a key is set to a new value then store it |
|
1907 |
/// in the inverse map. |
|
1908 |
/// |
|
1904 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
|
1905 |
/// and if a key is set to a new value, then stores it in the inverse map. |
|
1909 | 1906 |
/// The values of the map can be accessed |
1910 | 1907 |
/// with stl compatible forward iterator. |
1911 | 1908 |
/// |
1909 |
/// This type is not reference map, so it cannot be modified with |
|
1910 |
/// the subscript operator. |
|
1911 |
/// |
|
1912 | 1912 |
/// \tparam GR The graph type. |
1913 | 1913 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1914 | 1914 |
/// \c GR::Edge). |
1915 | 1915 |
/// \tparam V The value type of the map. |
1916 | 1916 |
/// |
1917 | 1917 |
/// \see IterableValueMap |
1918 | 1918 |
template <typename GR, typename K, typename V> |
1919 | 1919 |
class CrossRefMap |
1920 | 1920 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1921 | 1921 |
private: |
1922 | 1922 |
|
1923 | 1923 |
typedef typename ItemSetTraits<GR, K>:: |
1924 | 1924 |
template Map<V>::Type Map; |
1925 | 1925 |
|
1926 |
typedef std:: |
|
1926 |
typedef std::multimap<V, K> Container; |
|
1927 | 1927 |
Container _inv_map; |
1928 | 1928 |
|
1929 | 1929 |
public: |
1930 | 1930 |
|
1931 | 1931 |
/// The graph type of CrossRefMap. |
1932 | 1932 |
typedef GR Graph; |
1933 | 1933 |
typedef GR Digraph; |
1934 | 1934 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1935 | 1935 |
typedef K Item; |
1936 | 1936 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1937 | 1937 |
typedef K Key; |
1938 | 1938 |
/// The value type of CrossRefMap. |
1939 | 1939 |
typedef V Value; |
1940 | 1940 |
|
1941 | 1941 |
/// \brief Constructor. |
1942 | 1942 |
/// |
1943 | 1943 |
/// Construct a new CrossRefMap for the given graph. |
1944 | 1944 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1945 | 1945 |
|
1946 | 1946 |
/// \brief Forward iterator for values. |
1947 | 1947 |
/// |
1948 | 1948 |
/// This iterator is an stl compatible forward |
1949 | 1949 |
/// iterator on the values of the map. The values can |
1950 | 1950 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1951 |
/// They are considered with multiplicity, so each value is |
|
1952 |
/// traversed for each item it is assigned to. |
|
1951 | 1953 |
class ValueIterator |
1952 | 1954 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1953 | 1955 |
friend class CrossRefMap; |
1954 | 1956 |
private: |
1955 | 1957 |
ValueIterator(typename Container::const_iterator _it) |
1956 | 1958 |
: it(_it) {} |
1957 | 1959 |
public: |
1958 | 1960 |
|
1959 | 1961 |
ValueIterator() {} |
1960 | 1962 |
|
1961 | 1963 |
ValueIterator& operator++() { ++it; return *this; } |
1962 | 1964 |
ValueIterator operator++(int) { |
1963 | 1965 |
ValueIterator tmp(*this); |
1964 | 1966 |
operator++(); |
1965 | 1967 |
return tmp; |
1966 | 1968 |
} |
1967 | 1969 |
|
1968 | 1970 |
const Value& operator*() const { return it->first; } |
1969 | 1971 |
const Value* operator->() const { return &(it->first); } |
1970 | 1972 |
|
1971 | 1973 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
1972 | 1974 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
1973 | 1975 |
|
1974 | 1976 |
private: |
1975 | 1977 |
typename Container::const_iterator it; |
1976 | 1978 |
}; |
1977 | 1979 |
|
1978 | 1980 |
/// \brief Returns an iterator to the first value. |
1979 | 1981 |
/// |
1980 | 1982 |
/// Returns an stl compatible iterator to the |
1981 | 1983 |
/// first value of the map. The values of the |
1982 | 1984 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1983 | 1985 |
/// range. |
1984 | 1986 |
ValueIterator beginValue() const { |
1985 | 1987 |
return ValueIterator(_inv_map.begin()); |
1986 | 1988 |
} |
1987 | 1989 |
|
1988 | 1990 |
/// \brief Returns an iterator after the last value. |
1989 | 1991 |
/// |
1990 | 1992 |
/// Returns an stl compatible iterator after the |
1991 | 1993 |
/// last value of the map. The values of the |
1992 | 1994 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1993 | 1995 |
/// range. |
1994 | 1996 |
ValueIterator endValue() const { |
1995 | 1997 |
return ValueIterator(_inv_map.end()); |
1996 | 1998 |
} |
1997 | 1999 |
|
1998 | 2000 |
/// \brief Sets the value associated with the given key. |
1999 | 2001 |
/// |
2000 | 2002 |
/// Sets the value associated with the given key. |
2001 | 2003 |
void set(const Key& key, const Value& val) { |
2002 | 2004 |
Value oldval = Map::operator[](key); |
2003 |
typename Container::iterator it = _inv_map.find(oldval); |
|
2004 |
if (it != _inv_map.end() && it->second == key) { |
|
2005 |
|
|
2005 |
typename Container::iterator it; |
|
2006 |
for (it = _inv_map.equal_range(oldval).first; |
|
2007 |
it != _inv_map.equal_range(oldval).second; ++it) { |
|
2008 |
if (it->second == key) { |
|
2009 |
_inv_map.erase(it); |
|
2010 |
break; |
|
2011 |
} |
|
2006 | 2012 |
} |
2007 |
_inv_map.insert(make_pair(val, key)); |
|
2013 |
_inv_map.insert(std::make_pair(val, key)); |
|
2008 | 2014 |
Map::set(key, val); |
2009 | 2015 |
} |
2010 | 2016 |
|
2011 | 2017 |
/// \brief Returns the value associated with the given key. |
2012 | 2018 |
/// |
2013 | 2019 |
/// Returns the value associated with the given key. |
2014 | 2020 |
typename MapTraits<Map>::ConstReturnValue |
2015 | 2021 |
operator[](const Key& key) const { |
2016 | 2022 |
return Map::operator[](key); |
2017 | 2023 |
} |
2018 | 2024 |
|
2019 |
/// \brief Gives back |
|
2025 |
/// \brief Gives back an item by its value. |
|
2020 | 2026 |
/// |
2021 |
/// Gives back the item by its value. |
|
2022 |
Key operator()(const Value& key) const { |
|
2023 |
|
|
2027 |
/// This function gives back an item that is assigned to |
|
2028 |
/// the given value or \c INVALID if no such item exists. |
|
2029 |
/// If there are more items with the same associated value, |
|
2030 |
/// only one of them is returned. |
|
2031 |
Key operator()(const Value& val) const { |
|
2032 |
typename Container::const_iterator it = _inv_map.find(val); |
|
2024 | 2033 |
return it != _inv_map.end() ? it->second : INVALID; |
2025 | 2034 |
} |
2026 | 2035 |
|
2027 | 2036 |
protected: |
2028 | 2037 |
|
2029 | 2038 |
/// \brief Erase the key from the map and the inverse map. |
2030 | 2039 |
/// |
2031 | 2040 |
/// Erase the key from the map and the inverse map. It is called by the |
2032 | 2041 |
/// \c AlterationNotifier. |
2033 | 2042 |
virtual void erase(const Key& key) { |
2034 | 2043 |
Value val = Map::operator[](key); |
2035 |
typename Container::iterator it = _inv_map.find(val); |
|
2036 |
if (it != _inv_map.end() && it->second == key) { |
|
2037 |
|
|
2044 |
typename Container::iterator it; |
|
2045 |
for (it = _inv_map.equal_range(val).first; |
|
2046 |
it != _inv_map.equal_range(val).second; ++it) { |
|
2047 |
if (it->second == key) { |
|
2048 |
_inv_map.erase(it); |
|
2049 |
break; |
|
2050 |
} |
|
2038 | 2051 |
} |
2039 | 2052 |
Map::erase(key); |
2040 | 2053 |
} |
2041 | 2054 |
|
2042 | 2055 |
/// \brief Erase more keys from the map and the inverse map. |
2043 | 2056 |
/// |
2044 | 2057 |
/// Erase more keys from the map and the inverse map. It is called by the |
2045 | 2058 |
/// \c AlterationNotifier. |
2046 | 2059 |
virtual void erase(const std::vector<Key>& keys) { |
2047 | 2060 |
for (int i = 0; i < int(keys.size()); ++i) { |
2048 | 2061 |
Value val = Map::operator[](keys[i]); |
2049 |
typename Container::iterator it = _inv_map.find(val); |
|
2050 |
if (it != _inv_map.end() && it->second == keys[i]) { |
|
2051 |
|
|
2062 |
typename Container::iterator it; |
|
2063 |
for (it = _inv_map.equal_range(val).first; |
|
2064 |
it != _inv_map.equal_range(val).second; ++it) { |
|
2065 |
if (it->second == keys[i]) { |
|
2066 |
_inv_map.erase(it); |
|
2067 |
break; |
|
2068 |
} |
|
2052 | 2069 |
} |
2053 | 2070 |
} |
2054 | 2071 |
Map::erase(keys); |
2055 | 2072 |
} |
2056 | 2073 |
|
2057 | 2074 |
/// \brief Clear the keys from the map and the inverse map. |
2058 | 2075 |
/// |
2059 | 2076 |
/// Clear the keys from the map and the inverse map. It is called by the |
2060 | 2077 |
/// \c AlterationNotifier. |
2061 | 2078 |
virtual void clear() { |
2062 | 2079 |
_inv_map.clear(); |
2063 | 2080 |
Map::clear(); |
2064 | 2081 |
} |
2065 | 2082 |
|
2066 | 2083 |
public: |
2067 | 2084 |
|
2068 | 2085 |
/// \brief The inverse map type. |
2069 | 2086 |
/// |
2070 | 2087 |
/// The inverse of this map. The subscript operator of the map |
2071 | 2088 |
/// gives back the item that was last assigned to the value. |
2072 | 2089 |
class InverseMap { |
2073 | 2090 |
public: |
2074 | 2091 |
/// \brief Constructor |
2075 | 2092 |
/// |
2076 | 2093 |
/// Constructor of the InverseMap. |
2077 | 2094 |
explicit InverseMap(const CrossRefMap& inverted) |
2078 | 2095 |
: _inverted(inverted) {} |
2079 | 2096 |
|
2080 | 2097 |
/// The value type of the InverseMap. |
2081 | 2098 |
typedef typename CrossRefMap::Key Value; |
2082 | 2099 |
/// The key type of the InverseMap. |
2083 | 2100 |
typedef typename CrossRefMap::Value Key; |
2084 | 2101 |
|
2085 | 2102 |
/// \brief Subscript operator. |
2086 | 2103 |
/// |
2087 |
/// Subscript operator. It gives back the item |
|
2088 |
/// that was last assigned to the given value. |
|
2104 |
/// Subscript operator. It gives back an item |
|
2105 |
/// that is assigned to the given value or \c INVALID |
|
2106 |
/// if no such item exists. |
|
2089 | 2107 |
Value operator[](const Key& key) const { |
2090 | 2108 |
return _inverted(key); |
2091 | 2109 |
} |
2092 | 2110 |
|
2093 | 2111 |
private: |
2094 | 2112 |
const CrossRefMap& _inverted; |
2095 | 2113 |
}; |
2096 | 2114 |
|
2097 | 2115 |
/// \brief It gives back the read-only inverse map. |
2098 | 2116 |
/// |
2099 | 2117 |
/// It gives back the read-only inverse map. |
2100 | 2118 |
InverseMap inverse() const { |
2101 | 2119 |
return InverseMap(*this); |
2102 | 2120 |
} |
2103 | 2121 |
|
2104 | 2122 |
}; |
2105 | 2123 |
|
2106 | 2124 |
/// \brief Provides continuous and unique ID for the |
2107 | 2125 |
/// items of a graph. |
2108 | 2126 |
/// |
2109 | 2127 |
/// RangeIdMap provides a unique and continuous |
2110 | 2128 |
/// ID for each item of a given type (\c Node, \c Arc or |
2111 | 2129 |
/// \c Edge) in a graph. This id is |
2112 | 2130 |
/// - \b unique: different items get different ids, |
2113 | 2131 |
/// - \b continuous: the range of the ids is the set of integers |
2114 | 2132 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2115 | 2133 |
/// this type (\c Node, \c Arc or \c Edge). |
2116 | 2134 |
/// - So, the ids can change when deleting an item of the same type. |
2117 | 2135 |
/// |
2118 | 2136 |
/// Thus this id is not (necessarily) the same as what can get using |
2119 | 2137 |
/// the \c id() function of the graph or \ref IdMap. |
2120 | 2138 |
/// This map can be inverted with its member class \c InverseMap, |
2121 | 2139 |
/// or with the \c operator() member. |
2122 | 2140 |
/// |
2123 | 2141 |
/// \tparam GR The graph type. |
2124 | 2142 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2125 | 2143 |
/// \c GR::Edge). |
2126 | 2144 |
/// |
2127 | 2145 |
/// \see IdMap |
2128 | 2146 |
template <typename GR, typename K> |
2129 | 2147 |
class RangeIdMap |
2130 | 2148 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2131 | 2149 |
|
2132 | 2150 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
2133 | 2151 |
|
2134 | 2152 |
public: |
2135 | 2153 |
/// The graph type of RangeIdMap. |
2136 | 2154 |
typedef GR Graph; |
... | ... |
@@ -2209,153 +2227,1050 @@ |
2209 | 2227 |
virtual void build() { |
2210 | 2228 |
Map::build(); |
2211 | 2229 |
Item it; |
2212 | 2230 |
const typename Map::Notifier* nf = Map::notifier(); |
2213 | 2231 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2214 | 2232 |
Map::set(it, _inv_map.size()); |
2215 | 2233 |
_inv_map.push_back(it); |
2216 | 2234 |
} |
2217 | 2235 |
} |
2218 | 2236 |
|
2219 | 2237 |
/// \brief Clear the keys from the map. |
2220 | 2238 |
/// |
2221 | 2239 |
/// Clear the keys from the map. It is called by the |
2222 | 2240 |
/// \c AlterationNotifier. |
2223 | 2241 |
virtual void clear() { |
2224 | 2242 |
_inv_map.clear(); |
2225 | 2243 |
Map::clear(); |
2226 | 2244 |
} |
2227 | 2245 |
|
2228 | 2246 |
public: |
2229 | 2247 |
|
2230 | 2248 |
/// \brief Returns the maximal value plus one. |
2231 | 2249 |
/// |
2232 | 2250 |
/// Returns the maximal value plus one in the map. |
2233 | 2251 |
unsigned int size() const { |
2234 | 2252 |
return _inv_map.size(); |
2235 | 2253 |
} |
2236 | 2254 |
|
2237 | 2255 |
/// \brief Swaps the position of the two items in the map. |
2238 | 2256 |
/// |
2239 | 2257 |
/// Swaps the position of the two items in the map. |
2240 | 2258 |
void swap(const Item& p, const Item& q) { |
2241 | 2259 |
int pi = Map::operator[](p); |
2242 | 2260 |
int qi = Map::operator[](q); |
2243 | 2261 |
Map::set(p, qi); |
2244 | 2262 |
_inv_map[qi] = p; |
2245 | 2263 |
Map::set(q, pi); |
2246 | 2264 |
_inv_map[pi] = q; |
2247 | 2265 |
} |
2248 | 2266 |
|
2249 | 2267 |
/// \brief Gives back the \e RangeId of the item |
2250 | 2268 |
/// |
2251 | 2269 |
/// Gives back the \e RangeId of the item. |
2252 | 2270 |
int operator[](const Item& item) const { |
2253 | 2271 |
return Map::operator[](item); |
2254 | 2272 |
} |
2255 | 2273 |
|
2256 | 2274 |
/// \brief Gives back the item belonging to a \e RangeId |
2257 |
/// |
|
2275 |
/// |
|
2258 | 2276 |
/// Gives back the item belonging to a \e RangeId. |
2259 | 2277 |
Item operator()(int id) const { |
2260 | 2278 |
return _inv_map[id]; |
2261 | 2279 |
} |
2262 | 2280 |
|
2263 | 2281 |
private: |
2264 | 2282 |
|
2265 | 2283 |
typedef std::vector<Item> Container; |
2266 | 2284 |
Container _inv_map; |
2267 | 2285 |
|
2268 | 2286 |
public: |
2269 | 2287 |
|
2270 | 2288 |
/// \brief The inverse map type of RangeIdMap. |
2271 | 2289 |
/// |
2272 | 2290 |
/// The inverse map type of RangeIdMap. |
2273 | 2291 |
class InverseMap { |
2274 | 2292 |
public: |
2275 | 2293 |
/// \brief Constructor |
2276 | 2294 |
/// |
2277 | 2295 |
/// Constructor of the InverseMap. |
2278 | 2296 |
explicit InverseMap(const RangeIdMap& inverted) |
2279 | 2297 |
: _inverted(inverted) {} |
2280 | 2298 |
|
2281 | 2299 |
|
2282 | 2300 |
/// The value type of the InverseMap. |
2283 | 2301 |
typedef typename RangeIdMap::Key Value; |
2284 | 2302 |
/// The key type of the InverseMap. |
2285 | 2303 |
typedef typename RangeIdMap::Value Key; |
2286 | 2304 |
|
2287 | 2305 |
/// \brief Subscript operator. |
2288 | 2306 |
/// |
2289 | 2307 |
/// Subscript operator. It gives back the item |
2290 | 2308 |
/// that the descriptor currently belongs to. |
2291 | 2309 |
Value operator[](const Key& key) const { |
2292 | 2310 |
return _inverted(key); |
2293 | 2311 |
} |
2294 | 2312 |
|
2295 | 2313 |
/// \brief Size of the map. |
2296 | 2314 |
/// |
2297 | 2315 |
/// Returns the size of the map. |
2298 | 2316 |
unsigned int size() const { |
2299 | 2317 |
return _inverted.size(); |
2300 | 2318 |
} |
2301 | 2319 |
|
2302 | 2320 |
private: |
2303 | 2321 |
const RangeIdMap& _inverted; |
2304 | 2322 |
}; |
2305 | 2323 |
|
2306 | 2324 |
/// \brief Gives back the inverse of the map. |
2307 | 2325 |
/// |
2308 | 2326 |
/// Gives back the inverse of the map. |
2309 | 2327 |
const InverseMap inverse() const { |
2310 | 2328 |
return InverseMap(*this); |
2311 | 2329 |
} |
2312 | 2330 |
}; |
2313 | 2331 |
|
2332 |
/// \brief Dynamic iterable \c bool map. |
|
2333 |
/// |
|
2334 |
/// This class provides a special graph map type which can store a |
|
2335 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
|
2336 |
/// For both \c true and \c false values it is possible to iterate on |
|
2337 |
/// the keys. |
|
2338 |
/// |
|
2339 |
/// This type is a reference map, so it can be modified with the |
|
2340 |
/// subscript operator. |
|
2341 |
/// |
|
2342 |
/// \tparam GR The graph type. |
|
2343 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
2344 |
/// \c GR::Edge). |
|
2345 |
/// |
|
2346 |
/// \see IterableIntMap, IterableValueMap |
|
2347 |
/// \see CrossRefMap |
|
2348 |
template <typename GR, typename K> |
|
2349 |
class IterableBoolMap |
|
2350 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
|
2351 |
private: |
|
2352 |
typedef GR Graph; |
|
2353 |
|
|
2354 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
|
2355 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
|
2356 |
|
|
2357 |
std::vector<K> _array; |
|
2358 |
int _sep; |
|
2359 |
|
|
2360 |
public: |
|
2361 |
|
|
2362 |
/// Indicates that the map is reference map. |
|
2363 |
typedef True ReferenceMapTag; |
|
2364 |
|
|
2365 |
/// The key type |
|
2366 |
typedef K Key; |
|
2367 |
/// The value type |
|
2368 |
typedef bool Value; |
|
2369 |
/// The const reference type. |
|
2370 |
typedef const Value& ConstReference; |
|
2371 |
|
|
2372 |
private: |
|
2373 |
|
|
2374 |
int position(const Key& key) const { |
|
2375 |
return Parent::operator[](key); |
|
2376 |
} |
|
2377 |
|
|
2378 |
public: |
|
2379 |
|
|
2380 |
/// \brief Reference to the value of the map. |
|
2381 |
/// |
|
2382 |
/// This class is similar to the \c bool type. It can be converted to |
|
2383 |
/// \c bool and it provides the same operators. |
|
2384 |
class Reference { |
|
2385 |
friend class IterableBoolMap; |
|
2386 |
private: |
|
2387 |
Reference(IterableBoolMap& map, const Key& key) |
|
2388 |
: _key(key), _map(map) {} |
|
2389 |
public: |
|
2390 |
|
|
2391 |
Reference& operator=(const Reference& value) { |
|
2392 |
_map.set(_key, static_cast<bool>(value)); |
|
2393 |
return *this; |
|
2394 |
} |
|
2395 |
|
|
2396 |
operator bool() const { |
|
2397 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
|
2398 |
} |
|
2399 |
|
|
2400 |
Reference& operator=(bool value) { |
|
2401 |
_map.set(_key, value); |
|
2402 |
return *this; |
|
2403 |
} |
|
2404 |
Reference& operator&=(bool value) { |
|
2405 |
_map.set(_key, _map[_key] & value); |
|
2406 |
return *this; |
|
2407 |
} |
|
2408 |
Reference& operator|=(bool value) { |
|
2409 |
_map.set(_key, _map[_key] | value); |
|
2410 |
return *this; |
|
2411 |
} |
|
2412 |
Reference& operator^=(bool value) { |
|
2413 |
_map.set(_key, _map[_key] ^ value); |
|
2414 |
return *this; |
|
2415 |
} |
|
2416 |
private: |
|
2417 |
Key _key; |
|
2418 |
IterableBoolMap& _map; |
|
2419 |
}; |
|
2420 |
|
|
2421 |
/// \brief Constructor of the map with a default value. |
|
2422 |
/// |
|
2423 |
/// Constructor of the map with a default value. |
|
2424 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
|
2425 |
: Parent(graph) { |
|
2426 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2427 |
Key it; |
|
2428 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2429 |
Parent::set(it, _array.size()); |
|
2430 |
_array.push_back(it); |
|
2431 |
} |
|
2432 |
_sep = (def ? _array.size() : 0); |
|
2433 |
} |
|
2434 |
|
|
2435 |
/// \brief Const subscript operator of the map. |
|
2436 |
/// |
|
2437 |
/// Const subscript operator of the map. |
|
2438 |
bool operator[](const Key& key) const { |
|
2439 |
return position(key) < _sep; |
|
2440 |
} |
|
2441 |
|
|
2442 |
/// \brief Subscript operator of the map. |
|
2443 |
/// |
|
2444 |
/// Subscript operator of the map. |
|
2445 |
Reference operator[](const Key& key) { |
|
2446 |
return Reference(*this, key); |
|
2447 |
} |
|
2448 |
|
|
2449 |
/// \brief Set operation of the map. |
|
2450 |
/// |
|
2451 |
/// Set operation of the map. |
|
2452 |
void set(const Key& key, bool value) { |
|
2453 |
int pos = position(key); |
|
2454 |
if (value) { |
|
2455 |
if (pos < _sep) return; |
|
2456 |
Key tmp = _array[_sep]; |
|
2457 |
_array[_sep] = key; |
|
2458 |
Parent::set(key, _sep); |
|
2459 |
_array[pos] = tmp; |
|
2460 |
Parent::set(tmp, pos); |
|
2461 |
++_sep; |
|
2462 |
} else { |
|
2463 |
if (pos >= _sep) return; |
|
2464 |
--_sep; |
|
2465 |
Key tmp = _array[_sep]; |
|
2466 |
_array[_sep] = key; |
|
2467 |
Parent::set(key, _sep); |
|
2468 |
_array[pos] = tmp; |
|
2469 |
Parent::set(tmp, pos); |
|
2470 |
} |
|
2471 |
} |
|
2472 |
|
|
2473 |
/// \brief Set all items. |
|
2474 |
/// |
|
2475 |
/// Set all items in the map. |
|
2476 |
/// \note Constant time operation. |
|
2477 |
void setAll(bool value) { |
|
2478 |
_sep = (value ? _array.size() : 0); |
|
2479 |
} |
|
2480 |
|
|
2481 |
/// \brief Returns the number of the keys mapped to \c true. |
|
2482 |
/// |
|
2483 |
/// Returns the number of the keys mapped to \c true. |
|
2484 |
int trueNum() const { |
|
2485 |
return _sep; |
|
2486 |
} |
|
2487 |
|
|
2488 |
/// \brief Returns the number of the keys mapped to \c false. |
|
2489 |
/// |
|
2490 |
/// Returns the number of the keys mapped to \c false. |
|
2491 |
int falseNum() const { |
|
2492 |
return _array.size() - _sep; |
|
2493 |
} |
|
2494 |
|
|
2495 |
/// \brief Iterator for the keys mapped to \c true. |
|
2496 |
/// |
|
2497 |
/// Iterator for the keys mapped to \c true. It works |
|
2498 |
/// like a graph item iterator, it can be converted to |
|
2499 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2500 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2501 |
/// \c INVALID. |
|
2502 |
class TrueIt : public Key { |
|
2503 |
public: |
|
2504 |
typedef Key Parent; |
|
2505 |
|
|
2506 |
/// \brief Creates an iterator. |
|
2507 |
/// |
|
2508 |
/// Creates an iterator. It iterates on the |
|
2509 |
/// keys mapped to \c true. |
|
2510 |
/// \param map The IterableBoolMap. |
|
2511 |
explicit TrueIt(const IterableBoolMap& map) |
|
2512 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
|
2513 |
_map(&map) {} |
|
2514 |
|
|
2515 |
/// \brief Invalid constructor \& conversion. |
|
2516 |
/// |
|
2517 |
/// This constructor initializes the iterator to be invalid. |
|
2518 |
/// \sa Invalid for more details. |
|
2519 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2520 |
|
|
2521 |
/// \brief Increment operator. |
|
2522 |
/// |
|
2523 |
/// Increment operator. |
|
2524 |
TrueIt& operator++() { |
|
2525 |
int pos = _map->position(*this); |
|
2526 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
|
2527 |
return *this; |
|
2528 |
} |
|
2529 |
|
|
2530 |
private: |
|
2531 |
const IterableBoolMap* _map; |
|
2532 |
}; |
|
2533 |
|
|
2534 |
/// \brief Iterator for the keys mapped to \c false. |
|
2535 |
/// |
|
2536 |
/// Iterator for the keys mapped to \c false. It works |
|
2537 |
/// like a graph item iterator, it can be converted to |
|
2538 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2539 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2540 |
/// \c INVALID. |
|
2541 |
class FalseIt : public Key { |
|
2542 |
public: |
|
2543 |
typedef Key Parent; |
|
2544 |
|
|
2545 |
/// \brief Creates an iterator. |
|
2546 |
/// |
|
2547 |
/// Creates an iterator. It iterates on the |
|
2548 |
/// keys mapped to \c false. |
|
2549 |
/// \param map The IterableBoolMap. |
|
2550 |
explicit FalseIt(const IterableBoolMap& map) |
|
2551 |
: Parent(map._sep < int(map._array.size()) ? |
|
2552 |
map._array.back() : INVALID), _map(&map) {} |
|
2553 |
|
|
2554 |
/// \brief Invalid constructor \& conversion. |
|
2555 |
/// |
|
2556 |
/// This constructor initializes the iterator to be invalid. |
|
2557 |
/// \sa Invalid for more details. |
|
2558 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2559 |
|
|
2560 |
/// \brief Increment operator. |
|
2561 |
/// |
|
2562 |
/// Increment operator. |
|
2563 |
FalseIt& operator++() { |
|
2564 |
int pos = _map->position(*this); |
|
2565 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
|
2566 |
return *this; |
|
2567 |
} |
|
2568 |
|
|
2569 |
private: |
|
2570 |
const IterableBoolMap* _map; |
|
2571 |
}; |
|
2572 |
|
|
2573 |
/// \brief Iterator for the keys mapped to a given value. |
|
2574 |
/// |
|
2575 |
/// Iterator for the keys mapped to a given value. It works |
|
2576 |
/// like a graph item iterator, it can be converted to |
|
2577 |
/// the key type of the map, incremented with \c ++ operator, and |
|
2578 |
/// if the iterator leaves the last valid key, it will be equal to |
|
2579 |
/// \c INVALID. |
|
2580 |
class ItemIt : public Key { |
|
2581 |
public: |
|
2582 |
typedef Key Parent; |
|
2583 |
|
|
2584 |
/// \brief Creates an iterator with a value. |
|
2585 |
/// |
|
2586 |
/// Creates an iterator with a value. It iterates on the |
|
2587 |
/// keys mapped to the given value. |
|
2588 |
/// \param map The IterableBoolMap. |
|
2589 |
/// \param value The value. |
|
2590 |
ItemIt(const IterableBoolMap& map, bool value) |
|
2591 |
: Parent(value ? |
|
2592 |
(map._sep > 0 ? |
|
2593 |
map._array[map._sep - 1] : INVALID) : |
|
2594 |
(map._sep < int(map._array.size()) ? |
|
2595 |
map._array.back() : INVALID)), _map(&map) {} |
|
2596 |
|
|
2597 |
/// \brief Invalid constructor \& conversion. |
|
2598 |
/// |
|
2599 |
/// This constructor initializes the iterator to be invalid. |
|
2600 |
/// \sa Invalid for more details. |
|
2601 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2602 |
|
|
2603 |
/// \brief Increment operator. |
|
2604 |
/// |
|
2605 |
/// Increment operator. |
|
2606 |
ItemIt& operator++() { |
|
2607 |
int pos = _map->position(*this); |
|
2608 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
|
2609 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
|
2610 |
return *this; |
|
2611 |
} |
|
2612 |
|
|
2613 |
private: |
|
2614 |
const IterableBoolMap* _map; |
|
2615 |
}; |
|
2616 |
|
|
2617 |
protected: |
|
2618 |
|
|
2619 |
virtual void add(const Key& key) { |
|
2620 |
Parent::add(key); |
|
2621 |
Parent::set(key, _array.size()); |
|
2622 |
_array.push_back(key); |
|
2623 |
} |
|
2624 |
|
|
2625 |
virtual void add(const std::vector<Key>& keys) { |
|
2626 |
Parent::add(keys); |
|
2627 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2628 |
Parent::set(keys[i], _array.size()); |
|
2629 |
_array.push_back(keys[i]); |
|
2630 |
} |
|
2631 |
} |
|
2632 |
|
|
2633 |
virtual void erase(const Key& key) { |
|
2634 |
int pos = position(key); |
|
2635 |
if (pos < _sep) { |
|
2636 |
--_sep; |
|
2637 |
Parent::set(_array[_sep], pos); |
|
2638 |
_array[pos] = _array[_sep]; |
|
2639 |
Parent::set(_array.back(), _sep); |
|
2640 |
_array[_sep] = _array.back(); |
|
2641 |
_array.pop_back(); |
|
2642 |
} else { |
|
2643 |
Parent::set(_array.back(), pos); |
|
2644 |
_array[pos] = _array.back(); |
|
2645 |
_array.pop_back(); |
|
2646 |
} |
|
2647 |
Parent::erase(key); |
|
2648 |
} |
|
2649 |
|
|
2650 |
virtual void erase(const std::vector<Key>& keys) { |
|
2651 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2652 |
int pos = position(keys[i]); |
|
2653 |
if (pos < _sep) { |
|
2654 |
--_sep; |
|
2655 |
Parent::set(_array[_sep], pos); |
|
2656 |
_array[pos] = _array[_sep]; |
|
2657 |
Parent::set(_array.back(), _sep); |
|
2658 |
_array[_sep] = _array.back(); |
|
2659 |
_array.pop_back(); |
|
2660 |
} else { |
|
2661 |
Parent::set(_array.back(), pos); |
|
2662 |
_array[pos] = _array.back(); |
|
2663 |
_array.pop_back(); |
|
2664 |
} |
|
2665 |
} |
|
2666 |
Parent::erase(keys); |
|
2667 |
} |
|
2668 |
|
|
2669 |
virtual void build() { |
|
2670 |
Parent::build(); |
|
2671 |
typename Parent::Notifier* nf = Parent::notifier(); |
|
2672 |
Key it; |
|
2673 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
|
2674 |
Parent::set(it, _array.size()); |
|
2675 |
_array.push_back(it); |
|
2676 |
} |
|
2677 |
_sep = 0; |
|
2678 |
} |
|
2679 |
|
|
2680 |
virtual void clear() { |
|
2681 |
_array.clear(); |
|
2682 |
_sep = 0; |
|
2683 |
Parent::clear(); |
|
2684 |
} |
|
2685 |
|
|
2686 |
}; |
|
2687 |
|
|
2688 |
|
|
2689 |
namespace _maps_bits { |
|
2690 |
template <typename Item> |
|
2691 |
struct IterableIntMapNode { |
|
2692 |
IterableIntMapNode() : value(-1) {} |
|
2693 |
IterableIntMapNode(int _value) : value(_value) {} |
|
2694 |
Item prev, next; |
|
2695 |
int value; |
|
2696 |
}; |
|
2697 |
} |
|
2698 |
|
|
2699 |
/// \brief Dynamic iterable integer map. |
|
2700 |
/// |
|
2701 |
/// This class provides a special graph map type which can store an |
|
2702 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
|
2703 |
/// For each non-negative value it is possible to iterate on the keys |
|
2704 |
/// mapped to the value. |
|
2705 |
/// |
|
2706 |
/// This type is a reference map, so it can be modified with the |
|
2707 |
/// subscript operator. |
|
2708 |
/// |
|
2709 |
/// \note The size of the data structure depends on the largest |
|
2710 |
/// value in the map. |
|
2711 |
/// |
|
2712 |
/// \tparam GR The graph type. |
|
2713 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
2714 |
/// \c GR::Edge). |
|
2715 |
/// |
|
2716 |
/// \see IterableBoolMap, IterableValueMap |
|
2717 |
/// \see CrossRefMap |
|
2718 |
template <typename GR, typename K> |
|
2719 |
class IterableIntMap |
|
2720 |
: protected ItemSetTraits<GR, K>:: |
|
2721 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type { |
|
2722 |
public: |
|
2723 |
typedef typename ItemSetTraits<GR, K>:: |
|
2724 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
|
2725 |
|
|
2726 |
/// The key type |
|
2727 |
typedef K Key; |
|
2728 |
/// The value type |
|
2729 |
typedef int Value; |
|
2730 |
/// The graph type |
|
2731 |
typedef GR Graph; |
|
2732 |
|
|
2733 |
/// \brief Constructor of the map. |
|
2734 |
/// |
|
2735 |
/// Constructor of the map. It sets all values to -1. |
|
2736 |
explicit IterableIntMap(const Graph& graph) |
|
2737 |
: Parent(graph) {} |
|
2738 |
|
|
2739 |
/// \brief Constructor of the map with a given value. |
|
2740 |
/// |
|
2741 |
/// Constructor of the map with a given value. |
|
2742 |
explicit IterableIntMap(const Graph& graph, int value) |
|
2743 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) { |
|
2744 |
if (value >= 0) { |
|
2745 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
2746 |
lace(it); |
|
2747 |
} |
|
2748 |
} |
|
2749 |
} |
|
2750 |
|
|
2751 |
private: |
|
2752 |
|
|
2753 |
void unlace(const Key& key) { |
|
2754 |
typename Parent::Value& node = Parent::operator[](key); |
|
2755 |
if (node.value < 0) return; |
|
2756 |
if (node.prev != INVALID) { |
|
2757 |
Parent::operator[](node.prev).next = node.next; |
|
2758 |
} else { |
|
2759 |
_first[node.value] = node.next; |
|
2760 |
} |
|
2761 |
if (node.next != INVALID) { |
|
2762 |
Parent::operator[](node.next).prev = node.prev; |
|
2763 |
} |
|
2764 |
while (!_first.empty() && _first.back() == INVALID) { |
|
2765 |
_first.pop_back(); |
|
2766 |
} |
|
2767 |
} |
|
2768 |
|
|
2769 |
void lace(const Key& key) { |
|
2770 |
typename Parent::Value& node = Parent::operator[](key); |
|
2771 |
if (node.value < 0) return; |
|
2772 |
if (node.value >= int(_first.size())) { |
|
2773 |
_first.resize(node.value + 1, INVALID); |
|
2774 |
} |
|
2775 |
node.prev = INVALID; |
|
2776 |
node.next = _first[node.value]; |
|
2777 |
if (node.next != INVALID) { |
|
2778 |
Parent::operator[](node.next).prev = key; |
|
2779 |
} |
|
2780 |
_first[node.value] = key; |
|
2781 |
} |
|
2782 |
|
|
2783 |
public: |
|
2784 |
|
|
2785 |
/// Indicates that the map is reference map. |
|
2786 |
typedef True ReferenceMapTag; |
|
2787 |
|
|
2788 |
/// \brief Reference to the value of the map. |
|
2789 |
/// |
|
2790 |
/// This class is similar to the \c int type. It can |
|
2791 |
/// be converted to \c int and it has the same operators. |
|
2792 |
class Reference { |
|
2793 |
friend class IterableIntMap; |
|
2794 |
private: |
|
2795 |
Reference(IterableIntMap& map, const Key& key) |
|
2796 |
: _key(key), _map(map) {} |
|
2797 |
public: |
|
2798 |
|
|
2799 |
Reference& operator=(const Reference& value) { |
|
2800 |
_map.set(_key, static_cast<const int&>(value)); |
|
2801 |
return *this; |
|
2802 |
} |
|
2803 |
|
|
2804 |
operator const int&() const { |
|
2805 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
|
2806 |
} |
|
2807 |
|
|
2808 |
Reference& operator=(int value) { |
|
2809 |
_map.set(_key, value); |
|
2810 |
return *this; |
|
2811 |
} |
|
2812 |
Reference& operator++() { |
|
2813 |
_map.set(_key, _map[_key] + 1); |
|
2814 |
return *this; |
|
2815 |
} |
|
2816 |
int operator++(int) { |
|
2817 |
int value = _map[_key]; |
|
2818 |
_map.set(_key, value + 1); |
|
2819 |
return value; |
|
2820 |
} |
|
2821 |
Reference& operator--() { |
|
2822 |
_map.set(_key, _map[_key] - 1); |
|
2823 |
return *this; |
|
2824 |
} |
|
2825 |
int operator--(int) { |
|
2826 |
int value = _map[_key]; |
|
2827 |
_map.set(_key, value - 1); |
|
2828 |
return value; |
|
2829 |
} |
|
2830 |
Reference& operator+=(int value) { |
|
2831 |
_map.set(_key, _map[_key] + value); |
|
2832 |
return *this; |
|
2833 |
} |
|
2834 |
Reference& operator-=(int value) { |
|
2835 |
_map.set(_key, _map[_key] - value); |
|
2836 |
return *this; |
|
2837 |
} |
|
2838 |
Reference& operator*=(int value) { |
|
2839 |
_map.set(_key, _map[_key] * value); |
|
2840 |
return *this; |
|
2841 |
} |
|
2842 |
Reference& operator/=(int value) { |
|
2843 |
_map.set(_key, _map[_key] / value); |
|
2844 |
return *this; |
|
2845 |
} |
|
2846 |
Reference& operator%=(int value) { |
|
2847 |
_map.set(_key, _map[_key] % value); |
|
2848 |
return *this; |
|
2849 |
} |
|
2850 |
Reference& operator&=(int value) { |
|
2851 |
_map.set(_key, _map[_key] & value); |
|
2852 |
return *this; |
|
2853 |
} |
|
2854 |
Reference& operator|=(int value) { |
|
2855 |
_map.set(_key, _map[_key] | value); |
|
2856 |
return *this; |
|
2857 |
} |
|
2858 |
Reference& operator^=(int value) { |
|
2859 |
_map.set(_key, _map[_key] ^ value); |
|
2860 |
return *this; |
|
2861 |
} |
|
2862 |
Reference& operator<<=(int value) { |
|
2863 |
_map.set(_key, _map[_key] << value); |
|
2864 |
return *this; |
|
2865 |
} |
|
2866 |
Reference& operator>>=(int value) { |
|
2867 |
_map.set(_key, _map[_key] >> value); |
|
2868 |
return *this; |
|
2869 |
} |
|
2870 |
|
|
2871 |
private: |
|
2872 |
Key _key; |
|
2873 |
IterableIntMap& _map; |
|
2874 |
}; |
|
2875 |
|
|
2876 |
/// The const reference type. |
|
2877 |
typedef const Value& ConstReference; |
|
2878 |
|
|
2879 |
/// \brief Gives back the maximal value plus one. |
|
2880 |
/// |
|
2881 |
/// Gives back the maximal value plus one. |
|
2882 |
int size() const { |
|
2883 |
return _first.size(); |
|
2884 |
} |
|
2885 |
|
|
2886 |
/// \brief Set operation of the map. |
|
2887 |
/// |
|
2888 |
/// Set operation of the map. |
|
2889 |
void set(const Key& key, const Value& value) { |
|
2890 |
unlace(key); |
|
2891 |
Parent::operator[](key).value = value; |
|
2892 |
lace(key); |
|
2893 |
} |
|
2894 |
|
|
2895 |
/// \brief Const subscript operator of the map. |
|
2896 |
/// |
|
2897 |
/// Const subscript operator of the map. |
|
2898 |
const Value& operator[](const Key& key) const { |
|
2899 |
return Parent::operator[](key).value; |
|
2900 |
} |
|
2901 |
|
|
2902 |
/// \brief Subscript operator of the map. |
|
2903 |
/// |
|
2904 |
/// Subscript operator of the map. |
|
2905 |
Reference operator[](const Key& key) { |
|
2906 |
return Reference(*this, key); |
|
2907 |
} |
|
2908 |
|
|
2909 |
/// \brief Iterator for the keys with the same value. |
|
2910 |
/// |
|
2911 |
/// Iterator for the keys with the same value. It works |
|
2912 |
/// like a graph item iterator, it can be converted to |
|
2913 |
/// the item type of the map, incremented with \c ++ operator, and |
|
2914 |
/// if the iterator leaves the last valid item, it will be equal to |
|
2915 |
/// \c INVALID. |
|
2916 |
class ItemIt : public Key { |
|
2917 |
public: |
|
2918 |
typedef Key Parent; |
|
2919 |
|
|
2920 |
/// \brief Invalid constructor \& conversion. |
|
2921 |
/// |
|
2922 |
/// This constructor initializes the iterator to be invalid. |
|
2923 |
/// \sa Invalid for more details. |
|
2924 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
2925 |
|
|
2926 |
/// \brief Creates an iterator with a value. |
|
2927 |
/// |
|
2928 |
/// Creates an iterator with a value. It iterates on the |
|
2929 |
/// keys mapped to the given value. |
|
2930 |
/// \param map The IterableIntMap. |
|
2931 |
/// \param value The value. |
|
2932 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) { |
|
2933 |
if (value < 0 || value >= int(_map->_first.size())) { |
|
2934 |
Parent::operator=(INVALID); |
|
2935 |
} else { |
|
2936 |
Parent::operator=(_map->_first[value]); |
|
2937 |
} |
|
2938 |
} |
|
2939 |
|
|
2940 |
/// \brief Increment operator. |
|
2941 |
/// |
|
2942 |
/// Increment operator. |
|
2943 |
ItemIt& operator++() { |
|
2944 |
Parent::operator=(_map->IterableIntMap::Parent:: |
|
2945 |
operator[](static_cast<Parent&>(*this)).next); |
|
2946 |
return *this; |
|
2947 |
} |
|
2948 |
|
|
2949 |
private: |
|
2950 |
const IterableIntMap* _map; |
|
2951 |
}; |
|
2952 |
|
|
2953 |
protected: |
|
2954 |
|
|
2955 |
virtual void erase(const Key& key) { |
|
2956 |
unlace(key); |
|
2957 |
Parent::erase(key); |
|
2958 |
} |
|
2959 |
|
|
2960 |
virtual void erase(const std::vector<Key>& keys) { |
|
2961 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
2962 |
unlace(keys[i]); |
|
2963 |
} |
|
2964 |
Parent::erase(keys); |
|
2965 |
} |
|
2966 |
|
|
2967 |
virtual void clear() { |
|
2968 |
_first.clear(); |
|
2969 |
Parent::clear(); |
|
2970 |
} |
|
2971 |
|
|
2972 |
private: |
|
2973 |
std::vector<Key> _first; |
|
2974 |
}; |
|
2975 |
|
|
2976 |
namespace _maps_bits { |
|
2977 |
template <typename Item, typename Value> |
|
2978 |
struct IterableValueMapNode { |
|
2979 |
IterableValueMapNode(Value _value = Value()) : value(_value) {} |
|
2980 |
Item prev, next; |
|
2981 |
Value value; |
|
2982 |
}; |
|
2983 |
} |
|
2984 |
|
|
2985 |
/// \brief Dynamic iterable map for comparable values. |
|
2986 |
/// |
|
2987 |
/// This class provides a special graph map type which can store an |
|
2988 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
|
2989 |
/// For each value it is possible to iterate on the keys mapped to |
|
2990 |
/// the value. |
|
2991 |
/// |
|
2992 |
/// The map stores for each value a linked list with |
|
2993 |
/// the items which mapped to the value, and the values are stored |
|
2994 |
/// in balanced binary tree. The values of the map can be accessed |
|
2995 |
/// with stl compatible forward iterator. |
|
2996 |
/// |
|
2997 |
/// This type is not reference map, so it cannot be modified with |
|
2998 |
/// the subscript operator. |
|
2999 |
/// |
|
3000 |
/// \tparam GR The graph type. |
|
3001 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
|
3002 |
/// \c GR::Edge). |
|
3003 |
/// \tparam V The value type of the map. It can be any comparable |
|
3004 |
/// value type. |
|
3005 |
/// |
|
3006 |
/// \see IterableBoolMap, IterableIntMap |
|
3007 |
/// \see CrossRefMap |
|
3008 |
template <typename GR, typename K, typename V> |
|
3009 |
class IterableValueMap |
|
3010 |
: protected ItemSetTraits<GR, K>:: |
|
3011 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type { |
|
3012 |
public: |
|
3013 |
typedef typename ItemSetTraits<GR, K>:: |
|
3014 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
|
3015 |
|
|
3016 |
/// The key type |
|
3017 |
typedef K Key; |
|
3018 |
/// The value type |
|
3019 |
typedef V Value; |
|
3020 |
/// The graph type |
|
3021 |
typedef GR Graph; |
|
3022 |
|
|
3023 |
public: |
|
3024 |
|
|
3025 |
/// \brief Constructor of the map with a given value. |
|
3026 |
/// |
|
3027 |
/// Constructor of the map with a given value. |
|
3028 |
explicit IterableValueMap(const Graph& graph, |
|
3029 |
const Value& value = Value()) |
|
3030 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) { |
|
3031 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
3032 |
lace(it); |
|
3033 |
} |
|
3034 |
} |
|
3035 |
|
|
3036 |
protected: |
|
3037 |
|
|
3038 |
void unlace(const Key& key) { |
|
3039 |
typename Parent::Value& node = Parent::operator[](key); |
|
3040 |
if (node.prev != INVALID) { |
|
3041 |
Parent::operator[](node.prev).next = node.next; |
|
3042 |
} else { |
|
3043 |
if (node.next != INVALID) { |
|
3044 |
_first[node.value] = node.next; |
|
3045 |
} else { |
|
3046 |
_first.erase(node.value); |
|
3047 |
} |
|
3048 |
} |
|
3049 |
if (node.next != INVALID) { |
|
3050 |
Parent::operator[](node.next).prev = node.prev; |
|
3051 |
} |
|
3052 |
} |
|
3053 |
|
|
3054 |
void lace(const Key& key) { |
|
3055 |
typename Parent::Value& node = Parent::operator[](key); |
|
3056 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
|
3057 |
if (it == _first.end()) { |
|
3058 |
node.prev = node.next = INVALID; |
|
3059 |
_first.insert(std::make_pair(node.value, key)); |
|
3060 |
} else { |
|
3061 |
node.prev = INVALID; |
|
3062 |
node.next = it->second; |
|
3063 |
if (node.next != INVALID) { |
|
3064 |
Parent::operator[](node.next).prev = key; |
|
3065 |
} |
|
3066 |
it->second = key; |
|
3067 |
} |
|
3068 |
} |
|
3069 |
|
|
3070 |
public: |
|
3071 |
|
|
3072 |
/// \brief Forward iterator for values. |
|
3073 |
/// |
|
3074 |
/// This iterator is an stl compatible forward |
|
3075 |
/// iterator on the values of the map. The values can |
|
3076 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
|
3077 |
class ValueIterator |
|
3078 |
: public std::iterator<std::forward_iterator_tag, Value> { |
|
3079 |
friend class IterableValueMap; |
|
3080 |
private: |
|
3081 |
ValueIterator(typename std::map<Value, Key>::const_iterator _it) |
|
3082 |
: it(_it) {} |
|
3083 |
public: |
|
3084 |
|
|
3085 |
ValueIterator() {} |
|
3086 |
|
|
3087 |
ValueIterator& operator++() { ++it; return *this; } |
|
3088 |
ValueIterator operator++(int) { |
|
3089 |
ValueIterator tmp(*this); |
|
3090 |
operator++(); |
|
3091 |
return tmp; |
|
3092 |
} |
|
3093 |
|
|
3094 |
const Value& operator*() const { return it->first; } |
|
3095 |
const Value* operator->() const { return &(it->first); } |
|
3096 |
|
|
3097 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
3098 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
3099 |
|
|
3100 |
private: |
|
3101 |
typename std::map<Value, Key>::const_iterator it; |
|
3102 |
}; |
|
3103 |
|
|
3104 |
/// \brief Returns an iterator to the first value. |
|
3105 |
/// |
|
3106 |
/// Returns an stl compatible iterator to the |
|
3107 |
/// first value of the map. The values of the |
|
3108 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
3109 |
/// range. |
|
3110 |
ValueIterator beginValue() const { |
|
3111 |
return ValueIterator(_first.begin()); |
|
3112 |
} |
|
3113 |
|
|
3114 |
/// \brief Returns an iterator after the last value. |
|
3115 |
/// |
|
3116 |
/// Returns an stl compatible iterator after the |
|
3117 |
/// last value of the map. The values of the |
|
3118 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
|
3119 |
/// range. |
|
3120 |
ValueIterator endValue() const { |
|
3121 |
return ValueIterator(_first.end()); |
|
3122 |
} |
|
3123 |
|
|
3124 |
/// \brief Set operation of the map. |
|
3125 |
/// |
|
3126 |
/// Set operation of the map. |
|
3127 |
void set(const Key& key, const Value& value) { |
|
3128 |
unlace(key); |
|
3129 |
Parent::operator[](key).value = value; |
|
3130 |
lace(key); |
|
3131 |
} |
|
3132 |
|
|
3133 |
/// \brief Const subscript operator of the map. |
|
3134 |
/// |
|
3135 |
/// Const subscript operator of the map. |
|
3136 |
const Value& operator[](const Key& key) const { |
|
3137 |
return Parent::operator[](key).value; |
|
3138 |
} |
|
3139 |
|
|
3140 |
/// \brief Iterator for the keys with the same value. |
|
3141 |
/// |
|
3142 |
/// Iterator for the keys with the same value. It works |
|
3143 |
/// like a graph item iterator, it can be converted to |
|
3144 |
/// the item type of the map, incremented with \c ++ operator, and |
|
3145 |
/// if the iterator leaves the last valid item, it will be equal to |
|
3146 |
/// \c INVALID. |
|
3147 |
class ItemIt : public Key { |
|
3148 |
public: |
|
3149 |
typedef Key Parent; |
|
3150 |
|
|
3151 |
/// \brief Invalid constructor \& conversion. |
|
3152 |
/// |
|
3153 |
/// This constructor initializes the iterator to be invalid. |
|
3154 |
/// \sa Invalid for more details. |
|
3155 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
|
3156 |
|
|
3157 |
/// \brief Creates an iterator with a value. |
|
3158 |
/// |
|
3159 |
/// Creates an iterator with a value. It iterates on the |
|
3160 |
/// keys which have the given value. |
|
3161 |
/// \param map The IterableValueMap |
|
3162 |
/// \param value The value |
|
3163 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { |
|
3164 |
typename std::map<Value, Key>::const_iterator it = |
|
3165 |
map._first.find(value); |
|
3166 |
if (it == map._first.end()) { |
|
3167 |
Parent::operator=(INVALID); |
|
3168 |
} else { |
|
3169 |
Parent::operator=(it->second); |
|
3170 |
} |
|
3171 |
} |
|
3172 |
|
|
3173 |
/// \brief Increment operator. |
|
3174 |
/// |
|
3175 |
/// Increment Operator. |
|
3176 |
ItemIt& operator++() { |
|
3177 |
Parent::operator=(_map->IterableValueMap::Parent:: |
|
3178 |
operator[](static_cast<Parent&>(*this)).next); |
|
3179 |
return *this; |
|
3180 |
} |
|
3181 |
|
|
3182 |
|
|
3183 |
private: |
|
3184 |
const IterableValueMap* _map; |
|
3185 |
}; |
|
3186 |
|
|
3187 |
protected: |
|
3188 |
|
|
3189 |
virtual void add(const Key& key) { |
|
3190 |
Parent::add(key); |
|
3191 |
unlace(key); |
|
3192 |
} |
|
3193 |
|
|
3194 |
virtual void add(const std::vector<Key>& keys) { |
|
3195 |
Parent::add(keys); |
|
3196 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
3197 |
lace(keys[i]); |
|
3198 |
} |
|
3199 |
} |
|
3200 |
|
|
3201 |
virtual void erase(const Key& key) { |
|
3202 |
unlace(key); |
|
3203 |
Parent::erase(key); |
|
3204 |
} |
|
3205 |
|
|
3206 |
virtual void erase(const std::vector<Key>& keys) { |
|
3207 |
for (int i = 0; i < int(keys.size()); ++i) { |
|
3208 |
unlace(keys[i]); |
|
3209 |
} |
|
3210 |
Parent::erase(keys); |
|
3211 |
} |
|
3212 |
|
|
3213 |
virtual void build() { |
|
3214 |
Parent::build(); |
|
3215 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
|
3216 |
lace(it); |
|
3217 |
} |
|
3218 |
} |
|
3219 |
|
|
3220 |
virtual void clear() { |
|
3221 |
_first.clear(); |
|
3222 |
Parent::clear(); |
|
3223 |
} |
|
3224 |
|
|
3225 |
private: |
|
3226 |
std::map<Value, Key> _first; |
|
3227 |
}; |
|
3228 |
|
|
2314 | 3229 |
/// \brief Map of the source nodes of arcs in a digraph. |
2315 | 3230 |
/// |
2316 | 3231 |
/// SourceMap provides access for the source node of each arc in a digraph, |
2317 | 3232 |
/// which is returned by the \c source() function of the digraph. |
2318 | 3233 |
/// \tparam GR The digraph type. |
2319 | 3234 |
/// \see TargetMap |
2320 | 3235 |
template <typename GR> |
2321 | 3236 |
class SourceMap { |
2322 | 3237 |
public: |
2323 | 3238 |
|
2324 | 3239 |
///\e |
2325 | 3240 |
typedef typename GR::Arc Key; |
2326 | 3241 |
///\e |
2327 | 3242 |
typedef typename GR::Node Value; |
2328 | 3243 |
|
2329 | 3244 |
/// \brief Constructor |
2330 | 3245 |
/// |
2331 | 3246 |
/// Constructor. |
2332 | 3247 |
/// \param digraph The digraph that the map belongs to. |
2333 | 3248 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
2334 | 3249 |
|
2335 | 3250 |
/// \brief Returns the source node of the given arc. |
2336 | 3251 |
/// |
2337 | 3252 |
/// Returns the source node of the given arc. |
2338 | 3253 |
Value operator[](const Key& arc) const { |
2339 | 3254 |
return _graph.source(arc); |
2340 | 3255 |
} |
2341 | 3256 |
|
2342 | 3257 |
private: |
2343 | 3258 |
const GR& _graph; |
2344 | 3259 |
}; |
2345 | 3260 |
|
2346 | 3261 |
/// \brief Returns a \c SourceMap class. |
2347 | 3262 |
/// |
2348 | 3263 |
/// This function just returns an \c SourceMap class. |
2349 | 3264 |
/// \relates SourceMap |
2350 | 3265 |
template <typename GR> |
2351 | 3266 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
2352 | 3267 |
return SourceMap<GR>(graph); |
2353 | 3268 |
} |
2354 | 3269 |
|
2355 | 3270 |
/// \brief Map of the target nodes of arcs in a digraph. |
2356 | 3271 |
/// |
2357 | 3272 |
/// TargetMap provides access for the target node of each arc in a digraph, |
2358 | 3273 |
/// which is returned by the \c target() function of the digraph. |
2359 | 3274 |
/// \tparam GR The digraph type. |
2360 | 3275 |
/// \see SourceMap |
2361 | 3276 |
template <typename GR> |
... | ... |
@@ -2435,113 +3350,113 @@ |
2435 | 3350 |
|
2436 | 3351 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
2437 | 3352 |
/// |
2438 | 3353 |
/// BackwardMap provides access for the "backward" directed arc view of |
2439 | 3354 |
/// each edge in a graph, which is returned by the \c direct() function |
2440 | 3355 |
/// of the graph with \c false parameter. |
2441 | 3356 |
/// \tparam GR The graph type. |
2442 | 3357 |
/// \see ForwardMap |
2443 | 3358 |
template <typename GR> |
2444 | 3359 |
class BackwardMap { |
2445 | 3360 |
public: |
2446 | 3361 |
|
2447 | 3362 |
typedef typename GR::Arc Value; |
2448 | 3363 |
typedef typename GR::Edge Key; |
2449 | 3364 |
|
2450 | 3365 |
/// \brief Constructor |
2451 | 3366 |
/// |
2452 | 3367 |
/// Constructor. |
2453 | 3368 |
/// \param graph The graph that the map belongs to. |
2454 | 3369 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
2455 | 3370 |
|
2456 | 3371 |
/// \brief Returns the "backward" directed arc view of the given edge. |
2457 | 3372 |
/// |
2458 | 3373 |
/// Returns the "backward" directed arc view of the given edge. |
2459 | 3374 |
Value operator[](const Key& key) const { |
2460 | 3375 |
return _graph.direct(key, false); |
2461 | 3376 |
} |
2462 | 3377 |
|
2463 | 3378 |
private: |
2464 | 3379 |
const GR& _graph; |
2465 | 3380 |
}; |
2466 | 3381 |
|
2467 | 3382 |
/// \brief Returns a \c BackwardMap class |
2468 | 3383 |
|
2469 | 3384 |
/// This function just returns a \c BackwardMap class. |
2470 | 3385 |
/// \relates BackwardMap |
2471 | 3386 |
template <typename GR> |
2472 | 3387 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
2473 | 3388 |
return BackwardMap<GR>(graph); |
2474 | 3389 |
} |
2475 | 3390 |
|
2476 | 3391 |
/// \brief Map of the in-degrees of nodes in a digraph. |
2477 | 3392 |
/// |
2478 | 3393 |
/// This map returns the in-degree of a node. Once it is constructed, |
2479 | 3394 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2480 | 3395 |
/// in constant time. On the other hand, the values are updated automatically |
2481 | 3396 |
/// whenever the digraph changes. |
2482 | 3397 |
/// |
2483 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
3398 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2484 | 3399 |
/// may provide alternative ways to modify the digraph. |
2485 | 3400 |
/// The correct behavior of InDegMap is not guarantied if these additional |
2486 | 3401 |
/// features are used. For example the functions |
2487 | 3402 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2488 | 3403 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2489 | 3404 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2490 | 3405 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2491 | 3406 |
/// |
2492 | 3407 |
/// \sa OutDegMap |
2493 | 3408 |
template <typename GR> |
2494 | 3409 |
class InDegMap |
2495 | 3410 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2496 | 3411 |
::ItemNotifier::ObserverBase { |
2497 | 3412 |
|
2498 | 3413 |
public: |
2499 |
|
|
3414 |
|
|
2500 | 3415 |
/// The graph type of InDegMap |
2501 | 3416 |
typedef GR Graph; |
2502 | 3417 |
typedef GR Digraph; |
2503 | 3418 |
/// The key type |
2504 | 3419 |
typedef typename Digraph::Node Key; |
2505 | 3420 |
/// The value type |
2506 | 3421 |
typedef int Value; |
2507 | 3422 |
|
2508 | 3423 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2509 | 3424 |
::ItemNotifier::ObserverBase Parent; |
2510 | 3425 |
|
2511 | 3426 |
private: |
2512 | 3427 |
|
2513 | 3428 |
class AutoNodeMap |
2514 | 3429 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2515 | 3430 |
public: |
2516 | 3431 |
|
2517 | 3432 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2518 | 3433 |
template Map<int>::Type Parent; |
2519 | 3434 |
|
2520 | 3435 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2521 | 3436 |
|
2522 | 3437 |
virtual void add(const Key& key) { |
2523 | 3438 |
Parent::add(key); |
2524 | 3439 |
Parent::set(key, 0); |
2525 | 3440 |
} |
2526 | 3441 |
|
2527 | 3442 |
virtual void add(const std::vector<Key>& keys) { |
2528 | 3443 |
Parent::add(keys); |
2529 | 3444 |
for (int i = 0; i < int(keys.size()); ++i) { |
2530 | 3445 |
Parent::set(keys[i], 0); |
2531 | 3446 |
} |
2532 | 3447 |
} |
2533 | 3448 |
|
2534 | 3449 |
virtual void build() { |
2535 | 3450 |
Parent::build(); |
2536 | 3451 |
Key it; |
2537 | 3452 |
typename Parent::Notifier* nf = Parent::notifier(); |
2538 | 3453 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2539 | 3454 |
Parent::set(it, 0); |
2540 | 3455 |
} |
2541 | 3456 |
} |
2542 | 3457 |
}; |
2543 | 3458 |
|
2544 | 3459 |
public: |
2545 | 3460 |
|
2546 | 3461 |
/// \brief Constructor. |
2547 | 3462 |
/// |
... | ... |
@@ -2565,97 +3480,97 @@ |
2565 | 3480 |
protected: |
2566 | 3481 |
|
2567 | 3482 |
typedef typename Digraph::Arc Arc; |
2568 | 3483 |
|
2569 | 3484 |
virtual void add(const Arc& arc) { |
2570 | 3485 |
++_deg[_digraph.target(arc)]; |
2571 | 3486 |
} |
2572 | 3487 |
|
2573 | 3488 |
virtual void add(const std::vector<Arc>& arcs) { |
2574 | 3489 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2575 | 3490 |
++_deg[_digraph.target(arcs[i])]; |
2576 | 3491 |
} |
2577 | 3492 |
} |
2578 | 3493 |
|
2579 | 3494 |
virtual void erase(const Arc& arc) { |
2580 | 3495 |
--_deg[_digraph.target(arc)]; |
2581 | 3496 |
} |
2582 | 3497 |
|
2583 | 3498 |
virtual void erase(const std::vector<Arc>& arcs) { |
2584 | 3499 |
for (int i = 0; i < int(arcs.size()); ++i) { |
2585 | 3500 |
--_deg[_digraph.target(arcs[i])]; |
2586 | 3501 |
} |
2587 | 3502 |
} |
2588 | 3503 |
|
2589 | 3504 |
virtual void build() { |
2590 | 3505 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2591 | 3506 |
_deg[it] = countInArcs(_digraph, it); |
2592 | 3507 |
} |
2593 | 3508 |
} |
2594 | 3509 |
|
2595 | 3510 |
virtual void clear() { |
2596 | 3511 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
2597 | 3512 |
_deg[it] = 0; |
2598 | 3513 |
} |
2599 | 3514 |
} |
2600 | 3515 |
private: |
2601 | 3516 |
|
2602 | 3517 |
const Digraph& _digraph; |
2603 | 3518 |
AutoNodeMap _deg; |
2604 | 3519 |
}; |
2605 | 3520 |
|
2606 | 3521 |
/// \brief Map of the out-degrees of nodes in a digraph. |
2607 | 3522 |
/// |
2608 | 3523 |
/// This map returns the out-degree of a node. Once it is constructed, |
2609 | 3524 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
2610 | 3525 |
/// in constant time. On the other hand, the values are updated automatically |
2611 | 3526 |
/// whenever the digraph changes. |
2612 | 3527 |
/// |
2613 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
3528 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
|
2614 | 3529 |
/// may provide alternative ways to modify the digraph. |
2615 | 3530 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
2616 | 3531 |
/// features are used. For example the functions |
2617 | 3532 |
/// \ref ListDigraph::changeSource() "changeSource()", |
2618 | 3533 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
2619 | 3534 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
2620 | 3535 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
2621 | 3536 |
/// |
2622 | 3537 |
/// \sa InDegMap |
2623 | 3538 |
template <typename GR> |
2624 | 3539 |
class OutDegMap |
2625 | 3540 |
: protected ItemSetTraits<GR, typename GR::Arc> |
2626 | 3541 |
::ItemNotifier::ObserverBase { |
2627 | 3542 |
|
2628 | 3543 |
public: |
2629 | 3544 |
|
2630 | 3545 |
/// The graph type of OutDegMap |
2631 | 3546 |
typedef GR Graph; |
2632 | 3547 |
typedef GR Digraph; |
2633 | 3548 |
/// The key type |
2634 | 3549 |
typedef typename Digraph::Node Key; |
2635 | 3550 |
/// The value type |
2636 | 3551 |
typedef int Value; |
2637 | 3552 |
|
2638 | 3553 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
2639 | 3554 |
::ItemNotifier::ObserverBase Parent; |
2640 | 3555 |
|
2641 | 3556 |
private: |
2642 | 3557 |
|
2643 | 3558 |
class AutoNodeMap |
2644 | 3559 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
2645 | 3560 |
public: |
2646 | 3561 |
|
2647 | 3562 |
typedef typename ItemSetTraits<Digraph, Key>:: |
2648 | 3563 |
template Map<int>::Type Parent; |
2649 | 3564 |
|
2650 | 3565 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
2651 | 3566 |
|
2652 | 3567 |
virtual void add(const Key& key) { |
2653 | 3568 |
Parent::add(key); |
2654 | 3569 |
Parent::set(key, 0); |
2655 | 3570 |
} |
2656 | 3571 |
virtual void add(const std::vector<Key>& keys) { |
2657 | 3572 |
Parent::add(keys); |
2658 | 3573 |
for (int i = 0; i < int(keys.size()); ++i) { |
2659 | 3574 |
Parent::set(keys[i], 0); |
2660 | 3575 |
} |
2661 | 3576 |
} |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)