0
3
0
... | ... |
@@ -48,13 +48,13 @@ |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a PredMap. |
53 | 53 |
|
54 |
///This function instantiates a PredMap. |
|
54 |
///This function instantiates a PredMap. |
|
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
... | ... |
@@ -77,13 +77,14 @@ |
77 | 77 |
{ |
78 | 78 |
return new ProcessedMap(); |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
///The type of the map that indicates which nodes are reached. |
82 | 82 |
|
83 |
///The type of the map that indicates which nodes are reached. |
|
83 |
///The type of the map that indicates which nodes are reached. |
|
84 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
84 | 85 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
85 | 86 |
///Instantiates a ReachedMap. |
86 | 87 |
|
87 | 88 |
///This function instantiates a ReachedMap. |
88 | 89 |
///\param g is the digraph, to which |
89 | 90 |
///we would like to define the ReachedMap. |
... | ... |
@@ -115,19 +116,13 @@ |
115 | 116 |
/// |
116 | 117 |
///There is also a \ref bfs() "function-type interface" for the BFS |
117 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
118 | 119 |
///used easier. |
119 | 120 |
/// |
120 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
121 |
///The default value is \ref ListDigraph. The value of GR is not used |
|
122 |
///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits. |
|
123 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
124 |
///The default traits class is |
|
125 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
|
126 |
///See \ref BfsDefaultTraits for the documentation of |
|
127 |
/// |
|
122 |
///The default type is \ref ListDigraph. |
|
128 | 123 |
#ifdef DOXYGEN |
129 | 124 |
template <typename GR, |
130 | 125 |
typename TR> |
131 | 126 |
#else |
132 | 127 |
template <typename GR=ListDigraph, |
133 | 128 |
typename TR=BfsDefaultTraits<GR> > |
... | ... |
@@ -147,13 +142,13 @@ |
147 | 142 |
typedef typename TR::ReachedMap ReachedMap; |
148 | 143 |
///The type of the map that indicates which nodes are processed. |
149 | 144 |
typedef typename TR::ProcessedMap ProcessedMap; |
150 | 145 |
///The type of the paths. |
151 | 146 |
typedef PredMapPath<Digraph, PredMap> Path; |
152 | 147 |
|
153 |
///The traits class. |
|
148 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
|
154 | 149 |
typedef TR Traits; |
155 | 150 |
|
156 | 151 |
private: |
157 | 152 |
|
158 | 153 |
typedef typename Digraph::Node Node; |
159 | 154 |
typedef typename Digraph::NodeIt NodeIt; |
... | ... |
@@ -209,13 +204,13 @@ |
209 | 204 |
Bfs() {} |
210 | 205 |
|
211 | 206 |
public: |
212 | 207 |
|
213 | 208 |
typedef Bfs Create; |
214 | 209 |
|
215 |
///\name Named |
|
210 |
///\name Named Template Parameters |
|
216 | 211 |
|
217 | 212 |
///@{ |
218 | 213 |
|
219 | 214 |
template <class T> |
220 | 215 |
struct SetPredMapTraits : public Traits { |
221 | 216 |
typedef T PredMap; |
... | ... |
@@ -227,12 +222,13 @@ |
227 | 222 |
}; |
228 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
229 | 224 |
///PredMap type. |
230 | 225 |
/// |
231 | 226 |
///\ref named-templ-param "Named parameter" for setting |
232 | 227 |
///PredMap type. |
228 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
233 | 229 |
template <class T> |
234 | 230 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
235 | 231 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
236 | 232 |
}; |
237 | 233 |
|
238 | 234 |
template <class T> |
... | ... |
@@ -246,12 +242,13 @@ |
246 | 242 |
}; |
247 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
248 | 244 |
///DistMap type. |
249 | 245 |
/// |
250 | 246 |
///\ref named-templ-param "Named parameter" for setting |
251 | 247 |
///DistMap type. |
248 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
252 | 249 |
template <class T> |
253 | 250 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
254 | 251 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
255 | 252 |
}; |
256 | 253 |
|
257 | 254 |
template <class T> |
... | ... |
@@ -265,12 +262,13 @@ |
265 | 262 |
}; |
266 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
267 | 264 |
///ReachedMap type. |
268 | 265 |
/// |
269 | 266 |
///\ref named-templ-param "Named parameter" for setting |
270 | 267 |
///ReachedMap type. |
268 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
271 | 269 |
template <class T> |
272 | 270 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
273 | 271 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
274 | 272 |
}; |
275 | 273 |
|
276 | 274 |
template <class T> |
... | ... |
@@ -284,12 +282,13 @@ |
284 | 282 |
}; |
285 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
286 | 284 |
///ProcessedMap type. |
287 | 285 |
/// |
288 | 286 |
///\ref named-templ-param "Named parameter" for setting |
289 | 287 |
///ProcessedMap type. |
288 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
290 | 289 |
template <class T> |
291 | 290 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
292 | 291 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
293 | 292 |
}; |
294 | 293 |
|
295 | 294 |
struct SetStandardProcessedMapTraits : public Traits { |
... | ... |
@@ -336,15 +335,16 @@ |
336 | 335 |
if(local_processed) delete _processed; |
337 | 336 |
} |
338 | 337 |
|
339 | 338 |
///Sets the map that stores the predecessor arcs. |
340 | 339 |
|
341 | 340 |
///Sets the map that stores the predecessor arcs. |
342 |
///If you don't use this function before calling \ref run(), |
|
343 |
///it will allocate one. The destructor deallocates this |
|
344 |
/// |
|
341 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
342 |
///or \ref init(), an instance will be allocated automatically. |
|
343 |
///The destructor deallocates this automatically allocated map, |
|
344 |
///of course. |
|
345 | 345 |
///\return <tt> (*this) </tt> |
346 | 346 |
Bfs &predMap(PredMap &m) |
347 | 347 |
{ |
348 | 348 |
if(local_pred) { |
349 | 349 |
delete _pred; |
350 | 350 |
local_pred=false; |
... | ... |
@@ -353,15 +353,16 @@ |
353 | 353 |
return *this; |
354 | 354 |
} |
355 | 355 |
|
356 | 356 |
///Sets the map that indicates which nodes are reached. |
357 | 357 |
|
358 | 358 |
///Sets the map that indicates which nodes are reached. |
359 |
///If you don't use this function before calling \ref run(), |
|
360 |
///it will allocate one. The destructor deallocates this |
|
361 |
/// |
|
359 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
360 |
///or \ref init(), an instance will be allocated automatically. |
|
361 |
///The destructor deallocates this automatically allocated map, |
|
362 |
///of course. |
|
362 | 363 |
///\return <tt> (*this) </tt> |
363 | 364 |
Bfs &reachedMap(ReachedMap &m) |
364 | 365 |
{ |
365 | 366 |
if(local_reached) { |
366 | 367 |
delete _reached; |
367 | 368 |
local_reached=false; |
... | ... |
@@ -370,15 +371,16 @@ |
370 | 371 |
return *this; |
371 | 372 |
} |
372 | 373 |
|
373 | 374 |
///Sets the map that indicates which nodes are processed. |
374 | 375 |
|
375 | 376 |
///Sets the map that indicates which nodes are processed. |
376 |
///If you don't use this function before calling \ref run(), |
|
377 |
///it will allocate one. The destructor deallocates this |
|
378 |
/// |
|
377 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
378 |
///or \ref init(), an instance will be allocated automatically. |
|
379 |
///The destructor deallocates this automatically allocated map, |
|
380 |
///of course. |
|
379 | 381 |
///\return <tt> (*this) </tt> |
380 | 382 |
Bfs &processedMap(ProcessedMap &m) |
381 | 383 |
{ |
382 | 384 |
if(local_processed) { |
383 | 385 |
delete _processed; |
384 | 386 |
local_processed=false; |
... | ... |
@@ -388,15 +390,16 @@ |
388 | 390 |
} |
389 | 391 |
|
390 | 392 |
///Sets the map that stores the distances of the nodes. |
391 | 393 |
|
392 | 394 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 395 |
///the algorithm. |
394 |
///If you don't use this function before calling \ref run(), |
|
395 |
///it will allocate one. The destructor deallocates this |
|
396 |
/// |
|
396 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
397 |
///or \ref init(), an instance will be allocated automatically. |
|
398 |
///The destructor deallocates this automatically allocated map, |
|
399 |
///of course. |
|
397 | 400 |
///\return <tt> (*this) </tt> |
398 | 401 |
Bfs &distMap(DistMap &m) |
399 | 402 |
{ |
400 | 403 |
if(local_dist) { |
401 | 404 |
delete _dist; |
402 | 405 |
local_dist=false; |
... | ... |
@@ -404,28 +407,25 @@ |
404 | 407 |
_dist = &m; |
405 | 408 |
return *this; |
406 | 409 |
} |
407 | 410 |
|
408 | 411 |
public: |
409 | 412 |
|
410 |
///\name Execution control |
|
411 |
///The simplest way to execute the algorithm is to use |
|
412 |
///one of the member functions called \ref lemon::Bfs::run() "run()". |
|
413 |
///\n |
|
414 |
///If you need more control on the execution, first you must call |
|
415 |
///\ref lemon::Bfs::init() "init()", then you can add several source |
|
416 |
///nodes with \ref lemon::Bfs::addSource() "addSource()". |
|
417 |
///Finally \ref lemon::Bfs::start() "start()" will perform the |
|
418 |
/// |
|
413 |
///\name Execution Control |
|
414 |
///The simplest way to execute the BFS algorithm is to use one of the |
|
415 |
///member functions called \ref run(Node) "run()".\n |
|
416 |
///If you need more control on the execution, first you have to call |
|
417 |
///\ref init(), then you can add several source nodes with |
|
418 |
///\ref addSource(). Finally the actual path computation can be |
|
419 |
///performed with one of the \ref start() functions. |
|
419 | 420 |
|
420 | 421 |
///@{ |
421 | 422 |
|
423 |
///\brief Initializes the internal data structures. |
|
424 |
/// |
|
422 | 425 |
///Initializes the internal data structures. |
423 |
|
|
424 |
///Initializes the internal data structures. |
|
425 |
/// |
|
426 | 426 |
void init() |
427 | 427 |
{ |
428 | 428 |
create_maps(); |
429 | 429 |
_queue.resize(countNodes(*G)); |
430 | 430 |
_queue_head=_queue_tail=0; |
431 | 431 |
_curr_dist=1; |
... | ... |
@@ -553,22 +553,22 @@ |
553 | 553 |
///is empty. |
554 | 554 |
Node nextNode() const |
555 | 555 |
{ |
556 | 556 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
557 | 557 |
} |
558 | 558 |
|
559 |
///\brief Returns \c false if there are nodes |
|
560 |
///to be processed. |
|
561 |
/// |
|
562 |
///Returns \c false if there are nodes |
|
563 |
///to be processed |
|
559 |
///Returns \c false if there are nodes to be processed. |
|
560 |
|
|
561 |
///Returns \c false if there are nodes to be processed |
|
562 |
///in the queue. |
|
564 | 563 |
bool emptyQueue() const { return _queue_tail==_queue_head; } |
565 | 564 |
|
566 | 565 |
///Returns the number of the nodes to be processed. |
567 | 566 |
|
568 |
///Returns the number of the nodes to be processed |
|
567 |
///Returns the number of the nodes to be processed |
|
568 |
///in the queue. |
|
569 | 569 |
int queueSize() const { return _queue_head-_queue_tail; } |
570 | 570 |
|
571 | 571 |
///Executes the algorithm. |
572 | 572 |
|
573 | 573 |
///Executes the algorithm. |
574 | 574 |
/// |
... | ... |
@@ -727,93 +727,94 @@ |
727 | 727 |
} |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
///@} |
731 | 731 |
|
732 | 732 |
///\name Query Functions |
733 |
///The |
|
733 |
///The results of the BFS algorithm can be obtained using these |
|
734 | 734 |
///functions.\n |
735 |
///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start() |
|
736 |
///"start()" must be called before using them. |
|
735 |
///Either \ref run(Node) "run()" or \ref start() should be called |
|
736 |
///before using them. |
|
737 | 737 |
|
738 | 738 |
///@{ |
739 | 739 |
|
740 | 740 |
///The shortest path to a node. |
741 | 741 |
|
742 | 742 |
///Returns the shortest path to a node. |
743 | 743 |
/// |
744 |
///\warning \c t should be |
|
744 |
///\warning \c t should be reached from the root(s). |
|
745 | 745 |
/// |
746 |
///\pre Either \ref run() or \ref start() must be called before |
|
747 |
///using this function. |
|
746 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
747 |
///must be called before using this function. |
|
748 | 748 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
749 | 749 |
|
750 | 750 |
///The distance of a node from the root(s). |
751 | 751 |
|
752 | 752 |
///Returns the distance of a node from the root(s). |
753 | 753 |
/// |
754 |
///\warning If node \c v is not |
|
754 |
///\warning If node \c v is not reached from the root(s), then |
|
755 | 755 |
///the return value of this function is undefined. |
756 | 756 |
/// |
757 |
///\pre Either \ref run() or \ref start() must be called before |
|
758 |
///using this function. |
|
757 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
758 |
///must be called before using this function. |
|
759 | 759 |
int dist(Node v) const { return (*_dist)[v]; } |
760 | 760 |
|
761 | 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
762 | 762 |
|
763 | 763 |
///This function returns the 'previous arc' of the shortest path |
764 | 764 |
///tree for the node \c v, i.e. it returns the last arc of a |
765 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
|
766 |
///is not reachable from the root(s) or if \c v is a root. |
|
765 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
|
766 |
///is not reached from the root(s) or if \c v is a root. |
|
767 | 767 |
/// |
768 | 768 |
///The shortest path tree used here is equal to the shortest path |
769 | 769 |
///tree used in \ref predNode(). |
770 | 770 |
/// |
771 |
///\pre Either \ref run() or \ref start() must be called before |
|
772 |
///using this function. |
|
771 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
772 |
///must be called before using this function. |
|
773 | 773 |
Arc predArc(Node v) const { return (*_pred)[v];} |
774 | 774 |
|
775 | 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
776 | 776 |
|
777 | 777 |
///This function returns the 'previous node' of the shortest path |
778 | 778 |
///tree for the node \c v, i.e. it returns the last but one node |
779 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
|
780 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
|
779 |
///from a shortest path from a root to \c v. It is \c INVALID |
|
780 |
///if \c v is not reached from the root(s) or if \c v is a root. |
|
781 | 781 |
/// |
782 | 782 |
///The shortest path tree used here is equal to the shortest path |
783 | 783 |
///tree used in \ref predArc(). |
784 | 784 |
/// |
785 |
///\pre Either \ref run() or \ref start() must be called before |
|
786 |
///using this function. |
|
785 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
786 |
///must be called before using this function. |
|
787 | 787 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
788 | 788 |
G->source((*_pred)[v]); } |
789 | 789 |
|
790 | 790 |
///\brief Returns a const reference to the node map that stores the |
791 | 791 |
/// distances of the nodes. |
792 | 792 |
/// |
793 | 793 |
///Returns a const reference to the node map that stores the distances |
794 | 794 |
///of the nodes calculated by the algorithm. |
795 | 795 |
/// |
796 |
///\pre Either \ref run() or \ref init() |
|
796 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
797 | 797 |
///must be called before using this function. |
798 | 798 |
const DistMap &distMap() const { return *_dist;} |
799 | 799 |
|
800 | 800 |
///\brief Returns a const reference to the node map that stores the |
801 | 801 |
///predecessor arcs. |
802 | 802 |
/// |
803 | 803 |
///Returns a const reference to the node map that stores the predecessor |
804 | 804 |
///arcs, which form the shortest path tree. |
805 | 805 |
/// |
806 |
///\pre Either \ref run() or \ref init() |
|
806 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
807 | 807 |
///must be called before using this function. |
808 | 808 |
const PredMap &predMap() const { return *_pred;} |
809 | 809 |
|
810 |
///Checks if a node is |
|
810 |
///Checks if a node is reached from the root(s). |
|
811 | 811 |
|
812 |
///Returns \c true if \c v is reachable from the root(s). |
|
813 |
///\pre Either \ref run() or \ref start() |
|
812 |
///Returns \c true if \c v is reached from the root(s). |
|
813 |
/// |
|
814 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
814 | 815 |
///must be called before using this function. |
815 | 816 |
bool reached(Node v) const { return (*_reached)[v]; } |
816 | 817 |
|
817 | 818 |
///@} |
818 | 819 |
}; |
819 | 820 |
|
... | ... |
@@ -953,14 +954,14 @@ |
953 | 954 |
}; |
954 | 955 |
|
955 | 956 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
956 | 957 |
|
957 | 958 |
/// This auxiliary class is created to implement the |
958 | 959 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
959 |
/// It does not have own \ref run() method, it uses the functions |
|
960 |
/// and features of the plain \ref Bfs. |
|
960 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
|
961 |
/// functions and features of the plain \ref Bfs. |
|
961 | 962 |
/// |
962 | 963 |
/// This class should only be used through the \ref bfs() function, |
963 | 964 |
/// which makes it easier to use the algorithm. |
964 | 965 |
template<class TR> |
965 | 966 |
class BfsWizard : public TR |
966 | 967 |
{ |
... | ... |
@@ -1174,13 +1175,13 @@ |
1174 | 1175 |
/// // Compute shortest path from node s to each node |
1175 | 1176 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1176 | 1177 |
/// |
1177 | 1178 |
/// // Compute shortest path from s to t |
1178 | 1179 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1179 | 1180 |
///\endcode |
1180 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
|
1181 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
|
1181 | 1182 |
///to the end of the parameter list. |
1182 | 1183 |
///\sa BfsWizard |
1183 | 1184 |
///\sa Bfs |
1184 | 1185 |
template<class GR> |
1185 | 1186 |
BfsWizard<BfsWizardBase<GR> > |
1186 | 1187 |
bfs(const GR &digraph) |
... | ... |
@@ -1360,13 +1361,13 @@ |
1360 | 1361 |
BfsVisit() {} |
1361 | 1362 |
|
1362 | 1363 |
public: |
1363 | 1364 |
|
1364 | 1365 |
typedef BfsVisit Create; |
1365 | 1366 |
|
1366 |
/// \name Named |
|
1367 |
/// \name Named Template Parameters |
|
1367 | 1368 |
|
1368 | 1369 |
///@{ |
1369 | 1370 |
template <class T> |
1370 | 1371 |
struct SetReachedMapTraits : public Traits { |
1371 | 1372 |
typedef T ReachedMap; |
1372 | 1373 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
... | ... |
@@ -1402,37 +1403,35 @@ |
1402 | 1403 |
if(local_reached) delete _reached; |
1403 | 1404 |
} |
1404 | 1405 |
|
1405 | 1406 |
/// \brief Sets the map that indicates which nodes are reached. |
1406 | 1407 |
/// |
1407 | 1408 |
/// Sets the map that indicates which nodes are reached. |
1408 |
/// If you don't use this function before calling \ref run(), |
|
1409 |
/// it will allocate one. The destructor deallocates this |
|
1410 |
/// |
|
1409 |
/// If you don't use this function before calling \ref run(Node) "run()" |
|
1410 |
/// or \ref init(), an instance will be allocated automatically. |
|
1411 |
/// The destructor deallocates this automatically allocated map, |
|
1412 |
/// of course. |
|
1411 | 1413 |
/// \return <tt> (*this) </tt> |
1412 | 1414 |
BfsVisit &reachedMap(ReachedMap &m) { |
1413 | 1415 |
if(local_reached) { |
1414 | 1416 |
delete _reached; |
1415 | 1417 |
local_reached = false; |
1416 | 1418 |
} |
1417 | 1419 |
_reached = &m; |
1418 | 1420 |
return *this; |
1419 | 1421 |
} |
1420 | 1422 |
|
1421 | 1423 |
public: |
1422 | 1424 |
|
1423 |
/// \name Execution control |
|
1424 |
/// The simplest way to execute the algorithm is to use |
|
1425 |
/// one of the member functions called \ref lemon::BfsVisit::run() |
|
1426 |
/// "run()". |
|
1427 |
/// \n |
|
1428 |
/// If you need more control on the execution, first you must call |
|
1429 |
/// \ref lemon::BfsVisit::init() "init()", then you can add several |
|
1430 |
/// source nodes with \ref lemon::BfsVisit::addSource() "addSource()". |
|
1431 |
/// Finally \ref lemon::BfsVisit::start() "start()" will perform the |
|
1432 |
/// actual path computation. |
|
1425 |
/// \name Execution Control |
|
1426 |
/// The simplest way to execute the BFS algorithm is to use one of the |
|
1427 |
/// member functions called \ref run(Node) "run()".\n |
|
1428 |
/// If you need more control on the execution, first you have to call |
|
1429 |
/// \ref init(), then you can add several source nodes with |
|
1430 |
/// \ref addSource(). Finally the actual path computation can be |
|
1431 |
/// performed with one of the \ref start() functions. |
|
1433 | 1432 |
|
1434 | 1433 |
/// @{ |
1435 | 1434 |
|
1436 | 1435 |
/// \brief Initializes the internal data structures. |
1437 | 1436 |
/// |
1438 | 1437 |
/// Initializes the internal data structures. |
... | ... |
@@ -1726,23 +1725,24 @@ |
1726 | 1725 |
} |
1727 | 1726 |
} |
1728 | 1727 |
|
1729 | 1728 |
///@} |
1730 | 1729 |
|
1731 | 1730 |
/// \name Query Functions |
1732 |
/// The |
|
1731 |
/// The results of the BFS algorithm can be obtained using these |
|
1733 | 1732 |
/// functions.\n |
1734 |
/// Either \ref lemon::BfsVisit::run() "run()" or |
|
1735 |
/// \ref lemon::BfsVisit::start() "start()" must be called before |
|
1736 |
/// |
|
1733 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
|
1734 |
/// before using them. |
|
1735 |
|
|
1737 | 1736 |
///@{ |
1738 | 1737 |
|
1739 |
/// \brief Checks if a node is |
|
1738 |
/// \brief Checks if a node is reached from the root(s). |
|
1740 | 1739 |
/// |
1741 |
/// Returns \c true if \c v is reachable from the root(s). |
|
1742 |
/// \pre Either \ref run() or \ref start() |
|
1740 |
/// Returns \c true if \c v is reached from the root(s). |
|
1741 |
/// |
|
1742 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
|
1743 | 1743 |
/// must be called before using this function. |
1744 | 1744 |
bool reached(Node v) { return (*_reached)[v]; } |
1745 | 1745 |
|
1746 | 1746 |
///@} |
1747 | 1747 |
|
1748 | 1748 |
}; |
... | ... |
@@ -116,19 +116,13 @@ |
116 | 116 |
/// |
117 | 117 |
///There is also a \ref dfs() "function-type interface" for the DFS |
118 | 118 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 119 |
///used easier. |
120 | 120 |
/// |
121 | 121 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 |
///The default value is \ref ListDigraph. The value of GR is not used |
|
123 |
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
|
124 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
125 |
///The default traits class is |
|
126 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
|
127 |
///See \ref DfsDefaultTraits for the documentation of |
|
128 |
/// |
|
122 |
///The default type is \ref ListDigraph. |
|
129 | 123 |
#ifdef DOXYGEN |
130 | 124 |
template <typename GR, |
131 | 125 |
typename TR> |
132 | 126 |
#else |
133 | 127 |
template <typename GR=ListDigraph, |
134 | 128 |
typename TR=DfsDefaultTraits<GR> > |
... | ... |
@@ -148,13 +142,13 @@ |
148 | 142 |
typedef typename TR::ReachedMap ReachedMap; |
149 | 143 |
///The type of the map that indicates which nodes are processed. |
150 | 144 |
typedef typename TR::ProcessedMap ProcessedMap; |
151 | 145 |
///The type of the paths. |
152 | 146 |
typedef PredMapPath<Digraph, PredMap> Path; |
153 | 147 |
|
154 |
///The traits class. |
|
148 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
|
155 | 149 |
typedef TR Traits; |
156 | 150 |
|
157 | 151 |
private: |
158 | 152 |
|
159 | 153 |
typedef typename Digraph::Node Node; |
160 | 154 |
typedef typename Digraph::NodeIt NodeIt; |
... | ... |
@@ -227,12 +221,13 @@ |
227 | 221 |
}; |
228 | 222 |
///\brief \ref named-templ-param "Named parameter" for setting |
229 | 223 |
///PredMap type. |
230 | 224 |
/// |
231 | 225 |
///\ref named-templ-param "Named parameter" for setting |
232 | 226 |
///PredMap type. |
227 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
233 | 228 |
template <class T> |
234 | 229 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
235 | 230 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
236 | 231 |
}; |
237 | 232 |
|
238 | 233 |
template <class T> |
... | ... |
@@ -246,12 +241,13 @@ |
246 | 241 |
}; |
247 | 242 |
///\brief \ref named-templ-param "Named parameter" for setting |
248 | 243 |
///DistMap type. |
249 | 244 |
/// |
250 | 245 |
///\ref named-templ-param "Named parameter" for setting |
251 | 246 |
///DistMap type. |
247 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
252 | 248 |
template <class T> |
253 | 249 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
254 | 250 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
255 | 251 |
}; |
256 | 252 |
|
257 | 253 |
template <class T> |
... | ... |
@@ -265,12 +261,13 @@ |
265 | 261 |
}; |
266 | 262 |
///\brief \ref named-templ-param "Named parameter" for setting |
267 | 263 |
///ReachedMap type. |
268 | 264 |
/// |
269 | 265 |
///\ref named-templ-param "Named parameter" for setting |
270 | 266 |
///ReachedMap type. |
267 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
271 | 268 |
template <class T> |
272 | 269 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
273 | 270 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
274 | 271 |
}; |
275 | 272 |
|
276 | 273 |
template <class T> |
... | ... |
@@ -284,12 +281,13 @@ |
284 | 281 |
}; |
285 | 282 |
///\brief \ref named-templ-param "Named parameter" for setting |
286 | 283 |
///ProcessedMap type. |
287 | 284 |
/// |
288 | 285 |
///\ref named-templ-param "Named parameter" for setting |
289 | 286 |
///ProcessedMap type. |
287 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
290 | 288 |
template <class T> |
291 | 289 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
292 | 290 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
293 | 291 |
}; |
294 | 292 |
|
295 | 293 |
struct SetStandardProcessedMapTraits : public Traits { |
... | ... |
@@ -335,15 +333,16 @@ |
335 | 333 |
if(local_processed) delete _processed; |
336 | 334 |
} |
337 | 335 |
|
338 | 336 |
///Sets the map that stores the predecessor arcs. |
339 | 337 |
|
340 | 338 |
///Sets the map that stores the predecessor arcs. |
341 |
///If you don't use this function before calling \ref run(), |
|
342 |
///it will allocate one. The destructor deallocates this |
|
343 |
/// |
|
339 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
340 |
///or \ref init(), an instance will be allocated automatically. |
|
341 |
///The destructor deallocates this automatically allocated map, |
|
342 |
///of course. |
|
344 | 343 |
///\return <tt> (*this) </tt> |
345 | 344 |
Dfs &predMap(PredMap &m) |
346 | 345 |
{ |
347 | 346 |
if(local_pred) { |
348 | 347 |
delete _pred; |
349 | 348 |
local_pred=false; |
... | ... |
@@ -352,15 +351,16 @@ |
352 | 351 |
return *this; |
353 | 352 |
} |
354 | 353 |
|
355 | 354 |
///Sets the map that indicates which nodes are reached. |
356 | 355 |
|
357 | 356 |
///Sets the map that indicates which nodes are reached. |
358 |
///If you don't use this function before calling \ref run(), |
|
359 |
///it will allocate one. The destructor deallocates this |
|
360 |
/// |
|
357 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
358 |
///or \ref init(), an instance will be allocated automatically. |
|
359 |
///The destructor deallocates this automatically allocated map, |
|
360 |
///of course. |
|
361 | 361 |
///\return <tt> (*this) </tt> |
362 | 362 |
Dfs &reachedMap(ReachedMap &m) |
363 | 363 |
{ |
364 | 364 |
if(local_reached) { |
365 | 365 |
delete _reached; |
366 | 366 |
local_reached=false; |
... | ... |
@@ -369,15 +369,16 @@ |
369 | 369 |
return *this; |
370 | 370 |
} |
371 | 371 |
|
372 | 372 |
///Sets the map that indicates which nodes are processed. |
373 | 373 |
|
374 | 374 |
///Sets the map that indicates which nodes are processed. |
375 |
///If you don't use this function before calling \ref run(), |
|
376 |
///it will allocate one. The destructor deallocates this |
|
377 |
/// |
|
375 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
376 |
///or \ref init(), an instance will be allocated automatically. |
|
377 |
///The destructor deallocates this automatically allocated map, |
|
378 |
///of course. |
|
378 | 379 |
///\return <tt> (*this) </tt> |
379 | 380 |
Dfs &processedMap(ProcessedMap &m) |
380 | 381 |
{ |
381 | 382 |
if(local_processed) { |
382 | 383 |
delete _processed; |
383 | 384 |
local_processed=false; |
... | ... |
@@ -387,15 +388,16 @@ |
387 | 388 |
} |
388 | 389 |
|
389 | 390 |
///Sets the map that stores the distances of the nodes. |
390 | 391 |
|
391 | 392 |
///Sets the map that stores the distances of the nodes calculated by |
392 | 393 |
///the algorithm. |
393 |
///If you don't use this function before calling \ref run(), |
|
394 |
///it will allocate one. The destructor deallocates this |
|
395 |
/// |
|
394 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
395 |
///or \ref init(), an instance will be allocated automatically. |
|
396 |
///The destructor deallocates this automatically allocated map, |
|
397 |
///of course. |
|
396 | 398 |
///\return <tt> (*this) </tt> |
397 | 399 |
Dfs &distMap(DistMap &m) |
398 | 400 |
{ |
399 | 401 |
if(local_dist) { |
400 | 402 |
delete _dist; |
401 | 403 |
local_dist=false; |
... | ... |
@@ -403,28 +405,26 @@ |
403 | 405 |
_dist = &m; |
404 | 406 |
return *this; |
405 | 407 |
} |
406 | 408 |
|
407 | 409 |
public: |
408 | 410 |
|
409 |
///\name Execution control |
|
410 |
///The simplest way to execute the algorithm is to use |
|
411 |
///one of the member functions called \ref lemon::Dfs::run() "run()". |
|
412 |
///\n |
|
413 |
///If you need more control on the execution, first you must call |
|
414 |
///\ref lemon::Dfs::init() "init()", then you can add a source node |
|
415 |
///with \ref lemon::Dfs::addSource() "addSource()". |
|
416 |
///Finally \ref lemon::Dfs::start() "start()" will perform the |
|
417 |
/// |
|
411 |
///\name Execution Control |
|
412 |
///The simplest way to execute the DFS algorithm is to use one of the |
|
413 |
///member functions called \ref run(Node) "run()".\n |
|
414 |
///If you need more control on the execution, first you have to call |
|
415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
416 |
///and perform the actual computation with \ref start(). |
|
417 |
///This procedure can be repeated if there are nodes that have not |
|
418 |
///been reached. |
|
418 | 419 |
|
419 | 420 |
///@{ |
420 | 421 |
|
422 |
///\brief Initializes the internal data structures. |
|
423 |
/// |
|
421 | 424 |
///Initializes the internal data structures. |
422 |
|
|
423 |
///Initializes the internal data structures. |
|
424 |
/// |
|
425 | 425 |
void init() |
426 | 426 |
{ |
427 | 427 |
create_maps(); |
428 | 428 |
_stack.resize(countNodes(*G)); |
429 | 429 |
_stack_head=-1; |
430 | 430 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
... | ... |
@@ -435,17 +435,16 @@ |
435 | 435 |
} |
436 | 436 |
|
437 | 437 |
///Adds a new source node. |
438 | 438 |
|
439 | 439 |
///Adds a new source node to the set of nodes to be processed. |
440 | 440 |
/// |
441 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
|
442 |
///false results.) |
|
443 |
/// |
|
444 |
///\warning Distances will be wrong (or at least strange) in case of |
|
445 |
/// |
|
441 |
///\pre The stack must be empty. Otherwise the algorithm gives |
|
442 |
///wrong results. (One of the outgoing arcs of all the source nodes |
|
443 |
///except for the last one will not be visited and distances will |
|
444 |
///also be wrong.) |
|
446 | 445 |
void addSource(Node s) |
447 | 446 |
{ |
448 | 447 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
449 | 448 |
if(!(*_reached)[s]) |
450 | 449 |
{ |
451 | 450 |
_reached->set(s,true); |
... | ... |
@@ -503,22 +502,22 @@ |
503 | 502 |
///is empty. |
504 | 503 |
OutArcIt nextArc() const |
505 | 504 |
{ |
506 | 505 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
507 | 506 |
} |
508 | 507 |
|
509 |
///\brief Returns \c false if there are nodes |
|
510 |
///to be processed. |
|
511 |
/// |
|
512 |
///Returns \c false if there are nodes |
|
513 |
///to be processed |
|
508 |
///Returns \c false if there are nodes to be processed. |
|
509 |
|
|
510 |
///Returns \c false if there are nodes to be processed |
|
511 |
///in the queue (stack). |
|
514 | 512 |
bool emptyQueue() const { return _stack_head<0; } |
515 | 513 |
|
516 | 514 |
///Returns the number of the nodes to be processed. |
517 | 515 |
|
518 |
///Returns the number of the nodes to be processed |
|
516 |
///Returns the number of the nodes to be processed |
|
517 |
///in the queue (stack). |
|
519 | 518 |
int queueSize() const { return _stack_head+1; } |
520 | 519 |
|
521 | 520 |
///Executes the algorithm. |
522 | 521 |
|
523 | 522 |
///Executes the algorithm. |
524 | 523 |
/// |
... | ... |
@@ -634,14 +633,14 @@ |
634 | 633 |
///Runs the algorithm to visit all nodes in the digraph. |
635 | 634 |
|
636 | 635 |
///This method runs the %DFS algorithm in order to compute the |
637 | 636 |
///%DFS path to each node. |
638 | 637 |
/// |
639 | 638 |
///The algorithm computes |
640 |
///- the %DFS tree, |
|
641 |
///- the distance of each node from the root in the %DFS tree. |
|
639 |
///- the %DFS tree (forest), |
|
640 |
///- the distance of each node from the root(s) in the %DFS tree. |
|
642 | 641 |
/// |
643 | 642 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
644 | 643 |
///\code |
645 | 644 |
/// d.init(); |
646 | 645 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
647 | 646 |
/// if (!d.reached(n)) { |
... | ... |
@@ -660,93 +659,94 @@ |
660 | 659 |
} |
661 | 660 |
} |
662 | 661 |
|
663 | 662 |
///@} |
664 | 663 |
|
665 | 664 |
///\name Query Functions |
666 |
///The |
|
665 |
///The results of the DFS algorithm can be obtained using these |
|
667 | 666 |
///functions.\n |
668 |
///Either \ref lemon::Dfs::run() "run()" or \ref lemon::Dfs::start() |
|
669 |
///"start()" must be called before using them. |
|
667 |
///Either \ref run(Node) "run()" or \ref start() should be called |
|
668 |
///before using them. |
|
670 | 669 |
|
671 | 670 |
///@{ |
672 | 671 |
|
673 | 672 |
///The DFS path to a node. |
674 | 673 |
|
675 | 674 |
///Returns the DFS path to a node. |
676 | 675 |
/// |
677 |
///\warning \c t should be |
|
676 |
///\warning \c t should be reached from the root(s). |
|
678 | 677 |
/// |
679 |
///\pre Either \ref run() or \ref start() must be called before |
|
680 |
///using this function. |
|
678 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
679 |
///must be called before using this function. |
|
681 | 680 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
682 | 681 |
|
683 |
///The distance of a node from the root. |
|
682 |
///The distance of a node from the root(s). |
|
684 | 683 |
|
685 |
///Returns the distance of a node from the root. |
|
684 |
///Returns the distance of a node from the root(s). |
|
686 | 685 |
/// |
687 |
///\warning If node \c v is not |
|
686 |
///\warning If node \c v is not reached from the root(s), then |
|
688 | 687 |
///the return value of this function is undefined. |
689 | 688 |
/// |
690 |
///\pre Either \ref run() or \ref start() must be called before |
|
691 |
///using this function. |
|
689 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
690 |
///must be called before using this function. |
|
692 | 691 |
int dist(Node v) const { return (*_dist)[v]; } |
693 | 692 |
|
694 | 693 |
///Returns the 'previous arc' of the %DFS tree for a node. |
695 | 694 |
|
696 | 695 |
///This function returns the 'previous arc' of the %DFS tree for the |
697 |
///node \c v, i.e. it returns the last arc of a %DFS path from the |
|
698 |
///root to \c v. It is \c INVALID |
|
699 |
/// |
|
696 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
|
697 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
|
698 |
///root(s) or if \c v is a root. |
|
700 | 699 |
/// |
701 | 700 |
///The %DFS tree used here is equal to the %DFS tree used in |
702 | 701 |
///\ref predNode(). |
703 | 702 |
/// |
704 |
///\pre Either \ref run() or \ref start() must be called before using |
|
705 |
///this function. |
|
703 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
704 |
///must be called before using this function. |
|
706 | 705 |
Arc predArc(Node v) const { return (*_pred)[v];} |
707 | 706 |
|
708 | 707 |
///Returns the 'previous node' of the %DFS tree. |
709 | 708 |
|
710 | 709 |
///This function returns the 'previous node' of the %DFS |
711 | 710 |
///tree for the node \c v, i.e. it returns the last but one node |
712 |
///from a %DFS path from the root to \c v. It is \c INVALID |
|
713 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
|
711 |
///from a %DFS path from a root to \c v. It is \c INVALID |
|
712 |
///if \c v is not reached from the root(s) or if \c v is a root. |
|
714 | 713 |
/// |
715 | 714 |
///The %DFS tree used here is equal to the %DFS tree used in |
716 | 715 |
///\ref predArc(). |
717 | 716 |
/// |
718 |
///\pre Either \ref run() or \ref start() must be called before |
|
719 |
///using this function. |
|
717 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
718 |
///must be called before using this function. |
|
720 | 719 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
721 | 720 |
G->source((*_pred)[v]); } |
722 | 721 |
|
723 | 722 |
///\brief Returns a const reference to the node map that stores the |
724 | 723 |
///distances of the nodes. |
725 | 724 |
/// |
726 | 725 |
///Returns a const reference to the node map that stores the |
727 | 726 |
///distances of the nodes calculated by the algorithm. |
728 | 727 |
/// |
729 |
///\pre Either \ref run() or \ref init() |
|
728 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
730 | 729 |
///must be called before using this function. |
731 | 730 |
const DistMap &distMap() const { return *_dist;} |
732 | 731 |
|
733 | 732 |
///\brief Returns a const reference to the node map that stores the |
734 | 733 |
///predecessor arcs. |
735 | 734 |
/// |
736 | 735 |
///Returns a const reference to the node map that stores the predecessor |
737 | 736 |
///arcs, which form the DFS tree. |
738 | 737 |
/// |
739 |
///\pre Either \ref run() or \ref init() |
|
738 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
740 | 739 |
///must be called before using this function. |
741 | 740 |
const PredMap &predMap() const { return *_pred;} |
742 | 741 |
|
743 |
///Checks if a node is |
|
742 |
///Checks if a node is reached from the root(s). |
|
744 | 743 |
|
745 |
///Returns \c true if \c v is reachable from the root(s). |
|
746 |
///\pre Either \ref run() or \ref start() |
|
744 |
///Returns \c true if \c v is reached from the root(s). |
|
745 |
/// |
|
746 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
747 | 747 |
///must be called before using this function. |
748 | 748 |
bool reached(Node v) const { return (*_reached)[v]; } |
749 | 749 |
|
750 | 750 |
///@} |
751 | 751 |
}; |
752 | 752 |
|
... | ... |
@@ -886,14 +886,14 @@ |
886 | 886 |
}; |
887 | 887 |
|
888 | 888 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
889 | 889 |
|
890 | 890 |
/// This auxiliary class is created to implement the |
891 | 891 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
892 |
/// It does not have own \ref run() method, it uses the functions |
|
893 |
/// and features of the plain \ref Dfs. |
|
892 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
|
893 |
/// functions and features of the plain \ref Dfs. |
|
894 | 894 |
/// |
895 | 895 |
/// This class should only be used through the \ref dfs() function, |
896 | 896 |
/// which makes it easier to use the algorithm. |
897 | 897 |
template<class TR> |
898 | 898 |
class DfsWizard : public TR |
899 | 899 |
{ |
... | ... |
@@ -1107,14 +1107,13 @@ |
1107 | 1107 |
/// // Compute the DFS tree |
1108 | 1108 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1109 | 1109 |
/// |
1110 | 1110 |
/// // Compute the DFS path from s to t |
1111 | 1111 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1112 | 1112 |
///\endcode |
1113 |
|
|
1114 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
|
1113 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
|
1115 | 1114 |
///to the end of the parameter list. |
1116 | 1115 |
///\sa DfsWizard |
1117 | 1116 |
///\sa Dfs |
1118 | 1117 |
template<class GR> |
1119 | 1118 |
DfsWizard<DfsWizardBase<GR> > |
1120 | 1119 |
dfs(const GR &digraph) |
... | ... |
@@ -1306,13 +1305,13 @@ |
1306 | 1305 |
DfsVisit() {} |
1307 | 1306 |
|
1308 | 1307 |
public: |
1309 | 1308 |
|
1310 | 1309 |
typedef DfsVisit Create; |
1311 | 1310 |
|
1312 |
/// \name Named |
|
1311 |
/// \name Named Template Parameters |
|
1313 | 1312 |
|
1314 | 1313 |
///@{ |
1315 | 1314 |
template <class T> |
1316 | 1315 |
struct SetReachedMapTraits : public Traits { |
1317 | 1316 |
typedef T ReachedMap; |
1318 | 1317 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
... | ... |
@@ -1348,37 +1347,36 @@ |
1348 | 1347 |
if(local_reached) delete _reached; |
1349 | 1348 |
} |
1350 | 1349 |
|
1351 | 1350 |
/// \brief Sets the map that indicates which nodes are reached. |
1352 | 1351 |
/// |
1353 | 1352 |
/// Sets the map that indicates which nodes are reached. |
1354 |
/// If you don't use this function before calling \ref run(), |
|
1355 |
/// it will allocate one. The destructor deallocates this |
|
1356 |
/// |
|
1353 |
/// If you don't use this function before calling \ref run(Node) "run()" |
|
1354 |
/// or \ref init(), an instance will be allocated automatically. |
|
1355 |
/// The destructor deallocates this automatically allocated map, |
|
1356 |
/// of course. |
|
1357 | 1357 |
/// \return <tt> (*this) </tt> |
1358 | 1358 |
DfsVisit &reachedMap(ReachedMap &m) { |
1359 | 1359 |
if(local_reached) { |
1360 | 1360 |
delete _reached; |
1361 | 1361 |
local_reached=false; |
1362 | 1362 |
} |
1363 | 1363 |
_reached = &m; |
1364 | 1364 |
return *this; |
1365 | 1365 |
} |
1366 | 1366 |
|
1367 | 1367 |
public: |
1368 | 1368 |
|
1369 |
/// \name Execution control |
|
1370 |
/// The simplest way to execute the algorithm is to use |
|
1371 |
/// one of the member functions called \ref lemon::DfsVisit::run() |
|
1372 |
/// "run()". |
|
1373 |
/// \n |
|
1374 |
/// If you need more control on the execution, first you must call |
|
1375 |
/// \ref lemon::DfsVisit::init() "init()", then you can add several |
|
1376 |
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
|
1377 |
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
|
1378 |
/// actual path computation. |
|
1369 |
/// \name Execution Control |
|
1370 |
/// The simplest way to execute the DFS algorithm is to use one of the |
|
1371 |
/// member functions called \ref run(Node) "run()".\n |
|
1372 |
/// If you need more control on the execution, first you have to call |
|
1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1374 |
/// and perform the actual computation with \ref start(). |
|
1375 |
/// This procedure can be repeated if there are nodes that have not |
|
1376 |
/// been reached. |
|
1379 | 1377 |
|
1380 | 1378 |
/// @{ |
1381 | 1379 |
|
1382 | 1380 |
/// \brief Initializes the internal data structures. |
1383 | 1381 |
/// |
1384 | 1382 |
/// Initializes the internal data structures. |
... | ... |
@@ -1388,21 +1386,20 @@ |
1388 | 1386 |
_stack_head = -1; |
1389 | 1387 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1390 | 1388 |
_reached->set(u, false); |
1391 | 1389 |
} |
1392 | 1390 |
} |
1393 | 1391 |
|
1394 |
///Adds a new source node. |
|
1395 |
|
|
1396 |
///Adds a new source node |
|
1392 |
/// \brief Adds a new source node. |
|
1397 | 1393 |
/// |
1398 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
|
1399 |
///false results.) |
|
1394 |
/// Adds a new source node to the set of nodes to be processed. |
|
1400 | 1395 |
/// |
1401 |
///\warning Distances will be wrong (or at least strange) in case of |
|
1402 |
///multiple sources. |
|
1396 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
|
1397 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
|
1398 |
/// except for the last one will not be visited and distances will |
|
1399 |
/// also be wrong.) |
|
1403 | 1400 |
void addSource(Node s) |
1404 | 1401 |
{ |
1405 | 1402 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1406 | 1403 |
if(!(*_reached)[s]) { |
1407 | 1404 |
_reached->set(s,true); |
1408 | 1405 |
_visitor->start(s); |
... | ... |
@@ -1586,14 +1583,14 @@ |
1586 | 1583 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1587 | 1584 |
|
1588 | 1585 |
/// This method runs the %DFS algorithm in order to |
1589 | 1586 |
/// compute the %DFS path to each node. |
1590 | 1587 |
/// |
1591 | 1588 |
/// The algorithm computes |
1592 |
/// - the %DFS tree, |
|
1593 |
/// - the distance of each node from the root in the %DFS tree. |
|
1589 |
/// - the %DFS tree (forest), |
|
1590 |
/// - the distance of each node from the root(s) in the %DFS tree. |
|
1594 | 1591 |
/// |
1595 | 1592 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1596 | 1593 |
///\code |
1597 | 1594 |
/// d.init(); |
1598 | 1595 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1599 | 1596 |
/// if (!d.reached(n)) { |
... | ... |
@@ -1612,23 +1609,24 @@ |
1612 | 1609 |
} |
1613 | 1610 |
} |
1614 | 1611 |
|
1615 | 1612 |
///@} |
1616 | 1613 |
|
1617 | 1614 |
/// \name Query Functions |
1618 |
/// The |
|
1615 |
/// The results of the DFS algorithm can be obtained using these |
|
1619 | 1616 |
/// functions.\n |
1620 |
/// Either \ref lemon::DfsVisit::run() "run()" or |
|
1621 |
/// \ref lemon::DfsVisit::start() "start()" must be called before |
|
1622 |
/// |
|
1617 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
|
1618 |
/// before using them. |
|
1619 |
|
|
1623 | 1620 |
///@{ |
1624 | 1621 |
|
1625 |
/// \brief Checks if a node is |
|
1622 |
/// \brief Checks if a node is reached from the root(s). |
|
1626 | 1623 |
/// |
1627 |
/// Returns \c true if \c v is reachable from the root(s). |
|
1628 |
/// \pre Either \ref run() or \ref start() |
|
1624 |
/// Returns \c true if \c v is reached from the root(s). |
|
1625 |
/// |
|
1626 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
|
1629 | 1627 |
/// must be called before using this function. |
1630 | 1628 |
bool reached(Node v) { return (*_reached)[v]; } |
1631 | 1629 |
|
1632 | 1630 |
///@} |
1633 | 1631 |
|
1634 | 1632 |
}; |
... | ... |
@@ -176,26 +176,19 @@ |
176 | 176 |
/// |
177 | 177 |
///There is also a \ref dijkstra() "function-type interface" for the |
178 | 178 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
179 | 179 |
///it can be used easier. |
180 | 180 |
/// |
181 | 181 |
///\tparam GR The type of the digraph the algorithm runs on. |
182 |
///The default value is \ref ListDigraph. |
|
183 |
///The value of GR is not used directly by \ref Dijkstra, it is only |
|
184 |
///passed to \ref DijkstraDefaultTraits. |
|
185 |
///\tparam LM A readable arc map that determines the lengths of the |
|
186 |
/// |
|
182 |
///The default type is \ref ListDigraph. |
|
183 |
///\tparam LM A \ref concepts::ReadMap "readable" arc map that specifies |
|
184 |
///the lengths of the arcs. |
|
185 |
///It is read once for each arc, so the map may involve in |
|
187 | 186 |
///relatively time consuming process to compute the arc lengths if |
188 | 187 |
///it is necessary. The default map type is \ref |
189 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
|
190 |
///The value of LM is not used directly by \ref Dijkstra, it is only |
|
191 |
///passed to \ref DijkstraDefaultTraits. |
|
192 |
///\tparam TR Traits class to set various data types used by the algorithm. |
|
193 |
///The default traits class is \ref DijkstraDefaultTraits |
|
194 |
///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
|
195 |
/// |
|
188 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
196 | 189 |
#ifdef DOXYGEN |
197 | 190 |
template <typename GR, typename LM, typename TR> |
198 | 191 |
#else |
199 | 192 |
template <typename GR=ListDigraph, |
200 | 193 |
typename LM=typename GR::template ArcMap<int>, |
201 | 194 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
... | ... |
@@ -223,13 +216,13 @@ |
223 | 216 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
224 | 217 |
///The heap type used by the algorithm. |
225 | 218 |
typedef typename TR::Heap Heap; |
226 | 219 |
///The operation traits class. |
227 | 220 |
typedef typename TR::OperationTraits OperationTraits; |
228 | 221 |
|
229 |
///The traits class. |
|
222 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
|
230 | 223 |
typedef TR Traits; |
231 | 224 |
|
232 | 225 |
private: |
233 | 226 |
|
234 | 227 |
typedef typename Digraph::Node Node; |
235 | 228 |
typedef typename Digraph::NodeIt NodeIt; |
... | ... |
@@ -305,12 +298,13 @@ |
305 | 298 |
}; |
306 | 299 |
///\brief \ref named-templ-param "Named parameter" for setting |
307 | 300 |
///PredMap type. |
308 | 301 |
/// |
309 | 302 |
///\ref named-templ-param "Named parameter" for setting |
310 | 303 |
///PredMap type. |
304 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
311 | 305 |
template <class T> |
312 | 306 |
struct SetPredMap |
313 | 307 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
314 | 308 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
315 | 309 |
}; |
316 | 310 |
|
... | ... |
@@ -325,12 +319,13 @@ |
325 | 319 |
}; |
326 | 320 |
///\brief \ref named-templ-param "Named parameter" for setting |
327 | 321 |
///DistMap type. |
328 | 322 |
/// |
329 | 323 |
///\ref named-templ-param "Named parameter" for setting |
330 | 324 |
///DistMap type. |
325 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
331 | 326 |
template <class T> |
332 | 327 |
struct SetDistMap |
333 | 328 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
334 | 329 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
335 | 330 |
}; |
336 | 331 |
|
... | ... |
@@ -345,12 +340,13 @@ |
345 | 340 |
}; |
346 | 341 |
///\brief \ref named-templ-param "Named parameter" for setting |
347 | 342 |
///ProcessedMap type. |
348 | 343 |
/// |
349 | 344 |
///\ref named-templ-param "Named parameter" for setting |
350 | 345 |
///ProcessedMap type. |
346 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
351 | 347 |
template <class T> |
352 | 348 |
struct SetProcessedMap |
353 | 349 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
354 | 350 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
355 | 351 |
}; |
356 | 352 |
|
... | ... |
@@ -385,16 +381,20 @@ |
385 | 381 |
{ |
386 | 382 |
LEMON_ASSERT(false, "Heap is not initialized"); |
387 | 383 |
return 0; // ignore warnings |
388 | 384 |
} |
389 | 385 |
}; |
390 | 386 |
///\brief \ref named-templ-param "Named parameter" for setting |
391 |
///heap and cross reference |
|
387 |
///heap and cross reference types |
|
392 | 388 |
/// |
393 | 389 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
394 |
///reference |
|
390 |
///reference types. If this named parameter is used, then external |
|
391 |
///heap and cross reference objects must be passed to the algorithm |
|
392 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
|
393 |
///or \ref init(). |
|
394 |
///\sa SetStandardHeap |
|
395 | 395 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
396 | 396 |
struct SetHeap |
397 | 397 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
398 | 398 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
399 | 399 |
}; |
400 | 400 |
|
... | ... |
@@ -408,18 +408,24 @@ |
408 | 408 |
static Heap *createHeap(HeapCrossRef &R) |
409 | 409 |
{ |
410 | 410 |
return new Heap(R); |
411 | 411 |
} |
412 | 412 |
}; |
413 | 413 |
///\brief \ref named-templ-param "Named parameter" for setting |
414 |
///heap and cross reference |
|
414 |
///heap and cross reference types with automatic allocation |
|
415 | 415 |
/// |
416 | 416 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
417 |
///reference type. It can allocate the heap and the cross reference |
|
418 |
///object if the cross reference's constructor waits for the digraph as |
|
419 |
/// |
|
417 |
///reference types with automatic allocation. |
|
418 |
///They should have standard constructor interfaces to be able to |
|
419 |
///automatically created by the algorithm (i.e. the digraph should be |
|
420 |
///passed to the constructor of the cross reference and the cross |
|
421 |
///reference should be passed to the constructor of the heap). |
|
422 |
///However external heap and cross reference objects could also be |
|
423 |
///passed to the algorithm using the \ref heap() function before |
|
424 |
///calling \ref run(Node) "run()" or \ref init(). |
|
425 |
///\sa SetHeap |
|
420 | 426 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
421 | 427 |
struct SetStandardHeap |
422 | 428 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
423 | 429 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
424 | 430 |
Create; |
425 | 431 |
}; |
... | ... |
@@ -483,15 +489,16 @@ |
483 | 489 |
return *this; |
484 | 490 |
} |
485 | 491 |
|
486 | 492 |
///Sets the map that stores the predecessor arcs. |
487 | 493 |
|
488 | 494 |
///Sets the map that stores the predecessor arcs. |
489 |
///If you don't use this function before calling \ref run(), |
|
490 |
///it will allocate one. The destructor deallocates this |
|
491 |
/// |
|
495 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
496 |
///or \ref init(), an instance will be allocated automatically. |
|
497 |
///The destructor deallocates this automatically allocated map, |
|
498 |
///of course. |
|
492 | 499 |
///\return <tt> (*this) </tt> |
493 | 500 |
Dijkstra &predMap(PredMap &m) |
494 | 501 |
{ |
495 | 502 |
if(local_pred) { |
496 | 503 |
delete _pred; |
497 | 504 |
local_pred=false; |
... | ... |
@@ -500,15 +507,16 @@ |
500 | 507 |
return *this; |
501 | 508 |
} |
502 | 509 |
|
503 | 510 |
///Sets the map that indicates which nodes are processed. |
504 | 511 |
|
505 | 512 |
///Sets the map that indicates which nodes are processed. |
506 |
///If you don't use this function before calling \ref run(), |
|
507 |
///it will allocate one. The destructor deallocates this |
|
508 |
/// |
|
513 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
514 |
///or \ref init(), an instance will be allocated automatically. |
|
515 |
///The destructor deallocates this automatically allocated map, |
|
516 |
///of course. |
|
509 | 517 |
///\return <tt> (*this) </tt> |
510 | 518 |
Dijkstra &processedMap(ProcessedMap &m) |
511 | 519 |
{ |
512 | 520 |
if(local_processed) { |
513 | 521 |
delete _processed; |
514 | 522 |
local_processed=false; |
... | ... |
@@ -518,15 +526,16 @@ |
518 | 526 |
} |
519 | 527 |
|
520 | 528 |
///Sets the map that stores the distances of the nodes. |
521 | 529 |
|
522 | 530 |
///Sets the map that stores the distances of the nodes calculated by the |
523 | 531 |
///algorithm. |
524 |
///If you don't use this function before calling \ref run(), |
|
525 |
///it will allocate one. The destructor deallocates this |
|
526 |
/// |
|
532 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
533 |
///or \ref init(), an instance will be allocated automatically. |
|
534 |
///The destructor deallocates this automatically allocated map, |
|
535 |
///of course. |
|
527 | 536 |
///\return <tt> (*this) </tt> |
528 | 537 |
Dijkstra &distMap(DistMap &m) |
529 | 538 |
{ |
530 | 539 |
if(local_dist) { |
531 | 540 |
delete _dist; |
532 | 541 |
local_dist=false; |
... | ... |
@@ -535,15 +544,17 @@ |
535 | 544 |
return *this; |
536 | 545 |
} |
537 | 546 |
|
538 | 547 |
///Sets the heap and the cross reference used by algorithm. |
539 | 548 |
|
540 | 549 |
///Sets the heap and the cross reference used by algorithm. |
541 |
///If you don't use this function before calling \ref run(), |
|
542 |
///it will allocate one. The destructor deallocates this |
|
543 |
/// |
|
550 |
///If you don't use this function before calling \ref run(Node) "run()" |
|
551 |
///or \ref init(), heap and cross reference instances will be |
|
552 |
///allocated automatically. |
|
553 |
///The destructor deallocates these automatically allocated objects, |
|
554 |
///of course. |
|
544 | 555 |
///\return <tt> (*this) </tt> |
545 | 556 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
546 | 557 |
{ |
547 | 558 |
if(local_heap_cross_ref) { |
548 | 559 |
delete _heap_cross_ref; |
549 | 560 |
local_heap_cross_ref=false; |
... | ... |
@@ -564,28 +575,25 @@ |
564 | 575 |
_processed->set(v,true); |
565 | 576 |
_dist->set(v, dst); |
566 | 577 |
} |
567 | 578 |
|
568 | 579 |
public: |
569 | 580 |
|
570 |
///\name Execution control |
|
571 |
///The simplest way to execute the algorithm is to use one of the |
|
572 |
///member functions called \ref lemon::Dijkstra::run() "run()". |
|
573 |
///\n |
|
574 |
///If you need more control on the execution, first you must call |
|
575 |
///\ref lemon::Dijkstra::init() "init()", then you can add several |
|
576 |
///source nodes with \ref lemon::Dijkstra::addSource() "addSource()". |
|
577 |
///Finally \ref lemon::Dijkstra::start() "start()" will perform the |
|
578 |
/// |
|
581 |
///\name Execution Control |
|
582 |
///The simplest way to execute the %Dijkstra algorithm is to use |
|
583 |
///one of the member functions called \ref run(Node) "run()".\n |
|
584 |
///If you need more control on the execution, first you have to call |
|
585 |
///\ref init(), then you can add several source nodes with |
|
586 |
///\ref addSource(). Finally the actual path computation can be |
|
587 |
///performed with one of the \ref start() functions. |
|
579 | 588 |
|
580 | 589 |
///@{ |
581 | 590 |
|
591 |
///\brief Initializes the internal data structures. |
|
592 |
/// |
|
582 | 593 |
///Initializes the internal data structures. |
583 |
|
|
584 |
///Initializes the internal data structures. |
|
585 |
/// |
|
586 | 594 |
void init() |
587 | 595 |
{ |
588 | 596 |
create_maps(); |
589 | 597 |
_heap->clear(); |
590 | 598 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
591 | 599 |
_pred->set(u,INVALID); |
... | ... |
@@ -655,23 +663,22 @@ |
655 | 663 |
///priority heap is empty. |
656 | 664 |
Node nextNode() const |
657 | 665 |
{ |
658 | 666 |
return !_heap->empty()?_heap->top():INVALID; |
659 | 667 |
} |
660 | 668 |
|
661 |
///\brief Returns \c false if there are nodes |
|
662 |
///to be processed. |
|
663 |
/// |
|
664 |
///Returns \c false if there are nodes |
|
665 |
///to be processed |
|
669 |
///Returns \c false if there are nodes to be processed. |
|
670 |
|
|
671 |
///Returns \c false if there are nodes to be processed |
|
672 |
///in the priority heap. |
|
666 | 673 |
bool emptyQueue() const { return _heap->empty(); } |
667 | 674 |
|
668 |
///Returns the number of the nodes to be processed |
|
675 |
///Returns the number of the nodes to be processed. |
|
669 | 676 |
|
670 |
///Returns the number of the nodes to be processed in the priority heap. |
|
671 |
/// |
|
677 |
///Returns the number of the nodes to be processed |
|
678 |
///in the priority heap. |
|
672 | 679 |
int queueSize() const { return _heap->size(); } |
673 | 680 |
|
674 | 681 |
///Executes the algorithm. |
675 | 682 |
|
676 | 683 |
///Executes the algorithm. |
677 | 684 |
/// |
... | ... |
@@ -786,112 +793,114 @@ |
786 | 793 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
787 | 794 |
} |
788 | 795 |
|
789 | 796 |
///@} |
790 | 797 |
|
791 | 798 |
///\name Query Functions |
792 |
///The |
|
799 |
///The results of the %Dijkstra algorithm can be obtained using these |
|
793 | 800 |
///functions.\n |
794 |
///Either \ref lemon::Dijkstra::run() "run()" or |
|
795 |
///\ref lemon::Dijkstra::start() "start()" must be called before |
|
796 |
/// |
|
801 |
///Either \ref run(Node) "run()" or \ref start() should be called |
|
802 |
///before using them. |
|
797 | 803 |
|
798 | 804 |
///@{ |
799 | 805 |
|
800 | 806 |
///The shortest path to a node. |
801 | 807 |
|
802 | 808 |
///Returns the shortest path to a node. |
803 | 809 |
/// |
804 |
///\warning \c t should be |
|
810 |
///\warning \c t should be reached from the root(s). |
|
805 | 811 |
/// |
806 |
///\pre Either \ref run() or \ref start() must be called before |
|
807 |
///using this function. |
|
812 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
813 |
///must be called before using this function. |
|
808 | 814 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
809 | 815 |
|
810 | 816 |
///The distance of a node from the root(s). |
811 | 817 |
|
812 | 818 |
///Returns the distance of a node from the root(s). |
813 | 819 |
/// |
814 |
///\warning If node \c v is not |
|
820 |
///\warning If node \c v is not reached from the root(s), then |
|
815 | 821 |
///the return value of this function is undefined. |
816 | 822 |
/// |
817 |
///\pre Either \ref run() or \ref start() must be called before |
|
818 |
///using this function. |
|
823 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
824 |
///must be called before using this function. |
|
819 | 825 |
Value dist(Node v) const { return (*_dist)[v]; } |
820 | 826 |
|
821 | 827 |
///Returns the 'previous arc' of the shortest path tree for a node. |
822 | 828 |
|
823 | 829 |
///This function returns the 'previous arc' of the shortest path |
824 | 830 |
///tree for the node \c v, i.e. it returns the last arc of a |
825 |
///shortest path from the root(s) to \c v. It is \c INVALID if \c v |
|
826 |
///is not reachable from the root(s) or if \c v is a root. |
|
831 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
|
832 |
///is not reached from the root(s) or if \c v is a root. |
|
827 | 833 |
/// |
828 | 834 |
///The shortest path tree used here is equal to the shortest path |
829 | 835 |
///tree used in \ref predNode(). |
830 | 836 |
/// |
831 |
///\pre Either \ref run() or \ref start() must be called before |
|
832 |
///using this function. |
|
837 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
838 |
///must be called before using this function. |
|
833 | 839 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
834 | 840 |
|
835 | 841 |
///Returns the 'previous node' of the shortest path tree for a node. |
836 | 842 |
|
837 | 843 |
///This function returns the 'previous node' of the shortest path |
838 | 844 |
///tree for the node \c v, i.e. it returns the last but one node |
839 |
///from a shortest path from the root(s) to \c v. It is \c INVALID |
|
840 |
///if \c v is not reachable from the root(s) or if \c v is a root. |
|
845 |
///from a shortest path from a root to \c v. It is \c INVALID |
|
846 |
///if \c v is not reached from the root(s) or if \c v is a root. |
|
841 | 847 |
/// |
842 | 848 |
///The shortest path tree used here is equal to the shortest path |
843 | 849 |
///tree used in \ref predArc(). |
844 | 850 |
/// |
845 |
///\pre Either \ref run() or \ref start() must be called before |
|
846 |
///using this function. |
|
851 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
852 |
///must be called before using this function. |
|
847 | 853 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
848 | 854 |
G->source((*_pred)[v]); } |
849 | 855 |
|
850 | 856 |
///\brief Returns a const reference to the node map that stores the |
851 | 857 |
///distances of the nodes. |
852 | 858 |
/// |
853 | 859 |
///Returns a const reference to the node map that stores the distances |
854 | 860 |
///of the nodes calculated by the algorithm. |
855 | 861 |
/// |
856 |
///\pre Either \ref run() or \ref init() |
|
862 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
857 | 863 |
///must be called before using this function. |
858 | 864 |
const DistMap &distMap() const { return *_dist;} |
859 | 865 |
|
860 | 866 |
///\brief Returns a const reference to the node map that stores the |
861 | 867 |
///predecessor arcs. |
862 | 868 |
/// |
863 | 869 |
///Returns a const reference to the node map that stores the predecessor |
864 | 870 |
///arcs, which form the shortest path tree. |
865 | 871 |
/// |
866 |
///\pre Either \ref run() or \ref init() |
|
872 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
867 | 873 |
///must be called before using this function. |
868 | 874 |
const PredMap &predMap() const { return *_pred;} |
869 | 875 |
|
870 |
///Checks if a node is |
|
876 |
///Checks if a node is reached from the root(s). |
|
871 | 877 |
|
872 |
///Returns \c true if \c v is reachable from the root(s). |
|
873 |
///\pre Either \ref run() or \ref start() |
|
878 |
///Returns \c true if \c v is reached from the root(s). |
|
879 |
/// |
|
880 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
874 | 881 |
///must be called before using this function. |
875 | 882 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
876 | 883 |
Heap::PRE_HEAP; } |
877 | 884 |
|
878 | 885 |
///Checks if a node is processed. |
879 | 886 |
|
880 | 887 |
///Returns \c true if \c v is processed, i.e. the shortest |
881 | 888 |
///path to \c v has already found. |
882 |
/// |
|
889 |
/// |
|
890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
883 | 891 |
///must be called before using this function. |
884 | 892 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
885 | 893 |
Heap::POST_HEAP; } |
886 | 894 |
|
887 | 895 |
///The current distance of a node from the root(s). |
888 | 896 |
|
889 | 897 |
///Returns the current distance of a node from the root(s). |
890 | 898 |
///It may be decreased in the following processes. |
891 |
/// |
|
899 |
/// |
|
900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
|
892 | 901 |
///must be called before using this function and |
893 | 902 |
///node \c v must be reached but not necessarily processed. |
894 | 903 |
Value currentDist(Node v) const { |
895 | 904 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
896 | 905 |
} |
897 | 906 |
|
... | ... |
@@ -1068,14 +1077,14 @@ |
1068 | 1077 |
}; |
1069 | 1078 |
|
1070 | 1079 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1071 | 1080 |
|
1072 | 1081 |
/// This auxiliary class is created to implement the |
1073 | 1082 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1074 |
/// It does not have own \ref run() method, it uses the functions |
|
1075 |
/// and features of the plain \ref Dijkstra. |
|
1083 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
|
1084 |
/// functions and features of the plain \ref Dijkstra. |
|
1076 | 1085 |
/// |
1077 | 1086 |
/// This class should only be used through the \ref dijkstra() function, |
1078 | 1087 |
/// which makes it easier to use the algorithm. |
1079 | 1088 |
template<class TR> |
1080 | 1089 |
class DijkstraWizard : public TR |
1081 | 1090 |
{ |
... | ... |
@@ -1264,13 +1273,13 @@ |
1264 | 1273 |
/// // Compute shortest path from node s to each node |
1265 | 1274 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
1266 | 1275 |
/// |
1267 | 1276 |
/// // Compute shortest path from s to t |
1268 | 1277 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
1269 | 1278 |
///\endcode |
1270 |
///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" |
|
1279 |
///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()" |
|
1271 | 1280 |
///to the end of the parameter list. |
1272 | 1281 |
///\sa DijkstraWizard |
1273 | 1282 |
///\sa Dijkstra |
1274 | 1283 |
template<class GR, class LM> |
1275 | 1284 |
DijkstraWizard<DijkstraWizardBase<GR,LM> > |
1276 | 1285 |
dijkstra(const GR &digraph, const LM &length) |
0 comments (0 inline)