| ... | ... |
@@ -54,7 +54,8 @@ |
| 54 | 54 |
/// \tparam C The value type used for costs and potentials in the |
| 55 | 55 |
/// algorithm. By default it is the same as \c F. |
| 56 | 56 |
/// |
| 57 |
/// \warning Both value types must be signed |
|
| 57 |
/// \warning Both value types must be signed and all input data must |
|
| 58 |
/// be integer. |
|
| 58 | 59 |
/// |
| 59 | 60 |
/// \note %NetworkSimplex provides five different pivot rule |
| 60 | 61 |
/// implementations. For more information see \ref PivotRule. |
| ... | ... |
@@ -1044,8 +1045,10 @@ |
| 1044 | 1045 |
} |
| 1045 | 1046 |
|
| 1046 | 1047 |
// Initialize arc maps |
| 1047 |
Flow max_cap = std::numeric_limits<Flow>::max(); |
|
| 1048 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|
| 1048 |
Flow inf_cap = |
|
| 1049 |
std::numeric_limits<Flow>::has_infinity ? |
|
| 1050 |
std::numeric_limits<Flow>::infinity() : |
|
| 1051 |
std::numeric_limits<Flow>::max(); |
|
| 1049 | 1052 |
if (_pupper && _pcost) {
|
| 1050 | 1053 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1051 | 1054 |
Arc e = _arc_ref[i]; |
| ... | ... |
@@ -1069,7 +1072,7 @@ |
| 1069 | 1072 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
| 1070 | 1073 |
} else {
|
| 1071 | 1074 |
for (int i = 0; i != _arc_num; ++i) |
| 1072 |
_cap[i] = |
|
| 1075 |
_cap[i] = inf_cap; |
|
| 1073 | 1076 |
} |
| 1074 | 1077 |
if (_pcost) {
|
| 1075 | 1078 |
for (int i = 0; i != _arc_num; ++i) |
| ... | ... |
@@ -1079,6 +1082,18 @@ |
| 1079 | 1082 |
_cost[i] = 1; |
| 1080 | 1083 |
} |
| 1081 | 1084 |
} |
| 1085 |
|
|
| 1086 |
// Initialize artifical cost |
|
| 1087 |
Cost art_cost; |
|
| 1088 |
if (std::numeric_limits<Cost>::is_exact) {
|
|
| 1089 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
| 1090 |
} else {
|
|
| 1091 |
art_cost = std::numeric_limits<Cost>::min(); |
|
| 1092 |
for (int i = 0; i != _arc_num; ++i) {
|
|
| 1093 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
| 1094 |
} |
|
| 1095 |
art_cost = (art_cost + 1) * _node_num; |
|
| 1096 |
} |
|
| 1082 | 1097 |
|
| 1083 | 1098 |
// Remove non-zero lower bounds |
| 1084 | 1099 |
if (_plower) {
|
| ... | ... |
@@ -1100,17 +1115,17 @@ |
| 1100 | 1115 |
_last_succ[u] = u; |
| 1101 | 1116 |
_parent[u] = _root; |
| 1102 | 1117 |
_pred[u] = e; |
| 1103 |
_cost[e] = max_cost; |
|
| 1104 |
_cap[e] = max_cap; |
|
| 1118 |
_cost[e] = art_cost; |
|
| 1119 |
_cap[e] = inf_cap; |
|
| 1105 | 1120 |
_state[e] = STATE_TREE; |
| 1106 | 1121 |
if (_supply[u] >= 0) {
|
| 1107 | 1122 |
_flow[e] = _supply[u]; |
| 1108 | 1123 |
_forward[u] = true; |
| 1109 |
_pi[u] = - |
|
| 1124 |
_pi[u] = -art_cost; |
|
| 1110 | 1125 |
} else {
|
| 1111 | 1126 |
_flow[e] = -_supply[u]; |
| 1112 | 1127 |
_forward[u] = false; |
| 1113 |
_pi[u] = |
|
| 1128 |
_pi[u] = art_cost; |
|
| 1114 | 1129 |
} |
| 1115 | 1130 |
} |
| 1116 | 1131 |
|
| ... | ... |
@@ -1327,22 +1342,10 @@ |
| 1327 | 1342 |
Cost sigma = _forward[u_in] ? |
| 1328 | 1343 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1329 | 1344 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1330 |
if (_succ_num[u_in] > _node_num / 2) {
|
|
| 1331 |
// Update in the upper subtree (which contains the root) |
|
| 1332 |
int before = _rev_thread[u_in]; |
|
| 1333 |
int after = _thread[_last_succ[u_in]]; |
|
| 1334 |
_thread[before] = after; |
|
| 1335 |
_pi[_root] -= sigma; |
|
| 1336 |
for (int u = _thread[_root]; u != _root; u = _thread[u]) {
|
|
| 1337 |
_pi[u] -= sigma; |
|
| 1338 |
} |
|
| 1339 |
_thread[before] = u_in; |
|
| 1340 |
} else {
|
|
| 1341 |
// Update in the lower subtree (which has been moved) |
|
| 1342 |
int end = _thread[_last_succ[u_in]]; |
|
| 1343 |
for (int u = u_in; u != end; u = _thread[u]) {
|
|
| 1344 |
_pi[u] += sigma; |
|
| 1345 |
} |
|
| 1345 |
// Update potentials in the subtree, which has been moved |
|
| 1346 |
int end = _thread[_last_succ[u_in]]; |
|
| 1347 |
for (int u = u_in; u != end; u = _thread[u]) {
|
|
| 1348 |
_pi[u] += sigma; |
|
| 1346 | 1349 |
} |
| 1347 | 1350 |
} |
| 1348 | 1351 |
|
0 comments (0 inline)