... | ... |
@@ -9,97 +9,98 @@ |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 44 |
/// This algorithm is a specialized version of the linear programming |
45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
46 | 46 |
/// It is one of the most efficient solution methods. |
47 | 47 |
/// |
48 | 48 |
/// In general this class is the fastest implementation available |
49 | 49 |
/// in LEMON for the minimum cost flow problem. |
50 | 50 |
/// |
51 | 51 |
/// \tparam GR The digraph type the algorithm runs on. |
52 | 52 |
/// \tparam F The value type used for flow amounts, capacity bounds |
53 | 53 |
/// and supply values in the algorithm. By default it is \c int. |
54 | 54 |
/// \tparam C The value type used for costs and potentials in the |
55 | 55 |
/// algorithm. By default it is the same as \c F. |
56 | 56 |
/// |
57 |
/// \warning Both value types must be signed |
|
57 |
/// \warning Both value types must be signed and all input data must |
|
58 |
/// be integer. |
|
58 | 59 |
/// |
59 | 60 |
/// \note %NetworkSimplex provides five different pivot rule |
60 | 61 |
/// implementations. For more information see \ref PivotRule. |
61 | 62 |
template <typename GR, typename F = int, typename C = F> |
62 | 63 |
class NetworkSimplex |
63 | 64 |
{ |
64 | 65 |
public: |
65 | 66 |
|
66 | 67 |
/// The flow type of the algorithm |
67 | 68 |
typedef F Flow; |
68 | 69 |
/// The cost type of the algorithm |
69 | 70 |
typedef C Cost; |
70 | 71 |
/// The type of the flow map |
71 | 72 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
72 | 73 |
/// The type of the potential map |
73 | 74 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
74 | 75 |
|
75 | 76 |
public: |
76 | 77 |
|
77 | 78 |
/// \brief Enum type for selecting the pivot rule. |
78 | 79 |
/// |
79 | 80 |
/// Enum type for selecting the pivot rule for the \ref run() |
80 | 81 |
/// function. |
81 | 82 |
/// |
82 | 83 |
/// \ref NetworkSimplex provides five different pivot rule |
83 | 84 |
/// implementations that significantly affect the running time |
84 | 85 |
/// of the algorithm. |
85 | 86 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
86 | 87 |
/// proved to be the most efficient and the most robust on various |
87 | 88 |
/// test inputs according to our benchmark tests. |
88 | 89 |
/// However another pivot rule can be selected using the \ref run() |
89 | 90 |
/// function with the proper parameter. |
90 | 91 |
enum PivotRule { |
91 | 92 |
|
92 | 93 |
/// The First Eligible pivot rule. |
93 | 94 |
/// The next eligible arc is selected in a wraparound fashion |
94 | 95 |
/// in every iteration. |
95 | 96 |
FIRST_ELIGIBLE, |
96 | 97 |
|
97 | 98 |
/// The Best Eligible pivot rule. |
98 | 99 |
/// The best eligible arc is selected in every iteration. |
99 | 100 |
BEST_ELIGIBLE, |
100 | 101 |
|
101 | 102 |
/// The Block Search pivot rule. |
102 | 103 |
/// A specified number of arcs are examined in every iteration |
103 | 104 |
/// in a wraparound fashion and the best eligible arc is selected |
104 | 105 |
/// from this block. |
105 | 106 |
BLOCK_SEARCH, |
... | ... |
@@ -999,163 +1000,177 @@ |
999 | 1000 |
|
1000 | 1001 |
// Initialize node related data |
1001 | 1002 |
bool valid_supply = true; |
1002 | 1003 |
if (!_pstsup && !_psupply) { |
1003 | 1004 |
_pstsup = true; |
1004 | 1005 |
_psource = _ptarget = NodeIt(_graph); |
1005 | 1006 |
_pstflow = 0; |
1006 | 1007 |
} |
1007 | 1008 |
if (_psupply) { |
1008 | 1009 |
Flow sum = 0; |
1009 | 1010 |
int i = 0; |
1010 | 1011 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1011 | 1012 |
_node_id[n] = i; |
1012 | 1013 |
_supply[i] = (*_psupply)[n]; |
1013 | 1014 |
sum += _supply[i]; |
1014 | 1015 |
} |
1015 | 1016 |
valid_supply = (sum == 0); |
1016 | 1017 |
} else { |
1017 | 1018 |
int i = 0; |
1018 | 1019 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1019 | 1020 |
_node_id[n] = i; |
1020 | 1021 |
_supply[i] = 0; |
1021 | 1022 |
} |
1022 | 1023 |
_supply[_node_id[_psource]] = _pstflow; |
1023 | 1024 |
_supply[_node_id[_ptarget]] = -_pstflow; |
1024 | 1025 |
} |
1025 | 1026 |
if (!valid_supply) return false; |
1026 | 1027 |
|
1027 | 1028 |
// Set data for the artificial root node |
1028 | 1029 |
_root = _node_num; |
1029 | 1030 |
_parent[_root] = -1; |
1030 | 1031 |
_pred[_root] = -1; |
1031 | 1032 |
_thread[_root] = 0; |
1032 | 1033 |
_rev_thread[0] = _root; |
1033 | 1034 |
_succ_num[_root] = all_node_num; |
1034 | 1035 |
_last_succ[_root] = _root - 1; |
1035 | 1036 |
_supply[_root] = 0; |
1036 | 1037 |
_pi[_root] = 0; |
1037 | 1038 |
|
1038 | 1039 |
// Store the arcs in a mixed order |
1039 | 1040 |
int k = std::max(int(sqrt(_arc_num)), 10); |
1040 | 1041 |
int i = 0; |
1041 | 1042 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1042 | 1043 |
_arc_ref[i] = e; |
1043 | 1044 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
1044 | 1045 |
} |
1045 | 1046 |
|
1046 | 1047 |
// Initialize arc maps |
1047 |
Flow max_cap = std::numeric_limits<Flow>::max(); |
|
1048 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|
1048 |
Flow inf_cap = |
|
1049 |
std::numeric_limits<Flow>::has_infinity ? |
|
1050 |
std::numeric_limits<Flow>::infinity() : |
|
1051 |
std::numeric_limits<Flow>::max(); |
|
1049 | 1052 |
if (_pupper && _pcost) { |
1050 | 1053 |
for (int i = 0; i != _arc_num; ++i) { |
1051 | 1054 |
Arc e = _arc_ref[i]; |
1052 | 1055 |
_source[i] = _node_id[_graph.source(e)]; |
1053 | 1056 |
_target[i] = _node_id[_graph.target(e)]; |
1054 | 1057 |
_cap[i] = (*_pupper)[e]; |
1055 | 1058 |
_cost[i] = (*_pcost)[e]; |
1056 | 1059 |
_flow[i] = 0; |
1057 | 1060 |
_state[i] = STATE_LOWER; |
1058 | 1061 |
} |
1059 | 1062 |
} else { |
1060 | 1063 |
for (int i = 0; i != _arc_num; ++i) { |
1061 | 1064 |
Arc e = _arc_ref[i]; |
1062 | 1065 |
_source[i] = _node_id[_graph.source(e)]; |
1063 | 1066 |
_target[i] = _node_id[_graph.target(e)]; |
1064 | 1067 |
_flow[i] = 0; |
1065 | 1068 |
_state[i] = STATE_LOWER; |
1066 | 1069 |
} |
1067 | 1070 |
if (_pupper) { |
1068 | 1071 |
for (int i = 0; i != _arc_num; ++i) |
1069 | 1072 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
1070 | 1073 |
} else { |
1071 | 1074 |
for (int i = 0; i != _arc_num; ++i) |
1072 |
_cap[i] = |
|
1075 |
_cap[i] = inf_cap; |
|
1073 | 1076 |
} |
1074 | 1077 |
if (_pcost) { |
1075 | 1078 |
for (int i = 0; i != _arc_num; ++i) |
1076 | 1079 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
1077 | 1080 |
} else { |
1078 | 1081 |
for (int i = 0; i != _arc_num; ++i) |
1079 | 1082 |
_cost[i] = 1; |
1080 | 1083 |
} |
1081 | 1084 |
} |
1085 |
|
|
1086 |
// Initialize artifical cost |
|
1087 |
Cost art_cost; |
|
1088 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1089 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1090 |
} else { |
|
1091 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1092 |
for (int i = 0; i != _arc_num; ++i) { |
|
1093 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1094 |
} |
|
1095 |
art_cost = (art_cost + 1) * _node_num; |
|
1096 |
} |
|
1082 | 1097 |
|
1083 | 1098 |
// Remove non-zero lower bounds |
1084 | 1099 |
if (_plower) { |
1085 | 1100 |
for (int i = 0; i != _arc_num; ++i) { |
1086 | 1101 |
Flow c = (*_plower)[_arc_ref[i]]; |
1087 | 1102 |
if (c != 0) { |
1088 | 1103 |
_cap[i] -= c; |
1089 | 1104 |
_supply[_source[i]] -= c; |
1090 | 1105 |
_supply[_target[i]] += c; |
1091 | 1106 |
} |
1092 | 1107 |
} |
1093 | 1108 |
} |
1094 | 1109 |
|
1095 | 1110 |
// Add artificial arcs and initialize the spanning tree data structure |
1096 | 1111 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1097 | 1112 |
_thread[u] = u + 1; |
1098 | 1113 |
_rev_thread[u + 1] = u; |
1099 | 1114 |
_succ_num[u] = 1; |
1100 | 1115 |
_last_succ[u] = u; |
1101 | 1116 |
_parent[u] = _root; |
1102 | 1117 |
_pred[u] = e; |
1103 |
_cost[e] = max_cost; |
|
1104 |
_cap[e] = max_cap; |
|
1118 |
_cost[e] = art_cost; |
|
1119 |
_cap[e] = inf_cap; |
|
1105 | 1120 |
_state[e] = STATE_TREE; |
1106 | 1121 |
if (_supply[u] >= 0) { |
1107 | 1122 |
_flow[e] = _supply[u]; |
1108 | 1123 |
_forward[u] = true; |
1109 |
_pi[u] = - |
|
1124 |
_pi[u] = -art_cost; |
|
1110 | 1125 |
} else { |
1111 | 1126 |
_flow[e] = -_supply[u]; |
1112 | 1127 |
_forward[u] = false; |
1113 |
_pi[u] = |
|
1128 |
_pi[u] = art_cost; |
|
1114 | 1129 |
} |
1115 | 1130 |
} |
1116 | 1131 |
|
1117 | 1132 |
return true; |
1118 | 1133 |
} |
1119 | 1134 |
|
1120 | 1135 |
// Find the join node |
1121 | 1136 |
void findJoinNode() { |
1122 | 1137 |
int u = _source[in_arc]; |
1123 | 1138 |
int v = _target[in_arc]; |
1124 | 1139 |
while (u != v) { |
1125 | 1140 |
if (_succ_num[u] < _succ_num[v]) { |
1126 | 1141 |
u = _parent[u]; |
1127 | 1142 |
} else { |
1128 | 1143 |
v = _parent[v]; |
1129 | 1144 |
} |
1130 | 1145 |
} |
1131 | 1146 |
join = u; |
1132 | 1147 |
} |
1133 | 1148 |
|
1134 | 1149 |
// Find the leaving arc of the cycle and returns true if the |
1135 | 1150 |
// leaving arc is not the same as the entering arc |
1136 | 1151 |
bool findLeavingArc() { |
1137 | 1152 |
// Initialize first and second nodes according to the direction |
1138 | 1153 |
// of the cycle |
1139 | 1154 |
if (_state[in_arc] == STATE_LOWER) { |
1140 | 1155 |
first = _source[in_arc]; |
1141 | 1156 |
second = _target[in_arc]; |
1142 | 1157 |
} else { |
1143 | 1158 |
first = _target[in_arc]; |
1144 | 1159 |
second = _source[in_arc]; |
1145 | 1160 |
} |
1146 | 1161 |
delta = _cap[in_arc]; |
1147 | 1162 |
int result = 0; |
1148 | 1163 |
Flow d; |
1149 | 1164 |
int e; |
1150 | 1165 |
|
1151 | 1166 |
// Search the cycle along the path form the first node to the root |
1152 | 1167 |
for (int u = first; u != join; u = _parent[u]) { |
1153 | 1168 |
e = _pred[u]; |
1154 | 1169 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
1155 | 1170 |
if (d < delta) { |
1156 | 1171 |
delta = d; |
1157 | 1172 |
u_out = u; |
1158 | 1173 |
result = 1; |
1159 | 1174 |
} |
1160 | 1175 |
} |
1161 | 1176 |
// Search the cycle along the path form the second node to the root |
... | ... |
@@ -1282,112 +1297,100 @@ |
1282 | 1297 |
} |
1283 | 1298 |
_pred[u_in] = in_arc; |
1284 | 1299 |
_forward[u_in] = (u_in == _source[in_arc]); |
1285 | 1300 |
_succ_num[u_in] = old_succ_num; |
1286 | 1301 |
|
1287 | 1302 |
// Set limits for updating _last_succ form v_in and v_out |
1288 | 1303 |
// towards the root |
1289 | 1304 |
int up_limit_in = -1; |
1290 | 1305 |
int up_limit_out = -1; |
1291 | 1306 |
if (_last_succ[join] == v_in) { |
1292 | 1307 |
up_limit_out = join; |
1293 | 1308 |
} else { |
1294 | 1309 |
up_limit_in = join; |
1295 | 1310 |
} |
1296 | 1311 |
|
1297 | 1312 |
// Update _last_succ from v_in towards the root |
1298 | 1313 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
1299 | 1314 |
u = _parent[u]) { |
1300 | 1315 |
_last_succ[u] = _last_succ[u_out]; |
1301 | 1316 |
} |
1302 | 1317 |
// Update _last_succ from v_out towards the root |
1303 | 1318 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1304 | 1319 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1305 | 1320 |
u = _parent[u]) { |
1306 | 1321 |
_last_succ[u] = old_rev_thread; |
1307 | 1322 |
} |
1308 | 1323 |
} else { |
1309 | 1324 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1310 | 1325 |
u = _parent[u]) { |
1311 | 1326 |
_last_succ[u] = _last_succ[u_out]; |
1312 | 1327 |
} |
1313 | 1328 |
} |
1314 | 1329 |
|
1315 | 1330 |
// Update _succ_num from v_in to join |
1316 | 1331 |
for (u = v_in; u != join; u = _parent[u]) { |
1317 | 1332 |
_succ_num[u] += old_succ_num; |
1318 | 1333 |
} |
1319 | 1334 |
// Update _succ_num from v_out to join |
1320 | 1335 |
for (u = v_out; u != join; u = _parent[u]) { |
1321 | 1336 |
_succ_num[u] -= old_succ_num; |
1322 | 1337 |
} |
1323 | 1338 |
} |
1324 | 1339 |
|
1325 | 1340 |
// Update potentials |
1326 | 1341 |
void updatePotential() { |
1327 | 1342 |
Cost sigma = _forward[u_in] ? |
1328 | 1343 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1329 | 1344 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1330 |
if (_succ_num[u_in] > _node_num / 2) { |
|
1331 |
// Update in the upper subtree (which contains the root) |
|
1332 |
int before = _rev_thread[u_in]; |
|
1333 |
int after = _thread[_last_succ[u_in]]; |
|
1334 |
_thread[before] = after; |
|
1335 |
_pi[_root] -= sigma; |
|
1336 |
for (int u = _thread[_root]; u != _root; u = _thread[u]) { |
|
1337 |
_pi[u] -= sigma; |
|
1338 |
} |
|
1339 |
_thread[before] = u_in; |
|
1340 |
} else { |
|
1341 |
// Update in the lower subtree (which has been moved) |
|
1342 |
int end = _thread[_last_succ[u_in]]; |
|
1343 |
for (int u = u_in; u != end; u = _thread[u]) { |
|
1344 |
_pi[u] += sigma; |
|
1345 |
} |
|
1345 |
// Update potentials in the subtree, which has been moved |
|
1346 |
int end = _thread[_last_succ[u_in]]; |
|
1347 |
for (int u = u_in; u != end; u = _thread[u]) { |
|
1348 |
_pi[u] += sigma; |
|
1346 | 1349 |
} |
1347 | 1350 |
} |
1348 | 1351 |
|
1349 | 1352 |
// Execute the algorithm |
1350 | 1353 |
bool start(PivotRule pivot_rule) { |
1351 | 1354 |
// Select the pivot rule implementation |
1352 | 1355 |
switch (pivot_rule) { |
1353 | 1356 |
case FIRST_ELIGIBLE: |
1354 | 1357 |
return start<FirstEligiblePivotRule>(); |
1355 | 1358 |
case BEST_ELIGIBLE: |
1356 | 1359 |
return start<BestEligiblePivotRule>(); |
1357 | 1360 |
case BLOCK_SEARCH: |
1358 | 1361 |
return start<BlockSearchPivotRule>(); |
1359 | 1362 |
case CANDIDATE_LIST: |
1360 | 1363 |
return start<CandidateListPivotRule>(); |
1361 | 1364 |
case ALTERING_LIST: |
1362 | 1365 |
return start<AlteringListPivotRule>(); |
1363 | 1366 |
} |
1364 | 1367 |
return false; |
1365 | 1368 |
} |
1366 | 1369 |
|
1367 | 1370 |
template <typename PivotRuleImpl> |
1368 | 1371 |
bool start() { |
1369 | 1372 |
PivotRuleImpl pivot(*this); |
1370 | 1373 |
|
1371 | 1374 |
// Execute the Network Simplex algorithm |
1372 | 1375 |
while (pivot.findEnteringArc()) { |
1373 | 1376 |
findJoinNode(); |
1374 | 1377 |
bool change = findLeavingArc(); |
1375 | 1378 |
changeFlow(change); |
1376 | 1379 |
if (change) { |
1377 | 1380 |
updateTreeStructure(); |
1378 | 1381 |
updatePotential(); |
1379 | 1382 |
} |
1380 | 1383 |
} |
1381 | 1384 |
|
1382 | 1385 |
// Check if the flow amount equals zero on all the artificial arcs |
1383 | 1386 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) { |
1384 | 1387 |
if (_flow[e] > 0) return false; |
1385 | 1388 |
} |
1386 | 1389 |
|
1387 | 1390 |
// Copy flow values to _flow_map |
1388 | 1391 |
if (_plower) { |
1389 | 1392 |
for (int i = 0; i != _arc_num; ++i) { |
1390 | 1393 |
Arc e = _arc_ref[i]; |
1391 | 1394 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
1392 | 1395 |
} |
1393 | 1396 |
} else { |
0 comments (0 inline)