1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
44 | 44 |
/// This algorithm is a specialized version of the linear programming |
45 | 45 |
/// simplex method directly for the minimum cost flow problem. |
46 | 46 |
/// It is one of the most efficient solution methods. |
47 | 47 |
/// |
48 | 48 |
/// In general this class is the fastest implementation available |
49 | 49 |
/// in LEMON for the minimum cost flow problem. |
50 | 50 |
/// |
51 | 51 |
/// \tparam GR The digraph type the algorithm runs on. |
52 | 52 |
/// \tparam F The value type used for flow amounts, capacity bounds |
53 | 53 |
/// and supply values in the algorithm. By default it is \c int. |
54 | 54 |
/// \tparam C The value type used for costs and potentials in the |
55 | 55 |
/// algorithm. By default it is the same as \c F. |
56 | 56 |
/// |
57 |
/// \warning Both value types must be signed |
|
57 |
/// \warning Both value types must be signed and all input data must |
|
58 |
/// be integer. |
|
58 | 59 |
/// |
59 | 60 |
/// \note %NetworkSimplex provides five different pivot rule |
60 | 61 |
/// implementations. For more information see \ref PivotRule. |
61 | 62 |
template <typename GR, typename F = int, typename C = F> |
62 | 63 |
class NetworkSimplex |
63 | 64 |
{ |
64 | 65 |
public: |
65 | 66 |
|
66 | 67 |
/// The flow type of the algorithm |
67 | 68 |
typedef F Flow; |
68 | 69 |
/// The cost type of the algorithm |
69 | 70 |
typedef C Cost; |
70 | 71 |
/// The type of the flow map |
71 | 72 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
72 | 73 |
/// The type of the potential map |
73 | 74 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
74 | 75 |
|
75 | 76 |
public: |
76 | 77 |
|
77 | 78 |
/// \brief Enum type for selecting the pivot rule. |
78 | 79 |
/// |
79 | 80 |
/// Enum type for selecting the pivot rule for the \ref run() |
80 | 81 |
/// function. |
81 | 82 |
/// |
82 | 83 |
/// \ref NetworkSimplex provides five different pivot rule |
83 | 84 |
/// implementations that significantly affect the running time |
84 | 85 |
/// of the algorithm. |
85 | 86 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
86 | 87 |
/// proved to be the most efficient and the most robust on various |
87 | 88 |
/// test inputs according to our benchmark tests. |
88 | 89 |
/// However another pivot rule can be selected using the \ref run() |
89 | 90 |
/// function with the proper parameter. |
90 | 91 |
enum PivotRule { |
91 | 92 |
|
92 | 93 |
/// The First Eligible pivot rule. |
93 | 94 |
/// The next eligible arc is selected in a wraparound fashion |
94 | 95 |
/// in every iteration. |
95 | 96 |
FIRST_ELIGIBLE, |
96 | 97 |
|
97 | 98 |
/// The Best Eligible pivot rule. |
98 | 99 |
/// The best eligible arc is selected in every iteration. |
99 | 100 |
BEST_ELIGIBLE, |
100 | 101 |
|
101 | 102 |
/// The Block Search pivot rule. |
102 | 103 |
/// A specified number of arcs are examined in every iteration |
103 | 104 |
/// in a wraparound fashion and the best eligible arc is selected |
104 | 105 |
/// from this block. |
105 | 106 |
BLOCK_SEARCH, |
106 | 107 |
|
107 | 108 |
/// The Candidate List pivot rule. |
108 | 109 |
/// In a major iteration a candidate list is built from eligible arcs |
109 | 110 |
/// in a wraparound fashion and in the following minor iterations |
110 | 111 |
/// the best eligible arc is selected from this list. |
111 | 112 |
CANDIDATE_LIST, |
112 | 113 |
|
113 | 114 |
/// The Altering Candidate List pivot rule. |
114 | 115 |
/// It is a modified version of the Candidate List method. |
115 | 116 |
/// It keeps only the several best eligible arcs from the former |
116 | 117 |
/// candidate list and extends this list in every iteration. |
117 | 118 |
ALTERING_LIST |
118 | 119 |
}; |
119 | 120 |
|
120 | 121 |
private: |
121 | 122 |
|
122 | 123 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
123 | 124 |
|
124 | 125 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
125 | 126 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
126 | 127 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
127 | 128 |
|
128 | 129 |
typedef std::vector<Arc> ArcVector; |
129 | 130 |
typedef std::vector<Node> NodeVector; |
130 | 131 |
typedef std::vector<int> IntVector; |
131 | 132 |
typedef std::vector<bool> BoolVector; |
132 | 133 |
typedef std::vector<Flow> FlowVector; |
133 | 134 |
typedef std::vector<Cost> CostVector; |
134 | 135 |
|
135 | 136 |
// State constants for arcs |
136 | 137 |
enum ArcStateEnum { |
137 | 138 |
STATE_UPPER = -1, |
138 | 139 |
STATE_TREE = 0, |
139 | 140 |
STATE_LOWER = 1 |
140 | 141 |
}; |
141 | 142 |
|
142 | 143 |
private: |
143 | 144 |
|
144 | 145 |
// Data related to the underlying digraph |
145 | 146 |
const GR &_graph; |
146 | 147 |
int _node_num; |
147 | 148 |
int _arc_num; |
148 | 149 |
|
149 | 150 |
// Parameters of the problem |
150 | 151 |
FlowArcMap *_plower; |
151 | 152 |
FlowArcMap *_pupper; |
152 | 153 |
CostArcMap *_pcost; |
153 | 154 |
FlowNodeMap *_psupply; |
... | ... |
@@ -951,259 +952,273 @@ |
951 | 952 |
/// \ref min_cost_flow "minimum cost flow" problem. |
952 | 953 |
/// |
953 | 954 |
/// \pre \ref run() must be called before using this function. |
954 | 955 |
const PotentialMap& potentialMap() const { |
955 | 956 |
return *_potential_map; |
956 | 957 |
} |
957 | 958 |
|
958 | 959 |
/// @} |
959 | 960 |
|
960 | 961 |
private: |
961 | 962 |
|
962 | 963 |
// Initialize internal data structures |
963 | 964 |
bool init() { |
964 | 965 |
// Initialize result maps |
965 | 966 |
if (!_flow_map) { |
966 | 967 |
_flow_map = new FlowMap(_graph); |
967 | 968 |
_local_flow = true; |
968 | 969 |
} |
969 | 970 |
if (!_potential_map) { |
970 | 971 |
_potential_map = new PotentialMap(_graph); |
971 | 972 |
_local_potential = true; |
972 | 973 |
} |
973 | 974 |
|
974 | 975 |
// Initialize vectors |
975 | 976 |
_node_num = countNodes(_graph); |
976 | 977 |
_arc_num = countArcs(_graph); |
977 | 978 |
int all_node_num = _node_num + 1; |
978 | 979 |
int all_arc_num = _arc_num + _node_num; |
979 | 980 |
if (_node_num == 0) return false; |
980 | 981 |
|
981 | 982 |
_arc_ref.resize(_arc_num); |
982 | 983 |
_source.resize(all_arc_num); |
983 | 984 |
_target.resize(all_arc_num); |
984 | 985 |
|
985 | 986 |
_cap.resize(all_arc_num); |
986 | 987 |
_cost.resize(all_arc_num); |
987 | 988 |
_supply.resize(all_node_num); |
988 | 989 |
_flow.resize(all_arc_num); |
989 | 990 |
_pi.resize(all_node_num); |
990 | 991 |
|
991 | 992 |
_parent.resize(all_node_num); |
992 | 993 |
_pred.resize(all_node_num); |
993 | 994 |
_forward.resize(all_node_num); |
994 | 995 |
_thread.resize(all_node_num); |
995 | 996 |
_rev_thread.resize(all_node_num); |
996 | 997 |
_succ_num.resize(all_node_num); |
997 | 998 |
_last_succ.resize(all_node_num); |
998 | 999 |
_state.resize(all_arc_num); |
999 | 1000 |
|
1000 | 1001 |
// Initialize node related data |
1001 | 1002 |
bool valid_supply = true; |
1002 | 1003 |
if (!_pstsup && !_psupply) { |
1003 | 1004 |
_pstsup = true; |
1004 | 1005 |
_psource = _ptarget = NodeIt(_graph); |
1005 | 1006 |
_pstflow = 0; |
1006 | 1007 |
} |
1007 | 1008 |
if (_psupply) { |
1008 | 1009 |
Flow sum = 0; |
1009 | 1010 |
int i = 0; |
1010 | 1011 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1011 | 1012 |
_node_id[n] = i; |
1012 | 1013 |
_supply[i] = (*_psupply)[n]; |
1013 | 1014 |
sum += _supply[i]; |
1014 | 1015 |
} |
1015 | 1016 |
valid_supply = (sum == 0); |
1016 | 1017 |
} else { |
1017 | 1018 |
int i = 0; |
1018 | 1019 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
1019 | 1020 |
_node_id[n] = i; |
1020 | 1021 |
_supply[i] = 0; |
1021 | 1022 |
} |
1022 | 1023 |
_supply[_node_id[_psource]] = _pstflow; |
1023 | 1024 |
_supply[_node_id[_ptarget]] = -_pstflow; |
1024 | 1025 |
} |
1025 | 1026 |
if (!valid_supply) return false; |
1026 | 1027 |
|
1027 | 1028 |
// Set data for the artificial root node |
1028 | 1029 |
_root = _node_num; |
1029 | 1030 |
_parent[_root] = -1; |
1030 | 1031 |
_pred[_root] = -1; |
1031 | 1032 |
_thread[_root] = 0; |
1032 | 1033 |
_rev_thread[0] = _root; |
1033 | 1034 |
_succ_num[_root] = all_node_num; |
1034 | 1035 |
_last_succ[_root] = _root - 1; |
1035 | 1036 |
_supply[_root] = 0; |
1036 | 1037 |
_pi[_root] = 0; |
1037 | 1038 |
|
1038 | 1039 |
// Store the arcs in a mixed order |
1039 | 1040 |
int k = std::max(int(sqrt(_arc_num)), 10); |
1040 | 1041 |
int i = 0; |
1041 | 1042 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1042 | 1043 |
_arc_ref[i] = e; |
1043 | 1044 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
1044 | 1045 |
} |
1045 | 1046 |
|
1046 | 1047 |
// Initialize arc maps |
1047 |
Flow max_cap = std::numeric_limits<Flow>::max(); |
|
1048 |
Cost max_cost = std::numeric_limits<Cost>::max() / 4; |
|
1048 |
Flow inf_cap = |
|
1049 |
std::numeric_limits<Flow>::has_infinity ? |
|
1050 |
std::numeric_limits<Flow>::infinity() : |
|
1051 |
std::numeric_limits<Flow>::max(); |
|
1049 | 1052 |
if (_pupper && _pcost) { |
1050 | 1053 |
for (int i = 0; i != _arc_num; ++i) { |
1051 | 1054 |
Arc e = _arc_ref[i]; |
1052 | 1055 |
_source[i] = _node_id[_graph.source(e)]; |
1053 | 1056 |
_target[i] = _node_id[_graph.target(e)]; |
1054 | 1057 |
_cap[i] = (*_pupper)[e]; |
1055 | 1058 |
_cost[i] = (*_pcost)[e]; |
1056 | 1059 |
_flow[i] = 0; |
1057 | 1060 |
_state[i] = STATE_LOWER; |
1058 | 1061 |
} |
1059 | 1062 |
} else { |
1060 | 1063 |
for (int i = 0; i != _arc_num; ++i) { |
1061 | 1064 |
Arc e = _arc_ref[i]; |
1062 | 1065 |
_source[i] = _node_id[_graph.source(e)]; |
1063 | 1066 |
_target[i] = _node_id[_graph.target(e)]; |
1064 | 1067 |
_flow[i] = 0; |
1065 | 1068 |
_state[i] = STATE_LOWER; |
1066 | 1069 |
} |
1067 | 1070 |
if (_pupper) { |
1068 | 1071 |
for (int i = 0; i != _arc_num; ++i) |
1069 | 1072 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
1070 | 1073 |
} else { |
1071 | 1074 |
for (int i = 0; i != _arc_num; ++i) |
1072 |
_cap[i] = |
|
1075 |
_cap[i] = inf_cap; |
|
1073 | 1076 |
} |
1074 | 1077 |
if (_pcost) { |
1075 | 1078 |
for (int i = 0; i != _arc_num; ++i) |
1076 | 1079 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
1077 | 1080 |
} else { |
1078 | 1081 |
for (int i = 0; i != _arc_num; ++i) |
1079 | 1082 |
_cost[i] = 1; |
1080 | 1083 |
} |
1081 | 1084 |
} |
1082 | 1085 |
|
1086 |
// Initialize artifical cost |
|
1087 |
Cost art_cost; |
|
1088 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1089 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1090 |
} else { |
|
1091 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1092 |
for (int i = 0; i != _arc_num; ++i) { |
|
1093 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1094 |
} |
|
1095 |
art_cost = (art_cost + 1) * _node_num; |
|
1096 |
} |
|
1097 |
|
|
1083 | 1098 |
// Remove non-zero lower bounds |
1084 | 1099 |
if (_plower) { |
1085 | 1100 |
for (int i = 0; i != _arc_num; ++i) { |
1086 | 1101 |
Flow c = (*_plower)[_arc_ref[i]]; |
1087 | 1102 |
if (c != 0) { |
1088 | 1103 |
_cap[i] -= c; |
1089 | 1104 |
_supply[_source[i]] -= c; |
1090 | 1105 |
_supply[_target[i]] += c; |
1091 | 1106 |
} |
1092 | 1107 |
} |
1093 | 1108 |
} |
1094 | 1109 |
|
1095 | 1110 |
// Add artificial arcs and initialize the spanning tree data structure |
1096 | 1111 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1097 | 1112 |
_thread[u] = u + 1; |
1098 | 1113 |
_rev_thread[u + 1] = u; |
1099 | 1114 |
_succ_num[u] = 1; |
1100 | 1115 |
_last_succ[u] = u; |
1101 | 1116 |
_parent[u] = _root; |
1102 | 1117 |
_pred[u] = e; |
1103 |
_cost[e] = max_cost; |
|
1104 |
_cap[e] = max_cap; |
|
1118 |
_cost[e] = art_cost; |
|
1119 |
_cap[e] = inf_cap; |
|
1105 | 1120 |
_state[e] = STATE_TREE; |
1106 | 1121 |
if (_supply[u] >= 0) { |
1107 | 1122 |
_flow[e] = _supply[u]; |
1108 | 1123 |
_forward[u] = true; |
1109 |
_pi[u] = - |
|
1124 |
_pi[u] = -art_cost; |
|
1110 | 1125 |
} else { |
1111 | 1126 |
_flow[e] = -_supply[u]; |
1112 | 1127 |
_forward[u] = false; |
1113 |
_pi[u] = |
|
1128 |
_pi[u] = art_cost; |
|
1114 | 1129 |
} |
1115 | 1130 |
} |
1116 | 1131 |
|
1117 | 1132 |
return true; |
1118 | 1133 |
} |
1119 | 1134 |
|
1120 | 1135 |
// Find the join node |
1121 | 1136 |
void findJoinNode() { |
1122 | 1137 |
int u = _source[in_arc]; |
1123 | 1138 |
int v = _target[in_arc]; |
1124 | 1139 |
while (u != v) { |
1125 | 1140 |
if (_succ_num[u] < _succ_num[v]) { |
1126 | 1141 |
u = _parent[u]; |
1127 | 1142 |
} else { |
1128 | 1143 |
v = _parent[v]; |
1129 | 1144 |
} |
1130 | 1145 |
} |
1131 | 1146 |
join = u; |
1132 | 1147 |
} |
1133 | 1148 |
|
1134 | 1149 |
// Find the leaving arc of the cycle and returns true if the |
1135 | 1150 |
// leaving arc is not the same as the entering arc |
1136 | 1151 |
bool findLeavingArc() { |
1137 | 1152 |
// Initialize first and second nodes according to the direction |
1138 | 1153 |
// of the cycle |
1139 | 1154 |
if (_state[in_arc] == STATE_LOWER) { |
1140 | 1155 |
first = _source[in_arc]; |
1141 | 1156 |
second = _target[in_arc]; |
1142 | 1157 |
} else { |
1143 | 1158 |
first = _target[in_arc]; |
1144 | 1159 |
second = _source[in_arc]; |
1145 | 1160 |
} |
1146 | 1161 |
delta = _cap[in_arc]; |
1147 | 1162 |
int result = 0; |
1148 | 1163 |
Flow d; |
1149 | 1164 |
int e; |
1150 | 1165 |
|
1151 | 1166 |
// Search the cycle along the path form the first node to the root |
1152 | 1167 |
for (int u = first; u != join; u = _parent[u]) { |
1153 | 1168 |
e = _pred[u]; |
1154 | 1169 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
1155 | 1170 |
if (d < delta) { |
1156 | 1171 |
delta = d; |
1157 | 1172 |
u_out = u; |
1158 | 1173 |
result = 1; |
1159 | 1174 |
} |
1160 | 1175 |
} |
1161 | 1176 |
// Search the cycle along the path form the second node to the root |
1162 | 1177 |
for (int u = second; u != join; u = _parent[u]) { |
1163 | 1178 |
e = _pred[u]; |
1164 | 1179 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
1165 | 1180 |
if (d <= delta) { |
1166 | 1181 |
delta = d; |
1167 | 1182 |
u_out = u; |
1168 | 1183 |
result = 2; |
1169 | 1184 |
} |
1170 | 1185 |
} |
1171 | 1186 |
|
1172 | 1187 |
if (result == 1) { |
1173 | 1188 |
u_in = first; |
1174 | 1189 |
v_in = second; |
1175 | 1190 |
} else { |
1176 | 1191 |
u_in = second; |
1177 | 1192 |
v_in = first; |
1178 | 1193 |
} |
1179 | 1194 |
return result != 0; |
1180 | 1195 |
} |
1181 | 1196 |
|
1182 | 1197 |
// Change _flow and _state vectors |
1183 | 1198 |
void changeFlow(bool change) { |
1184 | 1199 |
// Augment along the cycle |
1185 | 1200 |
if (delta > 0) { |
1186 | 1201 |
Flow val = _state[in_arc] * delta; |
1187 | 1202 |
_flow[in_arc] += val; |
1188 | 1203 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1189 | 1204 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1190 | 1205 |
} |
1191 | 1206 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1192 | 1207 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
1193 | 1208 |
} |
1194 | 1209 |
} |
1195 | 1210 |
// Update the state of the entering and leaving arcs |
1196 | 1211 |
if (change) { |
1197 | 1212 |
_state[in_arc] = STATE_TREE; |
1198 | 1213 |
_state[_pred[u_out]] = |
1199 | 1214 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
1200 | 1215 |
} else { |
1201 | 1216 |
_state[in_arc] = -_state[in_arc]; |
1202 | 1217 |
} |
1203 | 1218 |
} |
1204 | 1219 |
|
1205 | 1220 |
// Update the tree structure |
1206 | 1221 |
void updateTreeStructure() { |
1207 | 1222 |
int u, w; |
1208 | 1223 |
int old_rev_thread = _rev_thread[u_out]; |
1209 | 1224 |
int old_succ_num = _succ_num[u_out]; |
... | ... |
@@ -1234,179 +1249,167 @@ |
1234 | 1249 |
_dirty_revs.push_back(u); |
1235 | 1250 |
|
1236 | 1251 |
// Remove the subtree of stem from the thread list |
1237 | 1252 |
w = _rev_thread[stem]; |
1238 | 1253 |
_thread[w] = right; |
1239 | 1254 |
_rev_thread[right] = w; |
1240 | 1255 |
|
1241 | 1256 |
// Change the parent node and shift stem nodes |
1242 | 1257 |
_parent[stem] = par_stem; |
1243 | 1258 |
par_stem = stem; |
1244 | 1259 |
stem = new_stem; |
1245 | 1260 |
|
1246 | 1261 |
// Update u and right |
1247 | 1262 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
1248 | 1263 |
_rev_thread[par_stem] : _last_succ[stem]; |
1249 | 1264 |
right = _thread[u]; |
1250 | 1265 |
} |
1251 | 1266 |
_parent[u_out] = par_stem; |
1252 | 1267 |
_thread[u] = last; |
1253 | 1268 |
_rev_thread[last] = u; |
1254 | 1269 |
_last_succ[u_out] = u; |
1255 | 1270 |
|
1256 | 1271 |
// Remove the subtree of u_out from the thread list except for |
1257 | 1272 |
// the case when old_rev_thread equals to v_in |
1258 | 1273 |
// (it also means that join and v_out coincide) |
1259 | 1274 |
if (old_rev_thread != v_in) { |
1260 | 1275 |
_thread[old_rev_thread] = right; |
1261 | 1276 |
_rev_thread[right] = old_rev_thread; |
1262 | 1277 |
} |
1263 | 1278 |
|
1264 | 1279 |
// Update _rev_thread using the new _thread values |
1265 | 1280 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
1266 | 1281 |
u = _dirty_revs[i]; |
1267 | 1282 |
_rev_thread[_thread[u]] = u; |
1268 | 1283 |
} |
1269 | 1284 |
|
1270 | 1285 |
// Update _pred, _forward, _last_succ and _succ_num for the |
1271 | 1286 |
// stem nodes from u_out to u_in |
1272 | 1287 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
1273 | 1288 |
u = u_out; |
1274 | 1289 |
while (u != u_in) { |
1275 | 1290 |
w = _parent[u]; |
1276 | 1291 |
_pred[u] = _pred[w]; |
1277 | 1292 |
_forward[u] = !_forward[w]; |
1278 | 1293 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
1279 | 1294 |
_succ_num[u] = tmp_sc; |
1280 | 1295 |
_last_succ[w] = tmp_ls; |
1281 | 1296 |
u = w; |
1282 | 1297 |
} |
1283 | 1298 |
_pred[u_in] = in_arc; |
1284 | 1299 |
_forward[u_in] = (u_in == _source[in_arc]); |
1285 | 1300 |
_succ_num[u_in] = old_succ_num; |
1286 | 1301 |
|
1287 | 1302 |
// Set limits for updating _last_succ form v_in and v_out |
1288 | 1303 |
// towards the root |
1289 | 1304 |
int up_limit_in = -1; |
1290 | 1305 |
int up_limit_out = -1; |
1291 | 1306 |
if (_last_succ[join] == v_in) { |
1292 | 1307 |
up_limit_out = join; |
1293 | 1308 |
} else { |
1294 | 1309 |
up_limit_in = join; |
1295 | 1310 |
} |
1296 | 1311 |
|
1297 | 1312 |
// Update _last_succ from v_in towards the root |
1298 | 1313 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
1299 | 1314 |
u = _parent[u]) { |
1300 | 1315 |
_last_succ[u] = _last_succ[u_out]; |
1301 | 1316 |
} |
1302 | 1317 |
// Update _last_succ from v_out towards the root |
1303 | 1318 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
1304 | 1319 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1305 | 1320 |
u = _parent[u]) { |
1306 | 1321 |
_last_succ[u] = old_rev_thread; |
1307 | 1322 |
} |
1308 | 1323 |
} else { |
1309 | 1324 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
1310 | 1325 |
u = _parent[u]) { |
1311 | 1326 |
_last_succ[u] = _last_succ[u_out]; |
1312 | 1327 |
} |
1313 | 1328 |
} |
1314 | 1329 |
|
1315 | 1330 |
// Update _succ_num from v_in to join |
1316 | 1331 |
for (u = v_in; u != join; u = _parent[u]) { |
1317 | 1332 |
_succ_num[u] += old_succ_num; |
1318 | 1333 |
} |
1319 | 1334 |
// Update _succ_num from v_out to join |
1320 | 1335 |
for (u = v_out; u != join; u = _parent[u]) { |
1321 | 1336 |
_succ_num[u] -= old_succ_num; |
1322 | 1337 |
} |
1323 | 1338 |
} |
1324 | 1339 |
|
1325 | 1340 |
// Update potentials |
1326 | 1341 |
void updatePotential() { |
1327 | 1342 |
Cost sigma = _forward[u_in] ? |
1328 | 1343 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
1329 | 1344 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
1330 |
if (_succ_num[u_in] > _node_num / 2) { |
|
1331 |
// Update in the upper subtree (which contains the root) |
|
1332 |
int before = _rev_thread[u_in]; |
|
1333 |
int after = _thread[_last_succ[u_in]]; |
|
1334 |
_thread[before] = after; |
|
1335 |
_pi[_root] -= sigma; |
|
1336 |
for (int u = _thread[_root]; u != _root; u = _thread[u]) { |
|
1337 |
_pi[u] -= sigma; |
|
1338 |
} |
|
1339 |
_thread[before] = u_in; |
|
1340 |
} else { |
|
1341 |
// Update in the lower subtree (which has been moved) |
|
1345 |
// Update potentials in the subtree, which has been moved |
|
1342 | 1346 |
int end = _thread[_last_succ[u_in]]; |
1343 | 1347 |
for (int u = u_in; u != end; u = _thread[u]) { |
1344 | 1348 |
_pi[u] += sigma; |
1345 | 1349 |
} |
1346 | 1350 |
} |
1347 |
} |
|
1348 | 1351 |
|
1349 | 1352 |
// Execute the algorithm |
1350 | 1353 |
bool start(PivotRule pivot_rule) { |
1351 | 1354 |
// Select the pivot rule implementation |
1352 | 1355 |
switch (pivot_rule) { |
1353 | 1356 |
case FIRST_ELIGIBLE: |
1354 | 1357 |
return start<FirstEligiblePivotRule>(); |
1355 | 1358 |
case BEST_ELIGIBLE: |
1356 | 1359 |
return start<BestEligiblePivotRule>(); |
1357 | 1360 |
case BLOCK_SEARCH: |
1358 | 1361 |
return start<BlockSearchPivotRule>(); |
1359 | 1362 |
case CANDIDATE_LIST: |
1360 | 1363 |
return start<CandidateListPivotRule>(); |
1361 | 1364 |
case ALTERING_LIST: |
1362 | 1365 |
return start<AlteringListPivotRule>(); |
1363 | 1366 |
} |
1364 | 1367 |
return false; |
1365 | 1368 |
} |
1366 | 1369 |
|
1367 | 1370 |
template <typename PivotRuleImpl> |
1368 | 1371 |
bool start() { |
1369 | 1372 |
PivotRuleImpl pivot(*this); |
1370 | 1373 |
|
1371 | 1374 |
// Execute the Network Simplex algorithm |
1372 | 1375 |
while (pivot.findEnteringArc()) { |
1373 | 1376 |
findJoinNode(); |
1374 | 1377 |
bool change = findLeavingArc(); |
1375 | 1378 |
changeFlow(change); |
1376 | 1379 |
if (change) { |
1377 | 1380 |
updateTreeStructure(); |
1378 | 1381 |
updatePotential(); |
1379 | 1382 |
} |
1380 | 1383 |
} |
1381 | 1384 |
|
1382 | 1385 |
// Check if the flow amount equals zero on all the artificial arcs |
1383 | 1386 |
for (int e = _arc_num; e != _arc_num + _node_num; ++e) { |
1384 | 1387 |
if (_flow[e] > 0) return false; |
1385 | 1388 |
} |
1386 | 1389 |
|
1387 | 1390 |
// Copy flow values to _flow_map |
1388 | 1391 |
if (_plower) { |
1389 | 1392 |
for (int i = 0; i != _arc_num; ++i) { |
1390 | 1393 |
Arc e = _arc_ref[i]; |
1391 | 1394 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
1392 | 1395 |
} |
1393 | 1396 |
} else { |
1394 | 1397 |
for (int i = 0; i != _arc_num; ++i) { |
1395 | 1398 |
_flow_map->set(_arc_ref[i], _flow[i]); |
1396 | 1399 |
} |
1397 | 1400 |
} |
1398 | 1401 |
// Copy potential values to _potential_map |
1399 | 1402 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1400 | 1403 |
_potential_map->set(n, _pi[_node_id[n]]); |
1401 | 1404 |
} |
1402 | 1405 |
|
1403 | 1406 |
return true; |
1404 | 1407 |
} |
1405 | 1408 |
|
1406 | 1409 |
}; //class NetworkSimplex |
1407 | 1410 |
|
1408 | 1411 |
///@} |
1409 | 1412 |
|
1410 | 1413 |
} //namespace lemon |
1411 | 1414 |
|
1412 | 1415 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)