gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Support real types + numerical stability fix in NS (#254) - Real types are supported by appropriate inicialization. - A feature of the XTI spanning tree structure is removed to ensure numerical stability (could cause problems using integer types). The node potentials are updated always on the lower subtree, in order to prevent overflow problems. The former method isn't notably faster during to our tests.
0 1 0
default
1 file changed with 24 insertions and 21 deletions:
↑ Collapse diff ↑
Show white space 192 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_NETWORK_SIMPLEX_H
20 20
#define LEMON_NETWORK_SIMPLEX_H
21 21

	
22 22
/// \ingroup min_cost_flow
23 23
///
24 24
/// \file
25 25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <algorithm>
30 30

	
31 31
#include <lemon/core.h>
32 32
#include <lemon/math.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup min_cost_flow
37 37
  /// @{
38 38

	
39 39
  /// \brief Implementation of the primal Network Simplex algorithm
40 40
  /// for finding a \ref min_cost_flow "minimum cost flow".
41 41
  ///
42 42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 43
  /// for finding a \ref min_cost_flow "minimum cost flow".
44 44
  /// This algorithm is a specialized version of the linear programming
45 45
  /// simplex method directly for the minimum cost flow problem.
46 46
  /// It is one of the most efficient solution methods.
47 47
  ///
48 48
  /// In general this class is the fastest implementation available
49 49
  /// in LEMON for the minimum cost flow problem.
50 50
  ///
51 51
  /// \tparam GR The digraph type the algorithm runs on.
52 52
  /// \tparam F The value type used for flow amounts, capacity bounds
53 53
  /// and supply values in the algorithm. By default it is \c int.
54 54
  /// \tparam C The value type used for costs and potentials in the
55 55
  /// algorithm. By default it is the same as \c F.
56 56
  ///
57
  /// \warning Both value types must be signed integer types.
57
  /// \warning Both value types must be signed and all input data must
58
  /// be integer.
58 59
  ///
59 60
  /// \note %NetworkSimplex provides five different pivot rule
60 61
  /// implementations. For more information see \ref PivotRule.
61 62
  template <typename GR, typename F = int, typename C = F>
62 63
  class NetworkSimplex
63 64
  {
64 65
  public:
65 66

	
66 67
    /// The flow type of the algorithm
67 68
    typedef F Flow;
68 69
    /// The cost type of the algorithm
69 70
    typedef C Cost;
70 71
    /// The type of the flow map
71 72
    typedef typename GR::template ArcMap<Flow> FlowMap;
72 73
    /// The type of the potential map
73 74
    typedef typename GR::template NodeMap<Cost> PotentialMap;
74 75

	
75 76
  public:
76 77

	
77 78
    /// \brief Enum type for selecting the pivot rule.
78 79
    ///
79 80
    /// Enum type for selecting the pivot rule for the \ref run()
80 81
    /// function.
81 82
    ///
82 83
    /// \ref NetworkSimplex provides five different pivot rule
83 84
    /// implementations that significantly affect the running time
84 85
    /// of the algorithm.
85 86
    /// By default \ref BLOCK_SEARCH "Block Search" is used, which
86 87
    /// proved to be the most efficient and the most robust on various
87 88
    /// test inputs according to our benchmark tests.
88 89
    /// However another pivot rule can be selected using the \ref run()
89 90
    /// function with the proper parameter.
90 91
    enum PivotRule {
91 92

	
92 93
      /// The First Eligible pivot rule.
93 94
      /// The next eligible arc is selected in a wraparound fashion
94 95
      /// in every iteration.
95 96
      FIRST_ELIGIBLE,
96 97

	
97 98
      /// The Best Eligible pivot rule.
98 99
      /// The best eligible arc is selected in every iteration.
99 100
      BEST_ELIGIBLE,
100 101

	
101 102
      /// The Block Search pivot rule.
102 103
      /// A specified number of arcs are examined in every iteration
103 104
      /// in a wraparound fashion and the best eligible arc is selected
104 105
      /// from this block.
105 106
      BLOCK_SEARCH,
106 107

	
107 108
      /// The Candidate List pivot rule.
108 109
      /// In a major iteration a candidate list is built from eligible arcs
109 110
      /// in a wraparound fashion and in the following minor iterations
110 111
      /// the best eligible arc is selected from this list.
111 112
      CANDIDATE_LIST,
112 113

	
113 114
      /// The Altering Candidate List pivot rule.
114 115
      /// It is a modified version of the Candidate List method.
115 116
      /// It keeps only the several best eligible arcs from the former
116 117
      /// candidate list and extends this list in every iteration.
117 118
      ALTERING_LIST
118 119
    };
119 120

	
120 121
  private:
121 122

	
122 123
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
123 124

	
124 125
    typedef typename GR::template ArcMap<Flow> FlowArcMap;
125 126
    typedef typename GR::template ArcMap<Cost> CostArcMap;
126 127
    typedef typename GR::template NodeMap<Flow> FlowNodeMap;
127 128

	
128 129
    typedef std::vector<Arc> ArcVector;
129 130
    typedef std::vector<Node> NodeVector;
130 131
    typedef std::vector<int> IntVector;
131 132
    typedef std::vector<bool> BoolVector;
132 133
    typedef std::vector<Flow> FlowVector;
133 134
    typedef std::vector<Cost> CostVector;
134 135

	
135 136
    // State constants for arcs
136 137
    enum ArcStateEnum {
137 138
      STATE_UPPER = -1,
138 139
      STATE_TREE  =  0,
139 140
      STATE_LOWER =  1
140 141
    };
141 142

	
142 143
  private:
143 144

	
144 145
    // Data related to the underlying digraph
145 146
    const GR &_graph;
146 147
    int _node_num;
147 148
    int _arc_num;
148 149

	
149 150
    // Parameters of the problem
150 151
    FlowArcMap *_plower;
151 152
    FlowArcMap *_pupper;
152 153
    CostArcMap *_pcost;
153 154
    FlowNodeMap *_psupply;
... ...
@@ -951,259 +952,273 @@
951 952
    /// \ref min_cost_flow "minimum cost flow" problem.
952 953
    ///
953 954
    /// \pre \ref run() must be called before using this function.
954 955
    const PotentialMap& potentialMap() const {
955 956
      return *_potential_map;
956 957
    }
957 958

	
958 959
    /// @}
959 960

	
960 961
  private:
961 962

	
962 963
    // Initialize internal data structures
963 964
    bool init() {
964 965
      // Initialize result maps
965 966
      if (!_flow_map) {
966 967
        _flow_map = new FlowMap(_graph);
967 968
        _local_flow = true;
968 969
      }
969 970
      if (!_potential_map) {
970 971
        _potential_map = new PotentialMap(_graph);
971 972
        _local_potential = true;
972 973
      }
973 974

	
974 975
      // Initialize vectors
975 976
      _node_num = countNodes(_graph);
976 977
      _arc_num = countArcs(_graph);
977 978
      int all_node_num = _node_num + 1;
978 979
      int all_arc_num = _arc_num + _node_num;
979 980
      if (_node_num == 0) return false;
980 981

	
981 982
      _arc_ref.resize(_arc_num);
982 983
      _source.resize(all_arc_num);
983 984
      _target.resize(all_arc_num);
984 985

	
985 986
      _cap.resize(all_arc_num);
986 987
      _cost.resize(all_arc_num);
987 988
      _supply.resize(all_node_num);
988 989
      _flow.resize(all_arc_num);
989 990
      _pi.resize(all_node_num);
990 991

	
991 992
      _parent.resize(all_node_num);
992 993
      _pred.resize(all_node_num);
993 994
      _forward.resize(all_node_num);
994 995
      _thread.resize(all_node_num);
995 996
      _rev_thread.resize(all_node_num);
996 997
      _succ_num.resize(all_node_num);
997 998
      _last_succ.resize(all_node_num);
998 999
      _state.resize(all_arc_num);
999 1000

	
1000 1001
      // Initialize node related data
1001 1002
      bool valid_supply = true;
1002 1003
      if (!_pstsup && !_psupply) {
1003 1004
        _pstsup = true;
1004 1005
        _psource = _ptarget = NodeIt(_graph);
1005 1006
        _pstflow = 0;
1006 1007
      }
1007 1008
      if (_psupply) {
1008 1009
        Flow sum = 0;
1009 1010
        int i = 0;
1010 1011
        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
1011 1012
          _node_id[n] = i;
1012 1013
          _supply[i] = (*_psupply)[n];
1013 1014
          sum += _supply[i];
1014 1015
        }
1015 1016
        valid_supply = (sum == 0);
1016 1017
      } else {
1017 1018
        int i = 0;
1018 1019
        for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
1019 1020
          _node_id[n] = i;
1020 1021
          _supply[i] = 0;
1021 1022
        }
1022 1023
        _supply[_node_id[_psource]] =  _pstflow;
1023 1024
        _supply[_node_id[_ptarget]]   = -_pstflow;
1024 1025
      }
1025 1026
      if (!valid_supply) return false;
1026 1027

	
1027 1028
      // Set data for the artificial root node
1028 1029
      _root = _node_num;
1029 1030
      _parent[_root] = -1;
1030 1031
      _pred[_root] = -1;
1031 1032
      _thread[_root] = 0;
1032 1033
      _rev_thread[0] = _root;
1033 1034
      _succ_num[_root] = all_node_num;
1034 1035
      _last_succ[_root] = _root - 1;
1035 1036
      _supply[_root] = 0;
1036 1037
      _pi[_root] = 0;
1037 1038

	
1038 1039
      // Store the arcs in a mixed order
1039 1040
      int k = std::max(int(sqrt(_arc_num)), 10);
1040 1041
      int i = 0;
1041 1042
      for (ArcIt e(_graph); e != INVALID; ++e) {
1042 1043
        _arc_ref[i] = e;
1043 1044
        if ((i += k) >= _arc_num) i = (i % k) + 1;
1044 1045
      }
1045 1046

	
1046 1047
      // Initialize arc maps
1047
      Flow max_cap = std::numeric_limits<Flow>::max();
1048
      Cost max_cost = std::numeric_limits<Cost>::max() / 4;
1048
      Flow inf_cap =
1049
        std::numeric_limits<Flow>::has_infinity ?
1050
        std::numeric_limits<Flow>::infinity() :
1051
        std::numeric_limits<Flow>::max();
1049 1052
      if (_pupper && _pcost) {
1050 1053
        for (int i = 0; i != _arc_num; ++i) {
1051 1054
          Arc e = _arc_ref[i];
1052 1055
          _source[i] = _node_id[_graph.source(e)];
1053 1056
          _target[i] = _node_id[_graph.target(e)];
1054 1057
          _cap[i] = (*_pupper)[e];
1055 1058
          _cost[i] = (*_pcost)[e];
1056 1059
          _flow[i] = 0;
1057 1060
          _state[i] = STATE_LOWER;
1058 1061
        }
1059 1062
      } else {
1060 1063
        for (int i = 0; i != _arc_num; ++i) {
1061 1064
          Arc e = _arc_ref[i];
1062 1065
          _source[i] = _node_id[_graph.source(e)];
1063 1066
          _target[i] = _node_id[_graph.target(e)];
1064 1067
          _flow[i] = 0;
1065 1068
          _state[i] = STATE_LOWER;
1066 1069
        }
1067 1070
        if (_pupper) {
1068 1071
          for (int i = 0; i != _arc_num; ++i)
1069 1072
            _cap[i] = (*_pupper)[_arc_ref[i]];
1070 1073
        } else {
1071 1074
          for (int i = 0; i != _arc_num; ++i)
1072
            _cap[i] = max_cap;
1075
            _cap[i] = inf_cap;
1073 1076
        }
1074 1077
        if (_pcost) {
1075 1078
          for (int i = 0; i != _arc_num; ++i)
1076 1079
            _cost[i] = (*_pcost)[_arc_ref[i]];
1077 1080
        } else {
1078 1081
          for (int i = 0; i != _arc_num; ++i)
1079 1082
            _cost[i] = 1;
1080 1083
        }
1081 1084
      }
1082 1085

	
1086
      // Initialize artifical cost
1087
      Cost art_cost;
1088
      if (std::numeric_limits<Cost>::is_exact) {
1089
        art_cost = std::numeric_limits<Cost>::max() / 4 + 1;
1090
      } else {
1091
        art_cost = std::numeric_limits<Cost>::min();
1092
        for (int i = 0; i != _arc_num; ++i) {
1093
          if (_cost[i] > art_cost) art_cost = _cost[i];
1094
        }
1095
        art_cost = (art_cost + 1) * _node_num;
1096
      }
1097

	
1083 1098
      // Remove non-zero lower bounds
1084 1099
      if (_plower) {
1085 1100
        for (int i = 0; i != _arc_num; ++i) {
1086 1101
          Flow c = (*_plower)[_arc_ref[i]];
1087 1102
          if (c != 0) {
1088 1103
            _cap[i] -= c;
1089 1104
            _supply[_source[i]] -= c;
1090 1105
            _supply[_target[i]] += c;
1091 1106
          }
1092 1107
        }
1093 1108
      }
1094 1109

	
1095 1110
      // Add artificial arcs and initialize the spanning tree data structure
1096 1111
      for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1097 1112
        _thread[u] = u + 1;
1098 1113
        _rev_thread[u + 1] = u;
1099 1114
        _succ_num[u] = 1;
1100 1115
        _last_succ[u] = u;
1101 1116
        _parent[u] = _root;
1102 1117
        _pred[u] = e;
1103
        _cost[e] = max_cost;
1104
        _cap[e] = max_cap;
1118
        _cost[e] = art_cost;
1119
        _cap[e] = inf_cap;
1105 1120
        _state[e] = STATE_TREE;
1106 1121
        if (_supply[u] >= 0) {
1107 1122
          _flow[e] = _supply[u];
1108 1123
          _forward[u] = true;
1109
          _pi[u] = -max_cost;
1124
          _pi[u] = -art_cost;
1110 1125
        } else {
1111 1126
          _flow[e] = -_supply[u];
1112 1127
          _forward[u] = false;
1113
          _pi[u] = max_cost;
1128
          _pi[u] = art_cost;
1114 1129
        }
1115 1130
      }
1116 1131

	
1117 1132
      return true;
1118 1133
    }
1119 1134

	
1120 1135
    // Find the join node
1121 1136
    void findJoinNode() {
1122 1137
      int u = _source[in_arc];
1123 1138
      int v = _target[in_arc];
1124 1139
      while (u != v) {
1125 1140
        if (_succ_num[u] < _succ_num[v]) {
1126 1141
          u = _parent[u];
1127 1142
        } else {
1128 1143
          v = _parent[v];
1129 1144
        }
1130 1145
      }
1131 1146
      join = u;
1132 1147
    }
1133 1148

	
1134 1149
    // Find the leaving arc of the cycle and returns true if the
1135 1150
    // leaving arc is not the same as the entering arc
1136 1151
    bool findLeavingArc() {
1137 1152
      // Initialize first and second nodes according to the direction
1138 1153
      // of the cycle
1139 1154
      if (_state[in_arc] == STATE_LOWER) {
1140 1155
        first  = _source[in_arc];
1141 1156
        second = _target[in_arc];
1142 1157
      } else {
1143 1158
        first  = _target[in_arc];
1144 1159
        second = _source[in_arc];
1145 1160
      }
1146 1161
      delta = _cap[in_arc];
1147 1162
      int result = 0;
1148 1163
      Flow d;
1149 1164
      int e;
1150 1165

	
1151 1166
      // Search the cycle along the path form the first node to the root
1152 1167
      for (int u = first; u != join; u = _parent[u]) {
1153 1168
        e = _pred[u];
1154 1169
        d = _forward[u] ? _flow[e] : _cap[e] - _flow[e];
1155 1170
        if (d < delta) {
1156 1171
          delta = d;
1157 1172
          u_out = u;
1158 1173
          result = 1;
1159 1174
        }
1160 1175
      }
1161 1176
      // Search the cycle along the path form the second node to the root
1162 1177
      for (int u = second; u != join; u = _parent[u]) {
1163 1178
        e = _pred[u];
1164 1179
        d = _forward[u] ? _cap[e] - _flow[e] : _flow[e];
1165 1180
        if (d <= delta) {
1166 1181
          delta = d;
1167 1182
          u_out = u;
1168 1183
          result = 2;
1169 1184
        }
1170 1185
      }
1171 1186

	
1172 1187
      if (result == 1) {
1173 1188
        u_in = first;
1174 1189
        v_in = second;
1175 1190
      } else {
1176 1191
        u_in = second;
1177 1192
        v_in = first;
1178 1193
      }
1179 1194
      return result != 0;
1180 1195
    }
1181 1196

	
1182 1197
    // Change _flow and _state vectors
1183 1198
    void changeFlow(bool change) {
1184 1199
      // Augment along the cycle
1185 1200
      if (delta > 0) {
1186 1201
        Flow val = _state[in_arc] * delta;
1187 1202
        _flow[in_arc] += val;
1188 1203
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1189 1204
          _flow[_pred[u]] += _forward[u] ? -val : val;
1190 1205
        }
1191 1206
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1192 1207
          _flow[_pred[u]] += _forward[u] ? val : -val;
1193 1208
        }
1194 1209
      }
1195 1210
      // Update the state of the entering and leaving arcs
1196 1211
      if (change) {
1197 1212
        _state[in_arc] = STATE_TREE;
1198 1213
        _state[_pred[u_out]] =
1199 1214
          (_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER;
1200 1215
      } else {
1201 1216
        _state[in_arc] = -_state[in_arc];
1202 1217
      }
1203 1218
    }
1204 1219

	
1205 1220
    // Update the tree structure
1206 1221
    void updateTreeStructure() {
1207 1222
      int u, w;
1208 1223
      int old_rev_thread = _rev_thread[u_out];
1209 1224
      int old_succ_num = _succ_num[u_out];
... ...
@@ -1234,179 +1249,167 @@
1234 1249
        _dirty_revs.push_back(u);
1235 1250

	
1236 1251
        // Remove the subtree of stem from the thread list
1237 1252
        w = _rev_thread[stem];
1238 1253
        _thread[w] = right;
1239 1254
        _rev_thread[right] = w;
1240 1255

	
1241 1256
        // Change the parent node and shift stem nodes
1242 1257
        _parent[stem] = par_stem;
1243 1258
        par_stem = stem;
1244 1259
        stem = new_stem;
1245 1260

	
1246 1261
        // Update u and right
1247 1262
        u = _last_succ[stem] == _last_succ[par_stem] ?
1248 1263
          _rev_thread[par_stem] : _last_succ[stem];
1249 1264
        right = _thread[u];
1250 1265
      }
1251 1266
      _parent[u_out] = par_stem;
1252 1267
      _thread[u] = last;
1253 1268
      _rev_thread[last] = u;
1254 1269
      _last_succ[u_out] = u;
1255 1270

	
1256 1271
      // Remove the subtree of u_out from the thread list except for
1257 1272
      // the case when old_rev_thread equals to v_in
1258 1273
      // (it also means that join and v_out coincide)
1259 1274
      if (old_rev_thread != v_in) {
1260 1275
        _thread[old_rev_thread] = right;
1261 1276
        _rev_thread[right] = old_rev_thread;
1262 1277
      }
1263 1278

	
1264 1279
      // Update _rev_thread using the new _thread values
1265 1280
      for (int i = 0; i < int(_dirty_revs.size()); ++i) {
1266 1281
        u = _dirty_revs[i];
1267 1282
        _rev_thread[_thread[u]] = u;
1268 1283
      }
1269 1284

	
1270 1285
      // Update _pred, _forward, _last_succ and _succ_num for the
1271 1286
      // stem nodes from u_out to u_in
1272 1287
      int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1273 1288
      u = u_out;
1274 1289
      while (u != u_in) {
1275 1290
        w = _parent[u];
1276 1291
        _pred[u] = _pred[w];
1277 1292
        _forward[u] = !_forward[w];
1278 1293
        tmp_sc += _succ_num[u] - _succ_num[w];
1279 1294
        _succ_num[u] = tmp_sc;
1280 1295
        _last_succ[w] = tmp_ls;
1281 1296
        u = w;
1282 1297
      }
1283 1298
      _pred[u_in] = in_arc;
1284 1299
      _forward[u_in] = (u_in == _source[in_arc]);
1285 1300
      _succ_num[u_in] = old_succ_num;
1286 1301

	
1287 1302
      // Set limits for updating _last_succ form v_in and v_out
1288 1303
      // towards the root
1289 1304
      int up_limit_in = -1;
1290 1305
      int up_limit_out = -1;
1291 1306
      if (_last_succ[join] == v_in) {
1292 1307
        up_limit_out = join;
1293 1308
      } else {
1294 1309
        up_limit_in = join;
1295 1310
      }
1296 1311

	
1297 1312
      // Update _last_succ from v_in towards the root
1298 1313
      for (u = v_in; u != up_limit_in && _last_succ[u] == v_in;
1299 1314
           u = _parent[u]) {
1300 1315
        _last_succ[u] = _last_succ[u_out];
1301 1316
      }
1302 1317
      // Update _last_succ from v_out towards the root
1303 1318
      if (join != old_rev_thread && v_in != old_rev_thread) {
1304 1319
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1305 1320
             u = _parent[u]) {
1306 1321
          _last_succ[u] = old_rev_thread;
1307 1322
        }
1308 1323
      } else {
1309 1324
        for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ;
1310 1325
             u = _parent[u]) {
1311 1326
          _last_succ[u] = _last_succ[u_out];
1312 1327
        }
1313 1328
      }
1314 1329

	
1315 1330
      // Update _succ_num from v_in to join
1316 1331
      for (u = v_in; u != join; u = _parent[u]) {
1317 1332
        _succ_num[u] += old_succ_num;
1318 1333
      }
1319 1334
      // Update _succ_num from v_out to join
1320 1335
      for (u = v_out; u != join; u = _parent[u]) {
1321 1336
        _succ_num[u] -= old_succ_num;
1322 1337
      }
1323 1338
    }
1324 1339

	
1325 1340
    // Update potentials
1326 1341
    void updatePotential() {
1327 1342
      Cost sigma = _forward[u_in] ?
1328 1343
        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1329 1344
        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1330
      if (_succ_num[u_in] > _node_num / 2) {
1331
        // Update in the upper subtree (which contains the root)
1332
        int before = _rev_thread[u_in];
1333
        int after = _thread[_last_succ[u_in]];
1334
        _thread[before] = after;
1335
        _pi[_root] -= sigma;
1336
        for (int u = _thread[_root]; u != _root; u = _thread[u]) {
1337
          _pi[u] -= sigma;
1338
        }
1339
        _thread[before] = u_in;
1340
      } else {
1341
        // Update in the lower subtree (which has been moved)
1345
      // Update potentials in the subtree, which has been moved
1342 1346
        int end = _thread[_last_succ[u_in]];
1343 1347
        for (int u = u_in; u != end; u = _thread[u]) {
1344 1348
          _pi[u] += sigma;
1345 1349
        }
1346 1350
      }
1347
    }
1348 1351

	
1349 1352
    // Execute the algorithm
1350 1353
    bool start(PivotRule pivot_rule) {
1351 1354
      // Select the pivot rule implementation
1352 1355
      switch (pivot_rule) {
1353 1356
        case FIRST_ELIGIBLE:
1354 1357
          return start<FirstEligiblePivotRule>();
1355 1358
        case BEST_ELIGIBLE:
1356 1359
          return start<BestEligiblePivotRule>();
1357 1360
        case BLOCK_SEARCH:
1358 1361
          return start<BlockSearchPivotRule>();
1359 1362
        case CANDIDATE_LIST:
1360 1363
          return start<CandidateListPivotRule>();
1361 1364
        case ALTERING_LIST:
1362 1365
          return start<AlteringListPivotRule>();
1363 1366
      }
1364 1367
      return false;
1365 1368
    }
1366 1369

	
1367 1370
    template <typename PivotRuleImpl>
1368 1371
    bool start() {
1369 1372
      PivotRuleImpl pivot(*this);
1370 1373

	
1371 1374
      // Execute the Network Simplex algorithm
1372 1375
      while (pivot.findEnteringArc()) {
1373 1376
        findJoinNode();
1374 1377
        bool change = findLeavingArc();
1375 1378
        changeFlow(change);
1376 1379
        if (change) {
1377 1380
          updateTreeStructure();
1378 1381
          updatePotential();
1379 1382
        }
1380 1383
      }
1381 1384

	
1382 1385
      // Check if the flow amount equals zero on all the artificial arcs
1383 1386
      for (int e = _arc_num; e != _arc_num + _node_num; ++e) {
1384 1387
        if (_flow[e] > 0) return false;
1385 1388
      }
1386 1389

	
1387 1390
      // Copy flow values to _flow_map
1388 1391
      if (_plower) {
1389 1392
        for (int i = 0; i != _arc_num; ++i) {
1390 1393
          Arc e = _arc_ref[i];
1391 1394
          _flow_map->set(e, (*_plower)[e] + _flow[i]);
1392 1395
        }
1393 1396
      } else {
1394 1397
        for (int i = 0; i != _arc_num; ++i) {
1395 1398
          _flow_map->set(_arc_ref[i], _flow[i]);
1396 1399
        }
1397 1400
      }
1398 1401
      // Copy potential values to _potential_map
1399 1402
      for (NodeIt n(_graph); n != INVALID; ++n) {
1400 1403
        _potential_map->set(n, _pi[_node_id[n]]);
1401 1404
      }
1402 1405

	
1403 1406
      return true;
1404 1407
    }
1405 1408

	
1406 1409
  }; //class NetworkSimplex
1407 1410

	
1408 1411
  ///@}
1409 1412

	
1410 1413
} //namespace lemon
1411 1414

	
1412 1415
#endif //LEMON_NETWORK_SIMPLEX_H
0 comments (0 inline)