0
67
10
17
13
1
133
61
15
9
66
77
12
13
172
171
344
324
62
75
64
64
2
9
19
15
71
55
35
39
Changeset was too big and was cut off... Show full diff
| 1 |
%%%%% Defining LEMON %%%%% |
|
| 2 |
|
|
| 3 |
@misc{lemon,
|
|
| 4 |
key = {LEMON},
|
|
| 5 |
title = {{LEMON} -- {L}ibrary for {E}fficient {M}odeling and
|
|
| 6 |
{O}ptimization in {N}etworks},
|
|
| 7 |
howpublished = {\url{http://lemon.cs.elte.hu/}},
|
|
| 8 |
year = 2009 |
|
| 9 |
} |
|
| 10 |
|
|
| 11 |
@misc{egres,
|
|
| 12 |
key = {EGRES},
|
|
| 13 |
title = {{EGRES} -- {E}gerv{\'a}ry {R}esearch {G}roup on
|
|
| 14 |
{C}ombinatorial {O}ptimization},
|
|
| 15 |
url = {http://www.cs.elte.hu/egres/}
|
|
| 16 |
} |
|
| 17 |
|
|
| 18 |
@misc{coinor,
|
|
| 19 |
key = {COIN-OR},
|
|
| 20 |
title = {{COIN-OR} -- {C}omputational {I}nfrastructure for
|
|
| 21 |
{O}perations {R}esearch},
|
|
| 22 |
url = {http://www.coin-or.org/}
|
|
| 23 |
} |
|
| 24 |
|
|
| 25 |
|
|
| 26 |
%%%%% Other libraries %%%%%% |
|
| 27 |
|
|
| 28 |
@misc{boost,
|
|
| 29 |
key = {Boost},
|
|
| 30 |
title = {{B}oost {C++} {L}ibraries},
|
|
| 31 |
url = {http://www.boost.org/}
|
|
| 32 |
} |
|
| 33 |
|
|
| 34 |
@book{bglbook,
|
|
| 35 |
author = {Jeremy G. Siek and Lee-Quan Lee and Andrew
|
|
| 36 |
Lumsdaine}, |
|
| 37 |
title = {The Boost Graph Library: User Guide and Reference
|
|
| 38 |
Manual}, |
|
| 39 |
publisher = {Addison-Wesley},
|
|
| 40 |
year = 2002 |
|
| 41 |
} |
|
| 42 |
|
|
| 43 |
@misc{leda,
|
|
| 44 |
key = {LEDA},
|
|
| 45 |
title = {{LEDA} -- {L}ibrary of {E}fficient {D}ata {T}ypes and
|
|
| 46 |
{A}lgorithms},
|
|
| 47 |
url = {http://www.algorithmic-solutions.com/}
|
|
| 48 |
} |
|
| 49 |
|
|
| 50 |
@book{ledabook,
|
|
| 51 |
author = {Kurt Mehlhorn and Stefan N{\"a}her},
|
|
| 52 |
title = {{LEDA}: {A} platform for combinatorial and geometric
|
|
| 53 |
computing}, |
|
| 54 |
isbn = {0-521-56329-1},
|
|
| 55 |
publisher = {Cambridge University Press},
|
|
| 56 |
address = {New York, NY, USA},
|
|
| 57 |
year = 1999 |
|
| 58 |
} |
|
| 59 |
|
|
| 60 |
|
|
| 61 |
%%%%% Tools that LEMON depends on %%%%% |
|
| 62 |
|
|
| 63 |
@misc{cmake,
|
|
| 64 |
key = {CMake},
|
|
| 65 |
title = {{CMake} -- {C}ross {P}latform {M}ake},
|
|
| 66 |
url = {http://www.cmake.org/}
|
|
| 67 |
} |
|
| 68 |
|
|
| 69 |
@misc{doxygen,
|
|
| 70 |
key = {Doxygen},
|
|
| 71 |
title = {{Doxygen} -- {S}ource code documentation generator
|
|
| 72 |
tool}, |
|
| 73 |
url = {http://www.doxygen.org/}
|
|
| 74 |
} |
|
| 75 |
|
|
| 76 |
|
|
| 77 |
%%%%% LP/MIP libraries %%%%% |
|
| 78 |
|
|
| 79 |
@misc{glpk,
|
|
| 80 |
key = {GLPK},
|
|
| 81 |
title = {{GLPK} -- {GNU} {L}inear {P}rogramming {K}it},
|
|
| 82 |
url = {http://www.gnu.org/software/glpk/}
|
|
| 83 |
} |
|
| 84 |
|
|
| 85 |
@misc{clp,
|
|
| 86 |
key = {Clp},
|
|
| 87 |
title = {{Clp} -- {Coin-Or} {L}inear {P}rogramming},
|
|
| 88 |
url = {http://projects.coin-or.org/Clp/}
|
|
| 89 |
} |
|
| 90 |
|
|
| 91 |
@misc{cbc,
|
|
| 92 |
key = {Cbc},
|
|
| 93 |
title = {{Cbc} -- {Coin-Or} {B}ranch and {C}ut},
|
|
| 94 |
url = {http://projects.coin-or.org/Cbc/}
|
|
| 95 |
} |
|
| 96 |
|
|
| 97 |
@misc{cplex,
|
|
| 98 |
key = {CPLEX},
|
|
| 99 |
title = {{ILOG} {CPLEX}},
|
|
| 100 |
url = {http://www.ilog.com/}
|
|
| 101 |
} |
|
| 102 |
|
|
| 103 |
@misc{soplex,
|
|
| 104 |
key = {SoPlex},
|
|
| 105 |
title = {{SoPlex} -- {T}he {S}equential {O}bject-{O}riented
|
|
| 106 |
{S}implex},
|
|
| 107 |
url = {http://soplex.zib.de/}
|
|
| 108 |
} |
|
| 109 |
|
|
| 110 |
|
|
| 111 |
%%%%% General books %%%%% |
|
| 112 |
|
|
| 113 |
@book{amo93networkflows,
|
|
| 114 |
author = {Ravindra K. Ahuja and Thomas L. Magnanti and James
|
|
| 115 |
B. Orlin}, |
|
| 116 |
title = {Network Flows: Theory, Algorithms, and Applications},
|
|
| 117 |
publisher = {Prentice-Hall, Inc.},
|
|
| 118 |
year = 1993, |
|
| 119 |
month = feb, |
|
| 120 |
isbn = {978-0136175490}
|
|
| 121 |
} |
|
| 122 |
|
|
| 123 |
@book{schrijver03combinatorial,
|
|
| 124 |
author = {Alexander Schrijver},
|
|
| 125 |
title = {Combinatorial Optimization: Polyhedra and Efficiency},
|
|
| 126 |
publisher = {Springer-Verlag},
|
|
| 127 |
year = 2003, |
|
| 128 |
isbn = {978-3540443896}
|
|
| 129 |
} |
|
| 130 |
|
|
| 131 |
@book{clrs01algorithms,
|
|
| 132 |
author = {Thomas H. Cormen and Charles E. Leiserson and Ronald
|
|
| 133 |
L. Rivest and Clifford Stein}, |
|
| 134 |
title = {Introduction to Algorithms},
|
|
| 135 |
publisher = {The MIT Press},
|
|
| 136 |
year = 2001, |
|
| 137 |
edition = {2nd}
|
|
| 138 |
} |
|
| 139 |
|
|
| 140 |
@book{stroustrup00cpp,
|
|
| 141 |
author = {Bjarne Stroustrup},
|
|
| 142 |
title = {The C++ Programming Language},
|
|
| 143 |
edition = {3rd},
|
|
| 144 |
publisher = {Addison-Wesley Professional},
|
|
| 145 |
isbn = 0201700735, |
|
| 146 |
month = {February},
|
|
| 147 |
year = 2000 |
|
| 148 |
} |
|
| 149 |
|
|
| 150 |
|
|
| 151 |
%%%%% Maximum flow algorithms %%%%% |
|
| 152 |
|
|
| 153 |
@article{edmondskarp72theoretical,
|
|
| 154 |
author = {Jack Edmonds and Richard M. Karp},
|
|
| 155 |
title = {Theoretical improvements in algorithmic efficiency
|
|
| 156 |
for network flow problems}, |
|
| 157 |
journal = {Journal of the ACM},
|
|
| 158 |
year = 1972, |
|
| 159 |
volume = 19, |
|
| 160 |
number = 2, |
|
| 161 |
pages = {248-264}
|
|
| 162 |
} |
|
| 163 |
|
|
| 164 |
@article{goldberg88newapproach,
|
|
| 165 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 166 |
title = {A new approach to the maximum flow problem},
|
|
| 167 |
journal = {Journal of the ACM},
|
|
| 168 |
year = 1988, |
|
| 169 |
volume = 35, |
|
| 170 |
number = 4, |
|
| 171 |
pages = {921-940}
|
|
| 172 |
} |
|
| 173 |
|
|
| 174 |
@article{dinic70algorithm,
|
|
| 175 |
author = {E. A. Dinic},
|
|
| 176 |
title = {Algorithm for solution of a problem of maximum flow
|
|
| 177 |
in a network with power estimation}, |
|
| 178 |
journal = {Soviet Math. Doklady},
|
|
| 179 |
year = 1970, |
|
| 180 |
volume = 11, |
|
| 181 |
pages = {1277-1280}
|
|
| 182 |
} |
|
| 183 |
|
|
| 184 |
@article{goldberg08partial,
|
|
| 185 |
author = {Andrew V. Goldberg},
|
|
| 186 |
title = {The Partial Augment-Relabel Algorithm for the
|
|
| 187 |
Maximum Flow Problem}, |
|
| 188 |
journal = {16th Annual European Symposium on Algorithms},
|
|
| 189 |
year = 2008, |
|
| 190 |
pages = {466-477}
|
|
| 191 |
} |
|
| 192 |
|
|
| 193 |
@article{sleator83dynamic,
|
|
| 194 |
author = {Daniel D. Sleator and Robert E. Tarjan},
|
|
| 195 |
title = {A data structure for dynamic trees},
|
|
| 196 |
journal = {Journal of Computer and System Sciences},
|
|
| 197 |
year = 1983, |
|
| 198 |
volume = 26, |
|
| 199 |
number = 3, |
|
| 200 |
pages = {362-391}
|
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
|
|
| 204 |
%%%%% Minimum mean cycle algorithms %%%%% |
|
| 205 |
|
|
| 206 |
@article{karp78characterization,
|
|
| 207 |
author = {Richard M. Karp},
|
|
| 208 |
title = {A characterization of the minimum cycle mean in a
|
|
| 209 |
digraph}, |
|
| 210 |
journal = {Discrete Math.},
|
|
| 211 |
year = 1978, |
|
| 212 |
volume = 23, |
|
| 213 |
pages = {309-311}
|
|
| 214 |
} |
|
| 215 |
|
|
| 216 |
@article{dasdan98minmeancycle,
|
|
| 217 |
author = {Ali Dasdan and Rajesh K. Gupta},
|
|
| 218 |
title = {Faster Maximum and Minimum Mean Cycle Alogrithms for
|
|
| 219 |
System Performance Analysis}, |
|
| 220 |
journal = {IEEE Transactions on Computer-Aided Design of
|
|
| 221 |
Integrated Circuits and Systems}, |
|
| 222 |
year = 1998, |
|
| 223 |
volume = 17, |
|
| 224 |
number = 10, |
|
| 225 |
pages = {889-899}
|
|
| 226 |
} |
|
| 227 |
|
|
| 228 |
|
|
| 229 |
%%%%% Minimum cost flow algorithms %%%%% |
|
| 230 |
|
|
| 231 |
@article{klein67primal,
|
|
| 232 |
author = {Morton Klein},
|
|
| 233 |
title = {A primal method for minimal cost flows with
|
|
| 234 |
applications to the assignment and transportation |
|
| 235 |
problems}, |
|
| 236 |
journal = {Management Science},
|
|
| 237 |
year = 1967, |
|
| 238 |
volume = 14, |
|
| 239 |
pages = {205-220}
|
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
@article{goldberg89cyclecanceling,
|
|
| 243 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 244 |
title = {Finding minimum-cost circulations by canceling
|
|
| 245 |
negative cycles}, |
|
| 246 |
journal = {Journal of the ACM},
|
|
| 247 |
year = 1989, |
|
| 248 |
volume = 36, |
|
| 249 |
number = 4, |
|
| 250 |
pages = {873-886}
|
|
| 251 |
} |
|
| 252 |
|
|
| 253 |
@article{goldberg90approximation,
|
|
| 254 |
author = {Andrew V. Goldberg and Robert E. Tarjan},
|
|
| 255 |
title = {Finding Minimum-Cost Circulations by Successive
|
|
| 256 |
Approximation}, |
|
| 257 |
journal = {Mathematics of Operations Research},
|
|
| 258 |
year = 1990, |
|
| 259 |
volume = 15, |
|
| 260 |
number = 3, |
|
| 261 |
pages = {430-466}
|
|
| 262 |
} |
|
| 263 |
|
|
| 264 |
@article{goldberg97efficient,
|
|
| 265 |
author = {Andrew V. Goldberg},
|
|
| 266 |
title = {An Efficient Implementation of a Scaling
|
|
| 267 |
Minimum-Cost Flow Algorithm}, |
|
| 268 |
journal = {Journal of Algorithms},
|
|
| 269 |
year = 1997, |
|
| 270 |
volume = 22, |
|
| 271 |
number = 1, |
|
| 272 |
pages = {1-29}
|
|
| 273 |
} |
|
| 274 |
|
|
| 275 |
@article{bunnagel98efficient,
|
|
| 276 |
author = {Ursula B{\"u}nnagel and Bernhard Korte and Jens
|
|
| 277 |
Vygen}, |
|
| 278 |
title = {Efficient implementation of the {G}oldberg-{T}arjan
|
|
| 279 |
minimum-cost flow algorithm}, |
|
| 280 |
journal = {Optimization Methods and Software},
|
|
| 281 |
year = 1998, |
|
| 282 |
volume = 10, |
|
| 283 |
pages = {157-174}
|
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
@book{dantzig63linearprog,
|
|
| 287 |
author = {George B. Dantzig},
|
|
| 288 |
title = {Linear Programming and Extensions},
|
|
| 289 |
publisher = {Princeton University Press},
|
|
| 290 |
year = 1963 |
|
| 291 |
} |
|
| 292 |
|
|
| 293 |
@mastersthesis{kellyoneill91netsimplex,
|
|
| 294 |
author = {Damian J. Kelly and Garrett M. O'Neill},
|
|
| 295 |
title = {The Minimum Cost Flow Problem and The Network
|
|
| 296 |
Simplex Method}, |
|
| 297 |
school = {University College},
|
|
| 298 |
address = {Dublin, Ireland},
|
|
| 299 |
year = 1991, |
|
| 300 |
month = sep, |
|
| 301 |
} |
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_HARTMANN_ORLIN_H |
|
| 20 |
#define LEMON_HARTMANN_ORLIN_H |
|
| 21 |
|
|
| 22 |
/// \ingroup min_mean_cycle |
|
| 23 |
/// |
|
| 24 |
/// \file |
|
| 25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
|
| 26 |
|
|
| 27 |
#include <vector> |
|
| 28 |
#include <limits> |
|
| 29 |
#include <lemon/core.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
#include <lemon/tolerance.h> |
|
| 32 |
#include <lemon/connectivity.h> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default traits class of HartmannOrlin algorithm. |
|
| 37 |
/// |
|
| 38 |
/// Default traits class of HartmannOrlin algorithm. |
|
| 39 |
/// \tparam GR The type of the digraph. |
|
| 40 |
/// \tparam LEN The type of the length map. |
|
| 41 |
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept. |
|
| 42 |
#ifdef DOXYGEN |
|
| 43 |
template <typename GR, typename LEN> |
|
| 44 |
#else |
|
| 45 |
template <typename GR, typename LEN, |
|
| 46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
| 47 |
#endif |
|
| 48 |
struct HartmannOrlinDefaultTraits |
|
| 49 |
{
|
|
| 50 |
/// The type of the digraph |
|
| 51 |
typedef GR Digraph; |
|
| 52 |
/// The type of the length map |
|
| 53 |
typedef LEN LengthMap; |
|
| 54 |
/// The type of the arc lengths |
|
| 55 |
typedef typename LengthMap::Value Value; |
|
| 56 |
|
|
| 57 |
/// \brief The large value type used for internal computations |
|
| 58 |
/// |
|
| 59 |
/// The large value type used for internal computations. |
|
| 60 |
/// It is \c long \c long if the \c Value type is integer, |
|
| 61 |
/// otherwise it is \c double. |
|
| 62 |
/// \c Value must be convertible to \c LargeValue. |
|
| 63 |
typedef double LargeValue; |
|
| 64 |
|
|
| 65 |
/// The tolerance type used for internal computations |
|
| 66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 67 |
|
|
| 68 |
/// \brief The path type of the found cycles |
|
| 69 |
/// |
|
| 70 |
/// The path type of the found cycles. |
|
| 71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 72 |
/// and it must have an \c addFront() function. |
|
| 73 |
typedef lemon::Path<Digraph> Path; |
|
| 74 |
}; |
|
| 75 |
|
|
| 76 |
// Default traits class for integer value types |
|
| 77 |
template <typename GR, typename LEN> |
|
| 78 |
struct HartmannOrlinDefaultTraits<GR, LEN, true> |
|
| 79 |
{
|
|
| 80 |
typedef GR Digraph; |
|
| 81 |
typedef LEN LengthMap; |
|
| 82 |
typedef typename LengthMap::Value Value; |
|
| 83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
| 84 |
typedef long long LargeValue; |
|
| 85 |
#else |
|
| 86 |
typedef long LargeValue; |
|
| 87 |
#endif |
|
| 88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
| 89 |
typedef lemon::Path<Digraph> Path; |
|
| 90 |
}; |
|
| 91 |
|
|
| 92 |
|
|
| 93 |
/// \addtogroup min_mean_cycle |
|
| 94 |
/// @{
|
|
| 95 |
|
|
| 96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
|
| 97 |
/// a minimum mean cycle. |
|
| 98 |
/// |
|
| 99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
|
| 100 |
/// a directed cycle of minimum mean length (cost) in a digraph |
|
| 101 |
/// \ref amo93networkflows, \ref dasdan98minmeancycle. |
|
| 102 |
/// It is an improved version of \ref Karp "Karp"'s original algorithm, |
|
| 103 |
/// it applies an efficient early termination scheme. |
|
| 104 |
/// It runs in time O(ne) and uses space O(n<sup>2</sup>+e). |
|
| 105 |
/// |
|
| 106 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 107 |
/// \tparam LEN The type of the length map. The default |
|
| 108 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 109 |
#ifdef DOXYGEN |
|
| 110 |
template <typename GR, typename LEN, typename TR> |
|
| 111 |
#else |
|
| 112 |
template < typename GR, |
|
| 113 |
typename LEN = typename GR::template ArcMap<int>, |
|
| 114 |
typename TR = HartmannOrlinDefaultTraits<GR, LEN> > |
|
| 115 |
#endif |
|
| 116 |
class HartmannOrlin |
|
| 117 |
{
|
|
| 118 |
public: |
|
| 119 |
|
|
| 120 |
/// The type of the digraph |
|
| 121 |
typedef typename TR::Digraph Digraph; |
|
| 122 |
/// The type of the length map |
|
| 123 |
typedef typename TR::LengthMap LengthMap; |
|
| 124 |
/// The type of the arc lengths |
|
| 125 |
typedef typename TR::Value Value; |
|
| 126 |
|
|
| 127 |
/// \brief The large value type |
|
| 128 |
/// |
|
| 129 |
/// The large value type used for internal computations. |
|
| 130 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
| 131 |
/// it is \c long \c long if the \c Value type is integer, |
|
| 132 |
/// otherwise it is \c double. |
|
| 133 |
typedef typename TR::LargeValue LargeValue; |
|
| 134 |
|
|
| 135 |
/// The tolerance type |
|
| 136 |
typedef typename TR::Tolerance Tolerance; |
|
| 137 |
|
|
| 138 |
/// \brief The path type of the found cycles |
|
| 139 |
/// |
|
| 140 |
/// The path type of the found cycles. |
|
| 141 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
| 142 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
| 143 |
typedef typename TR::Path Path; |
|
| 144 |
|
|
| 145 |
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm |
|
| 146 |
typedef TR Traits; |
|
| 147 |
|
|
| 148 |
private: |
|
| 149 |
|
|
| 150 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 151 |
|
|
| 152 |
// Data sturcture for path data |
|
| 153 |
struct PathData |
|
| 154 |
{
|
|
| 155 |
LargeValue dist; |
|
| 156 |
Arc pred; |
|
| 157 |
PathData(LargeValue d, Arc p = INVALID) : |
|
| 158 |
dist(d), pred(p) {}
|
|
| 159 |
}; |
|
| 160 |
|
|
| 161 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
| 162 |
PathDataNodeMap; |
|
| 163 |
|
|
| 164 |
private: |
|
| 165 |
|
|
| 166 |
// The digraph the algorithm runs on |
|
| 167 |
const Digraph &_gr; |
|
| 168 |
// The length of the arcs |
|
| 169 |
const LengthMap &_length; |
|
| 170 |
|
|
| 171 |
// Data for storing the strongly connected components |
|
| 172 |
int _comp_num; |
|
| 173 |
typename Digraph::template NodeMap<int> _comp; |
|
| 174 |
std::vector<std::vector<Node> > _comp_nodes; |
|
| 175 |
std::vector<Node>* _nodes; |
|
| 176 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
| 177 |
|
|
| 178 |
// Data for the found cycles |
|
| 179 |
bool _curr_found, _best_found; |
|
| 180 |
LargeValue _curr_length, _best_length; |
|
| 181 |
int _curr_size, _best_size; |
|
| 182 |
Node _curr_node, _best_node; |
|
| 183 |
int _curr_level, _best_level; |
|
| 184 |
|
|
| 185 |
Path *_cycle_path; |
|
| 186 |
bool _local_path; |
|
| 187 |
|
|
| 188 |
// Node map for storing path data |
|
| 189 |
PathDataNodeMap _data; |
|
| 190 |
// The processed nodes in the last round |
|
| 191 |
std::vector<Node> _process; |
|
| 192 |
|
|
| 193 |
Tolerance _tolerance; |
|
| 194 |
|
|
| 195 |
// Infinite constant |
|
| 196 |
const LargeValue INF; |
|
| 197 |
|
|
| 198 |
public: |
|
| 199 |
|
|
| 200 |
/// \name Named Template Parameters |
|
| 201 |
/// @{
|
|
| 202 |
|
|
| 203 |
template <typename T> |
|
| 204 |
struct SetLargeValueTraits : public Traits {
|
|
| 205 |
typedef T LargeValue; |
|
| 206 |
typedef lemon::Tolerance<T> Tolerance; |
|
| 207 |
}; |
|
| 208 |
|
|
| 209 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 210 |
/// \c LargeValue type. |
|
| 211 |
/// |
|
| 212 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
| 213 |
/// type. It is used for internal computations in the algorithm. |
|
| 214 |
template <typename T> |
|
| 215 |
struct SetLargeValue |
|
| 216 |
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > {
|
|
| 217 |
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create; |
|
| 218 |
}; |
|
| 219 |
|
|
| 220 |
template <typename T> |
|
| 221 |
struct SetPathTraits : public Traits {
|
|
| 222 |
typedef T Path; |
|
| 223 |
}; |
|
| 224 |
|
|
| 225 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 226 |
/// \c %Path type. |
|
| 227 |
/// |
|
| 228 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
| 229 |
/// type of the found cycles. |
|
| 230 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
| 231 |
/// and it must have an \c addFront() function. |
|
| 232 |
template <typename T> |
|
| 233 |
struct SetPath |
|
| 234 |
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > {
|
|
| 235 |
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create; |
|
| 236 |
}; |
|
| 237 |
|
|
| 238 |
/// @} |
|
| 239 |
|
|
| 240 |
public: |
|
| 241 |
|
|
| 242 |
/// \brief Constructor. |
|
| 243 |
/// |
|
| 244 |
/// The constructor of the class. |
|
| 245 |
/// |
|
| 246 |
/// \param digraph The digraph the algorithm runs on. |
|
| 247 |
/// \param length The lengths (costs) of the arcs. |
|
| 248 |
HartmannOrlin( const Digraph &digraph, |
|
| 249 |
const LengthMap &length ) : |
|
| 250 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
|
| 251 |
_best_found(false), _best_length(0), _best_size(1), |
|
| 252 |
_cycle_path(NULL), _local_path(false), _data(digraph), |
|
| 253 |
INF(std::numeric_limits<LargeValue>::has_infinity ? |
|
| 254 |
std::numeric_limits<LargeValue>::infinity() : |
|
| 255 |
std::numeric_limits<LargeValue>::max()) |
|
| 256 |
{}
|
|
| 257 |
|
|
| 258 |
/// Destructor. |
|
| 259 |
~HartmannOrlin() {
|
|
| 260 |
if (_local_path) delete _cycle_path; |
|
| 261 |
} |
|
| 262 |
|
|
| 263 |
/// \brief Set the path structure for storing the found cycle. |
|
| 264 |
/// |
|
| 265 |
/// This function sets an external path structure for storing the |
|
| 266 |
/// found cycle. |
|
| 267 |
/// |
|
| 268 |
/// If you don't call this function before calling \ref run() or |
|
| 269 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
| 270 |
/// structure. The destuctor deallocates this automatically |
|
| 271 |
/// allocated object, of course. |
|
| 272 |
/// |
|
| 273 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
| 274 |
/// "addFront()" function of the given path structure. |
|
| 275 |
/// |
|
| 276 |
/// \return <tt>(*this)</tt> |
|
| 277 |
HartmannOrlin& cycle(Path &path) {
|
|
| 278 |
if (_local_path) {
|
|
| 279 |
delete _cycle_path; |
|
| 280 |
_local_path = false; |
|
| 281 |
} |
|
| 282 |
_cycle_path = &path; |
|
| 283 |
return *this; |
|
| 284 |
} |
|
| 285 |
|
|
| 286 |
/// \brief Set the tolerance used by the algorithm. |
|
| 287 |
/// |
|
| 288 |
/// This function sets the tolerance object used by the algorithm. |
|
| 289 |
/// |
|
| 290 |
/// \return <tt>(*this)</tt> |
|
| 291 |
HartmannOrlin& tolerance(const Tolerance& tolerance) {
|
|
| 292 |
_tolerance = tolerance; |
|
| 293 |
return *this; |
|
| 294 |
} |
|
| 295 |
|
|
| 296 |
/// \brief Return a const reference to the tolerance. |
|
| 297 |
/// |
|
| 298 |
/// This function returns a const reference to the tolerance object |
|
| 299 |
/// used by the algorithm. |
|
| 300 |
const Tolerance& tolerance() const {
|
|
| 301 |
return _tolerance; |
|
| 302 |
} |
|
| 303 |
|
|
| 304 |
/// \name Execution control |
|
| 305 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
| 306 |
/// function.\n |
|
| 307 |
/// If you only need the minimum mean length, you may call |
|
| 308 |
/// \ref findMinMean(). |
|
| 309 |
|
|
| 310 |
/// @{
|
|
| 311 |
|
|
| 312 |
/// \brief Run the algorithm. |
|
| 313 |
/// |
|
| 314 |
/// This function runs the algorithm. |
|
| 315 |
/// It can be called more than once (e.g. if the underlying digraph |
|
| 316 |
/// and/or the arc lengths have been modified). |
|
| 317 |
/// |
|
| 318 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 319 |
/// |
|
| 320 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
| 321 |
/// \code |
|
| 322 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
| 323 |
/// \endcode |
|
| 324 |
bool run() {
|
|
| 325 |
return findMinMean() && findCycle(); |
|
| 326 |
} |
|
| 327 |
|
|
| 328 |
/// \brief Find the minimum cycle mean. |
|
| 329 |
/// |
|
| 330 |
/// This function finds the minimum mean length of the directed |
|
| 331 |
/// cycles in the digraph. |
|
| 332 |
/// |
|
| 333 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 334 |
bool findMinMean() {
|
|
| 335 |
// Initialization and find strongly connected components |
|
| 336 |
init(); |
|
| 337 |
findComponents(); |
|
| 338 |
|
|
| 339 |
// Find the minimum cycle mean in the components |
|
| 340 |
for (int comp = 0; comp < _comp_num; ++comp) {
|
|
| 341 |
if (!initComponent(comp)) continue; |
|
| 342 |
processRounds(); |
|
| 343 |
|
|
| 344 |
// Update the best cycle (global minimum mean cycle) |
|
| 345 |
if ( _curr_found && (!_best_found || |
|
| 346 |
_curr_length * _best_size < _best_length * _curr_size) ) {
|
|
| 347 |
_best_found = true; |
|
| 348 |
_best_length = _curr_length; |
|
| 349 |
_best_size = _curr_size; |
|
| 350 |
_best_node = _curr_node; |
|
| 351 |
_best_level = _curr_level; |
|
| 352 |
} |
|
| 353 |
} |
|
| 354 |
return _best_found; |
|
| 355 |
} |
|
| 356 |
|
|
| 357 |
/// \brief Find a minimum mean directed cycle. |
|
| 358 |
/// |
|
| 359 |
/// This function finds a directed cycle of minimum mean length |
|
| 360 |
/// in the digraph using the data computed by findMinMean(). |
|
| 361 |
/// |
|
| 362 |
/// \return \c true if a directed cycle exists in the digraph. |
|
| 363 |
/// |
|
| 364 |
/// \pre \ref findMinMean() must be called before using this function. |
|
| 365 |
bool findCycle() {
|
|
| 366 |
if (!_best_found) return false; |
|
| 367 |
IntNodeMap reached(_gr, -1); |
|
| 368 |
int r = _best_level + 1; |
|
| 369 |
Node u = _best_node; |
|
| 370 |
while (reached[u] < 0) {
|
|
| 371 |
reached[u] = --r; |
|
| 372 |
u = _gr.source(_data[u][r].pred); |
|
| 373 |
} |
|
| 374 |
r = reached[u]; |
|
| 375 |
Arc e = _data[u][r].pred; |
|
| 376 |
_cycle_path->addFront(e); |
|
| 377 |
_best_length = _length[e]; |
|
| 378 |
_best_size = 1; |
|
| 379 |
Node v; |
|
| 380 |
while ((v = _gr.source(e)) != u) {
|
|
| 381 |
e = _data[v][--r].pred; |
|
| 382 |
_cycle_path->addFront(e); |
|
| 383 |
_best_length += _length[e]; |
|
| 384 |
++_best_size; |
|
| 385 |
} |
|
| 386 |
return true; |
|
| 387 |
} |
|
| 388 |
|
|
| 389 |
/// @} |
|
| 390 |
|
|
| 391 |
/// \name Query Functions |
|
| 392 |
/// The results of the algorithm can be obtained using these |
|
| 393 |
/// functions.\n |
|
| 394 |
/// The algorithm should be executed before using them. |
|
| 395 |
|
|
| 396 |
/// @{
|
|
| 397 |
|
|
| 398 |
/// \brief Return the total length of the found cycle. |
|
| 399 |
/// |
|
| 400 |
/// This function returns the total length of the found cycle. |
|
| 401 |
/// |
|
| 402 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 403 |
/// using this function. |
|
| 404 |
LargeValue cycleLength() const {
|
|
| 405 |
return _best_length; |
|
| 406 |
} |
|
| 407 |
|
|
| 408 |
/// \brief Return the number of arcs on the found cycle. |
|
| 409 |
/// |
|
| 410 |
/// This function returns the number of arcs on the found cycle. |
|
| 411 |
/// |
|
| 412 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 413 |
/// using this function. |
|
| 414 |
int cycleArcNum() const {
|
|
| 415 |
return _best_size; |
|
| 416 |
} |
|
| 417 |
|
|
| 418 |
/// \brief Return the mean length of the found cycle. |
|
| 419 |
/// |
|
| 420 |
/// This function returns the mean length of the found cycle. |
|
| 421 |
/// |
|
| 422 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
| 423 |
/// following code. |
|
| 424 |
/// \code |
|
| 425 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
| 426 |
/// \endcode |
|
| 427 |
/// |
|
| 428 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
| 429 |
/// using this function. |
|
| 430 |
double cycleMean() const {
|
|
| 431 |
return static_cast<double>(_best_length) / _best_size; |
|
| 432 |
} |
|
| 433 |
|
|
| 434 |
/// \brief Return the found cycle. |
|
| 435 |
/// |
|
| 436 |
/// This function returns a const reference to the path structure |
|
| 437 |
/// storing the found cycle. |
|
| 438 |
/// |
|
| 439 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
| 440 |
/// this function. |
|
| 441 |
const Path& cycle() const {
|
|
| 442 |
return *_cycle_path; |
|
| 443 |
} |
|
| 444 |
|
|
| 445 |
///@} |
|
| 446 |
|
|
| 447 |
private: |
|
| 448 |
|
|
| 449 |
// Initialization |
|
| 450 |
void init() {
|
|
| 451 |
if (!_cycle_path) {
|
|
| 452 |
_local_path = true; |
|
| 453 |
_cycle_path = new Path; |
|
| 454 |
} |
|
| 455 |
_cycle_path->clear(); |
|
| 456 |
_best_found = false; |
|
| 457 |
_best_length = 0; |
|
| 458 |
_best_size = 1; |
|
| 459 |
_cycle_path->clear(); |
|
| 460 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
| 461 |
_data[u].clear(); |
|
| 462 |
} |
|
| 463 |
|
|
| 464 |
// Find strongly connected components and initialize _comp_nodes |
|
| 465 |
// and _out_arcs |
|
| 466 |
void findComponents() {
|
|
| 467 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
| 468 |
_comp_nodes.resize(_comp_num); |
|
| 469 |
if (_comp_num == 1) {
|
|
| 470 |
_comp_nodes[0].clear(); |
|
| 471 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 472 |
_comp_nodes[0].push_back(n); |
|
| 473 |
_out_arcs[n].clear(); |
|
| 474 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 475 |
_out_arcs[n].push_back(a); |
|
| 476 |
} |
|
| 477 |
} |
|
| 478 |
} else {
|
|
| 479 |
for (int i = 0; i < _comp_num; ++i) |
|
| 480 |
_comp_nodes[i].clear(); |
|
| 481 |
for (NodeIt n(_gr); n != INVALID; ++n) {
|
|
| 482 |
int k = _comp[n]; |
|
| 483 |
_comp_nodes[k].push_back(n); |
|
| 484 |
_out_arcs[n].clear(); |
|
| 485 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) {
|
|
| 486 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
| 487 |
} |
|
| 488 |
} |
|
| 489 |
} |
|
| 490 |
} |
|
| 491 |
|
|
| 492 |
// Initialize path data for the current component |
|
| 493 |
bool initComponent(int comp) {
|
|
| 494 |
_nodes = &(_comp_nodes[comp]); |
|
| 495 |
int n = _nodes->size(); |
|
| 496 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
|
|
| 497 |
return false; |
|
| 498 |
} |
|
| 499 |
for (int i = 0; i < n; ++i) {
|
|
| 500 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
|
| 501 |
} |
|
| 502 |
return true; |
|
| 503 |
} |
|
| 504 |
|
|
| 505 |
// Process all rounds of computing path data for the current component. |
|
| 506 |
// _data[v][k] is the length of a shortest directed walk from the root |
|
| 507 |
// node to node v containing exactly k arcs. |
|
| 508 |
void processRounds() {
|
|
| 509 |
Node start = (*_nodes)[0]; |
|
| 510 |
_data[start][0] = PathData(0); |
|
| 511 |
_process.clear(); |
|
| 512 |
_process.push_back(start); |
|
| 513 |
|
|
| 514 |
int k, n = _nodes->size(); |
|
| 515 |
int next_check = 4; |
|
| 516 |
bool terminate = false; |
|
| 517 |
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) {
|
|
| 518 |
processNextBuildRound(k); |
|
| 519 |
if (k == next_check || k == n) {
|
|
| 520 |
terminate = checkTermination(k); |
|
| 521 |
next_check = next_check * 3 / 2; |
|
| 522 |
} |
|
| 523 |
} |
|
| 524 |
for ( ; k <= n && !terminate; ++k) {
|
|
| 525 |
processNextFullRound(k); |
|
| 526 |
if (k == next_check || k == n) {
|
|
| 527 |
terminate = checkTermination(k); |
|
| 528 |
next_check = next_check * 3 / 2; |
|
| 529 |
} |
|
| 530 |
} |
|
| 531 |
} |
|
| 532 |
|
|
| 533 |
// Process one round and rebuild _process |
|
| 534 |
void processNextBuildRound(int k) {
|
|
| 535 |
std::vector<Node> next; |
|
| 536 |
Node u, v; |
|
| 537 |
Arc e; |
|
| 538 |
LargeValue d; |
|
| 539 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 540 |
u = _process[i]; |
|
| 541 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 542 |
e = _out_arcs[u][j]; |
|
| 543 |
v = _gr.target(e); |
|
| 544 |
d = _data[u][k-1].dist + _length[e]; |
|
| 545 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 546 |
if (_data[v][k].dist == INF) next.push_back(v); |
|
| 547 |
_data[v][k] = PathData(d, e); |
|
| 548 |
} |
|
| 549 |
} |
|
| 550 |
} |
|
| 551 |
_process.swap(next); |
|
| 552 |
} |
|
| 553 |
|
|
| 554 |
// Process one round using _nodes instead of _process |
|
| 555 |
void processNextFullRound(int k) {
|
|
| 556 |
Node u, v; |
|
| 557 |
Arc e; |
|
| 558 |
LargeValue d; |
|
| 559 |
for (int i = 0; i < int(_nodes->size()); ++i) {
|
|
| 560 |
u = (*_nodes)[i]; |
|
| 561 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) {
|
|
| 562 |
e = _out_arcs[u][j]; |
|
| 563 |
v = _gr.target(e); |
|
| 564 |
d = _data[u][k-1].dist + _length[e]; |
|
| 565 |
if (_tolerance.less(d, _data[v][k].dist)) {
|
|
| 566 |
_data[v][k] = PathData(d, e); |
|
| 567 |
} |
|
| 568 |
} |
|
| 569 |
} |
|
| 570 |
} |
|
| 571 |
|
|
| 572 |
// Check early termination |
|
| 573 |
bool checkTermination(int k) {
|
|
| 574 |
typedef std::pair<int, int> Pair; |
|
| 575 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
|
| 576 |
typename GR::template NodeMap<LargeValue> pi(_gr); |
|
| 577 |
int n = _nodes->size(); |
|
| 578 |
LargeValue length; |
|
| 579 |
int size; |
|
| 580 |
Node u; |
|
| 581 |
|
|
| 582 |
// Search for cycles that are already found |
|
| 583 |
_curr_found = false; |
|
| 584 |
for (int i = 0; i < n; ++i) {
|
|
| 585 |
u = (*_nodes)[i]; |
|
| 586 |
if (_data[u][k].dist == INF) continue; |
|
| 587 |
for (int j = k; j >= 0; --j) {
|
|
| 588 |
if (level[u].first == i && level[u].second > 0) {
|
|
| 589 |
// A cycle is found |
|
| 590 |
length = _data[u][level[u].second].dist - _data[u][j].dist; |
|
| 591 |
size = level[u].second - j; |
|
| 592 |
if (!_curr_found || length * _curr_size < _curr_length * size) {
|
|
| 593 |
_curr_length = length; |
|
| 594 |
_curr_size = size; |
|
| 595 |
_curr_node = u; |
|
| 596 |
_curr_level = level[u].second; |
|
| 597 |
_curr_found = true; |
|
| 598 |
} |
|
| 599 |
} |
|
| 600 |
level[u] = Pair(i, j); |
|
| 601 |
if (j != 0) {
|
|
| 602 |
u = _gr.source(_data[u][j].pred); |
|
| 603 |
} |
|
| 604 |
} |
|
| 605 |
} |
|
| 606 |
|
|
| 607 |
// If at least one cycle is found, check the optimality condition |
|
| 608 |
LargeValue d; |
|
| 609 |
if (_curr_found && k < n) {
|
|
| 610 |
// Find node potentials |
|
| 611 |
for (int i = 0; i < n; ++i) {
|
|
| 612 |
u = (*_nodes)[i]; |
|
| 613 |
pi[u] = INF; |
|
| 614 |
for (int j = 0; j <= k; ++j) {
|
|
| 615 |
if (_data[u][j].dist < INF) {
|
|
| 616 |
d = _data[u][j].dist * _curr_size - j * _curr_length; |
|
| 617 |
if (_tolerance.less(d, pi[u])) pi[u] = d; |
|
| 618 |
} |
|
| 619 |
} |
|
| 620 |
} |
|
| 621 |
|
|
| 622 |
// Check the optimality condition for all arcs |
|
| 623 |
bool done = true; |
|
| 624 |
for (ArcIt a(_gr); a != INVALID; ++a) {
|
|
| 625 |
if (_tolerance.less(_length[a] * _curr_size - _curr_length, |
|
| 626 |
pi[_gr.target(a)] - pi[_gr.source(a)]) ) {
|
|
| 627 |
done = false; |
|
| 628 |
break; |
|
| 629 |
} |
|
| 630 |
} |
|
| 631 |
return done; |
|
| 632 |
} |
|
| 633 |
return (k == n); |
|
| 634 |
} |
|
| 635 |
|
|
| 636 |
}; //class HartmannOrlin |
|
| 637 |
|
|
| 638 |
///@} |
|
| 639 |
|
|
| 640 |
} //namespace lemon |
|
| 641 |
|
|
| 642 |
#endif //LEMON_HARTMANN_ORLIN_H |
| ... | ... |
@@ -32,12 +32,14 @@ |
| 32 | 32 |
FIND_PACKAGE(COIN) |
| 33 | 33 |
|
| 34 | 34 |
INCLUDE(CheckTypeSize) |
| 35 | 35 |
CHECK_TYPE_SIZE("long long" LONG_LONG)
|
| 36 | 36 |
SET(LEMON_HAVE_LONG_LONG ${HAVE_LONG_LONG})
|
| 37 | 37 |
|
| 38 |
INCLUDE(FindPythonInterp) |
|
| 39 |
|
|
| 38 | 40 |
ENABLE_TESTING() |
| 39 | 41 |
|
| 40 | 42 |
ADD_SUBDIRECTORY(lemon) |
| 41 | 43 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR})
|
| 42 | 44 |
ADD_SUBDIRECTORY(demo) |
| 43 | 45 |
ADD_SUBDIRECTORY(tools) |
| ... | ... |
@@ -14,12 +14,13 @@ |
| 14 | 14 |
m4/lx_check_coin.m4 \ |
| 15 | 15 |
CMakeLists.txt \ |
| 16 | 16 |
cmake/FindGhostscript.cmake \ |
| 17 | 17 |
cmake/FindCPLEX.cmake \ |
| 18 | 18 |
cmake/FindGLPK.cmake \ |
| 19 | 19 |
cmake/FindCOIN.cmake \ |
| 20 |
cmake/LEMONConfig.cmake.in \ |
|
| 20 | 21 |
cmake/version.cmake.in \ |
| 21 | 22 |
cmake/version.cmake \ |
| 22 | 23 |
cmake/nsis/lemon.ico \ |
| 23 | 24 |
cmake/nsis/uninstall.ico |
| 24 | 25 |
|
| 25 | 26 |
pkgconfigdir = $(libdir)/pkgconfig |
| ... | ... |
@@ -40,12 +41,13 @@ |
| 40 | 41 |
XFAIL_TESTS = |
| 41 | 42 |
|
| 42 | 43 |
include lemon/Makefile.am |
| 43 | 44 |
include test/Makefile.am |
| 44 | 45 |
include doc/Makefile.am |
| 45 | 46 |
include tools/Makefile.am |
| 47 |
include scripts/Makefile.am |
|
| 46 | 48 |
|
| 47 | 49 |
DIST_SUBDIRS = demo |
| 48 | 50 |
|
| 49 | 51 |
demo: |
| 50 | 52 |
$(MAKE) $(AM_MAKEFLAGS) -C demo |
| 51 | 53 |
| ... | ... |
@@ -38,12 +38,13 @@ |
| 38 | 38 |
AC_PROG_CXXCPP |
| 39 | 39 |
AC_PROG_INSTALL |
| 40 | 40 |
AC_DISABLE_SHARED |
| 41 | 41 |
AC_PROG_LIBTOOL |
| 42 | 42 |
|
| 43 | 43 |
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no]) |
| 44 |
AC_CHECK_PROG([python_found],[python],[yes],[no]) |
|
| 44 | 45 |
AC_CHECK_PROG([gs_found],[gs],[yes],[no]) |
| 45 | 46 |
|
| 46 | 47 |
dnl Detect Intel compiler. |
| 47 | 48 |
AC_MSG_CHECKING([whether we are using the Intel C++ compiler]) |
| 48 | 49 |
AC_COMPILE_IFELSE([#ifndef __INTEL_COMPILER |
| 49 | 50 |
choke me |
| ... | ... |
@@ -79,12 +80,27 @@ |
| 79 | 80 |
AC_MSG_RESULT([yes]) |
| 80 | 81 |
else |
| 81 | 82 |
AC_MSG_RESULT([no]) |
| 82 | 83 |
fi |
| 83 | 84 |
AM_CONDITIONAL([WANT_TOOLS], [test x"$enable_tools" != x"no"]) |
| 84 | 85 |
|
| 86 |
dnl Support for running test cases using valgrind. |
|
| 87 |
use_valgrind=no |
|
| 88 |
AC_ARG_ENABLE([valgrind], |
|
| 89 |
AS_HELP_STRING([--enable-valgrind], [use valgrind when running tests]), |
|
| 90 |
[use_valgrind=yes]) |
|
| 91 |
|
|
| 92 |
if [[ "$use_valgrind" = "yes" ]]; then |
|
| 93 |
AC_CHECK_PROG(HAVE_VALGRIND, valgrind, yes, no) |
|
| 94 |
|
|
| 95 |
if [[ "$HAVE_VALGRIND" = "no" ]]; then |
|
| 96 |
AC_MSG_ERROR([Valgrind not found in PATH.]) |
|
| 97 |
fi |
|
| 98 |
fi |
|
| 99 |
AM_CONDITIONAL(USE_VALGRIND, [test "$use_valgrind" = "yes"]) |
|
| 100 |
|
|
| 85 | 101 |
dnl Checks for header files. |
| 86 | 102 |
AC_CHECK_HEADERS(limits.h sys/time.h sys/times.h unistd.h) |
| 87 | 103 |
|
| 88 | 104 |
dnl Checks for typedefs, structures, and compiler characteristics. |
| 89 | 105 |
AC_C_CONST |
| 90 | 106 |
AC_C_INLINE |
| ... | ... |
@@ -124,12 +140,13 @@ |
| 124 | 140 |
echo CPLEX support................. : $lx_cplex_found |
| 125 | 141 |
echo SOPLEX support................ : $lx_soplex_found |
| 126 | 142 |
echo CLP support................... : $lx_clp_found |
| 127 | 143 |
echo CBC support................... : $lx_cbc_found |
| 128 | 144 |
echo |
| 129 | 145 |
echo Build additional tools........ : $enable_tools |
| 146 |
echo Use valgrind for tests........ : $use_valgrind |
|
| 130 | 147 |
echo |
| 131 | 148 |
echo The packace will be installed in |
| 132 | 149 |
echo -n ' ' |
| 133 | 150 |
echo $prefix. |
| 134 | 151 |
echo |
| 135 | 152 |
echo '*********************************************************************' |
| ... | ... |
@@ -6,13 +6,13 @@ |
| 6 | 6 |
CONFIGURE_FILE( |
| 7 | 7 |
${PROJECT_SOURCE_DIR}/doc/Doxyfile.in
|
| 8 | 8 |
${PROJECT_BINARY_DIR}/doc/Doxyfile
|
| 9 | 9 |
@ONLY |
| 10 | 10 |
) |
| 11 | 11 |
|
| 12 |
IF(DOXYGEN_EXECUTABLE AND GHOSTSCRIPT_EXECUTABLE) |
|
| 12 |
IF(DOXYGEN_EXECUTABLE AND PYTHONINTERP_FOUND AND GHOSTSCRIPT_EXECUTABLE) |
|
| 13 | 13 |
FILE(MAKE_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html/)
|
| 14 | 14 |
SET(GHOSTSCRIPT_OPTIONS -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4 -sDEVICE=pngalpha) |
| 15 | 15 |
ADD_CUSTOM_TARGET(html |
| 16 | 16 |
COMMAND ${CMAKE_COMMAND} -E remove_directory gen-images
|
| 17 | 17 |
COMMAND ${CMAKE_COMMAND} -E make_directory gen-images
|
| 18 | 18 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/bipartite_matching.png ${CMAKE_CURRENT_SOURCE_DIR}/images/bipartite_matching.eps
|
| ... | ... |
@@ -25,12 +25,13 @@ |
| 25 | 25 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_1.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_1.eps
|
| 26 | 26 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_2.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_2.eps
|
| 27 | 27 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_3.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_3.eps
|
| 28 | 28 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/nodeshape_4.png ${CMAKE_CURRENT_SOURCE_DIR}/images/nodeshape_4.eps
|
| 29 | 29 |
COMMAND ${GHOSTSCRIPT_EXECUTABLE} ${GHOSTSCRIPT_OPTIONS} -r18 -sOutputFile=gen-images/strongly_connected_components.png ${CMAKE_CURRENT_SOURCE_DIR}/images/strongly_connected_components.eps
|
| 30 | 30 |
COMMAND ${CMAKE_COMMAND} -E remove_directory html
|
| 31 |
COMMAND ${PYTHON_EXECUTABLE} ${PROJECT_SOURCE_DIR}/scripts/bib2dox.py ${CMAKE_CURRENT_SOURCE_DIR}/references.bib >references.dox
|
|
| 31 | 32 |
COMMAND ${DOXYGEN_EXECUTABLE} Doxyfile
|
| 32 | 33 |
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
|
| 33 | 34 |
) |
| 34 | 35 |
|
| 35 | 36 |
SET_TARGET_PROPERTIES(html PROPERTIES PROJECT_LABEL BUILD_DOC) |
| 36 | 37 |
| 1 |
# Doxyfile 1.5. |
|
| 1 |
# Doxyfile 1.5.9 |
|
| 2 | 2 |
|
| 3 | 3 |
#--------------------------------------------------------------------------- |
| 4 | 4 |
# Project related configuration options |
| 5 | 5 |
#--------------------------------------------------------------------------- |
| 6 | 6 |
DOXYFILE_ENCODING = UTF-8 |
| 7 | 7 |
PROJECT_NAME = @PACKAGE_NAME@ |
| ... | ... |
@@ -18,13 +18,12 @@ |
| 18 | 18 |
STRIP_FROM_PATH = "@abs_top_srcdir@" |
| 19 | 19 |
STRIP_FROM_INC_PATH = "@abs_top_srcdir@" |
| 20 | 20 |
SHORT_NAMES = YES |
| 21 | 21 |
JAVADOC_AUTOBRIEF = NO |
| 22 | 22 |
QT_AUTOBRIEF = NO |
| 23 | 23 |
MULTILINE_CPP_IS_BRIEF = NO |
| 24 |
DETAILS_AT_TOP = YES |
|
| 25 | 24 |
INHERIT_DOCS = NO |
| 26 | 25 |
SEPARATE_MEMBER_PAGES = NO |
| 27 | 26 |
TAB_SIZE = 8 |
| 28 | 27 |
ALIASES = |
| 29 | 28 |
OPTIMIZE_OUTPUT_FOR_C = NO |
| 30 | 29 |
OPTIMIZE_OUTPUT_JAVA = NO |
| ... | ... |
@@ -88,13 +87,14 @@ |
| 88 | 87 |
INPUT = "@abs_top_srcdir@/doc" \ |
| 89 | 88 |
"@abs_top_srcdir@/lemon" \ |
| 90 | 89 |
"@abs_top_srcdir@/lemon/bits" \ |
| 91 | 90 |
"@abs_top_srcdir@/lemon/concepts" \ |
| 92 | 91 |
"@abs_top_srcdir@/demo" \ |
| 93 | 92 |
"@abs_top_srcdir@/tools" \ |
| 94 |
"@abs_top_srcdir@/test/test_tools.h" |
|
| 93 |
"@abs_top_srcdir@/test/test_tools.h" \ |
|
| 94 |
"@abs_top_builddir@/doc/references.dox" |
|
| 95 | 95 |
INPUT_ENCODING = UTF-8 |
| 96 | 96 |
FILE_PATTERNS = *.h \ |
| 97 | 97 |
*.cc \ |
| 98 | 98 |
*.dox |
| 99 | 99 |
RECURSIVE = NO |
| 100 | 100 |
EXCLUDE = |
| ... | ... |
@@ -220,13 +220,13 @@ |
| 220 | 220 |
INCLUDE_PATH = |
| 221 | 221 |
INCLUDE_FILE_PATTERNS = |
| 222 | 222 |
PREDEFINED = DOXYGEN |
| 223 | 223 |
EXPAND_AS_DEFINED = |
| 224 | 224 |
SKIP_FUNCTION_MACROS = YES |
| 225 | 225 |
#--------------------------------------------------------------------------- |
| 226 |
# |
|
| 226 |
# Options related to the search engine |
|
| 227 | 227 |
#--------------------------------------------------------------------------- |
| 228 | 228 |
TAGFILES = "@abs_top_srcdir@/doc/libstdc++.tag = http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/ " |
| 229 | 229 |
GENERATE_TAGFILE = html/lemon.tag |
| 230 | 230 |
ALLEXTERNALS = NO |
| 231 | 231 |
EXTERNAL_GROUPS = NO |
| 232 | 232 |
PERL_PATH = /usr/bin/perl |
| ... | ... |
@@ -63,13 +63,25 @@ |
| 63 | 63 |
echo; \ |
| 64 | 64 |
echo "Ghostscript not found."; \ |
| 65 | 65 |
echo; \ |
| 66 | 66 |
exit 1; \ |
| 67 | 67 |
fi |
| 68 | 68 |
|
| 69 |
|
|
| 69 |
references.dox: doc/references.bib |
|
| 70 |
if test ${python_found} = yes; then \
|
|
| 71 |
cd doc; \ |
|
| 72 |
python @abs_top_srcdir@/scripts/bib2dox.py @abs_top_builddir@/$< >$@; \ |
|
| 73 |
cd ..; \ |
|
| 74 |
else \ |
|
| 75 |
echo; \ |
|
| 76 |
echo "Python not found."; \ |
|
| 77 |
echo; \ |
|
| 78 |
exit 1; \ |
|
| 79 |
fi |
|
| 80 |
|
|
| 81 |
html-local: $(DOC_PNG_IMAGES) references.dox |
|
| 70 | 82 |
if test ${doxygen_found} = yes; then \
|
| 71 | 83 |
cd doc; \ |
| 72 | 84 |
doxygen Doxyfile; \ |
| 73 | 85 |
cd ..; \ |
| 74 | 86 |
else \ |
| 75 | 87 |
echo; \ |
| ... | ... |
@@ -277,12 +277,34 @@ |
| 277 | 277 |
|
| 278 | 278 |
This group contains some data structures implemented in LEMON in |
| 279 | 279 |
order to make it easier to implement combinatorial algorithms. |
| 280 | 280 |
*/ |
| 281 | 281 |
|
| 282 | 282 |
/** |
| 283 |
@defgroup geomdat Geometric Data Structures |
|
| 284 |
@ingroup auxdat |
|
| 285 |
\brief Geometric data structures implemented in LEMON. |
|
| 286 |
|
|
| 287 |
This group contains geometric data structures implemented in LEMON. |
|
| 288 |
|
|
| 289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
| 290 |
vector with the usual operations. |
|
| 291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
| 292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
| 293 |
"dim2::Point"'s. |
|
| 294 |
*/ |
|
| 295 |
|
|
| 296 |
/** |
|
| 297 |
@defgroup matrices Matrices |
|
| 298 |
@ingroup auxdat |
|
| 299 |
\brief Two dimensional data storages implemented in LEMON. |
|
| 300 |
|
|
| 301 |
This group contains two dimensional data storages implemented in LEMON. |
|
| 302 |
*/ |
|
| 303 |
|
|
| 304 |
/** |
|
| 283 | 305 |
@defgroup algs Algorithms |
| 284 | 306 |
\brief This group contains the several algorithms |
| 285 | 307 |
implemented in LEMON. |
| 286 | 308 |
|
| 287 | 309 |
This group contains the several algorithms |
| 288 | 310 |
implemented in LEMON. |
| ... | ... |
@@ -291,21 +313,23 @@ |
| 291 | 313 |
/** |
| 292 | 314 |
@defgroup search Graph Search |
| 293 | 315 |
@ingroup algs |
| 294 | 316 |
\brief Common graph search algorithms. |
| 295 | 317 |
|
| 296 | 318 |
This group contains the common graph search algorithms, namely |
| 297 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
| 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS) |
|
| 320 |
\ref clrs01algorithms. |
|
| 298 | 321 |
*/ |
| 299 | 322 |
|
| 300 | 323 |
/** |
| 301 | 324 |
@defgroup shortest_path Shortest Path Algorithms |
| 302 | 325 |
@ingroup algs |
| 303 | 326 |
\brief Algorithms for finding shortest paths. |
| 304 | 327 |
|
| 305 |
This group contains the algorithms for finding shortest paths in digraphs |
|
| 328 |
This group contains the algorithms for finding shortest paths in digraphs |
|
| 329 |
\ref clrs01algorithms. |
|
| 306 | 330 |
|
| 307 | 331 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
| 308 | 332 |
when all arc lengths are non-negative. |
| 309 | 333 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
| 310 | 334 |
from a source node when arc lenghts can be either positive or negative, |
| 311 | 335 |
but the digraph should not contain directed cycles with negative total |
| ... | ... |
@@ -316,18 +340,27 @@ |
| 316 | 340 |
not contain directed cycles with negative total length. |
| 317 | 341 |
- \ref Suurballe A successive shortest path algorithm for finding |
| 318 | 342 |
arc-disjoint paths between two nodes having minimum total length. |
| 319 | 343 |
*/ |
| 320 | 344 |
|
| 321 | 345 |
/** |
| 346 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
| 347 |
@ingroup algs |
|
| 348 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
| 349 |
|
|
| 350 |
This group contains the algorithms for finding minimum cost spanning |
|
| 351 |
trees and arborescences \ref clrs01algorithms. |
|
| 352 |
*/ |
|
| 353 |
|
|
| 354 |
/** |
|
| 322 | 355 |
@defgroup max_flow Maximum Flow Algorithms |
| 323 | 356 |
@ingroup algs |
| 324 | 357 |
\brief Algorithms for finding maximum flows. |
| 325 | 358 |
|
| 326 | 359 |
This group contains the algorithms for finding maximum flows and |
| 327 |
feasible circulations. |
|
| 360 |
feasible circulations \ref clrs01algorithms, \ref amo93networkflows. |
|
| 328 | 361 |
|
| 329 | 362 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
| 330 | 363 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
| 331 | 364 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
|
| 332 | 365 |
\f$s, t \in V\f$ source and target nodes. |
| 333 | 366 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
|
| ... | ... |
@@ -336,18 +369,22 @@ |
| 336 | 369 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
|
| 337 | 370 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
|
| 338 | 371 |
\quad \forall u\in V\setminus\{s,t\} \f]
|
| 339 | 372 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
| 340 | 373 |
|
| 341 | 374 |
LEMON contains several algorithms for solving maximum flow problems: |
| 342 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
|
| 343 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
|
| 344 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
|
| 345 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
|
| 375 |
- \ref EdmondsKarp Edmonds-Karp algorithm |
|
| 376 |
\ref edmondskarp72theoretical. |
|
| 377 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm |
|
| 378 |
\ref goldberg88newapproach. |
|
| 379 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees |
|
| 380 |
\ref dinic70algorithm, \ref sleator83dynamic. |
|
| 381 |
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees |
|
| 382 |
\ref goldberg88newapproach, \ref sleator83dynamic. |
|
| 346 | 383 |
|
| 347 |
In most cases the \ref Preflow |
|
| 384 |
In most cases the \ref Preflow algorithm provides the |
|
| 348 | 385 |
fastest method for computing a maximum flow. All implementations |
| 349 | 386 |
also provide functions to query the minimum cut, which is the dual |
| 350 | 387 |
problem of maximum flow. |
| 351 | 388 |
|
| 352 | 389 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
| 353 | 390 |
for finding feasible circulations, which is a somewhat different problem, |
| ... | ... |
@@ -359,24 +396,28 @@ |
| 359 | 396 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
| 360 | 397 |
@ingroup algs |
| 361 | 398 |
|
| 362 | 399 |
\brief Algorithms for finding minimum cost flows and circulations. |
| 363 | 400 |
|
| 364 | 401 |
This group contains the algorithms for finding minimum cost flows and |
| 365 |
circulations. For more information about this problem and its dual |
|
| 366 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
| 402 |
circulations \ref amo93networkflows. For more information about this |
|
| 403 |
problem and its dual solution, see \ref min_cost_flow |
|
| 404 |
"Minimum Cost Flow Problem". |
|
| 367 | 405 |
|
| 368 | 406 |
LEMON contains several algorithms for this problem. |
| 369 | 407 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
| 370 |
pivot strategies. |
|
| 408 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
|
| 371 | 409 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
| 372 |
cost scaling |
|
| 410 |
cost scaling \ref goldberg90approximation, \ref goldberg97efficient, |
|
| 411 |
\ref bunnagel98efficient. |
|
| 373 | 412 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
| 374 |
capacity scaling. |
|
| 375 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
| 376 |
|
|
| 413 |
capacity scaling \ref edmondskarp72theoretical. |
|
| 414 |
- \ref CancelAndTighten The Cancel and Tighten algorithm |
|
| 415 |
\ref goldberg89cyclecanceling. |
|
| 416 |
- \ref CycleCanceling Cycle-Canceling algorithms |
|
| 417 |
\ref klein67primal, \ref goldberg89cyclecanceling. |
|
| 377 | 418 |
|
| 378 | 419 |
In general NetworkSimplex is the most efficient implementation, |
| 379 | 420 |
but in special cases other algorithms could be faster. |
| 380 | 421 |
For example, if the total supply and/or capacities are rather small, |
| 381 | 422 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
| 382 | 423 |
*/ |
| ... | ... |
@@ -393,13 +434,13 @@ |
| 393 | 434 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
| 394 | 435 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
| 395 | 436 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
|
| 396 | 437 |
cut is the \f$X\f$ solution of the next optimization problem: |
| 397 | 438 |
|
| 398 | 439 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
|
| 399 |
\sum_{uv\in A
|
|
| 440 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
|
|
| 400 | 441 |
|
| 401 | 442 |
LEMON contains several algorithms related to minimum cut problems: |
| 402 | 443 |
|
| 403 | 444 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
| 404 | 445 |
in directed graphs. |
| 405 | 446 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
| ... | ... |
@@ -409,33 +450,46 @@ |
| 409 | 450 |
|
| 410 | 451 |
If you want to find minimum cut just between two distinict nodes, |
| 411 | 452 |
see the \ref max_flow "maximum flow problem". |
| 412 | 453 |
*/ |
| 413 | 454 |
|
| 414 | 455 |
/** |
| 415 |
@defgroup |
|
| 456 |
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms |
|
| 416 | 457 |
@ingroup algs |
| 417 |
\brief Algorithms for |
|
| 458 |
\brief Algorithms for finding minimum mean cycles. |
|
| 418 | 459 |
|
| 419 |
This group contains the algorithms for discovering the graph properties |
|
| 420 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 460 |
This group contains the algorithms for finding minimum mean cycles |
|
| 461 |
\ref clrs01algorithms, \ref amo93networkflows. |
|
| 421 | 462 |
|
| 422 |
\image html edge_biconnected_components.png |
|
| 423 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
| 424 |
|
|
| 463 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
|
| 464 |
of minimum mean length (cost) in a digraph. |
|
| 465 |
The mean length of a cycle is the average length of its arcs, i.e. the |
|
| 466 |
ratio between the total length of the cycle and the number of arcs on it. |
|
| 425 | 467 |
|
| 426 |
/** |
|
| 427 |
@defgroup planar Planarity Embedding and Drawing |
|
| 428 |
@ingroup algs |
|
| 429 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 468 |
This problem has an important connection to \e conservative \e length |
|
| 469 |
\e functions, too. A length function on the arcs of a digraph is called |
|
| 470 |
conservative if and only if there is no directed cycle of negative total |
|
| 471 |
length. For an arbitrary length function, the negative of the minimum |
|
| 472 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
|
| 473 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
|
| 474 |
function. |
|
| 430 | 475 |
|
| 431 |
This group contains the algorithms for planarity checking, |
|
| 432 |
embedding and drawing. |
|
| 476 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
|
| 477 |
- \ref Karp "Karp"'s original algorithm \ref amo93networkflows, |
|
| 478 |
\ref dasdan98minmeancycle. |
|
| 479 |
- \ref HartmannOrlin "Hartmann-Orlin"'s algorithm, which is an improved |
|
| 480 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
|
| 481 |
- \ref Howard "Howard"'s policy iteration algorithm |
|
| 482 |
\ref dasdan98minmeancycle. |
|
| 433 | 483 |
|
| 434 |
\image html planar.png |
|
| 435 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 484 |
In practice, the Howard algorithm proved to be by far the most efficient |
|
| 485 |
one, though the best known theoretical bound on its running time is |
|
| 486 |
exponential. |
|
| 487 |
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space |
|
| 488 |
O(n<sup>2</sup>+e), but the latter one is typically faster due to the |
|
| 489 |
applied early termination scheme. |
|
| 436 | 490 |
*/ |
| 437 | 491 |
|
| 438 | 492 |
/** |
| 439 | 493 |
@defgroup matching Matching Algorithms |
| 440 | 494 |
@ingroup algs |
| 441 | 495 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
| ... | ... |
@@ -473,55 +527,73 @@ |
| 473 | 527 |
|
| 474 | 528 |
\image html bipartite_matching.png |
| 475 | 529 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
| 476 | 530 |
*/ |
| 477 | 531 |
|
| 478 | 532 |
/** |
| 479 |
@defgroup |
|
| 533 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
| 480 | 534 |
@ingroup algs |
| 481 |
\brief Algorithms for |
|
| 535 |
\brief Algorithms for discovering the graph properties |
|
| 482 | 536 |
|
| 483 |
This group contains the algorithms for finding minimum cost spanning |
|
| 484 |
trees and arborescences. |
|
| 537 |
This group contains the algorithms for discovering the graph properties |
|
| 538 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
| 539 |
|
|
| 540 |
\image html connected_components.png |
|
| 541 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
| 542 |
*/ |
|
| 543 |
|
|
| 544 |
/** |
|
| 545 |
@defgroup planar Planarity Embedding and Drawing |
|
| 546 |
@ingroup algs |
|
| 547 |
\brief Algorithms for planarity checking, embedding and drawing |
|
| 548 |
|
|
| 549 |
This group contains the algorithms for planarity checking, |
|
| 550 |
embedding and drawing. |
|
| 551 |
|
|
| 552 |
\image html planar.png |
|
| 553 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
| 554 |
*/ |
|
| 555 |
|
|
| 556 |
/** |
|
| 557 |
@defgroup approx Approximation Algorithms |
|
| 558 |
@ingroup algs |
|
| 559 |
\brief Approximation algorithms. |
|
| 560 |
|
|
| 561 |
This group contains the approximation and heuristic algorithms |
|
| 562 |
implemented in LEMON. |
|
| 485 | 563 |
*/ |
| 486 | 564 |
|
| 487 | 565 |
/** |
| 488 | 566 |
@defgroup auxalg Auxiliary Algorithms |
| 489 | 567 |
@ingroup algs |
| 490 | 568 |
\brief Auxiliary algorithms implemented in LEMON. |
| 491 | 569 |
|
| 492 | 570 |
This group contains some algorithms implemented in LEMON |
| 493 | 571 |
in order to make it easier to implement complex algorithms. |
| 494 | 572 |
*/ |
| 495 | 573 |
|
| 496 | 574 |
/** |
| 497 |
@defgroup approx Approximation Algorithms |
|
| 498 |
@ingroup algs |
|
| 499 |
\brief Approximation algorithms. |
|
| 500 |
|
|
| 501 |
This group contains the approximation and heuristic algorithms |
|
| 502 |
implemented in LEMON. |
|
| 503 |
*/ |
|
| 504 |
|
|
| 505 |
/** |
|
| 506 | 575 |
@defgroup gen_opt_group General Optimization Tools |
| 507 | 576 |
\brief This group contains some general optimization frameworks |
| 508 | 577 |
implemented in LEMON. |
| 509 | 578 |
|
| 510 | 579 |
This group contains some general optimization frameworks |
| 511 | 580 |
implemented in LEMON. |
| 512 | 581 |
*/ |
| 513 | 582 |
|
| 514 | 583 |
/** |
| 515 |
@defgroup lp_group |
|
| 584 |
@defgroup lp_group LP and MIP Solvers |
|
| 516 | 585 |
@ingroup gen_opt_group |
| 517 |
\brief |
|
| 586 |
\brief LP and MIP solver interfaces for LEMON. |
|
| 518 | 587 |
|
| 519 |
This group contains Lp and Mip solver interfaces for LEMON. The |
|
| 520 |
various LP solvers could be used in the same manner with this |
|
| 521 |
|
|
| 588 |
This group contains LP and MIP solver interfaces for LEMON. |
|
| 589 |
Various LP solvers could be used in the same manner with this |
|
| 590 |
high-level interface. |
|
| 591 |
|
|
| 592 |
The currently supported solvers are \ref glpk, \ref clp, \ref cbc, |
|
| 593 |
\ref cplex, \ref soplex. |
|
| 522 | 594 |
*/ |
| 523 | 595 |
|
| 524 | 596 |
/** |
| 525 | 597 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
| 526 | 598 |
@ingroup lp_group |
| 527 | 599 |
\brief Helper tools to the Lp and Mip solvers. |
| ... | ... |
@@ -605,13 +677,13 @@ |
| 605 | 677 |
|
| 606 | 678 |
This group contains general \c EPS drawing methods and special |
| 607 | 679 |
graph exporting tools. |
| 608 | 680 |
*/ |
| 609 | 681 |
|
| 610 | 682 |
/** |
| 611 |
@defgroup dimacs_group DIMACS |
|
| 683 |
@defgroup dimacs_group DIMACS Format |
|
| 612 | 684 |
@ingroup io_group |
| 613 | 685 |
\brief Read and write files in DIMACS format |
| 614 | 686 |
|
| 615 | 687 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
| 616 | 688 |
*/ |
| 617 | 689 |
|
| ... | ... |
@@ -654,40 +726,40 @@ |
| 654 | 726 |
|
| 655 | 727 |
/** |
| 656 | 728 |
@defgroup graph_concepts Graph Structure Concepts |
| 657 | 729 |
@ingroup concept |
| 658 | 730 |
\brief Skeleton and concept checking classes for graph structures |
| 659 | 731 |
|
| 660 |
This group contains the skeletons and concept checking classes of LEMON's |
|
| 661 |
graph structures and helper classes used to implement these. |
|
| 732 |
This group contains the skeletons and concept checking classes of |
|
| 733 |
graph structures. |
|
| 662 | 734 |
*/ |
| 663 | 735 |
|
| 664 | 736 |
/** |
| 665 | 737 |
@defgroup map_concepts Map Concepts |
| 666 | 738 |
@ingroup concept |
| 667 | 739 |
\brief Skeleton and concept checking classes for maps |
| 668 | 740 |
|
| 669 | 741 |
This group contains the skeletons and concept checking classes of maps. |
| 670 | 742 |
*/ |
| 671 | 743 |
|
| 672 | 744 |
/** |
| 745 |
@defgroup tools Standalone Utility Applications |
|
| 746 |
|
|
| 747 |
Some utility applications are listed here. |
|
| 748 |
|
|
| 749 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 750 |
them, as well. |
|
| 751 |
*/ |
|
| 752 |
|
|
| 753 |
/** |
|
| 673 | 754 |
\anchor demoprograms |
| 674 | 755 |
|
| 675 | 756 |
@defgroup demos Demo Programs |
| 676 | 757 |
|
| 677 | 758 |
Some demo programs are listed here. Their full source codes can be found in |
| 678 | 759 |
the \c demo subdirectory of the source tree. |
| 679 | 760 |
|
| 680 | 761 |
In order to compile them, use the <tt>make demo</tt> or the |
| 681 | 762 |
<tt>make check</tt> commands. |
| 682 | 763 |
*/ |
| 683 | 764 |
|
| 684 |
/** |
|
| 685 |
@defgroup tools Standalone Utility Applications |
|
| 686 |
|
|
| 687 |
Some utility applications are listed here. |
|
| 688 |
|
|
| 689 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
| 690 |
them, as well. |
|
| 691 |
*/ |
|
| 692 |
|
|
| 693 | 765 |
} |
| ... | ... |
@@ -18,30 +18,36 @@ |
| 18 | 18 |
|
| 19 | 19 |
/** |
| 20 | 20 |
\mainpage LEMON Documentation |
| 21 | 21 |
|
| 22 | 22 |
\section intro Introduction |
| 23 | 23 |
|
| 24 |
\subsection whatis What is LEMON |
|
| 25 |
|
|
| 26 |
LEMON stands for <b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 27 |
and <b>O</b>ptimization in <b>N</b>etworks. |
|
| 28 |
It is a C++ template |
|
| 29 |
library aimed at combinatorial optimization tasks which |
|
| 30 |
often involve in working |
|
| 31 |
with graphs. |
|
| 24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
|
| 25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
|
| 26 |
It is a C++ template library providing efficient implementation of common |
|
| 27 |
data structures and algorithms with focus on combinatorial optimization |
|
| 28 |
problems in graphs and networks. |
|
| 32 | 29 |
|
| 33 | 30 |
<b> |
| 34 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
| 35 | 32 |
project. |
| 36 | 33 |
You are free to use it in your commercial or |
| 37 | 34 |
non-commercial applications under very permissive |
| 38 | 35 |
\ref license "license terms". |
| 39 | 36 |
</b> |
| 40 | 37 |
|
| 41 |
|
|
| 38 |
The project is maintained by the |
|
| 39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
|
| 40 |
Combinatorial Optimization</a> \ref egres |
|
| 41 |
at the Operations Research Department of the |
|
| 42 |
<a href="http://www.elte.hu/">Eötvös Loránd University, |
|
| 43 |
Budapest</a>, Hungary. |
|
| 44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
|
| 45 |
initiative \ref coinor. |
|
| 46 |
|
|
| 47 |
\section howtoread How to Read the Documentation |
|
| 42 | 48 |
|
| 43 | 49 |
If you would like to get to know the library, see |
| 44 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
| 45 | 51 |
|
| 46 | 52 |
If you know what you are looking for, then try to find it under the |
| 47 | 53 |
<a class="el" href="modules.html">Modules</a> section. |
| ... | ... |
@@ -23,13 +23,13 @@ |
| 23 | 23 |
|
| 24 | 24 |
\section mcf_def Definition (GEQ form) |
| 25 | 25 |
|
| 26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
| 27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
| 28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
| 29 |
and arc costs. |
|
| 29 |
and arc costs \ref amo93networkflows. |
|
| 30 | 30 |
|
| 31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$,
|
| 32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and
|
| 33 | 33 |
upper bounds for the flow values on the arcs, for which |
| 34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
| 35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow
|
| ... | ... |
@@ -75,13 +75,13 @@ |
| 75 | 75 |
|
| 76 | 76 |
- For all \f$uv\in A\f$ arcs: |
| 77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 80 | 80 |
- For all \f$u\in V\f$ nodes: |
| 81 |
- \f$\pi(u) |
|
| 81 |
- \f$\pi(u)\leq 0\f$; |
|
| 82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 83 | 83 |
then \f$\pi(u)=0\f$. |
| 84 | 84 |
|
| 85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
| 86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
| 87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
| ... | ... |
@@ -142,12 +142,12 @@ |
| 142 | 142 |
|
| 143 | 143 |
- For all \f$uv\in A\f$ arcs: |
| 144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
| 145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
| 146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
| 147 | 147 |
- For all \f$u\in V\f$ nodes: |
| 148 |
- \f$\pi(u) |
|
| 148 |
- \f$\pi(u)\geq 0\f$; |
|
| 149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
|
| 150 | 150 |
then \f$\pi(u)=0\f$. |
| 151 | 151 |
|
| 152 | 152 |
*/ |
| 153 | 153 |
} |
| ... | ... |
@@ -83,13 +83,16 @@ |
| 83 | 83 |
lemon/fourary_heap.h \ |
| 84 | 84 |
lemon/full_graph.h \ |
| 85 | 85 |
lemon/glpk.h \ |
| 86 | 86 |
lemon/gomory_hu.h \ |
| 87 | 87 |
lemon/graph_to_eps.h \ |
| 88 | 88 |
lemon/grid_graph.h \ |
| 89 |
lemon/hartmann_orlin.h \ |
|
| 90 |
lemon/howard.h \ |
|
| 89 | 91 |
lemon/hypercube_graph.h \ |
| 92 |
lemon/karp.h \ |
|
| 90 | 93 |
lemon/kary_heap.h \ |
| 91 | 94 |
lemon/kruskal.h \ |
| 92 | 95 |
lemon/hao_orlin.h \ |
| 93 | 96 |
lemon/lgf_reader.h \ |
| 94 | 97 |
lemon/lgf_writer.h \ |
| 95 | 98 |
lemon/list_graph.h \ |
| ... | ... |
@@ -108,12 +111,13 @@ |
| 108 | 111 |
lemon/preflow.h \ |
| 109 | 112 |
lemon/radix_heap.h \ |
| 110 | 113 |
lemon/radix_sort.h \ |
| 111 | 114 |
lemon/random.h \ |
| 112 | 115 |
lemon/smart_graph.h \ |
| 113 | 116 |
lemon/soplex.h \ |
| 117 |
lemon/static_graph.h \ |
|
| 114 | 118 |
lemon/suurballe.h \ |
| 115 | 119 |
lemon/time_measure.h \ |
| 116 | 120 |
lemon/tolerance.h \ |
| 117 | 121 |
lemon/unionfind.h \ |
| 118 | 122 |
lemon/bits/windows.h |
| 119 | 123 |
| ... | ... |
@@ -357,12 +357,15 @@ |
| 357 | 357 |
/// It conforms to the \ref concepts::Digraph "Digraph" concept. |
| 358 | 358 |
/// |
| 359 | 359 |
/// The adapted digraph can also be modified through this adaptor |
| 360 | 360 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 361 | 361 |
/// parameter is set to be \c const. |
| 362 | 362 |
/// |
| 363 |
/// This class provides item counting in the same time as the adapted |
|
| 364 |
/// digraph structure. |
|
| 365 |
/// |
|
| 363 | 366 |
/// \tparam DGR The type of the adapted digraph. |
| 364 | 367 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 365 | 368 |
/// It can also be specified to be \c const. |
| 366 | 369 |
/// |
| 367 | 370 |
/// \note The \c Node and \c Arc types of this adaptor and the adapted |
| 368 | 371 |
/// digraph are convertible to each other. |
| ... | ... |
@@ -716,12 +719,14 @@ |
| 716 | 719 |
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept. |
| 717 | 720 |
/// |
| 718 | 721 |
/// The adapted digraph can also be modified through this adaptor |
| 719 | 722 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 720 | 723 |
/// parameter is set to be \c const. |
| 721 | 724 |
/// |
| 725 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 726 |
/// |
|
| 722 | 727 |
/// \tparam DGR The type of the adapted digraph. |
| 723 | 728 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 724 | 729 |
/// It can also be specified to be \c const. |
| 725 | 730 |
/// \tparam NF The type of the node filter map. |
| 726 | 731 |
/// It must be a \c bool (or convertible) node map of the |
| 727 | 732 |
/// adapted digraph. The default type is |
| ... | ... |
@@ -1311,12 +1316,14 @@ |
| 1311 | 1316 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 1312 | 1317 |
/// |
| 1313 | 1318 |
/// The adapted graph can also be modified through this adaptor |
| 1314 | 1319 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1315 | 1320 |
/// parameter is set to be \c const. |
| 1316 | 1321 |
/// |
| 1322 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
| 1323 |
/// |
|
| 1317 | 1324 |
/// \tparam GR The type of the adapted graph. |
| 1318 | 1325 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1319 | 1326 |
/// It can also be specified to be \c const. |
| 1320 | 1327 |
/// \tparam NF The type of the node filter map. |
| 1321 | 1328 |
/// It must be a \c bool (or convertible) node map of the |
| 1322 | 1329 |
/// adapted graph. The default type is |
| ... | ... |
@@ -1468,12 +1475,14 @@ |
| 1468 | 1475 |
/// depending on the \c GR template parameter. |
| 1469 | 1476 |
/// |
| 1470 | 1477 |
/// The adapted (di)graph can also be modified through this adaptor |
| 1471 | 1478 |
/// by adding or removing nodes or arcs/edges, unless the \c GR template |
| 1472 | 1479 |
/// parameter is set to be \c const. |
| 1473 | 1480 |
/// |
| 1481 |
/// This class provides only linear time item counting. |
|
| 1482 |
/// |
|
| 1474 | 1483 |
/// \tparam GR The type of the adapted digraph or graph. |
| 1475 | 1484 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept |
| 1476 | 1485 |
/// or the \ref concepts::Graph "Graph" concept. |
| 1477 | 1486 |
/// It can also be specified to be \c const. |
| 1478 | 1487 |
/// \tparam NF The type of the node filter map. |
| 1479 | 1488 |
/// It must be a \c bool (or convertible) node map of the |
| ... | ... |
@@ -1616,12 +1625,14 @@ |
| 1616 | 1625 |
/// "Digraph" concept. |
| 1617 | 1626 |
/// |
| 1618 | 1627 |
/// The adapted digraph can also be modified through this adaptor |
| 1619 | 1628 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 1620 | 1629 |
/// parameter is set to be \c const. |
| 1621 | 1630 |
/// |
| 1631 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 1632 |
/// |
|
| 1622 | 1633 |
/// \tparam DGR The type of the adapted digraph. |
| 1623 | 1634 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 1624 | 1635 |
/// It can also be specified to be \c const. |
| 1625 | 1636 |
/// \tparam AF The type of the arc filter map. |
| 1626 | 1637 |
/// It must be a \c bool (or convertible) arc map of the |
| 1627 | 1638 |
/// adapted digraph. The default type is |
| ... | ... |
@@ -1726,12 +1737,14 @@ |
| 1726 | 1737 |
/// "Graph" concept. |
| 1727 | 1738 |
/// |
| 1728 | 1739 |
/// The adapted graph can also be modified through this adaptor |
| 1729 | 1740 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 1730 | 1741 |
/// parameter is set to be \c const. |
| 1731 | 1742 |
/// |
| 1743 |
/// This class provides only linear time counting for nodes, edges and arcs. |
|
| 1744 |
/// |
|
| 1732 | 1745 |
/// \tparam GR The type of the adapted graph. |
| 1733 | 1746 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 1734 | 1747 |
/// It can also be specified to be \c const. |
| 1735 | 1748 |
/// \tparam EF The type of the edge filter map. |
| 1736 | 1749 |
/// It must be a \c bool (or convertible) edge map of the |
| 1737 | 1750 |
/// adapted graph. The default type is |
| ... | ... |
@@ -2229,12 +2242,15 @@ |
| 2229 | 2242 |
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept. |
| 2230 | 2243 |
/// |
| 2231 | 2244 |
/// The adapted digraph can also be modified through this adaptor |
| 2232 | 2245 |
/// by adding or removing nodes or edges, unless the \c GR template |
| 2233 | 2246 |
/// parameter is set to be \c const. |
| 2234 | 2247 |
/// |
| 2248 |
/// This class provides item counting in the same time as the adapted |
|
| 2249 |
/// digraph structure. |
|
| 2250 |
/// |
|
| 2235 | 2251 |
/// \tparam DGR The type of the adapted digraph. |
| 2236 | 2252 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2237 | 2253 |
/// It can also be specified to be \c const. |
| 2238 | 2254 |
/// |
| 2239 | 2255 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
| 2240 | 2256 |
/// convertible to each other, moreover the \c Edge type of the adaptor |
| ... | ... |
@@ -2532,12 +2548,15 @@ |
| 2532 | 2548 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
| 2533 | 2549 |
/// |
| 2534 | 2550 |
/// The adapted graph can also be modified through this adaptor |
| 2535 | 2551 |
/// by adding or removing nodes or arcs, unless the \c GR template |
| 2536 | 2552 |
/// parameter is set to be \c const. |
| 2537 | 2553 |
/// |
| 2554 |
/// This class provides item counting in the same time as the adapted |
|
| 2555 |
/// graph structure. |
|
| 2556 |
/// |
|
| 2538 | 2557 |
/// \tparam GR The type of the adapted graph. |
| 2539 | 2558 |
/// It must conform to the \ref concepts::Graph "Graph" concept. |
| 2540 | 2559 |
/// It can also be specified to be \c const. |
| 2541 | 2560 |
/// \tparam DM The type of the direction map. |
| 2542 | 2561 |
/// It must be a \c bool (or convertible) edge map of the |
| 2543 | 2562 |
/// adapted graph. The default type is |
| ... | ... |
@@ -2675,12 +2694,14 @@ |
| 2675 | 2694 |
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
|
| 2676 | 2695 |
/// multiplicities are counted, i.e. the adaptor has exactly |
| 2677 | 2696 |
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
|
| 2678 | 2697 |
/// arcs). |
| 2679 | 2698 |
/// This class conforms to the \ref concepts::Digraph "Digraph" concept. |
| 2680 | 2699 |
/// |
| 2700 |
/// This class provides only linear time counting for nodes and arcs. |
|
| 2701 |
/// |
|
| 2681 | 2702 |
/// \tparam DGR The type of the adapted digraph. |
| 2682 | 2703 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 2683 | 2704 |
/// It is implicitly \c const. |
| 2684 | 2705 |
/// \tparam CM The type of the capacity map. |
| 2685 | 2706 |
/// It must be an arc map of some numerical type, which defines |
| 2686 | 2707 |
/// the capacities in the flow problem. It is implicitly \c const. |
| ... | ... |
@@ -3322,12 +3343,15 @@ |
| 3322 | 3343 |
/// costs or capacities if the algorithm considers only arc costs or |
| 3323 | 3344 |
/// capacities directly. |
| 3324 | 3345 |
/// In this case you can use \c SplitNodes adaptor, and set the node |
| 3325 | 3346 |
/// costs/capacities of the original digraph to the \e bind \e arcs |
| 3326 | 3347 |
/// in the adaptor. |
| 3327 | 3348 |
/// |
| 3349 |
/// This class provides item counting in the same time as the adapted |
|
| 3350 |
/// digraph structure. |
|
| 3351 |
/// |
|
| 3328 | 3352 |
/// \tparam DGR The type of the adapted digraph. |
| 3329 | 3353 |
/// It must conform to the \ref concepts::Digraph "Digraph" concept. |
| 3330 | 3354 |
/// It is implicitly \c const. |
| 3331 | 3355 |
/// |
| 3332 | 3356 |
/// \note The \c Node type of this adaptor is converible to the \c Node |
| 3333 | 3357 |
/// type of the adapted digraph. |
| ... | ... |
@@ -20,12 +20,13 @@ |
| 20 | 20 |
#define LEMON_BELLMAN_FORD_H |
| 21 | 21 |
|
| 22 | 22 |
/// \ingroup shortest_path |
| 23 | 23 |
/// \file |
| 24 | 24 |
/// \brief Bellman-Ford algorithm. |
| 25 | 25 |
|
| 26 |
#include <lemon/list_graph.h> |
|
| 26 | 27 |
#include <lemon/bits/path_dump.h> |
| 27 | 28 |
#include <lemon/core.h> |
| 28 | 29 |
#include <lemon/error.h> |
| 29 | 30 |
#include <lemon/maps.h> |
| 30 | 31 |
#include <lemon/path.h> |
| 31 | 32 |
|
| ... | ... |
@@ -296,13 +297,13 @@ |
| 296 | 297 |
|
| 297 | 298 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 298 | 299 |
/// \c OperationTraits type. |
| 299 | 300 |
/// |
| 300 | 301 |
/// \ref named-templ-param "Named parameter" for setting |
| 301 | 302 |
/// \c OperationTraits type. |
| 302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
| 303 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
|
| 303 | 304 |
template <class T> |
| 304 | 305 |
struct SetOperationTraits |
| 305 | 306 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 306 | 307 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 307 | 308 |
Create; |
| 308 | 309 |
}; |
| ... | ... |
@@ -714,13 +715,13 @@ |
| 714 | 715 |
/// This function returns the 'previous arc' of the shortest path |
| 715 | 716 |
/// tree for node \c v, i.e. it returns the last arc of a |
| 716 | 717 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
| 717 | 718 |
/// is not reached from the root(s) or if \c v is a root. |
| 718 | 719 |
/// |
| 719 | 720 |
/// The shortest path tree used here is equal to the shortest path |
| 720 |
/// tree used in \ref predNode() and \predMap(). |
|
| 721 |
/// tree used in \ref predNode() and \ref predMap(). |
|
| 721 | 722 |
/// |
| 722 | 723 |
/// \pre Either \ref run() or \ref init() must be called before |
| 723 | 724 |
/// using this function. |
| 724 | 725 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 725 | 726 |
|
| 726 | 727 |
/// \brief Returns the 'previous node' of the shortest path tree for |
| ... | ... |
@@ -729,13 +730,13 @@ |
| 729 | 730 |
/// This function returns the 'previous node' of the shortest path |
| 730 | 731 |
/// tree for node \c v, i.e. it returns the last but one node of |
| 731 | 732 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
| 732 | 733 |
/// is not reached from the root(s) or if \c v is a root. |
| 733 | 734 |
/// |
| 734 | 735 |
/// The shortest path tree used here is equal to the shortest path |
| 735 |
/// tree used in \ref predArc() and \predMap(). |
|
| 736 |
/// tree used in \ref predArc() and \ref predMap(). |
|
| 736 | 737 |
/// |
| 737 | 738 |
/// \pre Either \ref run() or \ref init() must be called before |
| 738 | 739 |
/// using this function. |
| 739 | 740 |
Node predNode(Node v) const {
|
| 740 | 741 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
| 741 | 742 |
} |
| ... | ... |
@@ -772,13 +773,13 @@ |
| 772 | 773 |
|
| 773 | 774 |
/// \brief Gives back a negative cycle. |
| 774 | 775 |
/// |
| 775 | 776 |
/// This function gives back a directed cycle with negative total |
| 776 | 777 |
/// length if the algorithm has already found one. |
| 777 | 778 |
/// Otherwise it gives back an empty path. |
| 778 |
lemon::Path<Digraph> negativeCycle() {
|
|
| 779 |
lemon::Path<Digraph> negativeCycle() const {
|
|
| 779 | 780 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
| 780 | 781 |
lemon::Path<Digraph> cycle; |
| 781 | 782 |
for (int i = 0; i < int(_process.size()); ++i) {
|
| 782 | 783 |
if (state[_process[i]] != -1) continue; |
| 783 | 784 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
| 784 | 785 |
v = _gr->source((*_pred)[v])) {
|
| ... | ... |
@@ -44,13 +44,13 @@ |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the shortest paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the shortest paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| ... | ... |
@@ -59,13 +59,14 @@ |
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default, it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap |
| ... | ... |
@@ -78,13 +79,13 @@ |
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| 87 | 88 |
|
| 88 | 89 |
///This function instantiates a \ref ReachedMap. |
| 89 | 90 |
///\param g is the digraph, to which |
| 90 | 91 |
///we would like to define the \ref ReachedMap. |
| ... | ... |
@@ -93,13 +94,13 @@ |
| 93 | 94 |
return new ReachedMap(g); |
| 94 | 95 |
} |
| 95 | 96 |
|
| 96 | 97 |
///The type of the map that stores the distances of the nodes. |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| 102 | 103 |
|
| 103 | 104 |
///This function instantiates a \ref DistMap. |
| 104 | 105 |
///\param g is the digraph, to which we would like to define the |
| 105 | 106 |
///\ref DistMap. |
| ... | ... |
@@ -222,13 +223,13 @@ |
| 222 | 223 |
}; |
| 223 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 224 | 225 |
///\c PredMap type. |
| 225 | 226 |
/// |
| 226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
| 227 | 228 |
///\c PredMap type. |
| 228 |
///It must |
|
| 229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 229 | 230 |
template <class T> |
| 230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
|
| 231 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
| 232 | 233 |
}; |
| 233 | 234 |
|
| 234 | 235 |
template <class T> |
| ... | ... |
@@ -242,13 +243,13 @@ |
| 242 | 243 |
}; |
| 243 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 244 | 245 |
///\c DistMap type. |
| 245 | 246 |
/// |
| 246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
| 247 | 248 |
///\c DistMap type. |
| 248 |
///It must |
|
| 249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 249 | 250 |
template <class T> |
| 250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
|
| 251 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
| 252 | 253 |
}; |
| 253 | 254 |
|
| 254 | 255 |
template <class T> |
| ... | ... |
@@ -262,13 +263,13 @@ |
| 262 | 263 |
}; |
| 263 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 264 | 265 |
///\c ReachedMap type. |
| 265 | 266 |
/// |
| 266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
| 267 | 268 |
///\c ReachedMap type. |
| 268 |
///It must |
|
| 269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 269 | 270 |
template <class T> |
| 270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
|
| 271 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
| 272 | 273 |
}; |
| 273 | 274 |
|
| 274 | 275 |
template <class T> |
| ... | ... |
@@ -282,13 +283,13 @@ |
| 282 | 283 |
}; |
| 283 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 284 | 285 |
///\c ProcessedMap type. |
| 285 | 286 |
/// |
| 286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
| 287 | 288 |
///\c ProcessedMap type. |
| 288 |
///It must |
|
| 289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 289 | 290 |
template <class T> |
| 290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
|
| 291 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 292 | 293 |
}; |
| 293 | 294 |
|
| 294 | 295 |
struct SetStandardProcessedMapTraits : public Traits {
|
| ... | ... |
@@ -410,14 +411,14 @@ |
| 410 | 411 |
|
| 411 | 412 |
public: |
| 412 | 413 |
|
| 413 | 414 |
///\name Execution Control |
| 414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
| 415 | 416 |
///member functions called \ref run(Node) "run()".\n |
| 416 |
///If you need more control on the execution, first you have to call |
|
| 417 |
///\ref init(), then you can add several source nodes with |
|
| 417 |
///If you need better control on the execution, you have to call |
|
| 418 |
///\ref init() first, then you can add several source nodes with |
|
| 418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
| 419 | 420 |
///performed with one of the \ref start() functions. |
| 420 | 421 |
|
| 421 | 422 |
///@{
|
| 422 | 423 |
|
| 423 | 424 |
///\brief Initializes the internal data structures. |
| ... | ... |
@@ -697,18 +698,14 @@ |
| 697 | 698 |
start(t); |
| 698 | 699 |
return reached(t); |
| 699 | 700 |
} |
| 700 | 701 |
|
| 701 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
| 702 | 703 |
|
| 703 |
///This method runs the %BFS algorithm in order to |
|
| 704 |
///compute the shortest path to each node. |
|
| 705 |
/// |
|
| 706 |
///The algorithm computes |
|
| 707 |
///- the shortest path tree (forest), |
|
| 708 |
///- the distance of each node from the root(s). |
|
| 704 |
///This method runs the %BFS algorithm in order to visit all nodes |
|
| 705 |
///in the digraph. |
|
| 709 | 706 |
/// |
| 710 | 707 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 711 | 708 |
///\code |
| 712 | 709 |
/// b.init(); |
| 713 | 710 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 714 | 711 |
/// if (!b.reached(n)) {
|
| ... | ... |
@@ -734,56 +731,58 @@ |
| 734 | 731 |
///functions.\n |
| 735 | 732 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 736 | 733 |
///before using them. |
| 737 | 734 |
|
| 738 | 735 |
///@{
|
| 739 | 736 |
|
| 740 |
///The shortest path to |
|
| 737 |
///The shortest path to the given node. |
|
| 741 | 738 |
|
| 742 |
///Returns the shortest path to |
|
| 739 |
///Returns the shortest path to the given node from the root(s). |
|
| 743 | 740 |
/// |
| 744 | 741 |
///\warning \c t should be reached from the root(s). |
| 745 | 742 |
/// |
| 746 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 744 |
///must be called before using this function. |
| 748 | 745 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 749 | 746 |
|
| 750 |
///The distance of |
|
| 747 |
///The distance of the given node from the root(s). |
|
| 751 | 748 |
|
| 752 |
///Returns the distance of |
|
| 749 |
///Returns the distance of the given node from the root(s). |
|
| 753 | 750 |
/// |
| 754 | 751 |
///\warning If node \c v is not reached from the root(s), then |
| 755 | 752 |
///the return value of this function is undefined. |
| 756 | 753 |
/// |
| 757 | 754 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 758 | 755 |
///must be called before using this function. |
| 759 | 756 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 760 | 757 |
|
| 761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 762 |
|
|
| 758 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 759 |
///the given node. |
|
| 760 |
/// |
|
| 763 | 761 |
///This function returns the 'previous arc' of the shortest path |
| 764 | 762 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 765 | 763 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 766 | 764 |
///is not reached from the root(s) or if \c v is a root. |
| 767 | 765 |
/// |
| 768 | 766 |
///The shortest path tree used here is equal to the shortest path |
| 769 |
///tree used in \ref predNode(). |
|
| 767 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 770 | 768 |
/// |
| 771 | 769 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 772 | 770 |
///must be called before using this function. |
| 773 | 771 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 774 | 772 |
|
| 775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 776 |
|
|
| 773 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 774 |
///the given node. |
|
| 775 |
/// |
|
| 777 | 776 |
///This function returns the 'previous node' of the shortest path |
| 778 | 777 |
///tree for the node \c v, i.e. it returns the last but one node |
| 779 |
/// |
|
| 778 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 780 | 779 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 781 | 780 |
/// |
| 782 | 781 |
///The shortest path tree used here is equal to the shortest path |
| 783 |
///tree used in \ref predArc(). |
|
| 782 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 784 | 783 |
/// |
| 785 | 784 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 786 | 785 |
///must be called before using this function. |
| 787 | 786 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 788 | 787 |
G->source((*_pred)[v]); } |
| 789 | 788 |
|
| ... | ... |
@@ -798,19 +797,19 @@ |
| 798 | 797 |
const DistMap &distMap() const { return *_dist;}
|
| 799 | 798 |
|
| 800 | 799 |
///\brief Returns a const reference to the node map that stores the |
| 801 | 800 |
///predecessor arcs. |
| 802 | 801 |
/// |
| 803 | 802 |
///Returns a const reference to the node map that stores the predecessor |
| 804 |
///arcs, which form the shortest path tree. |
|
| 803 |
///arcs, which form the shortest path tree (forest). |
|
| 805 | 804 |
/// |
| 806 | 805 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 807 | 806 |
///must be called before using this function. |
| 808 | 807 |
const PredMap &predMap() const { return *_pred;}
|
| 809 | 808 |
|
| 810 |
///Checks if |
|
| 809 |
///Checks if the given node is reached from the root(s). |
|
| 811 | 810 |
|
| 812 | 811 |
///Returns \c true if \c v is reached from the root(s). |
| 813 | 812 |
/// |
| 814 | 813 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 815 | 814 |
///must be called before using this function. |
| 816 | 815 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| ... | ... |
@@ -830,13 +829,13 @@ |
| 830 | 829 |
|
| 831 | 830 |
///\brief The type of the map that stores the predecessor |
| 832 | 831 |
///arcs of the shortest paths. |
| 833 | 832 |
/// |
| 834 | 833 |
///The type of the map that stores the predecessor |
| 835 | 834 |
///arcs of the shortest paths. |
| 836 |
///It must |
|
| 835 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 837 | 836 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 838 | 837 |
///Instantiates a PredMap. |
| 839 | 838 |
|
| 840 | 839 |
///This function instantiates a PredMap. |
| 841 | 840 |
///\param g is the digraph, to which we would like to define the |
| 842 | 841 |
///PredMap. |
| ... | ... |
@@ -845,14 +844,14 @@ |
| 845 | 844 |
return new PredMap(g); |
| 846 | 845 |
} |
| 847 | 846 |
|
| 848 | 847 |
///The type of the map that indicates which nodes are processed. |
| 849 | 848 |
|
| 850 | 849 |
///The type of the map that indicates which nodes are processed. |
| 851 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 852 |
///By default it is a NullMap. |
|
| 850 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 851 |
///By default, it is a NullMap. |
|
| 853 | 852 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 854 | 853 |
///Instantiates a ProcessedMap. |
| 855 | 854 |
|
| 856 | 855 |
///This function instantiates a ProcessedMap. |
| 857 | 856 |
///\param g is the digraph, to which |
| 858 | 857 |
///we would like to define the ProcessedMap. |
| ... | ... |
@@ -865,13 +864,13 @@ |
| 865 | 864 |
return new ProcessedMap(); |
| 866 | 865 |
} |
| 867 | 866 |
|
| 868 | 867 |
///The type of the map that indicates which nodes are reached. |
| 869 | 868 |
|
| 870 | 869 |
///The type of the map that indicates which nodes are reached. |
| 871 |
///It must |
|
| 870 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 872 | 871 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 873 | 872 |
///Instantiates a ReachedMap. |
| 874 | 873 |
|
| 875 | 874 |
///This function instantiates a ReachedMap. |
| 876 | 875 |
///\param g is the digraph, to which |
| 877 | 876 |
///we would like to define the ReachedMap. |
| ... | ... |
@@ -880,13 +879,13 @@ |
| 880 | 879 |
return new ReachedMap(g); |
| 881 | 880 |
} |
| 882 | 881 |
|
| 883 | 882 |
///The type of the map that stores the distances of the nodes. |
| 884 | 883 |
|
| 885 | 884 |
///The type of the map that stores the distances of the nodes. |
| 886 |
///It must |
|
| 885 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 887 | 886 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 888 | 887 |
///Instantiates a DistMap. |
| 889 | 888 |
|
| 890 | 889 |
///This function instantiates a DistMap. |
| 891 | 890 |
///\param g is the digraph, to which we would like to define |
| 892 | 891 |
///the DistMap |
| ... | ... |
@@ -895,24 +894,20 @@ |
| 895 | 894 |
return new DistMap(g); |
| 896 | 895 |
} |
| 897 | 896 |
|
| 898 | 897 |
///The type of the shortest paths. |
| 899 | 898 |
|
| 900 | 899 |
///The type of the shortest paths. |
| 901 |
///It must |
|
| 900 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 902 | 901 |
typedef lemon::Path<Digraph> Path; |
| 903 | 902 |
}; |
| 904 | 903 |
|
| 905 | 904 |
/// Default traits class used by BfsWizard |
| 906 | 905 |
|
| 907 |
/// To make it easier to use Bfs algorithm |
|
| 908 |
/// we have created a wizard class. |
|
| 909 |
/// This \ref BfsWizard class needs default traits, |
|
| 910 |
/// as well as the \ref Bfs class. |
|
| 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
| 912 |
/// \ref BfsWizard class. |
|
| 906 |
/// Default traits class used by BfsWizard. |
|
| 907 |
/// \tparam GR The type of the digraph. |
|
| 913 | 908 |
template<class GR> |
| 914 | 909 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
| 915 | 910 |
{
|
| 916 | 911 |
|
| 917 | 912 |
typedef BfsWizardDefaultTraits<GR> Base; |
| 918 | 913 |
protected: |
| ... | ... |
@@ -934,13 +929,13 @@ |
| 934 | 929 |
//Pointer to the distance of the target node. |
| 935 | 930 |
int *_di; |
| 936 | 931 |
|
| 937 | 932 |
public: |
| 938 | 933 |
/// Constructor. |
| 939 | 934 |
|
| 940 |
/// This constructor does not require parameters, |
|
| 935 |
/// This constructor does not require parameters, it initiates |
|
| 941 | 936 |
/// all of the attributes to \c 0. |
| 942 | 937 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 943 | 938 |
_dist(0), _path(0), _di(0) {}
|
| 944 | 939 |
|
| 945 | 940 |
/// Constructor. |
| 946 | 941 |
|
| ... | ... |
@@ -964,30 +959,23 @@ |
| 964 | 959 |
/// which makes it easier to use the algorithm. |
| 965 | 960 |
template<class TR> |
| 966 | 961 |
class BfsWizard : public TR |
| 967 | 962 |
{
|
| 968 | 963 |
typedef TR Base; |
| 969 | 964 |
|
| 970 |
///The type of the digraph the algorithm runs on. |
|
| 971 | 965 |
typedef typename TR::Digraph Digraph; |
| 972 | 966 |
|
| 973 | 967 |
typedef typename Digraph::Node Node; |
| 974 | 968 |
typedef typename Digraph::NodeIt NodeIt; |
| 975 | 969 |
typedef typename Digraph::Arc Arc; |
| 976 | 970 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 977 | 971 |
|
| 978 |
///\brief The type of the map that stores the predecessor |
|
| 979 |
///arcs of the shortest paths. |
|
| 980 | 972 |
typedef typename TR::PredMap PredMap; |
| 981 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 982 | 973 |
typedef typename TR::DistMap DistMap; |
| 983 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 984 | 974 |
typedef typename TR::ReachedMap ReachedMap; |
| 985 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 986 | 975 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 987 |
///The type of the shortest paths |
|
| 988 | 976 |
typedef typename TR::Path Path; |
| 989 | 977 |
|
| 990 | 978 |
public: |
| 991 | 979 |
|
| 992 | 980 |
/// Constructor. |
| 993 | 981 |
BfsWizard() : TR() {}
|
| ... | ... |
@@ -1051,30 +1039,31 @@ |
| 1051 | 1039 |
*Base::_di = alg.dist(t); |
| 1052 | 1040 |
return alg.reached(t); |
| 1053 | 1041 |
} |
| 1054 | 1042 |
|
| 1055 | 1043 |
///Runs BFS algorithm to visit all nodes in the digraph. |
| 1056 | 1044 |
|
| 1057 |
///This method runs BFS algorithm in order to compute |
|
| 1058 |
///the shortest path to each node. |
|
| 1045 |
///This method runs BFS algorithm in order to visit all nodes |
|
| 1046 |
///in the digraph. |
|
| 1059 | 1047 |
void run() |
| 1060 | 1048 |
{
|
| 1061 | 1049 |
run(INVALID); |
| 1062 | 1050 |
} |
| 1063 | 1051 |
|
| 1064 | 1052 |
template<class T> |
| 1065 | 1053 |
struct SetPredMapBase : public Base {
|
| 1066 | 1054 |
typedef T PredMap; |
| 1067 | 1055 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1068 | 1056 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1069 | 1057 |
}; |
| 1070 |
///\brief \ref named-func-param "Named parameter" |
|
| 1071 |
///for setting PredMap object. |
|
| 1058 |
|
|
| 1059 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1060 |
///the predecessor map. |
|
| 1072 | 1061 |
/// |
| 1073 |
///\ref named-func-param "Named parameter" |
|
| 1074 |
///for setting PredMap object. |
|
| 1062 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1063 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1075 | 1064 |
template<class T> |
| 1076 | 1065 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1077 | 1066 |
{
|
| 1078 | 1067 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1079 | 1068 |
return BfsWizard<SetPredMapBase<T> >(*this); |
| 1080 | 1069 |
} |
| ... | ... |
@@ -1082,17 +1071,18 @@ |
| 1082 | 1071 |
template<class T> |
| 1083 | 1072 |
struct SetReachedMapBase : public Base {
|
| 1084 | 1073 |
typedef T ReachedMap; |
| 1085 | 1074 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1086 | 1075 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1087 | 1076 |
}; |
| 1088 |
///\brief \ref named-func-param "Named parameter" |
|
| 1089 |
///for setting ReachedMap object. |
|
| 1077 |
|
|
| 1078 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1079 |
///the reached map. |
|
| 1090 | 1080 |
/// |
| 1091 |
/// \ref named-func-param "Named parameter" |
|
| 1092 |
///for setting ReachedMap object. |
|
| 1081 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1082 |
///the map that indicates which nodes are reached. |
|
| 1093 | 1083 |
template<class T> |
| 1094 | 1084 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1095 | 1085 |
{
|
| 1096 | 1086 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1097 | 1087 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
| 1098 | 1088 |
} |
| ... | ... |
@@ -1100,17 +1090,19 @@ |
| 1100 | 1090 |
template<class T> |
| 1101 | 1091 |
struct SetDistMapBase : public Base {
|
| 1102 | 1092 |
typedef T DistMap; |
| 1103 | 1093 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1104 | 1094 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1105 | 1095 |
}; |
| 1106 |
///\brief \ref named-func-param "Named parameter" |
|
| 1107 |
///for setting DistMap object. |
|
| 1096 |
|
|
| 1097 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1098 |
///the distance map. |
|
| 1108 | 1099 |
/// |
| 1109 |
/// \ref named-func-param "Named parameter" |
|
| 1110 |
///for setting DistMap object. |
|
| 1100 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1101 |
///the map that stores the distances of the nodes calculated |
|
| 1102 |
///by the algorithm. |
|
| 1111 | 1103 |
template<class T> |
| 1112 | 1104 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1113 | 1105 |
{
|
| 1114 | 1106 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1115 | 1107 |
return BfsWizard<SetDistMapBase<T> >(*this); |
| 1116 | 1108 |
} |
| ... | ... |
@@ -1118,17 +1110,18 @@ |
| 1118 | 1110 |
template<class T> |
| 1119 | 1111 |
struct SetProcessedMapBase : public Base {
|
| 1120 | 1112 |
typedef T ProcessedMap; |
| 1121 | 1113 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1122 | 1114 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1123 | 1115 |
}; |
| 1124 |
///\brief \ref named-func-param "Named parameter" |
|
| 1125 |
///for setting ProcessedMap object. |
|
| 1116 |
|
|
| 1117 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1118 |
///the processed map. |
|
| 1126 | 1119 |
/// |
| 1127 |
/// \ref named-func-param "Named parameter" |
|
| 1128 |
///for setting ProcessedMap object. |
|
| 1120 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1121 |
///the map that indicates which nodes are processed. |
|
| 1129 | 1122 |
template<class T> |
| 1130 | 1123 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1131 | 1124 |
{
|
| 1132 | 1125 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1133 | 1126 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
| 1134 | 1127 |
} |
| ... | ... |
@@ -1261,13 +1254,13 @@ |
| 1261 | 1254 |
/// \brief The type of the digraph the algorithm runs on. |
| 1262 | 1255 |
typedef GR Digraph; |
| 1263 | 1256 |
|
| 1264 | 1257 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1265 | 1258 |
/// |
| 1266 | 1259 |
/// The type of the map that indicates which nodes are reached. |
| 1267 |
/// It must |
|
| 1260 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1268 | 1261 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1269 | 1262 |
|
| 1270 | 1263 |
/// \brief Instantiates a ReachedMap. |
| 1271 | 1264 |
/// |
| 1272 | 1265 |
/// This function instantiates a ReachedMap. |
| 1273 | 1266 |
/// \param digraph is the digraph, to which |
| ... | ... |
@@ -1422,14 +1415,14 @@ |
| 1422 | 1415 |
|
| 1423 | 1416 |
public: |
| 1424 | 1417 |
|
| 1425 | 1418 |
/// \name Execution Control |
| 1426 | 1419 |
/// The simplest way to execute the BFS algorithm is to use one of the |
| 1427 | 1420 |
/// member functions called \ref run(Node) "run()".\n |
| 1428 |
/// If you need more control on the execution, first you have to call |
|
| 1429 |
/// \ref init(), then you can add several source nodes with |
|
| 1421 |
/// If you need better control on the execution, you have to call |
|
| 1422 |
/// \ref init() first, then you can add several source nodes with |
|
| 1430 | 1423 |
/// \ref addSource(). Finally the actual path computation can be |
| 1431 | 1424 |
/// performed with one of the \ref start() functions. |
| 1432 | 1425 |
|
| 1433 | 1426 |
/// @{
|
| 1434 | 1427 |
|
| 1435 | 1428 |
/// \brief Initializes the internal data structures. |
| ... | ... |
@@ -1695,18 +1688,14 @@ |
| 1695 | 1688 |
start(t); |
| 1696 | 1689 |
return reached(t); |
| 1697 | 1690 |
} |
| 1698 | 1691 |
|
| 1699 | 1692 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1700 | 1693 |
/// |
| 1701 |
/// This method runs the %BFS algorithm in order to |
|
| 1702 |
/// compute the shortest path to each node. |
|
| 1703 |
/// |
|
| 1704 |
/// The algorithm computes |
|
| 1705 |
/// - the shortest path tree (forest), |
|
| 1706 |
/// - the distance of each node from the root(s). |
|
| 1694 |
/// This method runs the %BFS algorithm in order to visit all nodes |
|
| 1695 |
/// in the digraph. |
|
| 1707 | 1696 |
/// |
| 1708 | 1697 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
| 1709 | 1698 |
///\code |
| 1710 | 1699 |
/// b.init(); |
| 1711 | 1700 |
/// for (NodeIt n(gr); n != INVALID; ++n) {
|
| 1712 | 1701 |
/// if (!b.reached(n)) {
|
| ... | ... |
@@ -1732,13 +1721,13 @@ |
| 1732 | 1721 |
/// functions.\n |
| 1733 | 1722 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1734 | 1723 |
/// before using them. |
| 1735 | 1724 |
|
| 1736 | 1725 |
///@{
|
| 1737 | 1726 |
|
| 1738 |
/// \brief Checks if |
|
| 1727 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1739 | 1728 |
/// |
| 1740 | 1729 |
/// Returns \c true if \c v is reached from the root(s). |
| 1741 | 1730 |
/// |
| 1742 | 1731 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1743 | 1732 |
/// must be called before using this function. |
| 1744 | 1733 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| ... | ... |
@@ -53,17 +53,17 @@ |
| 53 | 53 |
} |
| 54 | 54 |
|
| 55 | 55 |
int maxId(Arc) const {
|
| 56 | 56 |
return Parent::maxArcId(); |
| 57 | 57 |
} |
| 58 | 58 |
|
| 59 |
Node fromId(int id, Node) |
|
| 59 |
static Node fromId(int id, Node) {
|
|
| 60 | 60 |
return Parent::nodeFromId(id); |
| 61 | 61 |
} |
| 62 | 62 |
|
| 63 |
Arc fromId(int id, Arc) |
|
| 63 |
static Arc fromId(int id, Arc) {
|
|
| 64 | 64 |
return Parent::arcFromId(id); |
| 65 | 65 |
} |
| 66 | 66 |
|
| 67 | 67 |
Node oppositeNode(const Node &node, const Arc &arc) const {
|
| 68 | 68 |
if (node == Parent::source(arc)) |
| 69 | 69 |
return Parent::target(arc); |
| ... | ... |
@@ -352,21 +352,21 @@ |
| 352 | 352 |
} |
| 353 | 353 |
|
| 354 | 354 |
int maxId(Edge) const {
|
| 355 | 355 |
return Parent::maxEdgeId(); |
| 356 | 356 |
} |
| 357 | 357 |
|
| 358 |
Node fromId(int id, Node) |
|
| 358 |
static Node fromId(int id, Node) {
|
|
| 359 | 359 |
return Parent::nodeFromId(id); |
| 360 | 360 |
} |
| 361 | 361 |
|
| 362 |
Arc fromId(int id, Arc) |
|
| 362 |
static Arc fromId(int id, Arc) {
|
|
| 363 | 363 |
return Parent::arcFromId(id); |
| 364 | 364 |
} |
| 365 | 365 |
|
| 366 |
Edge fromId(int id, Edge) |
|
| 366 |
static Edge fromId(int id, Edge) {
|
|
| 367 | 367 |
return Parent::edgeFromId(id); |
| 368 | 368 |
} |
| 369 | 369 |
|
| 370 | 370 |
Node oppositeNode(const Node &n, const Edge &e) const {
|
| 371 | 371 |
if( n == Parent::u(e)) |
| 372 | 372 |
return Parent::v(e); |
| ... | ... |
@@ -46,12 +46,14 @@ |
| 46 | 46 |
|
| 47 | 47 |
typedef typename Parent::Key Key; |
| 48 | 48 |
typedef typename Parent::Value Value; |
| 49 | 49 |
typedef typename Parent::Reference Reference; |
| 50 | 50 |
typedef typename Parent::ConstReference ConstReference; |
| 51 | 51 |
|
| 52 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
| 53 |
|
|
| 52 | 54 |
class MapIt; |
| 53 | 55 |
class ConstMapIt; |
| 54 | 56 |
|
| 55 | 57 |
friend class MapIt; |
| 56 | 58 |
friend class ConstMapIt; |
| 57 | 59 |
|
| ... | ... |
@@ -188,12 +190,14 @@ |
| 188 | 190 |
|
| 189 | 191 |
typedef typename Parent::Key Key; |
| 190 | 192 |
typedef typename Parent::Value Value; |
| 191 | 193 |
typedef typename Parent::Reference Reference; |
| 192 | 194 |
typedef typename Parent::ConstReference ConstReference; |
| 193 | 195 |
|
| 196 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
| 197 |
|
|
| 194 | 198 |
class MapIt; |
| 195 | 199 |
class ConstMapIt; |
| 196 | 200 |
|
| 197 | 201 |
friend class MapIt; |
| 198 | 202 |
friend class ConstMapIt; |
| 199 | 203 |
| ... | ... |
@@ -91,12 +91,24 @@ |
| 91 | 91 |
|
| 92 | 92 |
int CbcMip::_addRow() {
|
| 93 | 93 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
| 94 | 94 |
return _prob->numberRows() - 1; |
| 95 | 95 |
} |
| 96 | 96 |
|
| 97 |
int CbcMip::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 98 |
std::vector<int> indexes; |
|
| 99 |
std::vector<Value> values; |
|
| 100 |
|
|
| 101 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 102 |
indexes.push_back(it->first); |
|
| 103 |
values.push_back(it->second); |
|
| 104 |
} |
|
| 105 |
|
|
| 106 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
| 107 |
return _prob->numberRows() - 1; |
|
| 108 |
} |
|
| 97 | 109 |
|
| 98 | 110 |
void CbcMip::_eraseCol(int i) {
|
| 99 | 111 |
_prob->deleteColumn(i); |
| 100 | 112 |
} |
| 101 | 113 |
|
| 102 | 114 |
void CbcMip::_eraseRow(int i) {
|
| ... | ... |
@@ -59,12 +59,13 @@ |
| 59 | 59 |
protected: |
| 60 | 60 |
|
| 61 | 61 |
virtual const char* _solverName() const; |
| 62 | 62 |
|
| 63 | 63 |
virtual int _addCol(); |
| 64 | 64 |
virtual int _addRow(); |
| 65 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 65 | 66 |
|
| 66 | 67 |
virtual void _eraseCol(int i); |
| 67 | 68 |
virtual void _eraseRow(int i); |
| 68 | 69 |
|
| 69 | 70 |
virtual void _eraseColId(int i); |
| 70 | 71 |
virtual void _eraseRowId(int i); |
| ... | ... |
@@ -69,13 +69,17 @@ |
| 69 | 69 |
|
| 70 | 70 |
/// \brief The type of the map that stores the flow values. |
| 71 | 71 |
/// |
| 72 | 72 |
/// The type of the map that stores the flow values. |
| 73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
| 74 | 74 |
/// concept. |
| 75 |
#ifdef DOXYGEN |
|
| 76 |
typedef GR::ArcMap<Value> FlowMap; |
|
| 77 |
#else |
|
| 75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
| 79 |
#endif |
|
| 76 | 80 |
|
| 77 | 81 |
/// \brief Instantiates a FlowMap. |
| 78 | 82 |
/// |
| 79 | 83 |
/// This function instantiates a \ref FlowMap. |
| 80 | 84 |
/// \param digraph The digraph for which we would like to define |
| 81 | 85 |
/// the flow map. |
| ... | ... |
@@ -84,15 +88,18 @@ |
| 84 | 88 |
} |
| 85 | 89 |
|
| 86 | 90 |
/// \brief The elevator type used by the algorithm. |
| 87 | 91 |
/// |
| 88 | 92 |
/// The elevator type used by the algorithm. |
| 89 | 93 |
/// |
| 90 |
/// \sa Elevator |
|
| 91 |
/// \sa LinkedElevator |
|
| 94 |
/// \sa Elevator, LinkedElevator |
|
| 95 |
#ifdef DOXYGEN |
|
| 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
| 97 |
#else |
|
| 92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
| 99 |
#endif |
|
| 93 | 100 |
|
| 94 | 101 |
/// \brief Instantiates an Elevator. |
| 95 | 102 |
/// |
| 96 | 103 |
/// This function instantiates an \ref Elevator. |
| 97 | 104 |
/// \param digraph The digraph for which we would like to define |
| 98 | 105 |
/// the elevator. |
| ... | ... |
@@ -296,13 +303,13 @@ |
| 296 | 303 |
/// |
| 297 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
| 298 | 305 |
/// type with automatic allocation. |
| 299 | 306 |
/// The Elevator should have standard constructor interface to be |
| 300 | 307 |
/// able to automatically created by the algorithm (i.e. the |
| 301 | 308 |
/// digraph and the maximum level should be passed to it). |
| 302 |
/// However an external elevator object could also be passed to the |
|
| 309 |
/// However, an external elevator object could also be passed to the |
|
| 303 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
| 304 | 311 |
/// before calling \ref run() or \ref init(). |
| 305 | 312 |
/// \sa SetElevator |
| 306 | 313 |
template <typename T> |
| 307 | 314 |
struct SetStandardElevator |
| 308 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
| ... | ... |
@@ -466,14 +473,14 @@ |
| 466 | 473 |
const Tolerance& tolerance() const {
|
| 467 | 474 |
return _tol; |
| 468 | 475 |
} |
| 469 | 476 |
|
| 470 | 477 |
/// \name Execution Control |
| 471 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
| 472 |
/// If you need more control on the initial solution or the execution, |
|
| 473 |
/// first you have to call one of the \ref init() functions, then |
|
| 479 |
/// If you need better control on the initial solution or the execution, |
|
| 480 |
/// you have to call one of the \ref init() functions first, then |
|
| 474 | 481 |
/// the \ref start() function. |
| 475 | 482 |
|
| 476 | 483 |
///@{
|
| 477 | 484 |
|
| 478 | 485 |
/// Initializes the internal data structures. |
| 479 | 486 |
| ... | ... |
@@ -75,12 +75,25 @@ |
| 75 | 75 |
|
| 76 | 76 |
int ClpLp::_addRow() {
|
| 77 | 77 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
| 78 | 78 |
return _prob->numberRows() - 1; |
| 79 | 79 |
} |
| 80 | 80 |
|
| 81 |
int ClpLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
|
| 82 |
std::vector<int> indexes; |
|
| 83 |
std::vector<Value> values; |
|
| 84 |
|
|
| 85 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 86 |
indexes.push_back(it->first); |
|
| 87 |
values.push_back(it->second); |
|
| 88 |
} |
|
| 89 |
|
|
| 90 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
|
| 91 |
return _prob->numberRows() - 1; |
|
| 92 |
} |
|
| 93 |
|
|
| 81 | 94 |
|
| 82 | 95 |
void ClpLp::_eraseCol(int c) {
|
| 83 | 96 |
_col_names_ref.erase(_prob->getColumnName(c)); |
| 84 | 97 |
_prob->deleteColumns(1, &c); |
| 85 | 98 |
} |
| 86 | 99 |
| ... | ... |
@@ -72,12 +72,13 @@ |
| 72 | 72 |
protected: |
| 73 | 73 |
|
| 74 | 74 |
virtual const char* _solverName() const; |
| 75 | 75 |
|
| 76 | 76 |
virtual int _addCol(); |
| 77 | 77 |
virtual int _addRow(); |
| 78 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 78 | 79 |
|
| 79 | 80 |
virtual void _eraseCol(int i); |
| 80 | 81 |
virtual void _eraseRow(int i); |
| 81 | 82 |
|
| 82 | 83 |
virtual void _eraseColId(int i); |
| 83 | 84 |
virtual void _eraseRowId(int i); |
| ... | ... |
@@ -32,344 +32,342 @@ |
| 32 | 32 |
namespace concepts {
|
| 33 | 33 |
|
| 34 | 34 |
/// \ingroup graph_concepts |
| 35 | 35 |
/// |
| 36 | 36 |
/// \brief Class describing the concept of directed graphs. |
| 37 | 37 |
/// |
| 38 |
/// This class describes the \ref concept "concept" of the |
|
| 39 |
/// immutable directed digraphs. |
|
| 38 |
/// This class describes the common interface of all directed |
|
| 39 |
/// graphs (digraphs). |
|
| 40 | 40 |
/// |
| 41 |
/// Note that actual digraph implementation like @ref ListDigraph or |
|
| 42 |
/// @ref SmartDigraph may have several additional functionality. |
|
| 41 |
/// Like all concept classes, it only provides an interface |
|
| 42 |
/// without any sensible implementation. So any general algorithm for |
|
| 43 |
/// directed graphs should compile with this class, but it will not |
|
| 44 |
/// run properly, of course. |
|
| 45 |
/// An actual digraph implementation like \ref ListDigraph or |
|
| 46 |
/// \ref SmartDigraph may have additional functionality. |
|
| 43 | 47 |
/// |
| 44 |
/// \sa |
|
| 48 |
/// \sa Graph |
|
| 45 | 49 |
class Digraph {
|
| 46 | 50 |
private: |
| 47 |
/// |
|
| 51 |
/// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 52 |
Digraph(const Digraph &) {}
|
|
| 53 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
|
| 54 |
/// Use DigraphCopy instead. |
|
| 55 |
void operator=(const Digraph &) {}
|
|
| 48 | 56 |
|
| 49 |
///Digraphs are \e not copy constructible. Use DigraphCopy() instead. |
|
| 50 |
/// |
|
| 51 |
Digraph(const Digraph &) {};
|
|
| 52 |
///\brief Assignment of \ref Digraph "Digraph"s to another ones are |
|
| 53 |
|
|
| 57 |
public: |
|
| 58 |
/// Default constructor. |
|
| 59 |
Digraph() { }
|
|
| 54 | 60 |
|
| 55 |
///Assignment of \ref Digraph "Digraph"s to another ones are |
|
| 56 |
///\e not allowed. Use DigraphCopy() instead. |
|
| 57 |
|
|
| 58 |
void operator=(const Digraph &) {}
|
|
| 59 |
public: |
|
| 60 |
///\e |
|
| 61 |
|
|
| 62 |
/// Defalult constructor. |
|
| 63 |
|
|
| 64 |
/// Defalult constructor. |
|
| 65 |
/// |
|
| 66 |
Digraph() { }
|
|
| 67 |
/// |
|
| 61 |
/// The node type of the digraph |
|
| 68 | 62 |
|
| 69 | 63 |
/// This class identifies a node of the digraph. It also serves |
| 70 | 64 |
/// as a base class of the node iterators, |
| 71 |
/// thus they |
|
| 65 |
/// thus they convert to this type. |
|
| 72 | 66 |
class Node {
|
| 73 | 67 |
public: |
| 74 | 68 |
/// Default constructor |
| 75 | 69 |
|
| 76 |
/// @warning The default constructor sets the iterator |
|
| 77 |
/// to an undefined value. |
|
| 70 |
/// Default constructor. |
|
| 71 |
/// \warning It sets the object to an undefined value. |
|
| 78 | 72 |
Node() { }
|
| 79 | 73 |
/// Copy constructor. |
| 80 | 74 |
|
| 81 | 75 |
/// Copy constructor. |
| 82 | 76 |
/// |
| 83 | 77 |
Node(const Node&) { }
|
| 84 | 78 |
|
| 85 |
/// Invalid constructor \& conversion. |
|
| 79 |
/// %Invalid constructor \& conversion. |
|
| 86 | 80 |
|
| 87 |
/// |
|
| 81 |
/// Initializes the object to be invalid. |
|
| 88 | 82 |
/// \sa Invalid for more details. |
| 89 | 83 |
Node(Invalid) { }
|
| 90 | 84 |
/// Equality operator |
| 91 | 85 |
|
| 86 |
/// Equality operator. |
|
| 87 |
/// |
|
| 92 | 88 |
/// Two iterators are equal if and only if they point to the |
| 93 |
/// same object or both are |
|
| 89 |
/// same object or both are \c INVALID. |
|
| 94 | 90 |
bool operator==(Node) const { return true; }
|
| 95 | 91 |
|
| 96 | 92 |
/// Inequality operator |
| 97 | 93 |
|
| 98 |
/// \sa operator==(Node n) |
|
| 99 |
/// |
|
| 94 |
/// Inequality operator. |
|
| 100 | 95 |
bool operator!=(Node) const { return true; }
|
| 101 | 96 |
|
| 102 | 97 |
/// Artificial ordering operator. |
| 103 | 98 |
|
| 104 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
| 105 |
/// similar associative container we require this. |
|
| 99 |
/// Artificial ordering operator. |
|
| 106 | 100 |
/// |
| 107 |
/// \note This operator only have to define some strict ordering of |
|
| 108 |
/// the items; this order has nothing to do with the iteration |
|
| 109 |
/// ordering of |
|
| 101 |
/// \note This operator only has to define some strict ordering of |
|
| 102 |
/// the nodes; this order has nothing to do with the iteration |
|
| 103 |
/// ordering of the nodes. |
|
| 110 | 104 |
bool operator<(Node) const { return false; }
|
| 111 |
|
|
| 112 | 105 |
}; |
| 113 | 106 |
|
| 114 |
/// |
|
| 107 |
/// Iterator class for the nodes. |
|
| 115 | 108 |
|
| 116 |
/// This iterator goes through each node. |
|
| 117 |
/// Its usage is quite simple, for example you can count the number |
|
| 118 |
/// |
|
| 109 |
/// This iterator goes through each node of the digraph. |
|
| 110 |
/// Its usage is quite simple, for example, you can count the number |
|
| 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
|
| 119 | 112 |
///\code |
| 120 | 113 |
/// int count=0; |
| 121 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 122 | 115 |
///\endcode |
| 123 | 116 |
class NodeIt : public Node {
|
| 124 | 117 |
public: |
| 125 | 118 |
/// Default constructor |
| 126 | 119 |
|
| 127 |
/// @warning The default constructor sets the iterator |
|
| 128 |
/// to an undefined value. |
|
| 120 |
/// Default constructor. |
|
| 121 |
/// \warning It sets the iterator to an undefined value. |
|
| 129 | 122 |
NodeIt() { }
|
| 130 | 123 |
/// Copy constructor. |
| 131 | 124 |
|
| 132 | 125 |
/// Copy constructor. |
| 133 | 126 |
/// |
| 134 | 127 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 135 |
/// Invalid constructor \& conversion. |
|
| 128 |
/// %Invalid constructor \& conversion. |
|
| 136 | 129 |
|
| 137 |
/// |
|
| 130 |
/// Initializes the iterator to be invalid. |
|
| 138 | 131 |
/// \sa Invalid for more details. |
| 139 | 132 |
NodeIt(Invalid) { }
|
| 140 | 133 |
/// Sets the iterator to the first node. |
| 141 | 134 |
|
| 142 |
/// Sets the iterator to the first node of |
|
| 135 |
/// Sets the iterator to the first node of the given digraph. |
|
| 143 | 136 |
/// |
| 144 |
NodeIt(const Digraph&) { }
|
|
| 145 |
/// Node -> NodeIt conversion. |
|
| 137 |
explicit NodeIt(const Digraph&) { }
|
|
| 138 |
/// Sets the iterator to the given node. |
|
| 146 | 139 |
|
| 147 |
/// Sets the iterator to the node of \c the digraph pointed by |
|
| 148 |
/// the trivial iterator. |
|
| 149 |
/// This feature necessitates that each time we |
|
| 150 |
/// iterate the arc-set, the iteration order is the same. |
|
| 140 |
/// Sets the iterator to the given node of the given digraph. |
|
| 141 |
/// |
|
| 151 | 142 |
NodeIt(const Digraph&, const Node&) { }
|
| 152 | 143 |
/// Next node. |
| 153 | 144 |
|
| 154 | 145 |
/// Assign the iterator to the next node. |
| 155 | 146 |
/// |
| 156 | 147 |
NodeIt& operator++() { return *this; }
|
| 157 | 148 |
}; |
| 158 | 149 |
|
| 159 | 150 |
|
| 160 |
/// |
|
| 151 |
/// The arc type of the digraph |
|
| 161 | 152 |
|
| 162 | 153 |
/// This class identifies an arc of the digraph. It also serves |
| 163 | 154 |
/// as a base class of the arc iterators, |
| 164 | 155 |
/// thus they will convert to this type. |
| 165 | 156 |
class Arc {
|
| 166 | 157 |
public: |
| 167 | 158 |
/// Default constructor |
| 168 | 159 |
|
| 169 |
/// @warning The default constructor sets the iterator |
|
| 170 |
/// to an undefined value. |
|
| 160 |
/// Default constructor. |
|
| 161 |
/// \warning It sets the object to an undefined value. |
|
| 171 | 162 |
Arc() { }
|
| 172 | 163 |
/// Copy constructor. |
| 173 | 164 |
|
| 174 | 165 |
/// Copy constructor. |
| 175 | 166 |
/// |
| 176 | 167 |
Arc(const Arc&) { }
|
| 177 |
/// |
|
| 168 |
/// %Invalid constructor \& conversion. |
|
| 178 | 169 |
|
| 179 |
/// Initialize the iterator to be invalid. |
|
| 180 |
/// |
|
| 170 |
/// Initializes the object to be invalid. |
|
| 171 |
/// \sa Invalid for more details. |
|
| 181 | 172 |
Arc(Invalid) { }
|
| 182 | 173 |
/// Equality operator |
| 183 | 174 |
|
| 175 |
/// Equality operator. |
|
| 176 |
/// |
|
| 184 | 177 |
/// Two iterators are equal if and only if they point to the |
| 185 |
/// same object or both are |
|
| 178 |
/// same object or both are \c INVALID. |
|
| 186 | 179 |
bool operator==(Arc) const { return true; }
|
| 187 | 180 |
/// Inequality operator |
| 188 | 181 |
|
| 189 |
/// \sa operator==(Arc n) |
|
| 190 |
/// |
|
| 182 |
/// Inequality operator. |
|
| 191 | 183 |
bool operator!=(Arc) const { return true; }
|
| 192 | 184 |
|
| 193 | 185 |
/// Artificial ordering operator. |
| 194 | 186 |
|
| 195 |
/// To allow the use of digraph descriptors as key type in std::map or |
|
| 196 |
/// similar associative container we require this. |
|
| 187 |
/// Artificial ordering operator. |
|
| 197 | 188 |
/// |
| 198 |
/// \note This operator only have to define some strict ordering of |
|
| 199 |
/// the items; this order has nothing to do with the iteration |
|
| 200 |
/// ordering of |
|
| 189 |
/// \note This operator only has to define some strict ordering of |
|
| 190 |
/// the arcs; this order has nothing to do with the iteration |
|
| 191 |
/// ordering of the arcs. |
|
| 201 | 192 |
bool operator<(Arc) const { return false; }
|
| 202 | 193 |
}; |
| 203 | 194 |
|
| 204 |
/// |
|
| 195 |
/// Iterator class for the outgoing arcs of a node. |
|
| 205 | 196 |
|
| 206 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
| 207 | 198 |
/// of a digraph. |
| 208 |
/// Its usage is quite simple, for example you can count the number |
|
| 199 |
/// Its usage is quite simple, for example, you can count the number |
|
| 209 | 200 |
/// of outgoing arcs of a node \c n |
| 210 |
/// in digraph \c g of type \c Digraph as follows. |
|
| 201 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
| 211 | 202 |
///\code |
| 212 | 203 |
/// int count=0; |
| 213 |
/// for (Digraph::OutArcIt |
|
| 204 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 214 | 205 |
///\endcode |
| 215 |
|
|
| 216 | 206 |
class OutArcIt : public Arc {
|
| 217 | 207 |
public: |
| 218 | 208 |
/// Default constructor |
| 219 | 209 |
|
| 220 |
/// @warning The default constructor sets the iterator |
|
| 221 |
/// to an undefined value. |
|
| 210 |
/// Default constructor. |
|
| 211 |
/// \warning It sets the iterator to an undefined value. |
|
| 222 | 212 |
OutArcIt() { }
|
| 223 | 213 |
/// Copy constructor. |
| 224 | 214 |
|
| 225 | 215 |
/// Copy constructor. |
| 226 | 216 |
/// |
| 227 | 217 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 228 |
/// |
|
| 218 |
/// %Invalid constructor \& conversion. |
|
| 229 | 219 |
|
| 230 |
/// |
|
| 220 |
/// Initializes the iterator to be invalid. |
|
| 221 |
/// \sa Invalid for more details. |
|
| 222 |
OutArcIt(Invalid) { }
|
|
| 223 |
/// Sets the iterator to the first outgoing arc. |
|
| 224 |
|
|
| 225 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
| 231 | 226 |
/// |
| 232 |
OutArcIt(Invalid) { }
|
|
| 233 |
/// This constructor sets the iterator to the first outgoing arc. |
|
| 227 |
OutArcIt(const Digraph&, const Node&) { }
|
|
| 228 |
/// Sets the iterator to the given arc. |
|
| 234 | 229 |
|
| 235 |
/// This constructor sets the iterator to the first outgoing arc of |
|
| 236 |
/// the node. |
|
| 237 |
OutArcIt(const Digraph&, const Node&) { }
|
|
| 238 |
/// Arc -> OutArcIt conversion |
|
| 239 |
|
|
| 240 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 241 |
/// This feature necessitates that each time we |
|
| 242 |
/// iterate the arc-set, the iteration order is the same. |
|
| 230 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 231 |
/// |
|
| 243 | 232 |
OutArcIt(const Digraph&, const Arc&) { }
|
| 244 |
///Next outgoing arc |
|
| 233 |
/// Next outgoing arc |
|
| 245 | 234 |
|
| 246 | 235 |
/// Assign the iterator to the next |
| 247 | 236 |
/// outgoing arc of the corresponding node. |
| 248 | 237 |
OutArcIt& operator++() { return *this; }
|
| 249 | 238 |
}; |
| 250 | 239 |
|
| 251 |
/// |
|
| 240 |
/// Iterator class for the incoming arcs of a node. |
|
| 252 | 241 |
|
| 253 | 242 |
/// This iterator goes trough the \e incoming arcs of a certain node |
| 254 | 243 |
/// of a digraph. |
| 255 |
/// Its usage is quite simple, for example you can count the number |
|
| 256 |
/// of outgoing arcs of a node \c n |
|
| 257 |
/// |
|
| 244 |
/// Its usage is quite simple, for example, you can count the number |
|
| 245 |
/// of incoming arcs of a node \c n |
|
| 246 |
/// in a digraph \c g of type \c %Digraph as follows. |
|
| 258 | 247 |
///\code |
| 259 | 248 |
/// int count=0; |
| 260 |
/// for(Digraph::InArcIt |
|
| 249 |
/// for(Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 261 | 250 |
///\endcode |
| 262 |
|
|
| 263 | 251 |
class InArcIt : public Arc {
|
| 264 | 252 |
public: |
| 265 | 253 |
/// Default constructor |
| 266 | 254 |
|
| 267 |
/// @warning The default constructor sets the iterator |
|
| 268 |
/// to an undefined value. |
|
| 255 |
/// Default constructor. |
|
| 256 |
/// \warning It sets the iterator to an undefined value. |
|
| 269 | 257 |
InArcIt() { }
|
| 270 | 258 |
/// Copy constructor. |
| 271 | 259 |
|
| 272 | 260 |
/// Copy constructor. |
| 273 | 261 |
/// |
| 274 | 262 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 275 |
/// |
|
| 263 |
/// %Invalid constructor \& conversion. |
|
| 276 | 264 |
|
| 277 |
/// |
|
| 265 |
/// Initializes the iterator to be invalid. |
|
| 266 |
/// \sa Invalid for more details. |
|
| 267 |
InArcIt(Invalid) { }
|
|
| 268 |
/// Sets the iterator to the first incoming arc. |
|
| 269 |
|
|
| 270 |
/// Sets the iterator to the first incoming arc of the given node. |
|
| 278 | 271 |
/// |
| 279 |
InArcIt(Invalid) { }
|
|
| 280 |
/// This constructor sets the iterator to first incoming arc. |
|
| 272 |
InArcIt(const Digraph&, const Node&) { }
|
|
| 273 |
/// Sets the iterator to the given arc. |
|
| 281 | 274 |
|
| 282 |
/// This constructor set the iterator to the first incoming arc of |
|
| 283 |
/// the node. |
|
| 284 |
InArcIt(const Digraph&, const Node&) { }
|
|
| 285 |
/// Arc -> InArcIt conversion |
|
| 286 |
|
|
| 287 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 288 |
/// This feature necessitates that each time we |
|
| 289 |
/// iterate the arc-set, the iteration order is the same. |
|
| 275 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 276 |
/// |
|
| 290 | 277 |
InArcIt(const Digraph&, const Arc&) { }
|
| 291 | 278 |
/// Next incoming arc |
| 292 | 279 |
|
| 293 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
| 294 |
/// |
|
| 280 |
/// Assign the iterator to the next |
|
| 281 |
/// incoming arc of the corresponding node. |
|
| 295 | 282 |
InArcIt& operator++() { return *this; }
|
| 296 | 283 |
}; |
| 297 |
/// This iterator goes through each arc. |
|
| 298 | 284 |
|
| 299 |
/// This iterator goes through each arc of a digraph. |
|
| 300 |
/// Its usage is quite simple, for example you can count the number |
|
| 301 |
/// |
|
| 285 |
/// Iterator class for the arcs. |
|
| 286 |
|
|
| 287 |
/// This iterator goes through each arc of the digraph. |
|
| 288 |
/// Its usage is quite simple, for example, you can count the number |
|
| 289 |
/// of arcs in a digraph \c g of type \c %Digraph as follows: |
|
| 302 | 290 |
///\code |
| 303 | 291 |
/// int count=0; |
| 304 |
/// for(Digraph::ArcIt |
|
| 292 |
/// for(Digraph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
| 305 | 293 |
///\endcode |
| 306 | 294 |
class ArcIt : public Arc {
|
| 307 | 295 |
public: |
| 308 | 296 |
/// Default constructor |
| 309 | 297 |
|
| 310 |
/// @warning The default constructor sets the iterator |
|
| 311 |
/// to an undefined value. |
|
| 298 |
/// Default constructor. |
|
| 299 |
/// \warning It sets the iterator to an undefined value. |
|
| 312 | 300 |
ArcIt() { }
|
| 313 | 301 |
/// Copy constructor. |
| 314 | 302 |
|
| 315 | 303 |
/// Copy constructor. |
| 316 | 304 |
/// |
| 317 | 305 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 318 |
/// |
|
| 306 |
/// %Invalid constructor \& conversion. |
|
| 319 | 307 |
|
| 320 |
/// |
|
| 308 |
/// Initializes the iterator to be invalid. |
|
| 309 |
/// \sa Invalid for more details. |
|
| 310 |
ArcIt(Invalid) { }
|
|
| 311 |
/// Sets the iterator to the first arc. |
|
| 312 |
|
|
| 313 |
/// Sets the iterator to the first arc of the given digraph. |
|
| 321 | 314 |
/// |
| 322 |
ArcIt(Invalid) { }
|
|
| 323 |
/// This constructor sets the iterator to the first arc. |
|
| 315 |
explicit ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
|
| 316 |
/// Sets the iterator to the given arc. |
|
| 324 | 317 |
|
| 325 |
/// This constructor sets the iterator to the first arc of \c g. |
|
| 326 |
///@param g the digraph |
|
| 327 |
ArcIt(const Digraph& g) { ignore_unused_variable_warning(g); }
|
|
| 328 |
/// Arc -> ArcIt conversion |
|
| 329 |
|
|
| 330 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 331 |
/// This feature necessitates that each time we |
|
| 332 |
/// iterate the arc-set, the iteration order is the same. |
|
| 318 |
/// Sets the iterator to the given arc of the given digraph. |
|
| 319 |
/// |
|
| 333 | 320 |
ArcIt(const Digraph&, const Arc&) { }
|
| 334 |
///Next arc |
|
| 321 |
/// Next arc |
|
| 335 | 322 |
|
| 336 | 323 |
/// Assign the iterator to the next arc. |
| 324 |
/// |
|
| 337 | 325 |
ArcIt& operator++() { return *this; }
|
| 338 | 326 |
}; |
| 339 |
///Gives back the target node of an arc. |
|
| 340 | 327 |
|
| 341 |
/// |
|
| 328 |
/// \brief The source node of the arc. |
|
| 342 | 329 |
/// |
| 343 |
Node target(Arc) const { return INVALID; }
|
|
| 344 |
///Gives back the source node of an arc. |
|
| 345 |
|
|
| 346 |
///Gives back the source node of an arc. |
|
| 347 |
/// |
|
| 330 |
/// Returns the source node of the given arc. |
|
| 348 | 331 |
Node source(Arc) const { return INVALID; }
|
| 349 | 332 |
|
| 350 |
/// \brief |
|
| 333 |
/// \brief The target node of the arc. |
|
| 334 |
/// |
|
| 335 |
/// Returns the target node of the given arc. |
|
| 336 |
Node target(Arc) const { return INVALID; }
|
|
| 337 |
|
|
| 338 |
/// \brief The ID of the node. |
|
| 339 |
/// |
|
| 340 |
/// Returns the ID of the given node. |
|
| 351 | 341 |
int id(Node) const { return -1; }
|
| 352 | 342 |
|
| 353 |
/// \brief |
|
| 343 |
/// \brief The ID of the arc. |
|
| 344 |
/// |
|
| 345 |
/// Returns the ID of the given arc. |
|
| 354 | 346 |
int id(Arc) const { return -1; }
|
| 355 | 347 |
|
| 356 |
/// \brief |
|
| 348 |
/// \brief The node with the given ID. |
|
| 357 | 349 |
/// |
| 358 |
/// |
|
| 350 |
/// Returns the node with the given ID. |
|
| 351 |
/// \pre The argument should be a valid node ID in the digraph. |
|
| 359 | 352 |
Node nodeFromId(int) const { return INVALID; }
|
| 360 | 353 |
|
| 361 |
/// \brief |
|
| 354 |
/// \brief The arc with the given ID. |
|
| 362 | 355 |
/// |
| 363 |
/// |
|
| 356 |
/// Returns the arc with the given ID. |
|
| 357 |
/// \pre The argument should be a valid arc ID in the digraph. |
|
| 364 | 358 |
Arc arcFromId(int) const { return INVALID; }
|
| 365 | 359 |
|
| 366 |
/// \brief |
|
| 360 |
/// \brief An upper bound on the node IDs. |
|
| 361 |
/// |
|
| 362 |
/// Returns an upper bound on the node IDs. |
|
| 367 | 363 |
int maxNodeId() const { return -1; }
|
| 368 | 364 |
|
| 369 |
/// \brief |
|
| 365 |
/// \brief An upper bound on the arc IDs. |
|
| 366 |
/// |
|
| 367 |
/// Returns an upper bound on the arc IDs. |
|
| 370 | 368 |
int maxArcId() const { return -1; }
|
| 371 | 369 |
|
| 372 | 370 |
void first(Node&) const {}
|
| 373 | 371 |
void next(Node&) const {}
|
| 374 | 372 |
|
| 375 | 373 |
void first(Arc&) const {}
|
| ... | ... |
@@ -389,51 +387,52 @@ |
| 389 | 387 |
|
| 390 | 388 |
// Dummy parameter. |
| 391 | 389 |
int maxId(Node) const { return -1; }
|
| 392 | 390 |
// Dummy parameter. |
| 393 | 391 |
int maxId(Arc) const { return -1; }
|
| 394 | 392 |
|
| 393 |
/// \brief The opposite node on the arc. |
|
| 394 |
/// |
|
| 395 |
/// Returns the opposite node on the given arc. |
|
| 396 |
Node oppositeNode(Node, Arc) const { return INVALID; }
|
|
| 397 |
|
|
| 395 | 398 |
/// \brief The base node of the iterator. |
| 396 | 399 |
/// |
| 397 |
/// Gives back the base node of the iterator. |
|
| 398 |
/// It is always the target of the pointed arc. |
|
| 399 |
|
|
| 400 |
/// Returns the base node of the given outgoing arc iterator |
|
| 401 |
/// (i.e. the source node of the corresponding arc). |
|
| 402 |
Node baseNode(OutArcIt) const { return INVALID; }
|
|
| 400 | 403 |
|
| 401 | 404 |
/// \brief The running node of the iterator. |
| 402 | 405 |
/// |
| 403 |
/// Gives back the running node of the iterator. |
|
| 404 |
/// It is always the source of the pointed arc. |
|
| 405 |
|
|
| 406 |
/// Returns the running node of the given outgoing arc iterator |
|
| 407 |
/// (i.e. the target node of the corresponding arc). |
|
| 408 |
Node runningNode(OutArcIt) const { return INVALID; }
|
|
| 406 | 409 |
|
| 407 | 410 |
/// \brief The base node of the iterator. |
| 408 | 411 |
/// |
| 409 |
/// Gives back the base node of the iterator. |
|
| 410 |
/// It is always the source of the pointed arc. |
|
| 411 |
|
|
| 412 |
/// Returns the base node of the given incomming arc iterator |
|
| 413 |
/// (i.e. the target node of the corresponding arc). |
|
| 414 |
Node baseNode(InArcIt) const { return INVALID; }
|
|
| 412 | 415 |
|
| 413 | 416 |
/// \brief The running node of the iterator. |
| 414 | 417 |
/// |
| 415 |
/// Gives back the running node of the iterator. |
|
| 416 |
/// It is always the target of the pointed arc. |
|
| 417 |
|
|
| 418 |
/// Returns the running node of the given incomming arc iterator |
|
| 419 |
/// (i.e. the source node of the corresponding arc). |
|
| 420 |
Node runningNode(InArcIt) const { return INVALID; }
|
|
| 418 | 421 |
|
| 419 |
/// \brief |
|
| 422 |
/// \brief Standard graph map type for the nodes. |
|
| 420 | 423 |
/// |
| 421 |
/// Gives back the opposite node on the given arc. |
|
| 422 |
Node oppositeNode(const Node&, const Arc&) const { return INVALID; }
|
|
| 423 |
|
|
| 424 |
/// \brief Reference map of the nodes to type \c T. |
|
| 425 |
/// |
|
| 426 |
/// Reference map of the nodes to type \c T. |
|
| 424 |
/// Standard graph map type for the nodes. |
|
| 425 |
/// It conforms to the ReferenceMap concept. |
|
| 427 | 426 |
template<class T> |
| 428 | 427 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> {
|
| 429 | 428 |
public: |
| 430 | 429 |
|
| 431 |
///\e |
|
| 432 |
NodeMap(const Digraph&) { }
|
|
| 433 |
/// |
|
| 430 |
/// Constructor |
|
| 431 |
explicit NodeMap(const Digraph&) { }
|
|
| 432 |
/// Constructor with given initial value |
|
| 434 | 433 |
NodeMap(const Digraph&, T) { }
|
| 435 | 434 |
|
| 436 | 435 |
private: |
| 437 | 436 |
///Copy constructor |
| 438 | 437 |
NodeMap(const NodeMap& nm) : |
| 439 | 438 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| ... | ... |
@@ -442,23 +441,25 @@ |
| 442 | 441 |
NodeMap& operator=(const CMap&) {
|
| 443 | 442 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 444 | 443 |
return *this; |
| 445 | 444 |
} |
| 446 | 445 |
}; |
| 447 | 446 |
|
| 448 |
/// \brief |
|
| 447 |
/// \brief Standard graph map type for the arcs. |
|
| 449 | 448 |
/// |
| 450 |
/// |
|
| 449 |
/// Standard graph map type for the arcs. |
|
| 450 |
/// It conforms to the ReferenceMap concept. |
|
| 451 | 451 |
template<class T> |
| 452 | 452 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> {
|
| 453 | 453 |
public: |
| 454 | 454 |
|
| 455 |
///\e |
|
| 456 |
ArcMap(const Digraph&) { }
|
|
| 457 |
/// |
|
| 455 |
/// Constructor |
|
| 456 |
explicit ArcMap(const Digraph&) { }
|
|
| 457 |
/// Constructor with given initial value |
|
| 458 | 458 |
ArcMap(const Digraph&, T) { }
|
| 459 |
|
|
| 459 | 460 |
private: |
| 460 | 461 |
///Copy constructor |
| 461 | 462 |
ArcMap(const ArcMap& em) : |
| 462 | 463 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 463 | 464 |
///Assignment operator |
| 464 | 465 |
template <typename CMap> |
| ... | ... |
@@ -15,504 +15,511 @@ |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 |
///\brief The concept of |
|
| 21 |
///\brief The concept of undirected graphs. |
|
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/concepts/graph_components.h> |
| 27 |
#include <lemon/concepts/maps.h> |
|
| 28 |
#include <lemon/concept_check.h> |
|
| 27 | 29 |
#include <lemon/core.h> |
| 28 | 30 |
|
| 29 | 31 |
namespace lemon {
|
| 30 | 32 |
namespace concepts {
|
| 31 | 33 |
|
| 32 | 34 |
/// \ingroup graph_concepts |
| 33 | 35 |
/// |
| 34 |
/// \brief Class describing the concept of |
|
| 36 |
/// \brief Class describing the concept of undirected graphs. |
|
| 35 | 37 |
/// |
| 36 |
/// This class describes the common interface of all Undirected |
|
| 37 |
/// Graphs. |
|
| 38 |
/// This class describes the common interface of all undirected |
|
| 39 |
/// graphs. |
|
| 38 | 40 |
/// |
| 39 |
/// As all concept describing classes it provides only interface |
|
| 40 |
/// without any sensible implementation. So any algorithm for |
|
| 41 |
/// |
|
| 41 |
/// Like all concept classes, it only provides an interface |
|
| 42 |
/// without any sensible implementation. So any general algorithm for |
|
| 43 |
/// undirected graphs should compile with this class, but it will not |
|
| 42 | 44 |
/// run properly, of course. |
| 45 |
/// An actual graph implementation like \ref ListGraph or |
|
| 46 |
/// \ref SmartGraph may have additional functionality. |
|
| 43 | 47 |
/// |
| 44 |
/// The LEMON undirected graphs also fulfill the concept of |
|
| 45 |
/// directed graphs (\ref lemon::concepts::Digraph "Digraph |
|
| 46 |
/// Concept"). Each edges can be seen as two opposite |
|
| 47 |
/// directed arc and consequently the undirected graph can be |
|
| 48 |
/// seen as the direceted graph of these directed arcs. The |
|
| 49 |
/// Graph has the Edge inner class for the edges and |
|
| 50 |
/// the Arc type for the directed arcs. The Arc type is |
|
| 51 |
/// convertible to Edge or inherited from it so from a directed |
|
| 52 |
/// |
|
| 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
|
| 49 |
/// "directed graphs", since each edge can also be regarded as two |
|
| 50 |
/// oppositely directed arcs. |
|
| 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
|
| 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
|
| 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
|
| 54 |
/// obtained from an arc. |
|
| 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
|
| 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
|
| 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
|
| 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
|
| 59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
|
| 60 |
/// only to Edge. |
|
| 53 | 61 |
/// |
| 54 |
/// In the sense of the LEMON each edge has a default |
|
| 55 |
/// direction (it should be in every computer implementation, |
|
| 56 |
/// because the order of edge's nodes defines an |
|
| 57 |
/// orientation). With the default orientation we can define that |
|
| 58 |
/// the directed arc is forward or backward directed. With the \c |
|
| 59 |
/// direction() and \c direct() function we can get the direction |
|
| 60 |
/// |
|
| 62 |
/// In LEMON, each undirected edge has an inherent orientation. |
|
| 63 |
/// Thus it can defined if an arc is forward or backward oriented in |
|
| 64 |
/// an undirected graph with respect to this default oriantation of |
|
| 65 |
/// the represented edge. |
|
| 66 |
/// With the direction() and direct() functions the direction |
|
| 67 |
/// of an arc can be obtained and set, respectively. |
|
| 61 | 68 |
/// |
| 62 |
/// The EdgeIt is an iterator for the edges. We can use |
|
| 63 |
/// the EdgeMap to map values for the edges. The InArcIt and |
|
| 64 |
/// OutArcIt iterates on the same edges but with opposite |
|
| 65 |
/// direction. The IncEdgeIt iterates also on the same edges |
|
| 66 |
/// as the OutArcIt and InArcIt but it is not convertible to Arc just |
|
| 67 |
/// to Edge. |
|
| 69 |
/// Only nodes and edges can be added to or removed from an undirected |
|
| 70 |
/// graph and the corresponding arcs are added or removed automatically. |
|
| 71 |
/// |
|
| 72 |
/// \sa Digraph |
|
| 68 | 73 |
class Graph {
|
| 74 |
private: |
|
| 75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
|
| 76 |
Graph(const Graph&) {}
|
|
| 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
|
| 78 |
/// Use DigraphCopy instead. |
|
| 79 |
void operator=(const Graph&) {}
|
|
| 80 |
|
|
| 69 | 81 |
public: |
| 70 |
/// \brief The undirected graph should be tagged by the |
|
| 71 |
/// UndirectedTag. |
|
| 82 |
/// Default constructor. |
|
| 83 |
Graph() {}
|
|
| 84 |
|
|
| 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
|
| 72 | 86 |
/// |
| 73 |
/// The undirected graph should be tagged by the UndirectedTag. This |
|
| 74 |
/// tag helps the enable_if technics to make compile time |
|
| 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
|
| 88 |
/// |
|
| 89 |
/// This tag helps the \c enable_if technics to make compile time |
|
| 75 | 90 |
/// specializations for undirected graphs. |
| 76 | 91 |
typedef True UndirectedTag; |
| 77 | 92 |
|
| 78 |
/// \brief The base type of node iterators, |
|
| 79 |
/// or in other words, the trivial node iterator. |
|
| 80 |
/// |
|
| 81 |
/// This is the base type of each node iterator, |
|
| 82 |
/// thus each kind of node iterator converts to this. |
|
| 83 |
/// More precisely each kind of node iterator should be inherited |
|
| 84 |
/// |
|
| 93 |
/// The node type of the graph |
|
| 94 |
|
|
| 95 |
/// This class identifies a node of the graph. It also serves |
|
| 96 |
/// as a base class of the node iterators, |
|
| 97 |
/// thus they convert to this type. |
|
| 85 | 98 |
class Node {
|
| 86 | 99 |
public: |
| 87 | 100 |
/// Default constructor |
| 88 | 101 |
|
| 89 |
/// @warning The default constructor sets the iterator |
|
| 90 |
/// to an undefined value. |
|
| 102 |
/// Default constructor. |
|
| 103 |
/// \warning It sets the object to an undefined value. |
|
| 91 | 104 |
Node() { }
|
| 92 | 105 |
/// Copy constructor. |
| 93 | 106 |
|
| 94 | 107 |
/// Copy constructor. |
| 95 | 108 |
/// |
| 96 | 109 |
Node(const Node&) { }
|
| 97 | 110 |
|
| 98 |
/// Invalid constructor \& conversion. |
|
| 111 |
/// %Invalid constructor \& conversion. |
|
| 99 | 112 |
|
| 100 |
/// |
|
| 113 |
/// Initializes the object to be invalid. |
|
| 101 | 114 |
/// \sa Invalid for more details. |
| 102 | 115 |
Node(Invalid) { }
|
| 103 | 116 |
/// Equality operator |
| 104 | 117 |
|
| 118 |
/// Equality operator. |
|
| 119 |
/// |
|
| 105 | 120 |
/// Two iterators are equal if and only if they point to the |
| 106 |
/// same object or both are |
|
| 121 |
/// same object or both are \c INVALID. |
|
| 107 | 122 |
bool operator==(Node) const { return true; }
|
| 108 | 123 |
|
| 109 | 124 |
/// Inequality operator |
| 110 | 125 |
|
| 111 |
/// \sa operator==(Node n) |
|
| 112 |
/// |
|
| 126 |
/// Inequality operator. |
|
| 113 | 127 |
bool operator!=(Node) const { return true; }
|
| 114 | 128 |
|
| 115 | 129 |
/// Artificial ordering operator. |
| 116 | 130 |
|
| 117 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 118 |
/// similar associative container we require this. |
|
| 131 |
/// Artificial ordering operator. |
|
| 119 | 132 |
/// |
| 120 |
/// \note This operator only |
|
| 133 |
/// \note This operator only has to define some strict ordering of |
|
| 121 | 134 |
/// the items; this order has nothing to do with the iteration |
| 122 | 135 |
/// ordering of the items. |
| 123 | 136 |
bool operator<(Node) const { return false; }
|
| 124 | 137 |
|
| 125 | 138 |
}; |
| 126 | 139 |
|
| 127 |
/// |
|
| 140 |
/// Iterator class for the nodes. |
|
| 128 | 141 |
|
| 129 |
/// This iterator goes through each node. |
|
| 130 |
/// Its usage is quite simple, for example you can count the number |
|
| 131 |
/// |
|
| 142 |
/// This iterator goes through each node of the graph. |
|
| 143 |
/// Its usage is quite simple, for example, you can count the number |
|
| 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
|
| 132 | 145 |
///\code |
| 133 | 146 |
/// int count=0; |
| 134 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
| 135 | 148 |
///\endcode |
| 136 | 149 |
class NodeIt : public Node {
|
| 137 | 150 |
public: |
| 138 | 151 |
/// Default constructor |
| 139 | 152 |
|
| 140 |
/// @warning The default constructor sets the iterator |
|
| 141 |
/// to an undefined value. |
|
| 153 |
/// Default constructor. |
|
| 154 |
/// \warning It sets the iterator to an undefined value. |
|
| 142 | 155 |
NodeIt() { }
|
| 143 | 156 |
/// Copy constructor. |
| 144 | 157 |
|
| 145 | 158 |
/// Copy constructor. |
| 146 | 159 |
/// |
| 147 | 160 |
NodeIt(const NodeIt& n) : Node(n) { }
|
| 148 |
/// Invalid constructor \& conversion. |
|
| 161 |
/// %Invalid constructor \& conversion. |
|
| 149 | 162 |
|
| 150 |
/// |
|
| 163 |
/// Initializes the iterator to be invalid. |
|
| 151 | 164 |
/// \sa Invalid for more details. |
| 152 | 165 |
NodeIt(Invalid) { }
|
| 153 | 166 |
/// Sets the iterator to the first node. |
| 154 | 167 |
|
| 155 |
/// Sets the iterator to the first node of |
|
| 168 |
/// Sets the iterator to the first node of the given digraph. |
|
| 156 | 169 |
/// |
| 157 |
NodeIt(const Graph&) { }
|
|
| 158 |
/// Node -> NodeIt conversion. |
|
| 170 |
explicit NodeIt(const Graph&) { }
|
|
| 171 |
/// Sets the iterator to the given node. |
|
| 159 | 172 |
|
| 160 |
/// Sets the iterator to the node of \c the graph pointed by |
|
| 161 |
/// the trivial iterator. |
|
| 162 |
/// This feature necessitates that each time we |
|
| 163 |
/// iterate the arc-set, the iteration order is the same. |
|
| 173 |
/// Sets the iterator to the given node of the given digraph. |
|
| 174 |
/// |
|
| 164 | 175 |
NodeIt(const Graph&, const Node&) { }
|
| 165 | 176 |
/// Next node. |
| 166 | 177 |
|
| 167 | 178 |
/// Assign the iterator to the next node. |
| 168 | 179 |
/// |
| 169 | 180 |
NodeIt& operator++() { return *this; }
|
| 170 | 181 |
}; |
| 171 | 182 |
|
| 172 | 183 |
|
| 173 |
/// The |
|
| 184 |
/// The edge type of the graph |
|
| 174 | 185 |
|
| 175 |
/// The base type of the edge iterators. |
|
| 176 |
/// |
|
| 186 |
/// This class identifies an edge of the graph. It also serves |
|
| 187 |
/// as a base class of the edge iterators, |
|
| 188 |
/// thus they will convert to this type. |
|
| 177 | 189 |
class Edge {
|
| 178 | 190 |
public: |
| 179 | 191 |
/// Default constructor |
| 180 | 192 |
|
| 181 |
/// @warning The default constructor sets the iterator |
|
| 182 |
/// to an undefined value. |
|
| 193 |
/// Default constructor. |
|
| 194 |
/// \warning It sets the object to an undefined value. |
|
| 183 | 195 |
Edge() { }
|
| 184 | 196 |
/// Copy constructor. |
| 185 | 197 |
|
| 186 | 198 |
/// Copy constructor. |
| 187 | 199 |
/// |
| 188 | 200 |
Edge(const Edge&) { }
|
| 189 |
/// |
|
| 201 |
/// %Invalid constructor \& conversion. |
|
| 190 | 202 |
|
| 191 |
/// Initialize the iterator to be invalid. |
|
| 192 |
/// |
|
| 203 |
/// Initializes the object to be invalid. |
|
| 204 |
/// \sa Invalid for more details. |
|
| 193 | 205 |
Edge(Invalid) { }
|
| 194 | 206 |
/// Equality operator |
| 195 | 207 |
|
| 208 |
/// Equality operator. |
|
| 209 |
/// |
|
| 196 | 210 |
/// Two iterators are equal if and only if they point to the |
| 197 |
/// same object or both are |
|
| 211 |
/// same object or both are \c INVALID. |
|
| 198 | 212 |
bool operator==(Edge) const { return true; }
|
| 199 | 213 |
/// Inequality operator |
| 200 | 214 |
|
| 201 |
/// \sa operator==(Edge n) |
|
| 202 |
/// |
|
| 215 |
/// Inequality operator. |
|
| 203 | 216 |
bool operator!=(Edge) const { return true; }
|
| 204 | 217 |
|
| 205 | 218 |
/// Artificial ordering operator. |
| 206 | 219 |
|
| 207 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 208 |
/// similar associative container we require this. |
|
| 220 |
/// Artificial ordering operator. |
|
| 209 | 221 |
/// |
| 210 |
/// \note This operator only have to define some strict ordering of |
|
| 211 |
/// the items; this order has nothing to do with the iteration |
|
| 212 |
/// ordering of |
|
| 222 |
/// \note This operator only has to define some strict ordering of |
|
| 223 |
/// the edges; this order has nothing to do with the iteration |
|
| 224 |
/// ordering of the edges. |
|
| 213 | 225 |
bool operator<(Edge) const { return false; }
|
| 214 | 226 |
}; |
| 215 | 227 |
|
| 216 |
/// |
|
| 228 |
/// Iterator class for the edges. |
|
| 217 | 229 |
|
| 218 |
/// This iterator goes through each edge of a graph. |
|
| 219 |
/// Its usage is quite simple, for example you can count the number |
|
| 220 |
/// |
|
| 230 |
/// This iterator goes through each edge of the graph. |
|
| 231 |
/// Its usage is quite simple, for example, you can count the number |
|
| 232 |
/// of edges in a graph \c g of type \c %Graph as follows: |
|
| 221 | 233 |
///\code |
| 222 | 234 |
/// int count=0; |
| 223 | 235 |
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
| 224 | 236 |
///\endcode |
| 225 | 237 |
class EdgeIt : public Edge {
|
| 226 | 238 |
public: |
| 227 | 239 |
/// Default constructor |
| 228 | 240 |
|
| 229 |
/// @warning The default constructor sets the iterator |
|
| 230 |
/// to an undefined value. |
|
| 241 |
/// Default constructor. |
|
| 242 |
/// \warning It sets the iterator to an undefined value. |
|
| 231 | 243 |
EdgeIt() { }
|
| 232 | 244 |
/// Copy constructor. |
| 233 | 245 |
|
| 234 | 246 |
/// Copy constructor. |
| 235 | 247 |
/// |
| 236 | 248 |
EdgeIt(const EdgeIt& e) : Edge(e) { }
|
| 237 |
/// |
|
| 249 |
/// %Invalid constructor \& conversion. |
|
| 238 | 250 |
|
| 239 |
/// |
|
| 251 |
/// Initializes the iterator to be invalid. |
|
| 252 |
/// \sa Invalid for more details. |
|
| 253 |
EdgeIt(Invalid) { }
|
|
| 254 |
/// Sets the iterator to the first edge. |
|
| 255 |
|
|
| 256 |
/// Sets the iterator to the first edge of the given graph. |
|
| 240 | 257 |
/// |
| 241 |
EdgeIt(Invalid) { }
|
|
| 242 |
/// This constructor sets the iterator to the first edge. |
|
| 258 |
explicit EdgeIt(const Graph&) { }
|
|
| 259 |
/// Sets the iterator to the given edge. |
|
| 243 | 260 |
|
| 244 |
/// This constructor sets the iterator to the first edge. |
|
| 245 |
EdgeIt(const Graph&) { }
|
|
| 246 |
/// Edge -> EdgeIt conversion |
|
| 247 |
|
|
| 248 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 249 |
/// This feature necessitates that each time we |
|
| 250 |
/// iterate the edge-set, the iteration order is the |
|
| 251 |
/// same. |
|
| 261 |
/// Sets the iterator to the given edge of the given graph. |
|
| 262 |
/// |
|
| 252 | 263 |
EdgeIt(const Graph&, const Edge&) { }
|
| 253 | 264 |
/// Next edge |
| 254 | 265 |
|
| 255 | 266 |
/// Assign the iterator to the next edge. |
| 267 |
/// |
|
| 256 | 268 |
EdgeIt& operator++() { return *this; }
|
| 257 | 269 |
}; |
| 258 | 270 |
|
| 259 |
/// \brief This iterator goes trough the incident undirected |
|
| 260 |
/// arcs of a node. |
|
| 261 |
/// |
|
| 262 |
/// This iterator goes trough the incident edges |
|
| 263 |
/// of a certain node of a graph. You should assume that the |
|
| 264 |
/// loop arcs will be iterated twice. |
|
| 265 |
/// |
|
| 266 |
/// Its usage is quite simple, for example you can compute the |
|
| 267 |
/// degree (i.e. count the number of incident arcs of a node \c n |
|
| 268 |
/// in graph \c g of type \c Graph as follows. |
|
| 271 |
/// Iterator class for the incident edges of a node. |
|
| 272 |
|
|
| 273 |
/// This iterator goes trough the incident undirected edges |
|
| 274 |
/// of a certain node of a graph. |
|
| 275 |
/// Its usage is quite simple, for example, you can compute the |
|
| 276 |
/// degree (i.e. the number of incident edges) of a node \c n |
|
| 277 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 269 | 278 |
/// |
| 270 | 279 |
///\code |
| 271 | 280 |
/// int count=0; |
| 272 | 281 |
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
| 273 | 282 |
///\endcode |
| 283 |
/// |
|
| 284 |
/// \warning Loop edges will be iterated twice. |
|
| 274 | 285 |
class IncEdgeIt : public Edge {
|
| 275 | 286 |
public: |
| 276 | 287 |
/// Default constructor |
| 277 | 288 |
|
| 278 |
/// @warning The default constructor sets the iterator |
|
| 279 |
/// to an undefined value. |
|
| 289 |
/// Default constructor. |
|
| 290 |
/// \warning It sets the iterator to an undefined value. |
|
| 280 | 291 |
IncEdgeIt() { }
|
| 281 | 292 |
/// Copy constructor. |
| 282 | 293 |
|
| 283 | 294 |
/// Copy constructor. |
| 284 | 295 |
/// |
| 285 | 296 |
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
|
| 286 |
/// |
|
| 297 |
/// %Invalid constructor \& conversion. |
|
| 287 | 298 |
|
| 288 |
/// |
|
| 299 |
/// Initializes the iterator to be invalid. |
|
| 300 |
/// \sa Invalid for more details. |
|
| 301 |
IncEdgeIt(Invalid) { }
|
|
| 302 |
/// Sets the iterator to the first incident edge. |
|
| 303 |
|
|
| 304 |
/// Sets the iterator to the first incident edge of the given node. |
|
| 289 | 305 |
/// |
| 290 |
IncEdgeIt(Invalid) { }
|
|
| 291 |
/// This constructor sets the iterator to first incident arc. |
|
| 306 |
IncEdgeIt(const Graph&, const Node&) { }
|
|
| 307 |
/// Sets the iterator to the given edge. |
|
| 292 | 308 |
|
| 293 |
/// This constructor set the iterator to the first incident arc of |
|
| 294 |
/// the node. |
|
| 295 |
IncEdgeIt(const Graph&, const Node&) { }
|
|
| 296 |
/// Edge -> IncEdgeIt conversion |
|
| 309 |
/// Sets the iterator to the given edge of the given graph. |
|
| 310 |
/// |
|
| 311 |
IncEdgeIt(const Graph&, const Edge&) { }
|
|
| 312 |
/// Next incident edge |
|
| 297 | 313 |
|
| 298 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 299 |
/// This feature necessitates that each time we |
|
| 300 |
/// iterate the arc-set, the iteration order is the same. |
|
| 301 |
IncEdgeIt(const Graph&, const Edge&) { }
|
|
| 302 |
/// Next incident arc |
|
| 303 |
|
|
| 304 |
/// Assign the iterator to the next incident |
|
| 314 |
/// Assign the iterator to the next incident edge |
|
| 305 | 315 |
/// of the corresponding node. |
| 306 | 316 |
IncEdgeIt& operator++() { return *this; }
|
| 307 | 317 |
}; |
| 308 | 318 |
|
| 309 |
/// The |
|
| 319 |
/// The arc type of the graph |
|
| 310 | 320 |
|
| 311 |
/// The directed arc type. It can be converted to the |
|
| 312 |
/// edge or it should be inherited from the undirected |
|
| 313 |
/// |
|
| 321 |
/// This class identifies a directed arc of the graph. It also serves |
|
| 322 |
/// as a base class of the arc iterators, |
|
| 323 |
/// thus they will convert to this type. |
|
| 314 | 324 |
class Arc {
|
| 315 | 325 |
public: |
| 316 | 326 |
/// Default constructor |
| 317 | 327 |
|
| 318 |
/// @warning The default constructor sets the iterator |
|
| 319 |
/// to an undefined value. |
|
| 328 |
/// Default constructor. |
|
| 329 |
/// \warning It sets the object to an undefined value. |
|
| 320 | 330 |
Arc() { }
|
| 321 | 331 |
/// Copy constructor. |
| 322 | 332 |
|
| 323 | 333 |
/// Copy constructor. |
| 324 | 334 |
/// |
| 325 | 335 |
Arc(const Arc&) { }
|
| 326 |
/// |
|
| 336 |
/// %Invalid constructor \& conversion. |
|
| 327 | 337 |
|
| 328 |
/// Initialize the iterator to be invalid. |
|
| 329 |
/// |
|
| 338 |
/// Initializes the object to be invalid. |
|
| 339 |
/// \sa Invalid for more details. |
|
| 330 | 340 |
Arc(Invalid) { }
|
| 331 | 341 |
/// Equality operator |
| 332 | 342 |
|
| 343 |
/// Equality operator. |
|
| 344 |
/// |
|
| 333 | 345 |
/// Two iterators are equal if and only if they point to the |
| 334 |
/// same object or both are |
|
| 346 |
/// same object or both are \c INVALID. |
|
| 335 | 347 |
bool operator==(Arc) const { return true; }
|
| 336 | 348 |
/// Inequality operator |
| 337 | 349 |
|
| 338 |
/// \sa operator==(Arc n) |
|
| 339 |
/// |
|
| 350 |
/// Inequality operator. |
|
| 340 | 351 |
bool operator!=(Arc) const { return true; }
|
| 341 | 352 |
|
| 342 | 353 |
/// Artificial ordering operator. |
| 343 | 354 |
|
| 344 |
/// To allow the use of graph descriptors as key type in std::map or |
|
| 345 |
/// similar associative container we require this. |
|
| 355 |
/// Artificial ordering operator. |
|
| 346 | 356 |
/// |
| 347 |
/// \note This operator only have to define some strict ordering of |
|
| 348 |
/// the items; this order has nothing to do with the iteration |
|
| 349 |
/// ordering of |
|
| 357 |
/// \note This operator only has to define some strict ordering of |
|
| 358 |
/// the arcs; this order has nothing to do with the iteration |
|
| 359 |
/// ordering of the arcs. |
|
| 350 | 360 |
bool operator<(Arc) const { return false; }
|
| 351 | 361 |
|
| 352 |
/// Converison to Edge |
|
| 362 |
/// Converison to \c Edge |
|
| 363 |
|
|
| 364 |
/// Converison to \c Edge. |
|
| 365 |
/// |
|
| 353 | 366 |
operator Edge() const { return Edge(); }
|
| 354 | 367 |
}; |
| 355 |
/// This iterator goes through each directed arc. |
|
| 356 | 368 |
|
| 357 |
/// This iterator goes through each arc of a graph. |
|
| 358 |
/// Its usage is quite simple, for example you can count the number |
|
| 359 |
/// |
|
| 369 |
/// Iterator class for the arcs. |
|
| 370 |
|
|
| 371 |
/// This iterator goes through each directed arc of the graph. |
|
| 372 |
/// Its usage is quite simple, for example, you can count the number |
|
| 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
|
| 360 | 374 |
///\code |
| 361 | 375 |
/// int count=0; |
| 362 |
/// for(Graph::ArcIt |
|
| 376 |
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count; |
|
| 363 | 377 |
///\endcode |
| 364 | 378 |
class ArcIt : public Arc {
|
| 365 | 379 |
public: |
| 366 | 380 |
/// Default constructor |
| 367 | 381 |
|
| 368 |
/// @warning The default constructor sets the iterator |
|
| 369 |
/// to an undefined value. |
|
| 382 |
/// Default constructor. |
|
| 383 |
/// \warning It sets the iterator to an undefined value. |
|
| 370 | 384 |
ArcIt() { }
|
| 371 | 385 |
/// Copy constructor. |
| 372 | 386 |
|
| 373 | 387 |
/// Copy constructor. |
| 374 | 388 |
/// |
| 375 | 389 |
ArcIt(const ArcIt& e) : Arc(e) { }
|
| 376 |
/// |
|
| 390 |
/// %Invalid constructor \& conversion. |
|
| 377 | 391 |
|
| 378 |
/// |
|
| 392 |
/// Initializes the iterator to be invalid. |
|
| 393 |
/// \sa Invalid for more details. |
|
| 394 |
ArcIt(Invalid) { }
|
|
| 395 |
/// Sets the iterator to the first arc. |
|
| 396 |
|
|
| 397 |
/// Sets the iterator to the first arc of the given graph. |
|
| 379 | 398 |
/// |
| 380 |
ArcIt(Invalid) { }
|
|
| 381 |
/// This constructor sets the iterator to the first arc. |
|
| 399 |
explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
|
| 400 |
/// Sets the iterator to the given arc. |
|
| 382 | 401 |
|
| 383 |
/// This constructor sets the iterator to the first arc of \c g. |
|
| 384 |
///@param g the graph |
|
| 385 |
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
|
|
| 386 |
/// Arc -> ArcIt conversion |
|
| 387 |
|
|
| 388 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 389 |
/// This feature necessitates that each time we |
|
| 390 |
/// iterate the arc-set, the iteration order is the same. |
|
| 402 |
/// Sets the iterator to the given arc of the given graph. |
|
| 403 |
/// |
|
| 391 | 404 |
ArcIt(const Graph&, const Arc&) { }
|
| 392 |
///Next arc |
|
| 405 |
/// Next arc |
|
| 393 | 406 |
|
| 394 | 407 |
/// Assign the iterator to the next arc. |
| 408 |
/// |
|
| 395 | 409 |
ArcIt& operator++() { return *this; }
|
| 396 | 410 |
}; |
| 397 | 411 |
|
| 398 |
/// |
|
| 412 |
/// Iterator class for the outgoing arcs of a node. |
|
| 399 | 413 |
|
| 400 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
|
| 401 |
/// of a graph. |
|
| 402 |
/// |
|
| 414 |
/// This iterator goes trough the \e outgoing directed arcs of a |
|
| 415 |
/// certain node of a graph. |
|
| 416 |
/// Its usage is quite simple, for example, you can count the number |
|
| 403 | 417 |
/// of outgoing arcs of a node \c n |
| 404 |
/// in graph \c g of type \c Graph as follows. |
|
| 418 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 405 | 419 |
///\code |
| 406 | 420 |
/// int count=0; |
| 407 |
/// for ( |
|
| 421 |
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 408 | 422 |
///\endcode |
| 409 |
|
|
| 410 | 423 |
class OutArcIt : public Arc {
|
| 411 | 424 |
public: |
| 412 | 425 |
/// Default constructor |
| 413 | 426 |
|
| 414 |
/// @warning The default constructor sets the iterator |
|
| 415 |
/// to an undefined value. |
|
| 427 |
/// Default constructor. |
|
| 428 |
/// \warning It sets the iterator to an undefined value. |
|
| 416 | 429 |
OutArcIt() { }
|
| 417 | 430 |
/// Copy constructor. |
| 418 | 431 |
|
| 419 | 432 |
/// Copy constructor. |
| 420 | 433 |
/// |
| 421 | 434 |
OutArcIt(const OutArcIt& e) : Arc(e) { }
|
| 422 |
/// |
|
| 435 |
/// %Invalid constructor \& conversion. |
|
| 423 | 436 |
|
| 424 |
/// |
|
| 437 |
/// Initializes the iterator to be invalid. |
|
| 438 |
/// \sa Invalid for more details. |
|
| 439 |
OutArcIt(Invalid) { }
|
|
| 440 |
/// Sets the iterator to the first outgoing arc. |
|
| 441 |
|
|
| 442 |
/// Sets the iterator to the first outgoing arc of the given node. |
|
| 425 | 443 |
/// |
| 426 |
OutArcIt(Invalid) { }
|
|
| 427 |
/// This constructor sets the iterator to the first outgoing arc. |
|
| 428 |
|
|
| 429 |
/// This constructor sets the iterator to the first outgoing arc of |
|
| 430 |
/// the node. |
|
| 431 |
///@param n the node |
|
| 432 |
///@param g the graph |
|
| 433 | 444 |
OutArcIt(const Graph& n, const Node& g) {
|
| 434 | 445 |
ignore_unused_variable_warning(n); |
| 435 | 446 |
ignore_unused_variable_warning(g); |
| 436 | 447 |
} |
| 437 |
/// |
|
| 448 |
/// Sets the iterator to the given arc. |
|
| 438 | 449 |
|
| 439 |
/// Sets the iterator to the value of the trivial iterator. |
|
| 440 |
/// This feature necessitates that each time we |
|
| 441 |
/// |
|
| 450 |
/// Sets the iterator to the given arc of the given graph. |
|
| 451 |
/// |
|
| 442 | 452 |
OutArcIt(const Graph&, const Arc&) { }
|
| 443 |
///Next outgoing arc |
|
| 453 |
/// Next outgoing arc |
|
| 444 | 454 |
|
| 445 | 455 |
/// Assign the iterator to the next |
| 446 | 456 |
/// outgoing arc of the corresponding node. |
| 447 | 457 |
OutArcIt& operator++() { return *this; }
|
| 448 | 458 |
}; |
| 449 | 459 |
|
| 450 |
/// |
|
| 460 |
/// Iterator class for the incoming arcs of a node. |
|
| 451 | 461 |
|
| 452 |
/// This iterator goes trough the \e incoming arcs of a certain node |
|
| 453 |
/// of a graph. |
|
| 454 |
/// Its usage is quite simple, for example you can count the number |
|
| 455 |
/// of outgoing arcs of a node \c n |
|
| 456 |
/// |
|
| 462 |
/// This iterator goes trough the \e incoming directed arcs of a |
|
| 463 |
/// certain node of a graph. |
|
| 464 |
/// Its usage is quite simple, for example, you can count the number |
|
| 465 |
/// of incoming arcs of a node \c n |
|
| 466 |
/// in a graph \c g of type \c %Graph as follows. |
|
| 457 | 467 |
///\code |
| 458 | 468 |
/// int count=0; |
| 459 |
/// for( |
|
| 469 |
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count; |
|
| 460 | 470 |
///\endcode |
| 461 |
|
|
| 462 | 471 |
class InArcIt : public Arc {
|
| 463 | 472 |
public: |
| 464 | 473 |
/// Default constructor |
| 465 | 474 |
|
| 466 |
/// @warning The default constructor sets the iterator |
|
| 467 |
/// to an undefined value. |
|
| 475 |
/// Default constructor. |
|
| 476 |
/// \warning It sets the iterator to an undefined value. |
|
| 468 | 477 |
InArcIt() { }
|
| 469 | 478 |
/// Copy constructor. |
| 470 | 479 |
|
| 471 | 480 |
/// Copy constructor. |
| 472 | 481 |
/// |
| 473 | 482 |
InArcIt(const InArcIt& e) : Arc(e) { }
|
| 474 |
/// |
|
| 483 |
/// %Invalid constructor \& conversion. |
|
| 475 | 484 |
|
| 476 |
/// |
|
| 485 |
/// Initializes the iterator to be invalid. |
|
| 486 |
/// \sa Invalid for more details. |
|
| 487 |
InArcIt(Invalid) { }
|
|
| 488 |
/// Sets the iterator to the first incoming arc. |
|
| 489 |
|
|
| 490 |
/// Sets the iterator to the first incoming arc of the given node. |
|
| 477 | 491 |
/// |
| 478 |
InArcIt(Invalid) { }
|
|
| 479 |
/// This constructor sets the iterator to first incoming arc. |
|
| 480 |
|
|
| 481 |
/// This constructor set the iterator to the first incoming arc of |
|
| 482 |
/// the node. |
|
| 483 |
///@param n the node |
|
| 484 |
///@param g the graph |
|
| 485 | 492 |
InArcIt(const Graph& g, const Node& n) {
|
| 486 | 493 |
ignore_unused_variable_warning(n); |
| 487 | 494 |
ignore_unused_variable_warning(g); |
| 488 | 495 |
} |
| 489 |
/// |
|
| 496 |
/// Sets the iterator to the given arc. |
|
| 490 | 497 |
|
| 491 |
/// Sets the iterator to the value of the trivial iterator \c e. |
|
| 492 |
/// This feature necessitates that each time we |
|
| 493 |
/// |
|
| 498 |
/// Sets the iterator to the given arc of the given graph. |
|
| 499 |
/// |
|
| 494 | 500 |
InArcIt(const Graph&, const Arc&) { }
|
| 495 | 501 |
/// Next incoming arc |
| 496 | 502 |
|
| 497 |
/// Assign the iterator to the next inarc of the corresponding node. |
|
| 498 |
/// |
|
| 503 |
/// Assign the iterator to the next |
|
| 504 |
/// incoming arc of the corresponding node. |
|
| 499 | 505 |
InArcIt& operator++() { return *this; }
|
| 500 | 506 |
}; |
| 501 | 507 |
|
| 502 |
/// \brief |
|
| 508 |
/// \brief Standard graph map type for the nodes. |
|
| 503 | 509 |
/// |
| 504 |
/// |
|
| 510 |
/// Standard graph map type for the nodes. |
|
| 511 |
/// It conforms to the ReferenceMap concept. |
|
| 505 | 512 |
template<class T> |
| 506 | 513 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> |
| 507 | 514 |
{
|
| 508 | 515 |
public: |
| 509 | 516 |
|
| 510 |
///\e |
|
| 511 |
NodeMap(const Graph&) { }
|
|
| 512 |
/// |
|
| 517 |
/// Constructor |
|
| 518 |
explicit NodeMap(const Graph&) { }
|
|
| 519 |
/// Constructor with given initial value |
|
| 513 | 520 |
NodeMap(const Graph&, T) { }
|
| 514 | 521 |
|
| 515 | 522 |
private: |
| 516 | 523 |
///Copy constructor |
| 517 | 524 |
NodeMap(const NodeMap& nm) : |
| 518 | 525 |
ReferenceMap<Node, T, T&, const T&>(nm) { }
|
| ... | ... |
@@ -521,161 +528,182 @@ |
| 521 | 528 |
NodeMap& operator=(const CMap&) {
|
| 522 | 529 |
checkConcept<ReadMap<Node, T>, CMap>(); |
| 523 | 530 |
return *this; |
| 524 | 531 |
} |
| 525 | 532 |
}; |
| 526 | 533 |
|
| 527 |
/// \brief |
|
| 534 |
/// \brief Standard graph map type for the arcs. |
|
| 528 | 535 |
/// |
| 529 |
/// |
|
| 536 |
/// Standard graph map type for the arcs. |
|
| 537 |
/// It conforms to the ReferenceMap concept. |
|
| 530 | 538 |
template<class T> |
| 531 | 539 |
class ArcMap : public ReferenceMap<Arc, T, T&, const T&> |
| 532 | 540 |
{
|
| 533 | 541 |
public: |
| 534 | 542 |
|
| 535 |
///\e |
|
| 536 |
ArcMap(const Graph&) { }
|
|
| 537 |
/// |
|
| 543 |
/// Constructor |
|
| 544 |
explicit ArcMap(const Graph&) { }
|
|
| 545 |
/// Constructor with given initial value |
|
| 538 | 546 |
ArcMap(const Graph&, T) { }
|
| 547 |
|
|
| 539 | 548 |
private: |
| 540 | 549 |
///Copy constructor |
| 541 | 550 |
ArcMap(const ArcMap& em) : |
| 542 | 551 |
ReferenceMap<Arc, T, T&, const T&>(em) { }
|
| 543 | 552 |
///Assignment operator |
| 544 | 553 |
template <typename CMap> |
| 545 | 554 |
ArcMap& operator=(const CMap&) {
|
| 546 | 555 |
checkConcept<ReadMap<Arc, T>, CMap>(); |
| 547 | 556 |
return *this; |
| 548 | 557 |
} |
| 549 | 558 |
}; |
| 550 | 559 |
|
| 551 |
/// Reference map of the edges to type \c T. |
|
| 552 |
|
|
| 553 |
/// |
|
| 560 |
/// \brief Standard graph map type for the edges. |
|
| 561 |
/// |
|
| 562 |
/// Standard graph map type for the edges. |
|
| 563 |
/// It conforms to the ReferenceMap concept. |
|
| 554 | 564 |
template<class T> |
| 555 | 565 |
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&> |
| 556 | 566 |
{
|
| 557 | 567 |
public: |
| 558 | 568 |
|
| 559 |
///\e |
|
| 560 |
EdgeMap(const Graph&) { }
|
|
| 561 |
/// |
|
| 569 |
/// Constructor |
|
| 570 |
explicit EdgeMap(const Graph&) { }
|
|
| 571 |
/// Constructor with given initial value |
|
| 562 | 572 |
EdgeMap(const Graph&, T) { }
|
| 573 |
|
|
| 563 | 574 |
private: |
| 564 | 575 |
///Copy constructor |
| 565 | 576 |
EdgeMap(const EdgeMap& em) : |
| 566 | 577 |
ReferenceMap<Edge, T, T&, const T&>(em) {}
|
| 567 | 578 |
///Assignment operator |
| 568 | 579 |
template <typename CMap> |
| 569 | 580 |
EdgeMap& operator=(const CMap&) {
|
| 570 | 581 |
checkConcept<ReadMap<Edge, T>, CMap>(); |
| 571 | 582 |
return *this; |
| 572 | 583 |
} |
| 573 | 584 |
}; |
| 574 | 585 |
|
| 575 |
/// \brief |
|
| 586 |
/// \brief The first node of the edge. |
|
| 576 | 587 |
/// |
| 577 |
/// Direct the given edge. The returned arc source |
|
| 578 |
/// will be the given node. |
|
| 579 |
Arc direct(const Edge&, const Node&) const {
|
|
| 580 |
return INVALID; |
|
| 581 |
} |
|
| 582 |
|
|
| 583 |
/// |
|
| 588 |
/// Returns the first node of the given edge. |
|
| 584 | 589 |
/// |
| 585 |
/// Direct the given edge. The returned arc |
|
| 586 |
/// represents the given edge and the direction comes |
|
| 587 |
/// from the bool parameter. The source of the edge and |
|
| 588 |
/// the directed arc is the same when the given bool is true. |
|
| 589 |
Arc direct(const Edge&, bool) const {
|
|
| 590 |
return INVALID; |
|
| 591 |
} |
|
| 592 |
|
|
| 593 |
/// \brief Returns true if the arc has default orientation. |
|
| 594 |
/// |
|
| 595 |
/// Returns whether the given directed arc is same orientation as |
|
| 596 |
/// the corresponding edge's default orientation. |
|
| 597 |
bool direction(Arc) const { return true; }
|
|
| 598 |
|
|
| 599 |
/// \brief Returns the opposite directed arc. |
|
| 600 |
/// |
|
| 601 |
/// Returns the opposite directed arc. |
|
| 602 |
Arc oppositeArc(Arc) const { return INVALID; }
|
|
| 603 |
|
|
| 604 |
/// \brief Opposite node on an arc |
|
| 605 |
/// |
|
| 606 |
/// \return The opposite of the given node on the given edge. |
|
| 607 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
|
| 608 |
|
|
| 609 |
/// \brief First node of the edge. |
|
| 610 |
/// |
|
| 611 |
/// \return The first node of the given edge. |
|
| 612 |
/// |
|
| 613 |
/// Naturally edges don't have direction and thus |
|
| 614 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 615 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 616 |
/// arc which arises this way is called the inherent direction of the |
|
| 617 |
/// edge, and is used to define the "default" direction |
|
| 618 |
/// of the directed versions of the arcs. |
|
| 590 |
/// Edges don't have source and target nodes, however, methods |
|
| 591 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
| 592 |
/// The orientation of an edge that arises this way is called |
|
| 593 |
/// the inherent direction, it is used to define the default |
|
| 594 |
/// direction for the corresponding arcs. |
|
| 619 | 595 |
/// \sa v() |
| 620 | 596 |
/// \sa direction() |
| 621 | 597 |
Node u(Edge) const { return INVALID; }
|
| 622 | 598 |
|
| 623 |
/// \brief |
|
| 599 |
/// \brief The second node of the edge. |
|
| 624 | 600 |
/// |
| 625 |
/// |
|
| 601 |
/// Returns the second node of the given edge. |
|
| 626 | 602 |
/// |
| 627 |
/// Naturally edges don't have direction and thus |
|
| 628 |
/// don't have source and target node. However we use \c u() and \c v() |
|
| 629 |
/// methods to query the two nodes of the arc. The direction of the |
|
| 630 |
/// arc which arises this way is called the inherent direction of the |
|
| 631 |
/// edge, and is used to define the "default" direction |
|
| 632 |
/// of the directed versions of the arcs. |
|
| 603 |
/// Edges don't have source and target nodes, however, methods |
|
| 604 |
/// u() and v() are used to query the two end-nodes of an edge. |
|
| 605 |
/// The orientation of an edge that arises this way is called |
|
| 606 |
/// the inherent direction, it is used to define the default |
|
| 607 |
/// direction for the corresponding arcs. |
|
| 633 | 608 |
/// \sa u() |
| 634 | 609 |
/// \sa direction() |
| 635 | 610 |
Node v(Edge) const { return INVALID; }
|
| 636 | 611 |
|
| 637 |
/// \brief |
|
| 612 |
/// \brief The source node of the arc. |
|
| 613 |
/// |
|
| 614 |
/// Returns the source node of the given arc. |
|
| 638 | 615 |
Node source(Arc) const { return INVALID; }
|
| 639 | 616 |
|
| 640 |
/// \brief |
|
| 617 |
/// \brief The target node of the arc. |
|
| 618 |
/// |
|
| 619 |
/// Returns the target node of the given arc. |
|
| 641 | 620 |
Node target(Arc) const { return INVALID; }
|
| 642 | 621 |
|
| 643 |
/// \brief |
|
| 622 |
/// \brief The ID of the node. |
|
| 623 |
/// |
|
| 624 |
/// Returns the ID of the given node. |
|
| 644 | 625 |
int id(Node) const { return -1; }
|
| 645 | 626 |
|
| 646 |
/// \brief |
|
| 627 |
/// \brief The ID of the edge. |
|
| 628 |
/// |
|
| 629 |
/// Returns the ID of the given edge. |
|
| 647 | 630 |
int id(Edge) const { return -1; }
|
| 648 | 631 |
|
| 649 |
/// \brief |
|
| 632 |
/// \brief The ID of the arc. |
|
| 633 |
/// |
|
| 634 |
/// Returns the ID of the given arc. |
|
| 650 | 635 |
int id(Arc) const { return -1; }
|
| 651 | 636 |
|
| 652 |
/// \brief |
|
| 637 |
/// \brief The node with the given ID. |
|
| 653 | 638 |
/// |
| 654 |
/// |
|
| 639 |
/// Returns the node with the given ID. |
|
| 640 |
/// \pre The argument should be a valid node ID in the graph. |
|
| 655 | 641 |
Node nodeFromId(int) const { return INVALID; }
|
| 656 | 642 |
|
| 657 |
/// \brief |
|
| 643 |
/// \brief The edge with the given ID. |
|
| 658 | 644 |
/// |
| 659 |
/// |
|
| 645 |
/// Returns the edge with the given ID. |
|
| 646 |
/// \pre The argument should be a valid edge ID in the graph. |
|
| 660 | 647 |
Edge edgeFromId(int) const { return INVALID; }
|
| 661 | 648 |
|
| 662 |
/// \brief |
|
| 649 |
/// \brief The arc with the given ID. |
|
| 663 | 650 |
/// |
| 664 |
/// |
|
| 651 |
/// Returns the arc with the given ID. |
|
| 652 |
/// \pre The argument should be a valid arc ID in the graph. |
|
| 665 | 653 |
Arc arcFromId(int) const { return INVALID; }
|
| 666 | 654 |
|
| 667 |
/// \brief |
|
| 655 |
/// \brief An upper bound on the node IDs. |
|
| 656 |
/// |
|
| 657 |
/// Returns an upper bound on the node IDs. |
|
| 668 | 658 |
int maxNodeId() const { return -1; }
|
| 669 | 659 |
|
| 670 |
/// \brief |
|
| 660 |
/// \brief An upper bound on the edge IDs. |
|
| 661 |
/// |
|
| 662 |
/// Returns an upper bound on the edge IDs. |
|
| 671 | 663 |
int maxEdgeId() const { return -1; }
|
| 672 | 664 |
|
| 673 |
/// \brief |
|
| 665 |
/// \brief An upper bound on the arc IDs. |
|
| 666 |
/// |
|
| 667 |
/// Returns an upper bound on the arc IDs. |
|
| 674 | 668 |
int maxArcId() const { return -1; }
|
| 675 | 669 |
|
| 670 |
/// \brief The direction of the arc. |
|
| 671 |
/// |
|
| 672 |
/// Returns \c true if the direction of the given arc is the same as |
|
| 673 |
/// the inherent orientation of the represented edge. |
|
| 674 |
bool direction(Arc) const { return true; }
|
|
| 675 |
|
|
| 676 |
/// \brief Direct the edge. |
|
| 677 |
/// |
|
| 678 |
/// Direct the given edge. The returned arc |
|
| 679 |
/// represents the given edge and its direction comes |
|
| 680 |
/// from the bool parameter. If it is \c true, then the direction |
|
| 681 |
/// of the arc is the same as the inherent orientation of the edge. |
|
| 682 |
Arc direct(Edge, bool) const {
|
|
| 683 |
return INVALID; |
|
| 684 |
} |
|
| 685 |
|
|
| 686 |
/// \brief Direct the edge. |
|
| 687 |
/// |
|
| 688 |
/// Direct the given edge. The returned arc represents the given |
|
| 689 |
/// edge and its source node is the given node. |
|
| 690 |
Arc direct(Edge, Node) const {
|
|
| 691 |
return INVALID; |
|
| 692 |
} |
|
| 693 |
|
|
| 694 |
/// \brief The oppositely directed arc. |
|
| 695 |
/// |
|
| 696 |
/// Returns the oppositely directed arc representing the same edge. |
|
| 697 |
Arc oppositeArc(Arc) const { return INVALID; }
|
|
| 698 |
|
|
| 699 |
/// \brief The opposite node on the edge. |
|
| 700 |
/// |
|
| 701 |
/// Returns the opposite node on the given edge. |
|
| 702 |
Node oppositeNode(Node, Edge) const { return INVALID; }
|
|
| 703 |
|
|
| 676 | 704 |
void first(Node&) const {}
|
| 677 | 705 |
void next(Node&) const {}
|
| 678 | 706 |
|
| 679 | 707 |
void first(Edge&) const {}
|
| 680 | 708 |
void next(Edge&) const {}
|
| 681 | 709 |
|
| ... | ... |
@@ -702,53 +730,45 @@ |
| 702 | 730 |
int maxId(Node) const { return -1; }
|
| 703 | 731 |
// Dummy parameter. |
| 704 | 732 |
int maxId(Edge) const { return -1; }
|
| 705 | 733 |
// Dummy parameter. |
| 706 | 734 |
int maxId(Arc) const { return -1; }
|
| 707 | 735 |
|
| 708 |
/// \brief |
|
| 736 |
/// \brief The base node of the iterator. |
|
| 709 | 737 |
/// |
| 710 |
/// Returns the base node (the source in this case) of the iterator |
|
| 711 |
Node baseNode(OutArcIt e) const {
|
|
| 712 |
return source(e); |
|
| 713 |
} |
|
| 714 |
/// |
|
| 738 |
/// Returns the base node of the given incident edge iterator. |
|
| 739 |
Node baseNode(IncEdgeIt) const { return INVALID; }
|
|
| 740 |
|
|
| 741 |
/// \brief The running node of the iterator. |
|
| 715 | 742 |
/// |
| 716 |
/// Returns the running node (the target in this case) of the |
|
| 717 |
/// iterator |
|
| 718 |
Node runningNode(OutArcIt e) const {
|
|
| 719 |
return target(e); |
|
| 720 |
|
|
| 743 |
/// Returns the running node of the given incident edge iterator. |
|
| 744 |
Node runningNode(IncEdgeIt) const { return INVALID; }
|
|
| 721 | 745 |
|
| 722 |
/// \brief |
|
| 746 |
/// \brief The base node of the iterator. |
|
| 723 | 747 |
/// |
| 724 |
/// Returns the base node (the target in this case) of the iterator |
|
| 725 |
Node baseNode(InArcIt e) const {
|
|
| 726 |
return target(e); |
|
| 727 |
} |
|
| 728 |
/// |
|
| 748 |
/// Returns the base node of the given outgoing arc iterator |
|
| 749 |
/// (i.e. the source node of the corresponding arc). |
|
| 750 |
Node baseNode(OutArcIt) const { return INVALID; }
|
|
| 751 |
|
|
| 752 |
/// \brief The running node of the iterator. |
|
| 729 | 753 |
/// |
| 730 |
/// Returns the running node (the source in this case) of the |
|
| 731 |
/// iterator |
|
| 732 |
Node runningNode(InArcIt e) const {
|
|
| 733 |
return source(e); |
|
| 734 |
|
|
| 754 |
/// Returns the running node of the given outgoing arc iterator |
|
| 755 |
/// (i.e. the target node of the corresponding arc). |
|
| 756 |
Node runningNode(OutArcIt) const { return INVALID; }
|
|
| 735 | 757 |
|
| 736 |
/// \brief |
|
| 758 |
/// \brief The base node of the iterator. |
|
| 737 | 759 |
/// |
| 738 |
/// Returns the base node of the iterator |
|
| 739 |
Node baseNode(IncEdgeIt) const {
|
|
| 740 |
return INVALID; |
|
| 741 |
} |
|
| 760 |
/// Returns the base node of the given incomming arc iterator |
|
| 761 |
/// (i.e. the target node of the corresponding arc). |
|
| 762 |
Node baseNode(InArcIt) const { return INVALID; }
|
|
| 742 | 763 |
|
| 743 |
/// \brief |
|
| 764 |
/// \brief The running node of the iterator. |
|
| 744 | 765 |
/// |
| 745 |
/// Returns the running node of the iterator |
|
| 746 |
Node runningNode(IncEdgeIt) const {
|
|
| 747 |
return INVALID; |
|
| 748 |
} |
|
| 766 |
/// Returns the running node of the given incomming arc iterator |
|
| 767 |
/// (i.e. the source node of the corresponding arc). |
|
| 768 |
Node runningNode(InArcIt) const { return INVALID; }
|
|
| 749 | 769 |
|
| 750 | 770 |
template <typename _Graph> |
| 751 | 771 |
struct Constraints {
|
| 752 | 772 |
void constraints() {
|
| 753 | 773 |
checkConcept<BaseGraphComponent, _Graph>(); |
| 754 | 774 |
checkConcept<IterableGraphComponent<>, _Graph>(); |
| ... | ... |
@@ -15,13 +15,13 @@ |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup graph_concepts |
| 20 | 20 |
///\file |
| 21 |
///\brief The |
|
| 21 |
///\brief The concepts of graph components. |
|
| 22 | 22 |
|
| 23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/core.h> |
| 27 | 27 |
#include <lemon/concepts/maps.h> |
| ... | ... |
@@ -89,13 +89,13 @@ |
| 89 | 89 |
/// \brief Ordering operator. |
| 90 | 90 |
/// |
| 91 | 91 |
/// This operator defines an ordering of the items. |
| 92 | 92 |
/// It makes possible to use graph item types as key types in |
| 93 | 93 |
/// associative containers (e.g. \c std::map). |
| 94 | 94 |
/// |
| 95 |
/// \note This operator only |
|
| 95 |
/// \note This operator only has to define some strict ordering of |
|
| 96 | 96 |
/// the items; this order has nothing to do with the iteration |
| 97 | 97 |
/// ordering of the items. |
| 98 | 98 |
bool operator<(const GraphItem&) const { return false; }
|
| 99 | 99 |
|
| 100 | 100 |
template<typename _GraphItem> |
| 101 | 101 |
struct Constraints {
|
| ... | ... |
@@ -179,13 +179,14 @@ |
| 179 | 179 |
|
| 180 | 180 |
/// Sets the value associated with the given key. |
| 181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; }
|
| 182 | 182 |
|
| 183 | 183 |
template<typename _ReferenceMap> |
| 184 | 184 |
struct Constraints {
|
| 185 |
|
|
| 185 |
typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type |
|
| 186 |
constraints() {
|
|
| 186 | 187 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
| 187 | 188 |
ref = m[key]; |
| 188 | 189 |
m[key] = val; |
| 189 | 190 |
m[key] = ref; |
| 190 | 191 |
m[key] = cref; |
| 191 | 192 |
own_ref = m[own_key]; |
| ... | ... |
@@ -15,13 +15,13 @@ |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
///\ingroup concept |
| 20 | 20 |
///\file |
| 21 |
///\brief |
|
| 21 |
///\brief The concept of paths |
|
| 22 | 22 |
/// |
| 23 | 23 |
|
| 24 | 24 |
#ifndef LEMON_CONCEPTS_PATH_H |
| 25 | 25 |
#define LEMON_CONCEPTS_PATH_H |
| 26 | 26 |
|
| 27 | 27 |
#include <lemon/core.h> |
| ... | ... |
@@ -35,19 +35,28 @@ |
| 35 | 35 |
|
| 36 | 36 |
/// \brief A skeleton structure for representing directed paths in |
| 37 | 37 |
/// a digraph. |
| 38 | 38 |
/// |
| 39 | 39 |
/// A skeleton structure for representing directed paths in a |
| 40 | 40 |
/// digraph. |
| 41 |
/// In a sense, a path can be treated as a list of arcs. |
|
| 42 |
/// LEMON path types just store this list. As a consequence, they cannot |
|
| 43 |
/// enumerate the nodes on the path directly and a zero length path |
|
| 44 |
/// cannot store its source node. |
|
| 45 |
/// |
|
| 46 |
/// The arcs of a path should be stored in the order of their directions, |
|
| 47 |
/// i.e. the target node of each arc should be the same as the source |
|
| 48 |
/// node of the next arc. This consistency could be checked using |
|
| 49 |
/// \ref checkPath(). |
|
| 50 |
/// The source and target nodes of a (consistent) path can be obtained |
|
| 51 |
/// using \ref pathSource() and \ref pathTarget(). |
|
| 52 |
/// |
|
| 53 |
/// A path can be constructed from another path of any type using the |
|
| 54 |
/// copy constructor or the assignment operator. |
|
| 55 |
/// |
|
| 41 | 56 |
/// \tparam GR The digraph type in which the path is. |
| 42 |
/// |
|
| 43 |
/// In a sense, the path can be treated as a list of arcs. The |
|
| 44 |
/// lemon path type stores just this list. As a consequence it |
|
| 45 |
/// cannot enumerate the nodes in the path and the zero length |
|
| 46 |
/// paths cannot store the source. |
|
| 47 |
/// |
|
| 48 | 57 |
template <typename GR> |
| 49 | 58 |
class Path {
|
| 50 | 59 |
public: |
| 51 | 60 |
|
| 52 | 61 |
/// Type of the underlying digraph. |
| 53 | 62 |
typedef GR Digraph; |
| ... | ... |
@@ -56,45 +65,45 @@ |
| 56 | 65 |
|
| 57 | 66 |
class ArcIt; |
| 58 | 67 |
|
| 59 | 68 |
/// \brief Default constructor |
| 60 | 69 |
Path() {}
|
| 61 | 70 |
|
| 62 |
/// \brief Template constructor |
|
| 71 |
/// \brief Template copy constructor |
|
| 63 | 72 |
template <typename CPath> |
| 64 | 73 |
Path(const CPath& cpath) {}
|
| 65 | 74 |
|
| 66 |
/// \brief Template assigment |
|
| 75 |
/// \brief Template assigment operator |
|
| 67 | 76 |
template <typename CPath> |
| 68 | 77 |
Path& operator=(const CPath& cpath) {
|
| 69 | 78 |
ignore_unused_variable_warning(cpath); |
| 70 | 79 |
return *this; |
| 71 | 80 |
} |
| 72 | 81 |
|
| 73 |
/// Length of the path |
|
| 82 |
/// Length of the path, i.e. the number of arcs on the path. |
|
| 74 | 83 |
int length() const { return 0;}
|
| 75 | 84 |
|
| 76 | 85 |
/// Returns whether the path is empty. |
| 77 | 86 |
bool empty() const { return true;}
|
| 78 | 87 |
|
| 79 | 88 |
/// Resets the path to an empty path. |
| 80 | 89 |
void clear() {}
|
| 81 | 90 |
|
| 82 |
/// \brief LEMON style iterator for |
|
| 91 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
| 83 | 92 |
/// |
| 84 |
/// |
|
| 93 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
| 85 | 94 |
class ArcIt {
|
| 86 | 95 |
public: |
| 87 | 96 |
/// Default constructor |
| 88 | 97 |
ArcIt() {}
|
| 89 | 98 |
/// Invalid constructor |
| 90 | 99 |
ArcIt(Invalid) {}
|
| 91 |
/// |
|
| 100 |
/// Sets the iterator to the first arc of the given path |
|
| 92 | 101 |
ArcIt(const Path &) {}
|
| 93 | 102 |
|
| 94 |
/// Conversion to Arc |
|
| 103 |
/// Conversion to \c Arc |
|
| 95 | 104 |
operator Arc() const { return INVALID; }
|
| 96 | 105 |
|
| 97 | 106 |
/// Next arc |
| 98 | 107 |
ArcIt& operator++() {return *this;}
|
| 99 | 108 |
|
| 100 | 109 |
/// Comparison operator |
| ... | ... |
@@ -189,66 +198,59 @@ |
| 189 | 198 |
} |
| 190 | 199 |
|
| 191 | 200 |
|
| 192 | 201 |
/// \brief A skeleton structure for path dumpers. |
| 193 | 202 |
/// |
| 194 | 203 |
/// A skeleton structure for path dumpers. The path dumpers are |
| 195 |
/// the generalization of the paths. The path dumpers can |
|
| 196 |
/// enumerate the arcs of the path wheter in forward or in |
|
| 197 |
/// backward order. In most time these classes are not used |
|
| 198 |
/// directly rather it used to assign a dumped class to a real |
|
| 199 |
/// |
|
| 204 |
/// the generalization of the paths, they can enumerate the arcs |
|
| 205 |
/// of the path either in forward or in backward order. |
|
| 206 |
/// These classes are typically not used directly, they are rather |
|
| 207 |
/// used to be assigned to a real path type. |
|
| 200 | 208 |
/// |
| 201 | 209 |
/// The main purpose of this concept is that the shortest path |
| 202 |
/// algorithms can enumerate easily the arcs in reverse order. |
|
| 203 |
/// If we would like to give back a real path from these |
|
| 204 |
/// algorithms then we should create a temporarly path object. In |
|
| 205 |
/// LEMON such algorithms gives back a path dumper what can |
|
| 206 |
/// |
|
| 210 |
/// algorithms can enumerate the arcs easily in reverse order. |
|
| 211 |
/// In LEMON, such algorithms give back a (reverse) path dumper that |
|
| 212 |
/// can be assigned to a real path. The dumpers can be implemented as |
|
| 207 | 213 |
/// an adaptor class to the predecessor map. |
| 208 | 214 |
/// |
| 209 | 215 |
/// \tparam GR The digraph type in which the path is. |
| 210 |
/// |
|
| 211 |
/// The paths can be constructed from any path type by a |
|
| 212 |
/// template constructor or a template assignment operator. |
|
| 213 | 216 |
template <typename GR> |
| 214 | 217 |
class PathDumper {
|
| 215 | 218 |
public: |
| 216 | 219 |
|
| 217 | 220 |
/// Type of the underlying digraph. |
| 218 | 221 |
typedef GR Digraph; |
| 219 | 222 |
/// Arc type of the underlying digraph. |
| 220 | 223 |
typedef typename Digraph::Arc Arc; |
| 221 | 224 |
|
| 222 |
/// Length of the path |
|
| 225 |
/// Length of the path, i.e. the number of arcs on the path. |
|
| 223 | 226 |
int length() const { return 0;}
|
| 224 | 227 |
|
| 225 | 228 |
/// Returns whether the path is empty. |
| 226 | 229 |
bool empty() const { return true;}
|
| 227 | 230 |
|
| 228 | 231 |
/// \brief Forward or reverse dumping |
| 229 | 232 |
/// |
| 230 |
/// If the RevPathTag is defined and true then reverse dumping |
|
| 231 |
/// is provided in the path dumper. In this case instead of the |
|
| 232 |
/// ArcIt the RevArcIt iterator should be implemented in the |
|
| 233 |
/// dumper. |
|
| 233 |
/// If this tag is defined to be \c True, then reverse dumping |
|
| 234 |
/// is provided in the path dumper. In this case, \c RevArcIt |
|
| 235 |
/// iterator should be implemented instead of \c ArcIt iterator. |
|
| 234 | 236 |
typedef False RevPathTag; |
| 235 | 237 |
|
| 236 |
/// \brief LEMON style iterator for |
|
| 238 |
/// \brief LEMON style iterator for enumerating the arcs of a path. |
|
| 237 | 239 |
/// |
| 238 |
/// |
|
| 240 |
/// LEMON style iterator class for enumerating the arcs of a path. |
|
| 239 | 241 |
class ArcIt {
|
| 240 | 242 |
public: |
| 241 | 243 |
/// Default constructor |
| 242 | 244 |
ArcIt() {}
|
| 243 | 245 |
/// Invalid constructor |
| 244 | 246 |
ArcIt(Invalid) {}
|
| 245 |
/// |
|
| 247 |
/// Sets the iterator to the first arc of the given path |
|
| 246 | 248 |
ArcIt(const PathDumper&) {}
|
| 247 | 249 |
|
| 248 |
/// Conversion to Arc |
|
| 250 |
/// Conversion to \c Arc |
|
| 249 | 251 |
operator Arc() const { return INVALID; }
|
| 250 | 252 |
|
| 251 | 253 |
/// Next arc |
| 252 | 254 |
ArcIt& operator++() {return *this;}
|
| 253 | 255 |
|
| 254 | 256 |
/// Comparison operator |
| ... | ... |
@@ -257,26 +259,27 @@ |
| 257 | 259 |
bool operator!=(const ArcIt&) const {return true;}
|
| 258 | 260 |
/// Comparison operator |
| 259 | 261 |
bool operator<(const ArcIt&) const {return false;}
|
| 260 | 262 |
|
| 261 | 263 |
}; |
| 262 | 264 |
|
| 263 |
/// \brief LEMON style iterator for |
|
| 265 |
/// \brief LEMON style iterator for enumerating the arcs of a path |
|
| 266 |
/// in reverse direction. |
|
| 264 | 267 |
/// |
| 265 |
/// This class is used to iterate on the arcs of the paths in |
|
| 266 |
/// reverse direction. |
|
| 268 |
/// LEMON style iterator class for enumerating the arcs of a path |
|
| 269 |
/// in reverse direction. |
|
| 267 | 270 |
class RevArcIt {
|
| 268 | 271 |
public: |
| 269 | 272 |
/// Default constructor |
| 270 | 273 |
RevArcIt() {}
|
| 271 | 274 |
/// Invalid constructor |
| 272 | 275 |
RevArcIt(Invalid) {}
|
| 273 |
/// |
|
| 276 |
/// Sets the iterator to the last arc of the given path |
|
| 274 | 277 |
RevArcIt(const PathDumper &) {}
|
| 275 | 278 |
|
| 276 |
/// Conversion to Arc |
|
| 279 |
/// Conversion to \c Arc |
|
| 277 | 280 |
operator Arc() const { return INVALID; }
|
| 278 | 281 |
|
| 279 | 282 |
/// Next arc |
| 280 | 283 |
RevArcIt& operator++() {return *this;}
|
| 281 | 284 |
|
| 282 | 285 |
/// Comparison operator |
| ... | ... |
@@ -209,13 +209,13 @@ |
| 209 | 209 |
/// Returns the value of the counter. |
| 210 | 210 |
operator int() {return count;}
|
| 211 | 211 |
}; |
| 212 | 212 |
|
| 213 | 213 |
/// 'Do nothing' version of Counter. |
| 214 | 214 |
|
| 215 |
/// This class can be used in the same way as \ref Counter |
|
| 215 |
/// This class can be used in the same way as \ref Counter, but it |
|
| 216 | 216 |
/// does not count at all and does not print report on destruction. |
| 217 | 217 |
/// |
| 218 | 218 |
/// Replacing a \ref Counter with a \ref NoCounter makes it possible |
| 219 | 219 |
/// to turn off all counting and reporting (SubCounters should also |
| 220 | 220 |
/// be replaced with NoSubCounters), so it does not affect the |
| 221 | 221 |
/// efficiency of the program at all. |
| ... | ... |
@@ -108,12 +108,45 @@ |
| 108 | 108 |
const double ub = INF; |
| 109 | 109 |
const char s = 'L'; |
| 110 | 110 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
| 111 | 111 |
return i; |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 |
int CplexBase::_addRow(Value lb, ExprIterator b, |
|
| 115 |
ExprIterator e, Value ub) {
|
|
| 116 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
|
| 117 |
if (lb == -INF) {
|
|
| 118 |
const char s = 'L'; |
|
| 119 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
|
| 120 |
} else if (ub == INF) {
|
|
| 121 |
const char s = 'G'; |
|
| 122 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
| 123 |
} else if (lb == ub){
|
|
| 124 |
const char s = 'E'; |
|
| 125 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
|
| 126 |
} else {
|
|
| 127 |
const char s = 'R'; |
|
| 128 |
double len = ub - lb; |
|
| 129 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, &len, 0); |
|
| 130 |
} |
|
| 131 |
|
|
| 132 |
std::vector<int> indices; |
|
| 133 |
std::vector<int> rowlist; |
|
| 134 |
std::vector<Value> values; |
|
| 135 |
|
|
| 136 |
for(ExprIterator it=b; it!=e; ++it) {
|
|
| 137 |
indices.push_back(it->first); |
|
| 138 |
values.push_back(it->second); |
|
| 139 |
rowlist.push_back(i); |
|
| 140 |
} |
|
| 141 |
|
|
| 142 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
|
| 143 |
&rowlist.front(), &indices.front(), &values.front()); |
|
| 144 |
|
|
| 145 |
return i; |
|
| 146 |
} |
|
| 114 | 147 |
|
| 115 | 148 |
void CplexBase::_eraseCol(int i) {
|
| 116 | 149 |
CPXdelcols(cplexEnv(), _prob, i, i); |
| 117 | 150 |
} |
| 118 | 151 |
|
| 119 | 152 |
void CplexBase::_eraseRow(int i) {
|
| ... | ... |
@@ -90,12 +90,13 @@ |
| 90 | 90 |
CplexBase(const CplexEnv&); |
| 91 | 91 |
CplexBase(const CplexBase &); |
| 92 | 92 |
virtual ~CplexBase(); |
| 93 | 93 |
|
| 94 | 94 |
virtual int _addCol(); |
| 95 | 95 |
virtual int _addRow(); |
| 96 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 96 | 97 |
|
| 97 | 98 |
virtual void _eraseCol(int i); |
| 98 | 99 |
virtual void _eraseRow(int i); |
| 99 | 100 |
|
| 100 | 101 |
virtual void _eraseColId(int i); |
| 101 | 102 |
virtual void _eraseRowId(int i); |
| ... | ... |
@@ -44,13 +44,13 @@ |
| 44 | 44 |
|
| 45 | 45 |
///\brief The type of the map that stores the predecessor |
| 46 | 46 |
///arcs of the %DFS paths. |
| 47 | 47 |
/// |
| 48 | 48 |
///The type of the map that stores the predecessor |
| 49 | 49 |
///arcs of the %DFS paths. |
| 50 |
///It must |
|
| 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 52 | 52 |
///Instantiates a \c PredMap. |
| 53 | 53 |
|
| 54 | 54 |
///This function instantiates a \ref PredMap. |
| 55 | 55 |
///\param g is the digraph, to which we would like to define the |
| 56 | 56 |
///\ref PredMap. |
| ... | ... |
@@ -59,13 +59,14 @@ |
| 59 | 59 |
return new PredMap(g); |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 | 62 |
///The type of the map that indicates which nodes are processed. |
| 63 | 63 |
|
| 64 | 64 |
///The type of the map that indicates which nodes are processed. |
| 65 |
///It must |
|
| 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 66 |
///By default, it is a NullMap. |
|
| 66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 67 | 68 |
///Instantiates a \c ProcessedMap. |
| 68 | 69 |
|
| 69 | 70 |
///This function instantiates a \ref ProcessedMap. |
| 70 | 71 |
///\param g is the digraph, to which |
| 71 | 72 |
///we would like to define the \ref ProcessedMap. |
| ... | ... |
@@ -78,13 +79,13 @@ |
| 78 | 79 |
return new ProcessedMap(); |
| 79 | 80 |
} |
| 80 | 81 |
|
| 81 | 82 |
///The type of the map that indicates which nodes are reached. |
| 82 | 83 |
|
| 83 | 84 |
///The type of the map that indicates which nodes are reached. |
| 84 |
///It must |
|
| 85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 86 | 87 |
///Instantiates a \c ReachedMap. |
| 87 | 88 |
|
| 88 | 89 |
///This function instantiates a \ref ReachedMap. |
| 89 | 90 |
///\param g is the digraph, to which |
| 90 | 91 |
///we would like to define the \ref ReachedMap. |
| ... | ... |
@@ -93,13 +94,13 @@ |
| 93 | 94 |
return new ReachedMap(g); |
| 94 | 95 |
} |
| 95 | 96 |
|
| 96 | 97 |
///The type of the map that stores the distances of the nodes. |
| 97 | 98 |
|
| 98 | 99 |
///The type of the map that stores the distances of the nodes. |
| 99 |
///It must |
|
| 100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 101 | 102 |
///Instantiates a \c DistMap. |
| 102 | 103 |
|
| 103 | 104 |
///This function instantiates a \ref DistMap. |
| 104 | 105 |
///\param g is the digraph, to which we would like to define the |
| 105 | 106 |
///\ref DistMap. |
| ... | ... |
@@ -221,13 +222,13 @@ |
| 221 | 222 |
}; |
| 222 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 223 | 224 |
///\c PredMap type. |
| 224 | 225 |
/// |
| 225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
| 226 | 227 |
///\c PredMap type. |
| 227 |
///It must |
|
| 228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 228 | 229 |
template <class T> |
| 229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
|
| 230 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
| 231 | 232 |
}; |
| 232 | 233 |
|
| 233 | 234 |
template <class T> |
| ... | ... |
@@ -241,13 +242,13 @@ |
| 241 | 242 |
}; |
| 242 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 243 | 244 |
///\c DistMap type. |
| 244 | 245 |
/// |
| 245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
| 246 | 247 |
///\c DistMap type. |
| 247 |
///It must |
|
| 248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 248 | 249 |
template <class T> |
| 249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
|
| 250 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
| 251 | 252 |
}; |
| 252 | 253 |
|
| 253 | 254 |
template <class T> |
| ... | ... |
@@ -261,13 +262,13 @@ |
| 261 | 262 |
}; |
| 262 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 263 | 264 |
///\c ReachedMap type. |
| 264 | 265 |
/// |
| 265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
| 266 | 267 |
///\c ReachedMap type. |
| 267 |
///It must |
|
| 268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 268 | 269 |
template <class T> |
| 269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
|
| 270 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
| 271 | 272 |
}; |
| 272 | 273 |
|
| 273 | 274 |
template <class T> |
| ... | ... |
@@ -281,13 +282,13 @@ |
| 281 | 282 |
}; |
| 282 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 283 | 284 |
///\c ProcessedMap type. |
| 284 | 285 |
/// |
| 285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
| 286 | 287 |
///\c ProcessedMap type. |
| 287 |
///It must |
|
| 288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 288 | 289 |
template <class T> |
| 289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
|
| 290 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
| 291 | 292 |
}; |
| 292 | 293 |
|
| 293 | 294 |
struct SetStandardProcessedMapTraits : public Traits {
|
| ... | ... |
@@ -408,14 +409,14 @@ |
| 408 | 409 |
|
| 409 | 410 |
public: |
| 410 | 411 |
|
| 411 | 412 |
///\name Execution Control |
| 412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
| 413 | 414 |
///member functions called \ref run(Node) "run()".\n |
| 414 |
///If you need more control on the execution, first you have to call |
|
| 415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
| 415 |
///If you need better control on the execution, you have to call |
|
| 416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
| 416 | 417 |
///and perform the actual computation with \ref start(). |
| 417 | 418 |
///This procedure can be repeated if there are nodes that have not |
| 418 | 419 |
///been reached. |
| 419 | 420 |
|
| 420 | 421 |
///@{
|
| 421 | 422 |
|
| ... | ... |
@@ -629,18 +630,14 @@ |
| 629 | 630 |
start(t); |
| 630 | 631 |
return reached(t); |
| 631 | 632 |
} |
| 632 | 633 |
|
| 633 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
| 634 | 635 |
|
| 635 |
///This method runs the %DFS algorithm in order to compute the |
|
| 636 |
///%DFS path to each node. |
|
| 637 |
/// |
|
| 638 |
///The algorithm computes |
|
| 639 |
///- the %DFS tree (forest), |
|
| 640 |
///- the distance of each node from the root(s) in the %DFS tree. |
|
| 636 |
///This method runs the %DFS algorithm in order to visit all nodes |
|
| 637 |
///in the digraph. |
|
| 641 | 638 |
/// |
| 642 | 639 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
| 643 | 640 |
///\code |
| 644 | 641 |
/// d.init(); |
| 645 | 642 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 646 | 643 |
/// if (!d.reached(n)) {
|
| ... | ... |
@@ -666,56 +663,56 @@ |
| 666 | 663 |
///functions.\n |
| 667 | 664 |
///Either \ref run(Node) "run()" or \ref start() should be called |
| 668 | 665 |
///before using them. |
| 669 | 666 |
|
| 670 | 667 |
///@{
|
| 671 | 668 |
|
| 672 |
///The DFS path to |
|
| 669 |
///The DFS path to the given node. |
|
| 673 | 670 |
|
| 674 |
///Returns the DFS path to |
|
| 671 |
///Returns the DFS path to the given node from the root(s). |
|
| 675 | 672 |
/// |
| 676 | 673 |
///\warning \c t should be reached from the root(s). |
| 677 | 674 |
/// |
| 678 | 675 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 679 | 676 |
///must be called before using this function. |
| 680 | 677 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 681 | 678 |
|
| 682 |
///The distance of |
|
| 679 |
///The distance of the given node from the root(s). |
|
| 683 | 680 |
|
| 684 |
///Returns the distance of |
|
| 681 |
///Returns the distance of the given node from the root(s). |
|
| 685 | 682 |
/// |
| 686 | 683 |
///\warning If node \c v is not reached from the root(s), then |
| 687 | 684 |
///the return value of this function is undefined. |
| 688 | 685 |
/// |
| 689 | 686 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 690 | 687 |
///must be called before using this function. |
| 691 | 688 |
int dist(Node v) const { return (*_dist)[v]; }
|
| 692 | 689 |
|
| 693 |
///Returns the 'previous arc' of the %DFS tree for |
|
| 690 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
| 694 | 691 |
|
| 695 | 692 |
///This function returns the 'previous arc' of the %DFS tree for the |
| 696 | 693 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
| 697 | 694 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
| 698 | 695 |
///root(s) or if \c v is a root. |
| 699 | 696 |
/// |
| 700 | 697 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 701 |
///\ref predNode(). |
|
| 698 |
///\ref predNode() and \ref predMap(). |
|
| 702 | 699 |
/// |
| 703 | 700 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 704 | 701 |
///must be called before using this function. |
| 705 | 702 |
Arc predArc(Node v) const { return (*_pred)[v];}
|
| 706 | 703 |
|
| 707 |
///Returns the 'previous node' of the %DFS tree. |
|
| 704 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
| 708 | 705 |
|
| 709 | 706 |
///This function returns the 'previous node' of the %DFS |
| 710 | 707 |
///tree for the node \c v, i.e. it returns the last but one node |
| 711 |
/// |
|
| 708 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
| 712 | 709 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 713 | 710 |
/// |
| 714 | 711 |
///The %DFS tree used here is equal to the %DFS tree used in |
| 715 |
///\ref predArc(). |
|
| 712 |
///\ref predArc() and \ref predMap(). |
|
| 716 | 713 |
/// |
| 717 | 714 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 718 | 715 |
///must be called before using this function. |
| 719 | 716 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 720 | 717 |
G->source((*_pred)[v]); } |
| 721 | 718 |
|
| ... | ... |
@@ -730,19 +727,19 @@ |
| 730 | 727 |
const DistMap &distMap() const { return *_dist;}
|
| 731 | 728 |
|
| 732 | 729 |
///\brief Returns a const reference to the node map that stores the |
| 733 | 730 |
///predecessor arcs. |
| 734 | 731 |
/// |
| 735 | 732 |
///Returns a const reference to the node map that stores the predecessor |
| 736 |
///arcs, which form the DFS tree. |
|
| 733 |
///arcs, which form the DFS tree (forest). |
|
| 737 | 734 |
/// |
| 738 | 735 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 739 | 736 |
///must be called before using this function. |
| 740 | 737 |
const PredMap &predMap() const { return *_pred;}
|
| 741 | 738 |
|
| 742 |
///Checks if |
|
| 739 |
///Checks if the given node. node is reached from the root(s). |
|
| 743 | 740 |
|
| 744 | 741 |
///Returns \c true if \c v is reached from the root(s). |
| 745 | 742 |
/// |
| 746 | 743 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 747 | 744 |
///must be called before using this function. |
| 748 | 745 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| ... | ... |
@@ -762,13 +759,13 @@ |
| 762 | 759 |
|
| 763 | 760 |
///\brief The type of the map that stores the predecessor |
| 764 | 761 |
///arcs of the %DFS paths. |
| 765 | 762 |
/// |
| 766 | 763 |
///The type of the map that stores the predecessor |
| 767 | 764 |
///arcs of the %DFS paths. |
| 768 |
///It must |
|
| 765 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 769 | 766 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 770 | 767 |
///Instantiates a PredMap. |
| 771 | 768 |
|
| 772 | 769 |
///This function instantiates a PredMap. |
| 773 | 770 |
///\param g is the digraph, to which we would like to define the |
| 774 | 771 |
///PredMap. |
| ... | ... |
@@ -777,14 +774,14 @@ |
| 777 | 774 |
return new PredMap(g); |
| 778 | 775 |
} |
| 779 | 776 |
|
| 780 | 777 |
///The type of the map that indicates which nodes are processed. |
| 781 | 778 |
|
| 782 | 779 |
///The type of the map that indicates which nodes are processed. |
| 783 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 784 |
///By default it is a NullMap. |
|
| 780 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 781 |
///By default, it is a NullMap. |
|
| 785 | 782 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 786 | 783 |
///Instantiates a ProcessedMap. |
| 787 | 784 |
|
| 788 | 785 |
///This function instantiates a ProcessedMap. |
| 789 | 786 |
///\param g is the digraph, to which |
| 790 | 787 |
///we would like to define the ProcessedMap. |
| ... | ... |
@@ -797,13 +794,13 @@ |
| 797 | 794 |
return new ProcessedMap(); |
| 798 | 795 |
} |
| 799 | 796 |
|
| 800 | 797 |
///The type of the map that indicates which nodes are reached. |
| 801 | 798 |
|
| 802 | 799 |
///The type of the map that indicates which nodes are reached. |
| 803 |
///It must |
|
| 800 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 804 | 801 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 805 | 802 |
///Instantiates a ReachedMap. |
| 806 | 803 |
|
| 807 | 804 |
///This function instantiates a ReachedMap. |
| 808 | 805 |
///\param g is the digraph, to which |
| 809 | 806 |
///we would like to define the ReachedMap. |
| ... | ... |
@@ -812,13 +809,13 @@ |
| 812 | 809 |
return new ReachedMap(g); |
| 813 | 810 |
} |
| 814 | 811 |
|
| 815 | 812 |
///The type of the map that stores the distances of the nodes. |
| 816 | 813 |
|
| 817 | 814 |
///The type of the map that stores the distances of the nodes. |
| 818 |
///It must |
|
| 815 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 819 | 816 |
typedef typename Digraph::template NodeMap<int> DistMap; |
| 820 | 817 |
///Instantiates a DistMap. |
| 821 | 818 |
|
| 822 | 819 |
///This function instantiates a DistMap. |
| 823 | 820 |
///\param g is the digraph, to which we would like to define |
| 824 | 821 |
///the DistMap |
| ... | ... |
@@ -827,24 +824,20 @@ |
| 827 | 824 |
return new DistMap(g); |
| 828 | 825 |
} |
| 829 | 826 |
|
| 830 | 827 |
///The type of the DFS paths. |
| 831 | 828 |
|
| 832 | 829 |
///The type of the DFS paths. |
| 833 |
///It must |
|
| 830 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 834 | 831 |
typedef lemon::Path<Digraph> Path; |
| 835 | 832 |
}; |
| 836 | 833 |
|
| 837 | 834 |
/// Default traits class used by DfsWizard |
| 838 | 835 |
|
| 839 |
/// To make it easier to use Dfs algorithm |
|
| 840 |
/// we have created a wizard class. |
|
| 841 |
/// This \ref DfsWizard class needs default traits, |
|
| 842 |
/// as well as the \ref Dfs class. |
|
| 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
| 844 |
/// \ref DfsWizard class. |
|
| 836 |
/// Default traits class used by DfsWizard. |
|
| 837 |
/// \tparam GR The type of the digraph. |
|
| 845 | 838 |
template<class GR> |
| 846 | 839 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
| 847 | 840 |
{
|
| 848 | 841 |
|
| 849 | 842 |
typedef DfsWizardDefaultTraits<GR> Base; |
| 850 | 843 |
protected: |
| ... | ... |
@@ -866,13 +859,13 @@ |
| 866 | 859 |
//Pointer to the distance of the target node. |
| 867 | 860 |
int *_di; |
| 868 | 861 |
|
| 869 | 862 |
public: |
| 870 | 863 |
/// Constructor. |
| 871 | 864 |
|
| 872 |
/// This constructor does not require parameters, |
|
| 865 |
/// This constructor does not require parameters, it initiates |
|
| 873 | 866 |
/// all of the attributes to \c 0. |
| 874 | 867 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
| 875 | 868 |
_dist(0), _path(0), _di(0) {}
|
| 876 | 869 |
|
| 877 | 870 |
/// Constructor. |
| 878 | 871 |
|
| ... | ... |
@@ -896,30 +889,23 @@ |
| 896 | 889 |
/// which makes it easier to use the algorithm. |
| 897 | 890 |
template<class TR> |
| 898 | 891 |
class DfsWizard : public TR |
| 899 | 892 |
{
|
| 900 | 893 |
typedef TR Base; |
| 901 | 894 |
|
| 902 |
///The type of the digraph the algorithm runs on. |
|
| 903 | 895 |
typedef typename TR::Digraph Digraph; |
| 904 | 896 |
|
| 905 | 897 |
typedef typename Digraph::Node Node; |
| 906 | 898 |
typedef typename Digraph::NodeIt NodeIt; |
| 907 | 899 |
typedef typename Digraph::Arc Arc; |
| 908 | 900 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 909 | 901 |
|
| 910 |
///\brief The type of the map that stores the predecessor |
|
| 911 |
///arcs of the DFS paths. |
|
| 912 | 902 |
typedef typename TR::PredMap PredMap; |
| 913 |
///\brief The type of the map that stores the distances of the nodes. |
|
| 914 | 903 |
typedef typename TR::DistMap DistMap; |
| 915 |
///\brief The type of the map that indicates which nodes are reached. |
|
| 916 | 904 |
typedef typename TR::ReachedMap ReachedMap; |
| 917 |
///\brief The type of the map that indicates which nodes are processed. |
|
| 918 | 905 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 919 |
///The type of the DFS paths |
|
| 920 | 906 |
typedef typename TR::Path Path; |
| 921 | 907 |
|
| 922 | 908 |
public: |
| 923 | 909 |
|
| 924 | 910 |
/// Constructor. |
| 925 | 911 |
DfsWizard() : TR() {}
|
| ... | ... |
@@ -983,30 +969,31 @@ |
| 983 | 969 |
*Base::_di = alg.dist(t); |
| 984 | 970 |
return alg.reached(t); |
| 985 | 971 |
} |
| 986 | 972 |
|
| 987 | 973 |
///Runs DFS algorithm to visit all nodes in the digraph. |
| 988 | 974 |
|
| 989 |
///This method runs DFS algorithm in order to compute |
|
| 990 |
///the DFS path to each node. |
|
| 975 |
///This method runs DFS algorithm in order to visit all nodes |
|
| 976 |
///in the digraph. |
|
| 991 | 977 |
void run() |
| 992 | 978 |
{
|
| 993 | 979 |
run(INVALID); |
| 994 | 980 |
} |
| 995 | 981 |
|
| 996 | 982 |
template<class T> |
| 997 | 983 |
struct SetPredMapBase : public Base {
|
| 998 | 984 |
typedef T PredMap; |
| 999 | 985 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1000 | 986 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1001 | 987 |
}; |
| 1002 |
///\brief \ref named-func-param "Named parameter" |
|
| 1003 |
///for setting PredMap object. |
|
| 988 |
|
|
| 989 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 990 |
///the predecessor map. |
|
| 1004 | 991 |
/// |
| 1005 |
///\ref named-func-param "Named parameter" |
|
| 1006 |
///for setting PredMap object. |
|
| 992 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 993 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1007 | 994 |
template<class T> |
| 1008 | 995 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1009 | 996 |
{
|
| 1010 | 997 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1011 | 998 |
return DfsWizard<SetPredMapBase<T> >(*this); |
| 1012 | 999 |
} |
| ... | ... |
@@ -1014,17 +1001,18 @@ |
| 1014 | 1001 |
template<class T> |
| 1015 | 1002 |
struct SetReachedMapBase : public Base {
|
| 1016 | 1003 |
typedef T ReachedMap; |
| 1017 | 1004 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; };
|
| 1018 | 1005 |
SetReachedMapBase(const TR &b) : TR(b) {}
|
| 1019 | 1006 |
}; |
| 1020 |
///\brief \ref named-func-param "Named parameter" |
|
| 1021 |
///for setting ReachedMap object. |
|
| 1007 |
|
|
| 1008 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1009 |
///the reached map. |
|
| 1022 | 1010 |
/// |
| 1023 |
/// \ref named-func-param "Named parameter" |
|
| 1024 |
///for setting ReachedMap object. |
|
| 1011 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1012 |
///the map that indicates which nodes are reached. |
|
| 1025 | 1013 |
template<class T> |
| 1026 | 1014 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
| 1027 | 1015 |
{
|
| 1028 | 1016 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1029 | 1017 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
| 1030 | 1018 |
} |
| ... | ... |
@@ -1032,17 +1020,19 @@ |
| 1032 | 1020 |
template<class T> |
| 1033 | 1021 |
struct SetDistMapBase : public Base {
|
| 1034 | 1022 |
typedef T DistMap; |
| 1035 | 1023 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1036 | 1024 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1037 | 1025 |
}; |
| 1038 |
///\brief \ref named-func-param "Named parameter" |
|
| 1039 |
///for setting DistMap object. |
|
| 1026 |
|
|
| 1027 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1028 |
///the distance map. |
|
| 1040 | 1029 |
/// |
| 1041 |
/// \ref named-func-param "Named parameter" |
|
| 1042 |
///for setting DistMap object. |
|
| 1030 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1031 |
///the map that stores the distances of the nodes calculated |
|
| 1032 |
///by the algorithm. |
|
| 1043 | 1033 |
template<class T> |
| 1044 | 1034 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1045 | 1035 |
{
|
| 1046 | 1036 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1047 | 1037 |
return DfsWizard<SetDistMapBase<T> >(*this); |
| 1048 | 1038 |
} |
| ... | ... |
@@ -1050,17 +1040,18 @@ |
| 1050 | 1040 |
template<class T> |
| 1051 | 1041 |
struct SetProcessedMapBase : public Base {
|
| 1052 | 1042 |
typedef T ProcessedMap; |
| 1053 | 1043 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1054 | 1044 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1055 | 1045 |
}; |
| 1056 |
///\brief \ref named-func-param "Named parameter" |
|
| 1057 |
///for setting ProcessedMap object. |
|
| 1046 |
|
|
| 1047 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1048 |
///the processed map. |
|
| 1058 | 1049 |
/// |
| 1059 |
/// \ref named-func-param "Named parameter" |
|
| 1060 |
///for setting ProcessedMap object. |
|
| 1050 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1051 |
///the map that indicates which nodes are processed. |
|
| 1061 | 1052 |
template<class T> |
| 1062 | 1053 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1063 | 1054 |
{
|
| 1064 | 1055 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1065 | 1056 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
| 1066 | 1057 |
} |
| ... | ... |
@@ -1205,13 +1196,13 @@ |
| 1205 | 1196 |
/// \brief The type of the digraph the algorithm runs on. |
| 1206 | 1197 |
typedef GR Digraph; |
| 1207 | 1198 |
|
| 1208 | 1199 |
/// \brief The type of the map that indicates which nodes are reached. |
| 1209 | 1200 |
/// |
| 1210 | 1201 |
/// The type of the map that indicates which nodes are reached. |
| 1211 |
/// It must |
|
| 1202 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 1212 | 1203 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
| 1213 | 1204 |
|
| 1214 | 1205 |
/// \brief Instantiates a ReachedMap. |
| 1215 | 1206 |
/// |
| 1216 | 1207 |
/// This function instantiates a ReachedMap. |
| 1217 | 1208 |
/// \param digraph is the digraph, to which |
| ... | ... |
@@ -1366,14 +1357,14 @@ |
| 1366 | 1357 |
|
| 1367 | 1358 |
public: |
| 1368 | 1359 |
|
| 1369 | 1360 |
/// \name Execution Control |
| 1370 | 1361 |
/// The simplest way to execute the DFS algorithm is to use one of the |
| 1371 | 1362 |
/// member functions called \ref run(Node) "run()".\n |
| 1372 |
/// If you need more control on the execution, first you have to call |
|
| 1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
| 1363 |
/// If you need better control on the execution, you have to call |
|
| 1364 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
| 1374 | 1365 |
/// and perform the actual computation with \ref start(). |
| 1375 | 1366 |
/// This procedure can be repeated if there are nodes that have not |
| 1376 | 1367 |
/// been reached. |
| 1377 | 1368 |
|
| 1378 | 1369 |
/// @{
|
| 1379 | 1370 |
|
| ... | ... |
@@ -1580,18 +1571,14 @@ |
| 1580 | 1571 |
start(t); |
| 1581 | 1572 |
return reached(t); |
| 1582 | 1573 |
} |
| 1583 | 1574 |
|
| 1584 | 1575 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
| 1585 | 1576 |
|
| 1586 |
/// This method runs the %DFS algorithm in order to |
|
| 1587 |
/// compute the %DFS path to each node. |
|
| 1588 |
/// |
|
| 1589 |
/// The algorithm computes |
|
| 1590 |
/// - the %DFS tree (forest), |
|
| 1591 |
/// - the distance of each node from the root(s) in the %DFS tree. |
|
| 1577 |
/// This method runs the %DFS algorithm in order to visit all nodes |
|
| 1578 |
/// in the digraph. |
|
| 1592 | 1579 |
/// |
| 1593 | 1580 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
| 1594 | 1581 |
///\code |
| 1595 | 1582 |
/// d.init(); |
| 1596 | 1583 |
/// for (NodeIt n(digraph); n != INVALID; ++n) {
|
| 1597 | 1584 |
/// if (!d.reached(n)) {
|
| ... | ... |
@@ -1617,13 +1604,13 @@ |
| 1617 | 1604 |
/// functions.\n |
| 1618 | 1605 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
| 1619 | 1606 |
/// before using them. |
| 1620 | 1607 |
|
| 1621 | 1608 |
///@{
|
| 1622 | 1609 |
|
| 1623 |
/// \brief Checks if |
|
| 1610 |
/// \brief Checks if the given node is reached from the root(s). |
|
| 1624 | 1611 |
/// |
| 1625 | 1612 |
/// Returns \c true if \c v is reached from the root(s). |
| 1626 | 1613 |
/// |
| 1627 | 1614 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
| 1628 | 1615 |
/// must be called before using this function. |
| 1629 | 1616 |
bool reached(Node v) const { return (*_reached)[v]; }
|
| ... | ... |
@@ -67,15 +67,15 @@ |
| 67 | 67 |
///The type of the digraph the algorithm runs on. |
| 68 | 68 |
typedef GR Digraph; |
| 69 | 69 |
|
| 70 | 70 |
///The type of the map that stores the arc lengths. |
| 71 | 71 |
|
| 72 | 72 |
///The type of the map that stores the arc lengths. |
| 73 |
///It must |
|
| 73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 74 | 74 |
typedef LEN LengthMap; |
| 75 |
///The type of the |
|
| 75 |
///The type of the arc lengths. |
|
| 76 | 76 |
typedef typename LEN::Value Value; |
| 77 | 77 |
|
| 78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
| 79 | 79 |
|
| 80 | 80 |
/// This class defines the operations that are used in the algorithm. |
| 81 | 81 |
/// \see DijkstraDefaultOperationTraits |
| ... | ... |
@@ -113,13 +113,13 @@ |
| 113 | 113 |
|
| 114 | 114 |
///\brief The type of the map that stores the predecessor |
| 115 | 115 |
///arcs of the shortest paths. |
| 116 | 116 |
/// |
| 117 | 117 |
///The type of the map that stores the predecessor |
| 118 | 118 |
///arcs of the shortest paths. |
| 119 |
///It must |
|
| 119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 121 | 121 |
///Instantiates a \c PredMap. |
| 122 | 122 |
|
| 123 | 123 |
///This function instantiates a \ref PredMap. |
| 124 | 124 |
///\param g is the digraph, to which we would like to define the |
| 125 | 125 |
///\ref PredMap. |
| ... | ... |
@@ -128,14 +128,14 @@ |
| 128 | 128 |
return new PredMap(g); |
| 129 | 129 |
} |
| 130 | 130 |
|
| 131 | 131 |
///The type of the map that indicates which nodes are processed. |
| 132 | 132 |
|
| 133 | 133 |
///The type of the map that indicates which nodes are processed. |
| 134 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 135 |
///By default it is a NullMap. |
|
| 134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 135 |
///By default, it is a NullMap. |
|
| 136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 137 | 137 |
///Instantiates a \c ProcessedMap. |
| 138 | 138 |
|
| 139 | 139 |
///This function instantiates a \ref ProcessedMap. |
| 140 | 140 |
///\param g is the digraph, to which |
| 141 | 141 |
///we would like to define the \ref ProcessedMap. |
| ... | ... |
@@ -148,13 +148,13 @@ |
| 148 | 148 |
return new ProcessedMap(); |
| 149 | 149 |
} |
| 150 | 150 |
|
| 151 | 151 |
///The type of the map that stores the distances of the nodes. |
| 152 | 152 |
|
| 153 | 153 |
///The type of the map that stores the distances of the nodes. |
| 154 |
///It must |
|
| 154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 156 | 156 |
///Instantiates a \c DistMap. |
| 157 | 157 |
|
| 158 | 158 |
///This function instantiates a \ref DistMap. |
| 159 | 159 |
///\param g is the digraph, to which we would like to define |
| 160 | 160 |
///the \ref DistMap. |
| ... | ... |
@@ -166,12 +166,16 @@ |
| 166 | 166 |
|
| 167 | 167 |
///%Dijkstra algorithm class. |
| 168 | 168 |
|
| 169 | 169 |
/// \ingroup shortest_path |
| 170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
| 171 | 171 |
/// |
| 172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
| 173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
| 174 |
///the BellmanFord algorithm should be used instead. |
|
| 175 |
/// |
|
| 172 | 176 |
///The arc lengths are passed to the algorithm using a |
| 173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
| 174 | 178 |
///so it is easy to change it to any kind of length. |
| 175 | 179 |
///The type of the length is determined by the |
| 176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
| 177 | 181 |
///It is also possible to change the underlying priority heap. |
| ... | ... |
@@ -198,14 +202,14 @@ |
| 198 | 202 |
class Dijkstra {
|
| 199 | 203 |
public: |
| 200 | 204 |
|
| 201 | 205 |
///The type of the digraph the algorithm runs on. |
| 202 | 206 |
typedef typename TR::Digraph Digraph; |
| 203 | 207 |
|
| 204 |
///The type of the length of the arcs. |
|
| 205 |
typedef typename TR::LengthMap::Value Value; |
|
| 208 |
///The type of the arc lengths. |
|
| 209 |
typedef typename TR::Value Value; |
|
| 206 | 210 |
///The type of the map that stores the arc lengths. |
| 207 | 211 |
typedef typename TR::LengthMap LengthMap; |
| 208 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
| 209 | 213 |
///shortest paths. |
| 210 | 214 |
typedef typename TR::PredMap PredMap; |
| 211 | 215 |
///The type of the map that stores the distances of the nodes. |
| ... | ... |
@@ -301,13 +305,13 @@ |
| 301 | 305 |
}; |
| 302 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 303 | 307 |
///\c PredMap type. |
| 304 | 308 |
/// |
| 305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
| 306 | 310 |
///\c PredMap type. |
| 307 |
///It must |
|
| 311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 308 | 312 |
template <class T> |
| 309 | 313 |
struct SetPredMap |
| 310 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
|
| 311 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
| 312 | 316 |
}; |
| 313 | 317 |
|
| ... | ... |
@@ -322,13 +326,13 @@ |
| 322 | 326 |
}; |
| 323 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 324 | 328 |
///\c DistMap type. |
| 325 | 329 |
/// |
| 326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
| 327 | 331 |
///\c DistMap type. |
| 328 |
///It must |
|
| 332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 329 | 333 |
template <class T> |
| 330 | 334 |
struct SetDistMap |
| 331 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
|
| 332 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
| 333 | 337 |
}; |
| 334 | 338 |
|
| ... | ... |
@@ -343,13 +347,13 @@ |
| 343 | 347 |
}; |
| 344 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
| 345 | 349 |
///\c ProcessedMap type. |
| 346 | 350 |
/// |
| 347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
| 348 | 352 |
///\c ProcessedMap type. |
| 349 |
///It must |
|
| 353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 350 | 354 |
template <class T> |
| 351 | 355 |
struct SetProcessedMap |
| 352 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
|
| 353 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
| 354 | 358 |
}; |
| 355 | 359 |
|
| ... | ... |
@@ -419,13 +423,13 @@ |
| 419 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
| 420 | 424 |
///reference types with automatic allocation. |
| 421 | 425 |
///They should have standard constructor interfaces to be able to |
| 422 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
| 423 | 427 |
///passed to the constructor of the cross reference and the cross |
| 424 | 428 |
///reference should be passed to the constructor of the heap). |
| 425 |
///However external heap and cross reference objects could also be |
|
| 429 |
///However, external heap and cross reference objects could also be |
|
| 426 | 430 |
///passed to the algorithm using the \ref heap() function before |
| 427 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
| 428 | 432 |
///\sa SetHeap |
| 429 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
| 430 | 434 |
struct SetStandardHeap |
| 431 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
|
| ... | ... |
@@ -440,12 +444,13 @@ |
| 440 | 444 |
|
| 441 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
| 442 | 446 |
///\c OperationTraits type |
| 443 | 447 |
/// |
| 444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
| 445 | 449 |
///\c OperationTraits type. |
| 450 |
/// For more information, see \ref DijkstraDefaultOperationTraits. |
|
| 446 | 451 |
template <class T> |
| 447 | 452 |
struct SetOperationTraits |
| 448 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
| 449 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
| 450 | 455 |
Create; |
| 451 | 456 |
}; |
| ... | ... |
@@ -581,14 +586,14 @@ |
| 581 | 586 |
|
| 582 | 587 |
public: |
| 583 | 588 |
|
| 584 | 589 |
///\name Execution Control |
| 585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
| 586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
| 587 |
///If you need more control on the execution, first you have to call |
|
| 588 |
///\ref init(), then you can add several source nodes with |
|
| 592 |
///If you need better control on the execution, you have to call |
|
| 593 |
///\ref init() first, then you can add several source nodes with |
|
| 589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
| 590 | 595 |
///performed with one of the \ref start() functions. |
| 591 | 596 |
|
| 592 | 597 |
///@{
|
| 593 | 598 |
|
| 594 | 599 |
///\brief Initializes the internal data structures. |
| ... | ... |
@@ -798,61 +803,63 @@ |
| 798 | 803 |
|
| 799 | 804 |
///@} |
| 800 | 805 |
|
| 801 | 806 |
///\name Query Functions |
| 802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
| 803 | 808 |
///functions.\n |
| 804 |
///Either \ref run(Node) "run()" or \ref |
|
| 809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
| 805 | 810 |
///before using them. |
| 806 | 811 |
|
| 807 | 812 |
///@{
|
| 808 | 813 |
|
| 809 |
///The shortest path to |
|
| 814 |
///The shortest path to the given node. |
|
| 810 | 815 |
|
| 811 |
///Returns the shortest path to |
|
| 816 |
///Returns the shortest path to the given node from the root(s). |
|
| 812 | 817 |
/// |
| 813 | 818 |
///\warning \c t should be reached from the root(s). |
| 814 | 819 |
/// |
| 815 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 816 | 821 |
///must be called before using this function. |
| 817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); }
|
| 818 | 823 |
|
| 819 |
///The distance of |
|
| 824 |
///The distance of the given node from the root(s). |
|
| 820 | 825 |
|
| 821 |
///Returns the distance of |
|
| 826 |
///Returns the distance of the given node from the root(s). |
|
| 822 | 827 |
/// |
| 823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
| 824 | 829 |
///the return value of this function is undefined. |
| 825 | 830 |
/// |
| 826 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 827 | 832 |
///must be called before using this function. |
| 828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; }
|
| 829 | 834 |
|
| 830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
| 831 |
|
|
| 835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
| 836 |
///the given node. |
|
| 837 |
/// |
|
| 832 | 838 |
///This function returns the 'previous arc' of the shortest path |
| 833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
| 834 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
| 835 | 841 |
///is not reached from the root(s) or if \c v is a root. |
| 836 | 842 |
/// |
| 837 | 843 |
///The shortest path tree used here is equal to the shortest path |
| 838 |
///tree used in \ref predNode(). |
|
| 844 |
///tree used in \ref predNode() and \ref predMap(). |
|
| 839 | 845 |
/// |
| 840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 841 | 847 |
///must be called before using this function. |
| 842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
| 843 | 849 |
|
| 844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
| 845 |
|
|
| 850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
| 851 |
///the given node. |
|
| 852 |
/// |
|
| 846 | 853 |
///This function returns the 'previous node' of the shortest path |
| 847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
| 848 |
/// |
|
| 855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
| 849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
| 850 | 857 |
/// |
| 851 | 858 |
///The shortest path tree used here is equal to the shortest path |
| 852 |
///tree used in \ref predArc(). |
|
| 859 |
///tree used in \ref predArc() and \ref predMap(). |
|
| 853 | 860 |
/// |
| 854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 855 | 862 |
///must be called before using this function. |
| 856 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
|
| 857 | 864 |
G->source((*_pred)[v]); } |
| 858 | 865 |
|
| ... | ... |
@@ -867,19 +874,19 @@ |
| 867 | 874 |
const DistMap &distMap() const { return *_dist;}
|
| 868 | 875 |
|
| 869 | 876 |
///\brief Returns a const reference to the node map that stores the |
| 870 | 877 |
///predecessor arcs. |
| 871 | 878 |
/// |
| 872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
| 873 |
///arcs, which form the shortest path tree. |
|
| 880 |
///arcs, which form the shortest path tree (forest). |
|
| 874 | 881 |
/// |
| 875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 876 | 883 |
///must be called before using this function. |
| 877 | 884 |
const PredMap &predMap() const { return *_pred;}
|
| 878 | 885 |
|
| 879 |
///Checks if |
|
| 886 |
///Checks if the given node is reached from the root(s). |
|
| 880 | 887 |
|
| 881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
| 882 | 889 |
/// |
| 883 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 884 | 891 |
///must be called before using this function. |
| 885 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] !=
|
| ... | ... |
@@ -892,15 +899,15 @@ |
| 892 | 899 |
/// |
| 893 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 894 | 901 |
///must be called before using this function. |
| 895 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] ==
|
| 896 | 903 |
Heap::POST_HEAP; } |
| 897 | 904 |
|
| 898 |
///The current distance of |
|
| 905 |
///The current distance of the given node from the root(s). |
|
| 899 | 906 |
|
| 900 |
///Returns the current distance of |
|
| 907 |
///Returns the current distance of the given node from the root(s). |
|
| 901 | 908 |
///It may be decreased in the following processes. |
| 902 | 909 |
/// |
| 903 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
| 904 | 911 |
///must be called before using this function and |
| 905 | 912 |
///node \c v must be reached but not necessarily processed. |
| 906 | 913 |
Value currentDist(Node v) const {
|
| ... | ... |
@@ -921,15 +928,15 @@ |
| 921 | 928 |
{
|
| 922 | 929 |
///The type of the digraph the algorithm runs on. |
| 923 | 930 |
typedef GR Digraph; |
| 924 | 931 |
///The type of the map that stores the arc lengths. |
| 925 | 932 |
|
| 926 | 933 |
///The type of the map that stores the arc lengths. |
| 927 |
///It must |
|
| 934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 928 | 935 |
typedef LEN LengthMap; |
| 929 |
///The type of the |
|
| 936 |
///The type of the arc lengths. |
|
| 930 | 937 |
typedef typename LEN::Value Value; |
| 931 | 938 |
|
| 932 | 939 |
/// Operation traits for Dijkstra algorithm. |
| 933 | 940 |
|
| 934 | 941 |
/// This class defines the operations that are used in the algorithm. |
| 935 | 942 |
/// \see DijkstraDefaultOperationTraits |
| ... | ... |
@@ -970,13 +977,13 @@ |
| 970 | 977 |
|
| 971 | 978 |
///\brief The type of the map that stores the predecessor |
| 972 | 979 |
///arcs of the shortest paths. |
| 973 | 980 |
/// |
| 974 | 981 |
///The type of the map that stores the predecessor |
| 975 | 982 |
///arcs of the shortest paths. |
| 976 |
///It must |
|
| 983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
| 978 | 985 |
///Instantiates a PredMap. |
| 979 | 986 |
|
| 980 | 987 |
///This function instantiates a PredMap. |
| 981 | 988 |
///\param g is the digraph, to which we would like to define the |
| 982 | 989 |
///PredMap. |
| ... | ... |
@@ -985,14 +992,14 @@ |
| 985 | 992 |
return new PredMap(g); |
| 986 | 993 |
} |
| 987 | 994 |
|
| 988 | 995 |
///The type of the map that indicates which nodes are processed. |
| 989 | 996 |
|
| 990 | 997 |
///The type of the map that indicates which nodes are processed. |
| 991 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
|
| 992 |
///By default it is a NullMap. |
|
| 998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 999 |
///By default, it is a NullMap. |
|
| 993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
| 994 | 1001 |
///Instantiates a ProcessedMap. |
| 995 | 1002 |
|
| 996 | 1003 |
///This function instantiates a ProcessedMap. |
| 997 | 1004 |
///\param g is the digraph, to which |
| 998 | 1005 |
///we would like to define the ProcessedMap. |
| ... | ... |
@@ -1005,13 +1012,13 @@ |
| 1005 | 1012 |
return new ProcessedMap(); |
| 1006 | 1013 |
} |
| 1007 | 1014 |
|
| 1008 | 1015 |
///The type of the map that stores the distances of the nodes. |
| 1009 | 1016 |
|
| 1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
| 1011 |
///It must |
|
| 1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
| 1013 | 1020 |
///Instantiates a DistMap. |
| 1014 | 1021 |
|
| 1015 | 1022 |
///This function instantiates a DistMap. |
| 1016 | 1023 |
///\param g is the digraph, to which we would like to define |
| 1017 | 1024 |
///the DistMap |
| ... | ... |
@@ -1020,24 +1027,21 @@ |
| 1020 | 1027 |
return new DistMap(g); |
| 1021 | 1028 |
} |
| 1022 | 1029 |
|
| 1023 | 1030 |
///The type of the shortest paths. |
| 1024 | 1031 |
|
| 1025 | 1032 |
///The type of the shortest paths. |
| 1026 |
///It must |
|
| 1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
| 1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
| 1028 | 1035 |
}; |
| 1029 | 1036 |
|
| 1030 | 1037 |
/// Default traits class used by DijkstraWizard |
| 1031 | 1038 |
|
| 1032 |
/// To make it easier to use Dijkstra algorithm |
|
| 1033 |
/// we have created a wizard class. |
|
| 1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
| 1035 |
/// as well as the \ref Dijkstra class. |
|
| 1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
| 1037 |
/// \ref DijkstraWizard class. |
|
| 1039 |
/// Default traits class used by DijkstraWizard. |
|
| 1040 |
/// \tparam GR The type of the digraph. |
|
| 1041 |
/// \tparam LEN The type of the length map. |
|
| 1038 | 1042 |
template<typename GR, typename LEN> |
| 1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
| 1040 | 1044 |
{
|
| 1041 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
| 1042 | 1046 |
protected: |
| 1043 | 1047 |
//The type of the nodes in the digraph. |
| ... | ... |
@@ -1090,34 +1094,25 @@ |
| 1090 | 1094 |
/// which makes it easier to use the algorithm. |
| 1091 | 1095 |
template<class TR> |
| 1092 | 1096 |
class DijkstraWizard : public TR |
| 1093 | 1097 |
{
|
| 1094 | 1098 |
typedef TR Base; |
| 1095 | 1099 |
|
| 1096 |
///The type of the digraph the algorithm runs on. |
|
| 1097 | 1100 |
typedef typename TR::Digraph Digraph; |
| 1098 | 1101 |
|
| 1099 | 1102 |
typedef typename Digraph::Node Node; |
| 1100 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
| 1101 | 1104 |
typedef typename Digraph::Arc Arc; |
| 1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
| 1103 | 1106 |
|
| 1104 |
///The type of the map that stores the arc lengths. |
|
| 1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
| 1106 |
///The type of the length of the arcs. |
|
| 1107 | 1108 |
typedef typename LengthMap::Value Value; |
| 1108 |
///\brief The type of the map that stores the predecessor |
|
| 1109 |
///arcs of the shortest paths. |
|
| 1110 | 1109 |
typedef typename TR::PredMap PredMap; |
| 1111 |
///The type of the map that stores the distances of the nodes. |
|
| 1112 | 1110 |
typedef typename TR::DistMap DistMap; |
| 1113 |
///The type of the map that indicates which nodes are processed. |
|
| 1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
| 1115 |
///The type of the shortest paths |
|
| 1116 | 1112 |
typedef typename TR::Path Path; |
| 1117 |
///The heap type used by the dijkstra algorithm. |
|
| 1118 | 1113 |
typedef typename TR::Heap Heap; |
| 1119 | 1114 |
|
| 1120 | 1115 |
public: |
| 1121 | 1116 |
|
| 1122 | 1117 |
/// Constructor. |
| 1123 | 1118 |
DijkstraWizard() : TR() {}
|
| ... | ... |
@@ -1183,17 +1178,18 @@ |
| 1183 | 1178 |
template<class T> |
| 1184 | 1179 |
struct SetPredMapBase : public Base {
|
| 1185 | 1180 |
typedef T PredMap; |
| 1186 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
| 1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {}
|
| 1188 | 1183 |
}; |
| 1189 |
///\brief \ref named-func-param "Named parameter" |
|
| 1190 |
///for setting PredMap object. |
|
| 1184 |
|
|
| 1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1186 |
///the predecessor map. |
|
| 1191 | 1187 |
/// |
| 1192 |
///\ref named-func-param "Named parameter" |
|
| 1193 |
///for setting PredMap object. |
|
| 1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1189 |
///the map that stores the predecessor arcs of the nodes. |
|
| 1194 | 1190 |
template<class T> |
| 1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
| 1196 | 1192 |
{
|
| 1197 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1198 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
| 1199 | 1195 |
} |
| ... | ... |
@@ -1201,17 +1197,19 @@ |
| 1201 | 1197 |
template<class T> |
| 1202 | 1198 |
struct SetDistMapBase : public Base {
|
| 1203 | 1199 |
typedef T DistMap; |
| 1204 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
| 1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {}
|
| 1206 | 1202 |
}; |
| 1207 |
///\brief \ref named-func-param "Named parameter" |
|
| 1208 |
///for setting DistMap object. |
|
| 1203 |
|
|
| 1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
| 1205 |
///the distance map. |
|
| 1209 | 1206 |
/// |
| 1210 |
///\ref named-func-param "Named parameter" |
|
| 1211 |
///for setting DistMap object. |
|
| 1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1208 |
///the map that stores the distances of the nodes calculated |
|
| 1209 |
///by the algorithm. |
|
| 1212 | 1210 |
template<class T> |
| 1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
| 1214 | 1212 |
{
|
| 1215 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1216 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
| 1217 | 1215 |
} |
| ... | ... |
@@ -1219,29 +1217,31 @@ |
| 1219 | 1217 |
template<class T> |
| 1220 | 1218 |
struct SetProcessedMapBase : public Base {
|
| 1221 | 1219 |
typedef T ProcessedMap; |
| 1222 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
|
| 1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {}
|
| 1224 | 1222 |
}; |
| 1225 |
///\brief \ref named-func-param "Named parameter" |
|
| 1226 |
///for setting ProcessedMap object. |
|
| 1223 |
|
|
| 1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
| 1225 |
///the processed map. |
|
| 1227 | 1226 |
/// |
| 1228 |
/// \ref named-func-param "Named parameter" |
|
| 1229 |
///for setting ProcessedMap object. |
|
| 1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
| 1228 |
///the map that indicates which nodes are processed. |
|
| 1230 | 1229 |
template<class T> |
| 1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
| 1232 | 1231 |
{
|
| 1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
| 1234 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
| 1235 | 1234 |
} |
| 1236 | 1235 |
|
| 1237 | 1236 |
template<class T> |
| 1238 | 1237 |
struct SetPathBase : public Base {
|
| 1239 | 1238 |
typedef T Path; |
| 1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {}
|
| 1241 | 1240 |
}; |
| 1241 |
|
|
| 1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
| 1243 | 1243 |
///for getting the shortest path to the target node. |
| 1244 | 1244 |
/// |
| 1245 | 1245 |
///\ref named-func-param "Named parameter" |
| 1246 | 1246 |
///for getting the shortest path to the target node. |
| 1247 | 1247 |
template<class T> |
| ... | ... |
@@ -18,32 +18,25 @@ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_DIM2_H |
| 20 | 20 |
#define LEMON_DIM2_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iostream> |
| 23 | 23 |
|
| 24 |
///\ingroup |
|
| 24 |
///\ingroup geomdat |
|
| 25 | 25 |
///\file |
| 26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
| 27 |
/// |
|
| 28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
| 29 |
/// a two dimensional vector with the usual operations. |
|
| 30 |
/// |
|
| 31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
| 32 |
/// the rectangular bounding box of a set of |
|
| 33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
| 34 | 27 |
|
| 35 | 28 |
namespace lemon {
|
| 36 | 29 |
|
| 37 | 30 |
///Tools for handling two dimensional coordinates |
| 38 | 31 |
|
| 39 | 32 |
///This namespace is a storage of several |
| 40 | 33 |
///tools for handling two dimensional coordinates |
| 41 | 34 |
namespace dim2 {
|
| 42 | 35 |
|
| 43 |
/// \addtogroup |
|
| 36 |
/// \addtogroup geomdat |
|
| 44 | 37 |
/// @{
|
| 45 | 38 |
|
| 46 | 39 |
/// Two dimensional vector (plain vector) |
| 47 | 40 |
|
| 48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
| 49 | 42 |
/// with the usual vector operations. |
| ... | ... |
@@ -252,19 +252,20 @@ |
| 252 | 252 |
/// This implementation is based on doubly-linked lists, from each |
| 253 | 253 |
/// node the outgoing and the incoming arcs make up lists, therefore |
| 254 | 254 |
/// one arc can be erased in constant time. It also makes possible, |
| 255 | 255 |
/// that node can be removed from the underlying graph, in this case |
| 256 | 256 |
/// all arcs incident to the given node is erased from the arc set. |
| 257 | 257 |
/// |
| 258 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 259 |
/// "Digraph" concept. |
|
| 260 |
/// It provides only linear time counting for nodes and arcs. |
|
| 261 |
/// |
|
| 258 | 262 |
/// \param GR The type of the graph which shares its node set with |
| 259 | 263 |
/// this class. Its interface must conform to the |
| 260 | 264 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
| 261 | 265 |
/// concept. |
| 262 |
/// |
|
| 263 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 264 |
/// "Digraph" concept. |
|
| 265 | 266 |
template <typename GR> |
| 266 | 267 |
class ListArcSet : public ArcSetExtender<ListArcSetBase<GR> > {
|
| 267 | 268 |
typedef ArcSetExtender<ListArcSetBase<GR> > Parent; |
| 268 | 269 |
|
| 269 | 270 |
public: |
| 270 | 271 |
|
| ... | ... |
@@ -682,19 +683,20 @@ |
| 682 | 683 |
/// This implementation is based on doubly-linked lists, from each |
| 683 | 684 |
/// node the incident edges make up lists, therefore one edge can be |
| 684 | 685 |
/// erased in constant time. It also makes possible, that node can |
| 685 | 686 |
/// be removed from the underlying graph, in this case all edges |
| 686 | 687 |
/// incident to the given node is erased from the arc set. |
| 687 | 688 |
/// |
| 689 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 690 |
/// concept. |
|
| 691 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
| 692 |
/// |
|
| 688 | 693 |
/// \param GR The type of the graph which shares its node set |
| 689 | 694 |
/// with this class. Its interface must conform to the |
| 690 | 695 |
/// \ref concepts::Digraph "Digraph" or \ref concepts::Graph "Graph" |
| 691 | 696 |
/// concept. |
| 692 |
/// |
|
| 693 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 694 |
/// concept. |
|
| 695 | 697 |
template <typename GR> |
| 696 | 698 |
class ListEdgeSet : public EdgeSetExtender<ListEdgeSetBase<GR> > {
|
| 697 | 699 |
typedef EdgeSetExtender<ListEdgeSetBase<GR> > Parent; |
| 698 | 700 |
|
| 699 | 701 |
public: |
| 700 | 702 |
|
| ... | ... |
@@ -864,13 +866,13 @@ |
| 864 | 866 |
} |
| 865 | 867 |
|
| 866 | 868 |
void first(Arc& arc) const {
|
| 867 | 869 |
arc.id = arcs.size() - 1; |
| 868 | 870 |
} |
| 869 | 871 |
|
| 870 |
void next(Arc& arc) |
|
| 872 |
static void next(Arc& arc) {
|
|
| 871 | 873 |
--arc.id; |
| 872 | 874 |
} |
| 873 | 875 |
|
| 874 | 876 |
void firstOut(Arc& arc, const Node& node) const {
|
| 875 | 877 |
arc.id = (*_nodes)[node].first_out; |
| 876 | 878 |
} |
| ... | ... |
@@ -951,19 +953,20 @@ |
| 951 | 953 |
/// |
| 952 | 954 |
/// This implementation is slightly faster than the \c ListArcSet, |
| 953 | 955 |
/// because it uses continuous storage for arcs and it uses just |
| 954 | 956 |
/// single-linked lists for enumerate outgoing and incoming |
| 955 | 957 |
/// arcs. Therefore the arcs cannot be erased from the arc sets. |
| 956 | 958 |
/// |
| 959 |
/// This class fully conforms to the \ref concepts::Digraph "Digraph" |
|
| 960 |
/// concept. |
|
| 961 |
/// It provides only linear time counting for nodes and arcs. |
|
| 962 |
/// |
|
| 957 | 963 |
/// \warning If a node is erased from the underlying graph and this |
| 958 | 964 |
/// node is the source or target of one arc in the arc set, then |
| 959 | 965 |
/// the arc set is invalidated, and it cannot be used anymore. The |
| 960 | 966 |
/// validity can be checked with the \c valid() member function. |
| 961 |
/// |
|
| 962 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 963 |
/// "Digraph" concept. |
|
| 964 | 967 |
template <typename GR> |
| 965 | 968 |
class SmartArcSet : public ArcSetExtender<SmartArcSetBase<GR> > {
|
| 966 | 969 |
typedef ArcSetExtender<SmartArcSetBase<GR> > Parent; |
| 967 | 970 |
|
| 968 | 971 |
public: |
| 969 | 972 |
|
| ... | ... |
@@ -1170,21 +1173,21 @@ |
| 1170 | 1173 |
} |
| 1171 | 1174 |
|
| 1172 | 1175 |
void first(Arc& arc) const {
|
| 1173 | 1176 |
arc.id = arcs.size() - 1; |
| 1174 | 1177 |
} |
| 1175 | 1178 |
|
| 1176 |
void next(Arc& arc) |
|
| 1179 |
static void next(Arc& arc) {
|
|
| 1177 | 1180 |
--arc.id; |
| 1178 | 1181 |
} |
| 1179 | 1182 |
|
| 1180 | 1183 |
void first(Edge& arc) const {
|
| 1181 | 1184 |
arc.id = arcs.size() / 2 - 1; |
| 1182 | 1185 |
} |
| 1183 | 1186 |
|
| 1184 |
void next(Edge& arc) |
|
| 1187 |
static void next(Edge& arc) {
|
|
| 1185 | 1188 |
--arc.id; |
| 1186 | 1189 |
} |
| 1187 | 1190 |
|
| 1188 | 1191 |
void firstOut(Arc& arc, const Node& node) const {
|
| 1189 | 1192 |
arc.id = (*_nodes)[node].first_out; |
| 1190 | 1193 |
} |
| ... | ... |
@@ -1301,19 +1304,20 @@ |
| 1301 | 1304 |
/// |
| 1302 | 1305 |
/// This implementation is slightly faster than the \c ListEdgeSet, |
| 1303 | 1306 |
/// because it uses continuous storage for edges and it uses just |
| 1304 | 1307 |
/// single-linked lists for enumerate incident edges. Therefore the |
| 1305 | 1308 |
/// edges cannot be erased from the edge sets. |
| 1306 | 1309 |
/// |
| 1310 |
/// This class fully conforms to the \ref concepts::Graph "Graph" |
|
| 1311 |
/// concept. |
|
| 1312 |
/// It provides only linear time counting for nodes, edges and arcs. |
|
| 1313 |
/// |
|
| 1307 | 1314 |
/// \warning If a node is erased from the underlying graph and this |
| 1308 | 1315 |
/// node is incident to one edge in the edge set, then the edge set |
| 1309 | 1316 |
/// is invalidated, and it cannot be used anymore. The validity can |
| 1310 | 1317 |
/// be checked with the \c valid() member function. |
| 1311 |
/// |
|
| 1312 |
/// This class fully conforms to the \ref concepts::Graph |
|
| 1313 |
/// "Graph" concept. |
|
| 1314 | 1318 |
template <typename GR> |
| 1315 | 1319 |
class SmartEdgeSet : public EdgeSetExtender<SmartEdgeSetBase<GR> > {
|
| 1316 | 1320 |
typedef EdgeSetExtender<SmartEdgeSetBase<GR> > Parent; |
| 1317 | 1321 |
|
| 1318 | 1322 |
public: |
| 1319 | 1323 |
| ... | ... |
@@ -21,13 +21,13 @@ |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/core.h> |
| 23 | 23 |
#include <lemon/bits/graph_extender.h> |
| 24 | 24 |
|
| 25 | 25 |
///\ingroup graphs |
| 26 | 26 |
///\file |
| 27 |
///\brief |
|
| 27 |
///\brief FullDigraph and FullGraph classes. |
|
| 28 | 28 |
|
| 29 | 29 |
namespace lemon {
|
| 30 | 30 |
|
| 31 | 31 |
class FullDigraphBase {
|
| 32 | 32 |
public: |
| 33 | 33 |
|
| ... | ... |
@@ -48,13 +48,13 @@ |
| 48 | 48 |
public: |
| 49 | 49 |
|
| 50 | 50 |
typedef True NodeNumTag; |
| 51 | 51 |
typedef True ArcNumTag; |
| 52 | 52 |
|
| 53 | 53 |
Node operator()(int ix) const { return Node(ix); }
|
| 54 |
int index(const Node& node) |
|
| 54 |
static int index(const Node& node) { return node._id; }
|
|
| 55 | 55 |
|
| 56 | 56 |
Arc arc(const Node& s, const Node& t) const {
|
| 57 | 57 |
return Arc(s._id * _node_num + t._id); |
| 58 | 58 |
} |
| 59 | 59 |
|
| 60 | 60 |
int nodeNum() const { return _node_num; }
|
| ... | ... |
@@ -145,79 +145,87 @@ |
| 145 | 145 |
}; |
| 146 | 146 |
|
| 147 | 147 |
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase; |
| 148 | 148 |
|
| 149 | 149 |
/// \ingroup graphs |
| 150 | 150 |
/// |
| 151 |
/// \brief A full |
|
| 151 |
/// \brief A directed full graph class. |
|
| 152 | 152 |
/// |
| 153 |
/// This is a simple and fast directed full graph implementation. |
|
| 154 |
/// From each node go arcs to each node (including the source node), |
|
| 155 |
/// therefore the number of the arcs in the digraph is the square of |
|
| 156 |
/// the node number. This digraph type is completely static, so you |
|
| 157 |
/// can neither add nor delete either arcs or nodes, and it needs |
|
| 158 |
/// constant space in memory. |
|
| 153 |
/// FullDigraph is a simple and fast implmenetation of directed full |
|
| 154 |
/// (complete) graphs. It contains an arc from each node to each node |
|
| 155 |
/// (including a loop for each node), therefore the number of arcs |
|
| 156 |
/// is the square of the number of nodes. |
|
| 157 |
/// This class is completely static and it needs constant memory space. |
|
| 158 |
/// Thus you can neither add nor delete nodes or arcs, however |
|
| 159 |
/// the structure can be resized using resize(). |
|
| 159 | 160 |
/// |
| 160 |
/// This class fully conforms to the \ref concepts::Digraph |
|
| 161 |
/// "Digraph concept". |
|
| 161 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
|
| 162 |
/// Most of its member functions and nested classes are documented |
|
| 163 |
/// only in the concept class. |
|
| 162 | 164 |
/// |
| 163 |
/// |
|
| 165 |
/// This class provides constant time counting for nodes and arcs. |
|
| 166 |
/// |
|
| 167 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
| 164 | 168 |
/// but there are two differences. While this class conforms only |
| 165 |
/// to the \ref concepts::Digraph "Digraph" concept, the \c FullGraph |
|
| 166 |
/// class conforms to the \ref concepts::Graph "Graph" concept, |
|
| 167 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
| 168 |
/// node as \c FullDigraph does. |
|
| 169 |
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph |
|
| 170 |
/// conforms to the \ref concepts::Graph "Graph" concept, |
|
| 171 |
/// moreover FullGraph does not contain a loop for each |
|
| 172 |
/// node as this class does. |
|
| 169 | 173 |
/// |
| 170 | 174 |
/// \sa FullGraph |
| 171 | 175 |
class FullDigraph : public ExtendedFullDigraphBase {
|
| 172 | 176 |
typedef ExtendedFullDigraphBase Parent; |
| 173 | 177 |
|
| 174 | 178 |
public: |
| 175 | 179 |
|
| 176 |
/// \brief |
|
| 180 |
/// \brief Default constructor. |
|
| 181 |
/// |
|
| 182 |
/// Default constructor. The number of nodes and arcs will be zero. |
|
| 177 | 183 |
FullDigraph() { construct(0); }
|
| 178 | 184 |
|
| 179 | 185 |
/// \brief Constructor |
| 180 | 186 |
/// |
| 181 | 187 |
/// Constructor. |
| 182 | 188 |
/// \param n The number of the nodes. |
| 183 | 189 |
FullDigraph(int n) { construct(n); }
|
| 184 | 190 |
|
| 185 | 191 |
/// \brief Resizes the digraph |
| 186 | 192 |
/// |
| 187 |
/// Resizes the digraph. The function will fully destroy and |
|
| 188 |
/// rebuild the digraph. This cause that the maps of the digraph will |
|
| 193 |
/// This function resizes the digraph. It fully destroys and |
|
| 194 |
/// rebuilds the structure, therefore the maps of the digraph will be |
|
| 189 | 195 |
/// reallocated automatically and the previous values will be lost. |
| 190 | 196 |
void resize(int n) {
|
| 191 | 197 |
Parent::notifier(Arc()).clear(); |
| 192 | 198 |
Parent::notifier(Node()).clear(); |
| 193 | 199 |
construct(n); |
| 194 | 200 |
Parent::notifier(Node()).build(); |
| 195 | 201 |
Parent::notifier(Arc()).build(); |
| 196 | 202 |
} |
| 197 | 203 |
|
| 198 | 204 |
/// \brief Returns the node with the given index. |
| 199 | 205 |
/// |
| 200 |
/// Returns the node with the given index. Since it is a static |
|
| 201 |
/// digraph its nodes can be indexed with integers from the range |
|
| 202 |
/// |
|
| 206 |
/// Returns the node with the given index. Since this structure is |
|
| 207 |
/// completely static, the nodes can be indexed with integers from |
|
| 208 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 209 |
/// The index of a node is the same as its ID. |
|
| 203 | 210 |
/// \sa index() |
| 204 | 211 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 205 | 212 |
|
| 206 | 213 |
/// \brief Returns the index of the given node. |
| 207 | 214 |
/// |
| 208 |
/// Returns the index of the given node. Since it is a static |
|
| 209 |
/// digraph its nodes can be indexed with integers from the range |
|
| 210 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
| 211 |
/// \sa operator() |
|
| 212 |
|
|
| 215 |
/// Returns the index of the given node. Since this structure is |
|
| 216 |
/// completely static, the nodes can be indexed with integers from |
|
| 217 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 218 |
/// The index of a node is the same as its ID. |
|
| 219 |
/// \sa operator()() |
|
| 220 |
static int index(const Node& node) { return Parent::index(node); }
|
|
| 213 | 221 |
|
| 214 | 222 |
/// \brief Returns the arc connecting the given nodes. |
| 215 | 223 |
/// |
| 216 | 224 |
/// Returns the arc connecting the given nodes. |
| 217 |
Arc arc( |
|
| 225 |
Arc arc(Node u, Node v) const {
|
|
| 218 | 226 |
return Parent::arc(u, v); |
| 219 | 227 |
} |
| 220 | 228 |
|
| 221 | 229 |
/// \brief Number of nodes. |
| 222 | 230 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 223 | 231 |
/// \brief Number of arcs. |
| ... | ... |
@@ -280,13 +288,13 @@ |
| 280 | 288 |
} |
| 281 | 289 |
} |
| 282 | 290 |
|
| 283 | 291 |
public: |
| 284 | 292 |
|
| 285 | 293 |
Node operator()(int ix) const { return Node(ix); }
|
| 286 |
int index(const Node& node) |
|
| 294 |
static int index(const Node& node) { return node._id; }
|
|
| 287 | 295 |
|
| 288 | 296 |
Edge edge(const Node& u, const Node& v) const {
|
| 289 | 297 |
if (u._id < v._id) {
|
| 290 | 298 |
return Edge(_eid(u._id, v._id)); |
| 291 | 299 |
} else if (u._id != v._id) {
|
| 292 | 300 |
return Edge(_eid(v._id, u._id)); |
| ... | ... |
@@ -517,47 +525,53 @@ |
| 517 | 525 |
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase; |
| 518 | 526 |
|
| 519 | 527 |
/// \ingroup graphs |
| 520 | 528 |
/// |
| 521 | 529 |
/// \brief An undirected full graph class. |
| 522 | 530 |
/// |
| 523 |
/// This is a simple and fast undirected full graph |
|
| 524 |
/// implementation. From each node go edge to each other node, |
|
| 525 |
/// therefore the number of edges in the graph is \f$n(n-1)/2\f$. |
|
| 526 |
/// This graph type is completely static, so you can neither |
|
| 527 |
/// add nor delete either edges or nodes, and it needs constant |
|
| 528 |
/// space in memory. |
|
| 531 |
/// FullGraph is a simple and fast implmenetation of undirected full |
|
| 532 |
/// (complete) graphs. It contains an edge between every distinct pair |
|
| 533 |
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>. |
|
| 534 |
/// This class is completely static and it needs constant memory space. |
|
| 535 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 536 |
/// the structure can be resized using resize(). |
|
| 529 | 537 |
/// |
| 530 |
/// This |
|
| 538 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 539 |
/// Most of its member functions and nested classes are documented |
|
| 540 |
/// only in the concept class. |
|
| 531 | 541 |
/// |
| 532 |
/// The \c FullGraph and \c FullDigraph classes are very similar, |
|
| 533 |
/// but there are two differences. While the \c FullDigraph class |
|
| 542 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 543 |
/// |
|
| 544 |
/// \note FullDigraph and FullGraph classes are very similar, |
|
| 545 |
/// but there are two differences. While FullDigraph |
|
| 534 | 546 |
/// conforms only to the \ref concepts::Digraph "Digraph" concept, |
| 535 | 547 |
/// this class conforms to the \ref concepts::Graph "Graph" concept, |
| 536 |
/// moreover \c FullGraph does not contain a loop arc for each |
|
| 537 |
/// node as \c FullDigraph does. |
|
| 548 |
/// moreover this class does not contain a loop for each |
|
| 549 |
/// node as FullDigraph does. |
|
| 538 | 550 |
/// |
| 539 | 551 |
/// \sa FullDigraph |
| 540 | 552 |
class FullGraph : public ExtendedFullGraphBase {
|
| 541 | 553 |
typedef ExtendedFullGraphBase Parent; |
| 542 | 554 |
|
| 543 | 555 |
public: |
| 544 | 556 |
|
| 545 |
/// \brief |
|
| 557 |
/// \brief Default constructor. |
|
| 558 |
/// |
|
| 559 |
/// Default constructor. The number of nodes and edges will be zero. |
|
| 546 | 560 |
FullGraph() { construct(0); }
|
| 547 | 561 |
|
| 548 | 562 |
/// \brief Constructor |
| 549 | 563 |
/// |
| 550 | 564 |
/// Constructor. |
| 551 | 565 |
/// \param n The number of the nodes. |
| 552 | 566 |
FullGraph(int n) { construct(n); }
|
| 553 | 567 |
|
| 554 | 568 |
/// \brief Resizes the graph |
| 555 | 569 |
/// |
| 556 |
/// Resizes the graph. The function will fully destroy and |
|
| 557 |
/// rebuild the graph. This cause that the maps of the graph will |
|
| 570 |
/// This function resizes the graph. It fully destroys and |
|
| 571 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 558 | 572 |
/// reallocated automatically and the previous values will be lost. |
| 559 | 573 |
void resize(int n) {
|
| 560 | 574 |
Parent::notifier(Arc()).clear(); |
| 561 | 575 |
Parent::notifier(Edge()).clear(); |
| 562 | 576 |
Parent::notifier(Node()).clear(); |
| 563 | 577 |
construct(n); |
| ... | ... |
@@ -565,37 +579,39 @@ |
| 565 | 579 |
Parent::notifier(Edge()).build(); |
| 566 | 580 |
Parent::notifier(Arc()).build(); |
| 567 | 581 |
} |
| 568 | 582 |
|
| 569 | 583 |
/// \brief Returns the node with the given index. |
| 570 | 584 |
/// |
| 571 |
/// Returns the node with the given index. Since it is a static |
|
| 572 |
/// graph its nodes can be indexed with integers from the range |
|
| 573 |
/// |
|
| 585 |
/// Returns the node with the given index. Since this structure is |
|
| 586 |
/// completely static, the nodes can be indexed with integers from |
|
| 587 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 588 |
/// The index of a node is the same as its ID. |
|
| 574 | 589 |
/// \sa index() |
| 575 | 590 |
Node operator()(int ix) const { return Parent::operator()(ix); }
|
| 576 | 591 |
|
| 577 | 592 |
/// \brief Returns the index of the given node. |
| 578 | 593 |
/// |
| 579 |
/// Returns the index of the given node. Since it is a static |
|
| 580 |
/// graph its nodes can be indexed with integers from the range |
|
| 581 |
/// <tt>[0..nodeNum()-1]</tt>. |
|
| 582 |
/// \sa operator() |
|
| 583 |
|
|
| 594 |
/// Returns the index of the given node. Since this structure is |
|
| 595 |
/// completely static, the nodes can be indexed with integers from |
|
| 596 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
|
| 597 |
/// The index of a node is the same as its ID. |
|
| 598 |
/// \sa operator()() |
|
| 599 |
static int index(const Node& node) { return Parent::index(node); }
|
|
| 584 | 600 |
|
| 585 | 601 |
/// \brief Returns the arc connecting the given nodes. |
| 586 | 602 |
/// |
| 587 | 603 |
/// Returns the arc connecting the given nodes. |
| 588 |
Arc arc( |
|
| 604 |
Arc arc(Node s, Node t) const {
|
|
| 589 | 605 |
return Parent::arc(s, t); |
| 590 | 606 |
} |
| 591 | 607 |
|
| 592 |
/// \brief Returns the edge |
|
| 608 |
/// \brief Returns the edge connecting the given nodes. |
|
| 593 | 609 |
/// |
| 594 |
/// Returns the edge connects the given nodes. |
|
| 595 |
Edge edge(const Node& u, const Node& v) const {
|
|
| 610 |
/// Returns the edge connecting the given nodes. |
|
| 611 |
Edge edge(Node u, Node v) const {
|
|
| 596 | 612 |
return Parent::edge(u, v); |
| 597 | 613 |
} |
| 598 | 614 |
|
| 599 | 615 |
/// \brief Number of nodes. |
| 600 | 616 |
int nodeNum() const { return Parent::nodeNum(); }
|
| 601 | 617 |
/// \brief Number of arcs. |
| ... | ... |
@@ -56,12 +56,48 @@ |
| 56 | 56 |
int GlpkBase::_addRow() {
|
| 57 | 57 |
int i = glp_add_rows(lp, 1); |
| 58 | 58 |
glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0); |
| 59 | 59 |
return i; |
| 60 | 60 |
} |
| 61 | 61 |
|
| 62 |
int GlpkBase::_addRow(Value lo, ExprIterator b, |
|
| 63 |
ExprIterator e, Value up) {
|
|
| 64 |
int i = glp_add_rows(lp, 1); |
|
| 65 |
|
|
| 66 |
if (lo == -INF) {
|
|
| 67 |
if (up == INF) {
|
|
| 68 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
|
| 69 |
} else {
|
|
| 70 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
|
| 71 |
} |
|
| 72 |
} else {
|
|
| 73 |
if (up == INF) {
|
|
| 74 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
|
| 75 |
} else if (lo != up) {
|
|
| 76 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
|
| 77 |
} else {
|
|
| 78 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
|
| 79 |
} |
|
| 80 |
} |
|
| 81 |
|
|
| 82 |
std::vector<int> indexes; |
|
| 83 |
std::vector<Value> values; |
|
| 84 |
|
|
| 85 |
indexes.push_back(0); |
|
| 86 |
values.push_back(0); |
|
| 87 |
|
|
| 88 |
for(ExprIterator it = b; it != e; ++it) {
|
|
| 89 |
indexes.push_back(it->first); |
|
| 90 |
values.push_back(it->second); |
|
| 91 |
} |
|
| 92 |
|
|
| 93 |
glp_set_mat_row(lp, i, values.size() - 1, |
|
| 94 |
&indexes.front(), &values.front()); |
|
| 95 |
return i; |
|
| 96 |
} |
|
| 97 |
|
|
| 62 | 98 |
void GlpkBase::_eraseCol(int i) {
|
| 63 | 99 |
int ca[2]; |
| 64 | 100 |
ca[1] = i; |
| 65 | 101 |
glp_del_cols(lp, 1, ca); |
| 66 | 102 |
} |
| 67 | 103 |
| ... | ... |
@@ -51,12 +51,13 @@ |
| 51 | 51 |
virtual ~GlpkBase(); |
| 52 | 52 |
|
| 53 | 53 |
protected: |
| 54 | 54 |
|
| 55 | 55 |
virtual int _addCol(); |
| 56 | 56 |
virtual int _addRow(); |
| 57 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
|
| 57 | 58 |
|
| 58 | 59 |
virtual void _eraseCol(int i); |
| 59 | 60 |
virtual void _eraseRow(int i); |
| 60 | 61 |
|
| 61 | 62 |
virtual void _eraseColId(int i); |
| 62 | 63 |
virtual void _eraseRowId(int i); |
| ... | ... |
@@ -291,17 +291,15 @@ |
| 291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
| 292 | 292 |
/// |
| 293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
| 294 | 294 |
/// |
| 295 | 295 |
/// \pre \ref run() must be called before using this function. |
| 296 | 296 |
template <typename CutMap> |
| 297 |
Value minCutMap(const Node& s, |
|
| 297 |
Value minCutMap(const Node& s, |
|
| 298 | 298 |
const Node& t, |
| 299 |
///< |
|
| 300 | 299 |
CutMap& cutMap |
| 301 |
///< |
|
| 302 | 300 |
) const {
|
| 303 | 301 |
Node sn = s, tn = t; |
| 304 | 302 |
bool s_root=false; |
| 305 | 303 |
Node rn = INVALID; |
| 306 | 304 |
Value value = std::numeric_limits<Value>::max(); |
| 307 | 305 |
|
| ... | ... |
@@ -356,16 +354,16 @@ |
| 356 | 354 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 357 | 355 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 358 | 356 |
/// |
| 359 | 357 |
/// This example counts the nodes in the minimum cut separating \c s from |
| 360 | 358 |
/// \c t. |
| 361 | 359 |
/// \code |
| 362 |
/// |
|
| 360 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 363 | 361 |
/// gom.run(); |
| 364 | 362 |
/// int cnt=0; |
| 365 |
/// for( |
|
| 363 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
| 366 | 364 |
/// \endcode |
| 367 | 365 |
class MinCutNodeIt |
| 368 | 366 |
{
|
| 369 | 367 |
bool _side; |
| 370 | 368 |
typename Graph::NodeIt _node_it; |
| 371 | 369 |
typename Graph::template NodeMap<bool> _cut; |
| ... | ... |
@@ -391,13 +389,13 @@ |
| 391 | 389 |
/// \endcode |
| 392 | 390 |
/// and |
| 393 | 391 |
/// \code |
| 394 | 392 |
/// MinCutNodeIt(gomory, t, s, false); |
| 395 | 393 |
/// \endcode |
| 396 | 394 |
/// does not necessarily give the same set of nodes. |
| 397 |
/// However it is ensured that |
|
| 395 |
/// However, it is ensured that |
|
| 398 | 396 |
/// \code |
| 399 | 397 |
/// MinCutNodeIt(gomory, s, t, true); |
| 400 | 398 |
/// \endcode |
| 401 | 399 |
/// and |
| 402 | 400 |
/// \code |
| 403 | 401 |
/// MinCutNodeIt(gomory, s, t, false); |
| ... | ... |
@@ -453,16 +451,16 @@ |
| 453 | 451 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
| 454 | 452 |
/// and call its \ref GomoryHu::run() "run()" method. |
| 455 | 453 |
/// |
| 456 | 454 |
/// This example computes the value of the minimum cut separating \c s from |
| 457 | 455 |
/// \c t. |
| 458 | 456 |
/// \code |
| 459 |
/// |
|
| 457 |
/// GomoryHu<Graph> gom(g, capacities); |
|
| 460 | 458 |
/// gom.run(); |
| 461 | 459 |
/// int value=0; |
| 462 |
/// for( |
|
| 460 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
| 463 | 461 |
/// value+=capacities[e]; |
| 464 | 462 |
/// \endcode |
| 465 | 463 |
/// The result will be the same as the value returned by |
| 466 | 464 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
| 467 | 465 |
class MinCutEdgeIt |
| 468 | 466 |
{
|
| ... | ... |
@@ -139,13 +139,13 @@ |
| 139 | 139 |
bool _preScale; |
| 140 | 140 |
///Constructor |
| 141 | 141 |
|
| 142 | 142 |
///Constructor |
| 143 | 143 |
///\param gr Reference to the graph to be printed. |
| 144 | 144 |
///\param ost Reference to the output stream. |
| 145 |
///By default it is <tt>std::cout</tt>. |
|
| 145 |
///By default, it is <tt>std::cout</tt>. |
|
| 146 | 146 |
///\param pros If it is \c true, then the \c ostream referenced by \c os |
| 147 | 147 |
///will be explicitly deallocated by the destructor. |
| 148 | 148 |
DefaultGraphToEpsTraits(const GR &gr, std::ostream& ost = std::cout, |
| 149 | 149 |
bool pros = false) : |
| 150 | 150 |
g(gr), os(ost), |
| 151 | 151 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
| ... | ... |
@@ -509,13 +509,13 @@ |
| 509 | 509 |
GraphToEps<T> &negateY(bool b=true) {
|
| 510 | 510 |
_negY=b;return *this; |
| 511 | 511 |
} |
| 512 | 512 |
|
| 513 | 513 |
///Turn on/off pre-scaling |
| 514 | 514 |
|
| 515 |
///By default graphToEps() rescales the whole image in order to avoid |
|
| 515 |
///By default, graphToEps() rescales the whole image in order to avoid |
|
| 516 | 516 |
///very big or very small bounding boxes. |
| 517 | 517 |
/// |
| 518 | 518 |
///This (p)rescaling can be turned off with this function. |
| 519 | 519 |
/// |
| 520 | 520 |
GraphToEps<T> &preScale(bool b=true) {
|
| 521 | 521 |
_preScale=b;return *this; |
| ... | ... |
@@ -1111,25 +1111,25 @@ |
| 1111 | 1111 |
///Generates an EPS file from a graph |
| 1112 | 1112 |
|
| 1113 | 1113 |
///\ingroup eps_io |
| 1114 | 1114 |
///Generates an EPS file from a graph. |
| 1115 | 1115 |
///\param g Reference to the graph to be printed. |
| 1116 | 1116 |
///\param os Reference to the output stream. |
| 1117 |
///By default it is <tt>std::cout</tt>. |
|
| 1117 |
///By default, it is <tt>std::cout</tt>. |
|
| 1118 | 1118 |
/// |
| 1119 | 1119 |
///This function also has a lot of |
| 1120 | 1120 |
///\ref named-templ-func-param "named parameters", |
| 1121 | 1121 |
///they are declared as the members of class \ref GraphToEps. The following |
| 1122 | 1122 |
///example shows how to use these parameters. |
| 1123 | 1123 |
///\code |
| 1124 | 1124 |
/// graphToEps(g,os).scale(10).coords(coords) |
| 1125 | 1125 |
/// .nodeScale(2).nodeSizes(sizes) |
| 1126 | 1126 |
/// .arcWidthScale(.4).run(); |
| 1127 | 1127 |
///\endcode |
| 1128 | 1128 |
/// |
| 1129 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
|
| 1129 |
///For more detailed examples, see the \ref graph_to_eps_demo.cc demo file. |
|
| 1130 | 1130 |
/// |
| 1131 | 1131 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
| 1132 | 1132 |
///to the end of the parameter list. |
| 1133 | 1133 |
///\sa GraphToEps |
| 1134 | 1134 |
///\sa graphToEps(GR &g, const char *file_name) |
| 1135 | 1135 |
template<class GR> |
| ... | ... |
@@ -467,24 +467,28 @@ |
| 467 | 467 |
typedef GraphExtender<GridGraphBase> ExtendedGridGraphBase; |
| 468 | 468 |
|
| 469 | 469 |
/// \ingroup graphs |
| 470 | 470 |
/// |
| 471 | 471 |
/// \brief Grid graph class |
| 472 | 472 |
/// |
| 473 |
/// This class implements a special graph type. The nodes of the |
|
| 474 |
/// graph can be indexed by two integer \c (i,j) value where \c i is |
|
| 475 |
/// in the \c [0..width()-1] range and j is in the \c |
|
| 476 |
/// [0..height()-1] range. Two nodes are connected in the graph if |
|
| 477 |
/// the indexes differ exactly on one position and exactly one is |
|
| 478 |
/// the difference. The nodes of the graph can be indexed by position |
|
| 479 |
/// with the \c operator()() function. The positions of the nodes can be |
|
| 480 |
/// get with \c pos(), \c col() and \c row() members. The outgoing |
|
| 473 |
/// GridGraph implements a special graph type. The nodes of the |
|
| 474 |
/// graph can be indexed by two integer values \c (i,j) where \c i is |
|
| 475 |
/// in the range <tt>[0..width()-1]</tt> and j is in the range |
|
| 476 |
/// <tt>[0..height()-1]</tt>. Two nodes are connected in the graph if |
|
| 477 |
/// the indices differ exactly on one position and the difference is |
|
| 478 |
/// also exactly one. The nodes of the graph can be obtained by position |
|
| 479 |
/// using the \c operator()() function and the indices of the nodes can |
|
| 480 |
/// be obtained using \c pos(), \c col() and \c row() members. The outgoing |
|
| 481 | 481 |
/// arcs can be retrieved with the \c right(), \c up(), \c left() |
| 482 | 482 |
/// and \c down() functions, where the bottom-left corner is the |
| 483 | 483 |
/// origin. |
| 484 | 484 |
/// |
| 485 |
/// This class is completely static and it needs constant memory space. |
|
| 486 |
/// Thus you can neither add nor delete nodes or edges, however |
|
| 487 |
/// the structure can be resized using resize(). |
|
| 488 |
/// |
|
| 485 | 489 |
/// \image html grid_graph.png |
| 486 | 490 |
/// \image latex grid_graph.eps "Grid graph" width=\textwidth |
| 487 | 491 |
/// |
| 488 | 492 |
/// A short example about the basic usage: |
| 489 | 493 |
///\code |
| 490 | 494 |
/// GridGraph graph(rows, cols); |
| ... | ... |
@@ -493,37 +497,38 @@ |
| 493 | 497 |
/// for (int j = 0; j < graph.height(); ++j) {
|
| 494 | 498 |
/// val[graph(i, j)] = i + j; |
| 495 | 499 |
/// } |
| 496 | 500 |
/// } |
| 497 | 501 |
///\endcode |
| 498 | 502 |
/// |
| 499 |
/// This graph type fully conforms to the \ref concepts::Graph |
|
| 500 |
/// "Graph concept". |
|
| 503 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept". |
|
| 504 |
/// Most of its member functions and nested classes are documented |
|
| 505 |
/// only in the concept class. |
|
| 506 |
/// |
|
| 507 |
/// This class provides constant time counting for nodes, edges and arcs. |
|
| 501 | 508 |
class GridGraph : public ExtendedGridGraphBase {
|
| 502 | 509 |
typedef ExtendedGridGraphBase Parent; |
| 503 | 510 |
|
| 504 | 511 |
public: |
| 505 | 512 |
|
| 506 |
/// \brief Map to get the indices of the nodes as dim2::Point |
|
| 513 |
/// \brief Map to get the indices of the nodes as \ref dim2::Point |
|
| 514 |
/// "dim2::Point<int>". |
|
| 507 | 515 |
/// |
| 508 |
/// Map to get the indices of the nodes as dim2::Point |
|
| 516 |
/// Map to get the indices of the nodes as \ref dim2::Point |
|
| 517 |
/// "dim2::Point<int>". |
|
| 509 | 518 |
class IndexMap {
|
| 510 | 519 |
public: |
| 511 | 520 |
/// \brief The key type of the map |
| 512 | 521 |
typedef GridGraph::Node Key; |
| 513 | 522 |
/// \brief The value type of the map |
| 514 | 523 |
typedef dim2::Point<int> Value; |
| 515 | 524 |
|
| 516 | 525 |
/// \brief Constructor |
| 517 |
/// |
|
| 518 |
/// Constructor |
|
| 519 | 526 |
IndexMap(const GridGraph& graph) : _graph(graph) {}
|
| 520 | 527 |
|
| 521 | 528 |
/// \brief The subscript operator |
| 522 |
/// |
|
| 523 |
/// The subscript operator. |
|
| 524 | 529 |
Value operator[](Key key) const {
|
| 525 | 530 |
return _graph.pos(key); |
| 526 | 531 |
} |
| 527 | 532 |
|
| 528 | 533 |
private: |
| 529 | 534 |
const GridGraph& _graph; |
| ... | ... |
@@ -537,19 +542,15 @@ |
| 537 | 542 |
/// \brief The key type of the map |
| 538 | 543 |
typedef GridGraph::Node Key; |
| 539 | 544 |
/// \brief The value type of the map |
| 540 | 545 |
typedef int Value; |
| 541 | 546 |
|
| 542 | 547 |
/// \brief Constructor |
| 543 |
/// |
|
| 544 |
/// Constructor |
|
| 545 | 548 |
ColMap(const GridGraph& graph) : _graph(graph) {}
|
| 546 | 549 |
|
| 547 | 550 |
/// \brief The subscript operator |
| 548 |
/// |
|
| 549 |
/// The subscript operator. |
|
| 550 | 551 |
Value operator[](Key key) const {
|
| 551 | 552 |
return _graph.col(key); |
| 552 | 553 |
} |
| 553 | 554 |
|
| 554 | 555 |
private: |
| 555 | 556 |
const GridGraph& _graph; |
| ... | ... |
@@ -563,38 +564,33 @@ |
| 563 | 564 |
/// \brief The key type of the map |
| 564 | 565 |
typedef GridGraph::Node Key; |
| 565 | 566 |
/// \brief The value type of the map |
| 566 | 567 |
typedef int Value; |
| 567 | 568 |
|
| 568 | 569 |
/// \brief Constructor |
| 569 |
/// |
|
| 570 |
/// Constructor |
|
| 571 | 570 |
RowMap(const GridGraph& graph) : _graph(graph) {}
|
| 572 | 571 |
|
| 573 | 572 |
/// \brief The subscript operator |
| 574 |
/// |
|
| 575 |
/// The subscript operator. |
|
| 576 | 573 |
Value operator[](Key key) const {
|
| 577 | 574 |
return _graph.row(key); |
| 578 | 575 |
} |
| 579 | 576 |
|
| 580 | 577 |
private: |
| 581 | 578 |
const GridGraph& _graph; |
| 582 | 579 |
}; |
| 583 | 580 |
|
| 584 | 581 |
/// \brief Constructor |
| 585 | 582 |
/// |
| 586 |
/// Construct a grid graph with given size. |
|
| 583 |
/// Construct a grid graph with the given size. |
|
| 587 | 584 |
GridGraph(int width, int height) { construct(width, height); }
|
| 588 | 585 |
|
| 589 |
/// \brief |
|
| 586 |
/// \brief Resizes the graph |
|
| 590 | 587 |
/// |
| 591 |
/// Resize the graph. The function will fully destroy and rebuild |
|
| 592 |
/// the graph. This cause that the maps of the graph will |
|
| 593 |
/// reallocated automatically and the previous values will be |
|
| 594 |
/// lost. |
|
| 588 |
/// This function resizes the graph. It fully destroys and |
|
| 589 |
/// rebuilds the structure, therefore the maps of the graph will be |
|
| 590 |
/// reallocated automatically and the previous values will be lost. |
|
| 595 | 591 |
void resize(int width, int height) {
|
| 596 | 592 |
Parent::notifier(Arc()).clear(); |
| 597 | 593 |
Parent::notifier(Edge()).clear(); |
| 598 | 594 |
Parent::notifier(Node()).clear(); |
| 599 | 595 |
construct(width, height); |
| 600 | 596 |
Parent::notifier(Node()).build(); |
| ... | ... |
@@ -606,72 +602,72 @@ |
| 606 | 602 |
/// |
| 607 | 603 |
/// Gives back the node on the given position. |
| 608 | 604 |
Node operator()(int i, int j) const {
|
| 609 | 605 |
return Parent::operator()(i, j); |
| 610 | 606 |
} |
| 611 | 607 |
|
| 612 |
/// \brief |
|
| 608 |
/// \brief The column index of the node. |
|
| 613 | 609 |
/// |
| 614 | 610 |
/// Gives back the column index of the node. |
| 615 | 611 |
int col(Node n) const {
|
| 616 | 612 |
return Parent::col(n); |
| 617 | 613 |
} |
| 618 | 614 |
|
| 619 |
/// \brief |
|
| 615 |
/// \brief The row index of the node. |
|
| 620 | 616 |
/// |
| 621 | 617 |
/// Gives back the row index of the node. |
| 622 | 618 |
int row(Node n) const {
|
| 623 | 619 |
return Parent::row(n); |
| 624 | 620 |
} |
| 625 | 621 |
|
| 626 |
/// \brief |
|
| 622 |
/// \brief The position of the node. |
|
| 627 | 623 |
/// |
| 628 | 624 |
/// Gives back the position of the node, ie. the <tt>(col,row)</tt> pair. |
| 629 | 625 |
dim2::Point<int> pos(Node n) const {
|
| 630 | 626 |
return Parent::pos(n); |
| 631 | 627 |
} |
| 632 | 628 |
|
| 633 |
/// \brief |
|
| 629 |
/// \brief The number of the columns. |
|
| 634 | 630 |
/// |
| 635 | 631 |
/// Gives back the number of the columns. |
| 636 | 632 |
int width() const {
|
| 637 | 633 |
return Parent::width(); |
| 638 | 634 |
} |
| 639 | 635 |
|
| 640 |
/// \brief |
|
| 636 |
/// \brief The number of the rows. |
|
| 641 | 637 |
/// |
| 642 | 638 |
/// Gives back the number of the rows. |
| 643 | 639 |
int height() const {
|
| 644 | 640 |
return Parent::height(); |
| 645 | 641 |
} |
| 646 | 642 |
|
| 647 |
/// \brief |
|
| 643 |
/// \brief The arc goes right from the node. |
|
| 648 | 644 |
/// |
| 649 | 645 |
/// Gives back the arc goes right from the node. If there is not |
| 650 | 646 |
/// outgoing arc then it gives back INVALID. |
| 651 | 647 |
Arc right(Node n) const {
|
| 652 | 648 |
return Parent::right(n); |
| 653 | 649 |
} |
| 654 | 650 |
|
| 655 |
/// \brief |
|
| 651 |
/// \brief The arc goes left from the node. |
|
| 656 | 652 |
/// |
| 657 | 653 |
/// Gives back the arc goes left from the node. If there is not |
| 658 | 654 |
/// outgoing arc then it gives back INVALID. |
| 659 | 655 |
Arc left(Node n) const {
|
| 660 | 656 |
return Parent::left(n); |
| 661 | 657 |
} |
| 662 | 658 |
|
| 663 |
/// \brief |
|
| 659 |
/// \brief The arc goes up from the node. |
|
| 664 | 660 |
/// |
| 665 | 661 |
/// Gives back the arc goes up from the node. If there is not |
| 666 | 662 |
/// outgoing arc then it gives back INVALID. |
| 667 | 663 |
Arc up(Node n) const {
|
| 668 | 664 |
return Parent::up(n); |
| 669 | 665 |
} |
| 670 | 666 |
|
| 671 |
/// \brief |
|
| 667 |
/// \brief The arc goes down from the node. |
|
| 672 | 668 |
/// |
| 673 | 669 |
/// Gives back the arc goes down from the node. If there is not |
| 674 | 670 |
/// outgoing arc then it gives back INVALID. |
| 675 | 671 |
Arc down(Node n) const {
|
| 676 | 672 |
return Parent::down(n); |
| 677 | 673 |
} |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)