gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 6 0
merge default
0 files changed with 691 insertions and 609 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -223,33 +223,54 @@
223 223
the two maps which can be done implicitly with the \c DivMap template
224 224
class. We use the implicit minimum time map as the length map of the
225 225
\c Dijkstra algorithm.
226 226
*/
227 227

	
228 228
/**
229
@defgroup matrices Matrices
230
@ingroup datas
231
\brief Two dimensional data storages implemented in LEMON.
232

	
233
This group contains two dimensional data storages implemented in LEMON.
234
*/
235

	
236
/**
237 229
@defgroup paths Path Structures
238 230
@ingroup datas
239 231
\brief %Path structures implemented in LEMON.
240 232

	
241 233
This group contains the path structures implemented in LEMON.
242 234

	
243 235
LEMON provides flexible data structures to work with paths.
244 236
All of them have similar interfaces and they can be copied easily with
245 237
assignment operators and copy constructors. This makes it easy and
246 238
efficient to have e.g. the Dijkstra algorithm to store its result in
247 239
any kind of path structure.
248 240

	
249
\sa lemon::concepts::Path
241
\sa \ref concepts::Path "Path concept"
242
*/
243

	
244
/**
245
@defgroup heaps Heap Structures
246
@ingroup datas
247
\brief %Heap structures implemented in LEMON.
248

	
249
This group contains the heap structures implemented in LEMON.
250

	
251
LEMON provides several heap classes. They are efficient implementations
252
of the abstract data type \e priority \e queue. They store items with
253
specified values called \e priorities in such a way that finding and
254
removing the item with minimum priority are efficient.
255
The basic operations are adding and erasing items, changing the priority
256
of an item, etc.
257

	
258
Heaps are crucial in several algorithms, such as Dijkstra and Prim.
259
The heap implementations have the same interface, thus any of them can be
260
used easily in such algorithms.
261

	
262
\sa \ref concepts::Heap "Heap concept"
263
*/
264

	
265
/**
266
@defgroup matrices Matrices
267
@ingroup datas
268
\brief Two dimensional data storages implemented in LEMON.
269

	
270
This group contains two dimensional data storages implemented in LEMON.
250 271
*/
251 272

	
252 273
/**
253 274
@defgroup auxdat Auxiliary Data Structures
254 275
@ingroup datas
255 276
\brief Auxiliary data structures implemented in LEMON.
Ignore white space 6 line context
... ...
@@ -16,61 +16,57 @@
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BIN_HEAP_H
20 20
#define LEMON_BIN_HEAP_H
21 21

	
22
///\ingroup auxdat
22
///\ingroup heaps
23 23
///\file
24
///\brief Binary Heap implementation.
24
///\brief Binary heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
31 31

	
32
  ///\ingroup auxdat
32
  /// \ingroup heaps
33 33
  ///
34
  ///\brief A Binary Heap implementation.
34
  /// \brief Binary heap data structure.
35 35
  ///
36
  ///This class implements the \e binary \e heap data structure.
36
  /// This class implements the \e binary \e heap data structure.
37
  /// It fully conforms to the \ref concepts::Heap "heap concept".
37 38
  ///
38
  ///A \e heap is a data structure for storing items with specified values
39
  ///called \e priorities in such a way that finding the item with minimum
40
  ///priority is efficient. \c CMP specifies the ordering of the priorities.
41
  ///In a heap one can change the priority of an item, add or erase an
42
  ///item, etc.
43
  ///
44
  ///\tparam PR Type of the priority of the items.
45
  ///\tparam IM A read and writable item map with int values, used internally
46
  ///to handle the cross references.
47
  ///\tparam CMP A functor class for the ordering of the priorities.
48
  ///The default is \c std::less<PR>.
49
  ///
50
  ///\sa FibHeap
51
  ///\sa Dijkstra
39
  /// \tparam PR Type of the priorities of the items.
40
  /// \tparam IM A read-writable item map with \c int values, used
41
  /// internally to handle the cross references.
42
  /// \tparam CMP A functor class for comparing the priorities.
43
  /// The default is \c std::less<PR>.
44
#ifdef DOXYGEN
45
  template <typename PR, typename IM, typename CMP>
46
#else
52 47
  template <typename PR, typename IM, typename CMP = std::less<PR> >
48
#endif
53 49
  class BinHeap {
50
  public:
54 51

	
55
  public:
56
    ///\e
52
    /// Type of the item-int map.
57 53
    typedef IM ItemIntMap;
58
    ///\e
54
    /// Type of the priorities.
59 55
    typedef PR Prio;
60
    ///\e
56
    /// Type of the items stored in the heap.
61 57
    typedef typename ItemIntMap::Key Item;
62
    ///\e
58
    /// Type of the item-priority pairs.
63 59
    typedef std::pair<Item,Prio> Pair;
64
    ///\e
60
    /// Functor type for comparing the priorities.
65 61
    typedef CMP Compare;
66 62

	
67
    /// \brief Type to represent the items states.
63
    /// \brief Type to represent the states of the items.
68 64
    ///
69
    /// Each Item element have a state associated to it. It may be "in heap",
70
    /// "pre heap" or "post heap". The latter two are indifferent from the
65
    /// Each item has a state associated to it. It can be "in heap",
66
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
71 67
    /// heap's point of view, but may be useful to the user.
72 68
    ///
73 69
    /// The item-int map must be initialized in such way that it assigns
74 70
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
75 71
    enum State {
76 72
      IN_HEAP = 0,    ///< = 0.
... ...
@@ -81,82 +77,83 @@
81 77
  private:
82 78
    std::vector<Pair> _data;
83 79
    Compare _comp;
84 80
    ItemIntMap &_iim;
85 81

	
86 82
  public:
87
    /// \brief The constructor.
83

	
84
    /// \brief Constructor.
88 85
    ///
89
    /// The constructor.
90
    /// \param map should be given to the constructor, since it is used
91
    /// internally to handle the cross references. The value of the map
92
    /// must be \c PRE_HEAP (<tt>-1</tt>) for every item.
86
    /// Constructor.
87
    /// \param map A map that assigns \c int values to the items.
88
    /// It is used internally to handle the cross references.
89
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
93 90
    explicit BinHeap(ItemIntMap &map) : _iim(map) {}
94 91

	
95
    /// \brief The constructor.
92
    /// \brief Constructor.
96 93
    ///
97
    /// The constructor.
98
    /// \param map should be given to the constructor, since it is used
99
    /// internally to handle the cross references. The value of the map
100
    /// should be PRE_HEAP (-1) for each element.
101
    ///
102
    /// \param comp The comparator function object.
94
    /// Constructor.
95
    /// \param map A map that assigns \c int values to the items.
96
    /// It is used internally to handle the cross references.
97
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
98
    /// \param comp The function object used for comparing the priorities.
103 99
    BinHeap(ItemIntMap &map, const Compare &comp)
104 100
      : _iim(map), _comp(comp) {}
105 101

	
106 102

	
107
    /// The number of items stored in the heap.
103
    /// \brief The number of items stored in the heap.
108 104
    ///
109
    /// \brief Returns the number of items stored in the heap.
105
    /// This function returns the number of items stored in the heap.
110 106
    int size() const { return _data.size(); }
111 107

	
112
    /// \brief Checks if the heap stores no items.
108
    /// \brief Check if the heap is empty.
113 109
    ///
114
    /// Returns \c true if and only if the heap stores no items.
110
    /// This function returns \c true if the heap is empty.
115 111
    bool empty() const { return _data.empty(); }
116 112

	
117
    /// \brief Make empty this heap.
113
    /// \brief Make the heap empty.
118 114
    ///
119
    /// Make empty this heap. It does not change the cross reference map.
120
    /// If you want to reuse what is not surely empty you should first clear
121
    /// the heap and after that you should set the cross reference map for
122
    /// each item to \c PRE_HEAP.
115
    /// This functon makes the heap empty.
116
    /// It does not change the cross reference map. If you want to reuse
117
    /// a heap that is not surely empty, you should first clear it and
118
    /// then you should set the cross reference map to \c PRE_HEAP
119
    /// for each item.
123 120
    void clear() {
124 121
      _data.clear();
125 122
    }
126 123

	
127 124
  private:
128 125
    static int parent(int i) { return (i-1)/2; }
129 126

	
130
    static int second_child(int i) { return 2*i+2; }
127
    static int secondChild(int i) { return 2*i+2; }
131 128
    bool less(const Pair &p1, const Pair &p2) const {
132 129
      return _comp(p1.second, p2.second);
133 130
    }
134 131

	
135
    int bubble_up(int hole, Pair p) {
132
    int bubbleUp(int hole, Pair p) {
136 133
      int par = parent(hole);
137 134
      while( hole>0 && less(p,_data[par]) ) {
138 135
        move(_data[par],hole);
139 136
        hole = par;
140 137
        par = parent(hole);
141 138
      }
142 139
      move(p, hole);
143 140
      return hole;
144 141
    }
145 142

	
146
    int bubble_down(int hole, Pair p, int length) {
147
      int child = second_child(hole);
143
    int bubbleDown(int hole, Pair p, int length) {
144
      int child = secondChild(hole);
148 145
      while(child < length) {
149 146
        if( less(_data[child-1], _data[child]) ) {
150 147
          --child;
151 148
        }
152 149
        if( !less(_data[child], p) )
153 150
          goto ok;
154 151
        move(_data[child], hole);
155 152
        hole = child;
156
        child = second_child(hole);
153
        child = secondChild(hole);
157 154
      }
158 155
      child--;
159 156
      if( child<length && less(_data[child], p) ) {
160 157
        move(_data[child], hole);
161 158
        hole=child;
162 159
      }
... ...
@@ -168,152 +165,154 @@
168 165
    void move(const Pair &p, int i) {
169 166
      _data[i] = p;
170 167
      _iim.set(p.first, i);
171 168
    }
172 169

	
173 170
  public:
171

	
174 172
    /// \brief Insert a pair of item and priority into the heap.
175 173
    ///
176
    /// Adds \c p.first to the heap with priority \c p.second.
174
    /// This function inserts \c p.first to the heap with priority
175
    /// \c p.second.
177 176
    /// \param p The pair to insert.
177
    /// \pre \c p.first must not be stored in the heap.
178 178
    void push(const Pair &p) {
179 179
      int n = _data.size();
180 180
      _data.resize(n+1);
181
      bubble_up(n, p);
181
      bubbleUp(n, p);
182 182
    }
183 183

	
184
    /// \brief Insert an item into the heap with the given heap.
184
    /// \brief Insert an item into the heap with the given priority.
185 185
    ///
186
    /// Adds \c i to the heap with priority \c p.
186
    /// This function inserts the given item into the heap with the
187
    /// given priority.
187 188
    /// \param i The item to insert.
188 189
    /// \param p The priority of the item.
190
    /// \pre \e i must not be stored in the heap.
189 191
    void push(const Item &i, const Prio &p) { push(Pair(i,p)); }
190 192

	
191
    /// \brief Returns the item with minimum priority relative to \c Compare.
193
    /// \brief Return the item having minimum priority.
192 194
    ///
193
    /// This method returns the item with minimum priority relative to \c
194
    /// Compare.
195
    /// \pre The heap must be nonempty.
195
    /// This function returns the item having minimum priority.
196
    /// \pre The heap must be non-empty.
196 197
    Item top() const {
197 198
      return _data[0].first;
198 199
    }
199 200

	
200
    /// \brief Returns the minimum priority relative to \c Compare.
201
    /// \brief The minimum priority.
201 202
    ///
202
    /// It returns the minimum priority relative to \c Compare.
203
    /// \pre The heap must be nonempty.
203
    /// This function returns the minimum priority.
204
    /// \pre The heap must be non-empty.
204 205
    Prio prio() const {
205 206
      return _data[0].second;
206 207
    }
207 208

	
208
    /// \brief Deletes the item with minimum priority relative to \c Compare.
209
    /// \brief Remove the item having minimum priority.
209 210
    ///
210
    /// This method deletes the item with minimum priority relative to \c
211
    /// Compare from the heap.
211
    /// This function removes the item having minimum priority.
212 212
    /// \pre The heap must be non-empty.
213 213
    void pop() {
214 214
      int n = _data.size()-1;
215 215
      _iim.set(_data[0].first, POST_HEAP);
216 216
      if (n > 0) {
217
        bubble_down(0, _data[n], n);
217
        bubbleDown(0, _data[n], n);
218 218
      }
219 219
      _data.pop_back();
220 220
    }
221 221

	
222
    /// \brief Deletes \c i from the heap.
222
    /// \brief Remove the given item from the heap.
223 223
    ///
224
    /// This method deletes item \c i from the heap.
225
    /// \param i The item to erase.
226
    /// \pre The item should be in the heap.
224
    /// This function removes the given item from the heap if it is
225
    /// already stored.
226
    /// \param i The item to delete.
227
    /// \pre \e i must be in the heap.
227 228
    void erase(const Item &i) {
228 229
      int h = _iim[i];
229 230
      int n = _data.size()-1;
230 231
      _iim.set(_data[h].first, POST_HEAP);
231 232
      if( h < n ) {
232
        if ( bubble_up(h, _data[n]) == h) {
233
          bubble_down(h, _data[n], n);
233
        if ( bubbleUp(h, _data[n]) == h) {
234
          bubbleDown(h, _data[n], n);
234 235
        }
235 236
      }
236 237
      _data.pop_back();
237 238
    }
238 239

	
239

	
240
    /// \brief Returns the priority of \c i.
240
    /// \brief The priority of the given item.
241 241
    ///
242
    /// This function returns the priority of item \c i.
242
    /// This function returns the priority of the given item.
243 243
    /// \param i The item.
244
    /// \pre \c i must be in the heap.
244
    /// \pre \e i must be in the heap.
245 245
    Prio operator[](const Item &i) const {
246 246
      int idx = _iim[i];
247 247
      return _data[idx].second;
248 248
    }
249 249

	
250
    /// \brief \c i gets to the heap with priority \c p independently
251
    /// if \c i was already there.
250
    /// \brief Set the priority of an item or insert it, if it is
251
    /// not stored in the heap.
252 252
    ///
253
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
254
    /// in the heap and sets the priority of \c i to \c p otherwise.
253
    /// This method sets the priority of the given item if it is
254
    /// already stored in the heap. Otherwise it inserts the given
255
    /// item into the heap with the given priority.
255 256
    /// \param i The item.
256 257
    /// \param p The priority.
257 258
    void set(const Item &i, const Prio &p) {
258 259
      int idx = _iim[i];
259 260
      if( idx < 0 ) {
260 261
        push(i,p);
261 262
      }
262 263
      else if( _comp(p, _data[idx].second) ) {
263
        bubble_up(idx, Pair(i,p));
264
        bubbleUp(idx, Pair(i,p));
264 265
      }
265 266
      else {
266
        bubble_down(idx, Pair(i,p), _data.size());
267
        bubbleDown(idx, Pair(i,p), _data.size());
267 268
      }
268 269
    }
269 270

	
270
    /// \brief Decreases the priority of \c i to \c p.
271
    /// \brief Decrease the priority of an item to the given value.
271 272
    ///
272
    /// This method decreases the priority of item \c i to \c p.
273
    /// This function decreases the priority of an item to the given value.
273 274
    /// \param i The item.
274 275
    /// \param p The priority.
275
    /// \pre \c i must be stored in the heap with priority at least \c
276
    /// p relative to \c Compare.
276
    /// \pre \e i must be stored in the heap with priority at least \e p.
277 277
    void decrease(const Item &i, const Prio &p) {
278 278
      int idx = _iim[i];
279
      bubble_up(idx, Pair(i,p));
279
      bubbleUp(idx, Pair(i,p));
280 280
    }
281 281

	
282
    /// \brief Increases the priority of \c i to \c p.
282
    /// \brief Increase the priority of an item to the given value.
283 283
    ///
284
    /// This method sets the priority of item \c i to \c p.
284
    /// This function increases the priority of an item to the given value.
285 285
    /// \param i The item.
286 286
    /// \param p The priority.
287
    /// \pre \c i must be stored in the heap with priority at most \c
288
    /// p relative to \c Compare.
287
    /// \pre \e i must be stored in the heap with priority at most \e p.
289 288
    void increase(const Item &i, const Prio &p) {
290 289
      int idx = _iim[i];
291
      bubble_down(idx, Pair(i,p), _data.size());
290
      bubbleDown(idx, Pair(i,p), _data.size());
292 291
    }
293 292

	
294
    /// \brief Returns if \c item is in, has already been in, or has
295
    /// never been in the heap.
293
    /// \brief Return the state of an item.
296 294
    ///
297
    /// This method returns PRE_HEAP if \c item has never been in the
298
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
299
    /// otherwise. In the latter case it is possible that \c item will
300
    /// get back to the heap again.
295
    /// This method returns \c PRE_HEAP if the given item has never
296
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
297
    /// and \c POST_HEAP otherwise.
298
    /// In the latter case it is possible that the item will get back
299
    /// to the heap again.
301 300
    /// \param i The item.
302 301
    State state(const Item &i) const {
303 302
      int s = _iim[i];
304 303
      if( s>=0 )
305 304
        s=0;
306 305
      return State(s);
307 306
    }
308 307

	
309
    /// \brief Sets the state of the \c item in the heap.
308
    /// \brief Set the state of an item in the heap.
310 309
    ///
311
    /// Sets the state of the \c item in the heap. It can be used to
312
    /// manually clear the heap when it is important to achive the
313
    /// better time complexity.
310
    /// This function sets the state of the given item in the heap.
311
    /// It can be used to manually clear the heap when it is important
312
    /// to achive better time complexity.
314 313
    /// \param i The item.
315 314
    /// \param st The state. It should not be \c IN_HEAP.
316 315
    void state(const Item& i, State st) {
317 316
      switch (st) {
318 317
      case POST_HEAP:
319 318
      case PRE_HEAP:
... ...
@@ -324,18 +323,19 @@
324 323
        break;
325 324
      case IN_HEAP:
326 325
        break;
327 326
      }
328 327
    }
329 328

	
330
    /// \brief Replaces an item in the heap.
329
    /// \brief Replace an item in the heap.
331 330
    ///
332
    /// The \c i item is replaced with \c j item. The \c i item should
333
    /// be in the heap, while the \c j should be out of the heap. The
334
    /// \c i item will out of the heap and \c j will be in the heap
335
    /// with the same prioriority as prevoiusly the \c i item.
331
    /// This function replaces item \c i with item \c j.
332
    /// Item \c i must be in the heap, while \c j must be out of the heap.
333
    /// After calling this method, item \c i will be out of the
334
    /// heap and \c j will be in the heap with the same prioriority
335
    /// as item \c i had before.
336 336
    void replace(const Item& i, const Item& j) {
337 337
      int idx = _iim[i];
338 338
      _iim.set(i, _iim[j]);
339 339
      _iim.set(j, idx);
340 340
      _data[idx].first = j;
341 341
    }
Ignore white space 6 line context
... ...
@@ -16,15 +16,15 @@
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BUCKET_HEAP_H
20 20
#define LEMON_BUCKET_HEAP_H
21 21

	
22
///\ingroup auxdat
22
///\ingroup heaps
23 23
///\file
24
///\brief Bucket Heap implementation.
24
///\brief Bucket heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <utility>
28 28
#include <functional>
29 29

	
30 30
namespace lemon {
... ...
@@ -50,94 +50,102 @@
50 50
        --value;
51 51
      }
52 52
    };
53 53

	
54 54
  }
55 55

	
56
  /// \ingroup auxdat
56
  /// \ingroup heaps
57 57
  ///
58
  /// \brief A Bucket Heap implementation.
58
  /// \brief Bucket heap data structure.
59 59
  ///
60
  /// This class implements the \e bucket \e heap data structure. A \e heap
61
  /// is a data structure for storing items with specified values called \e
62
  /// priorities in such a way that finding the item with minimum priority is
63
  /// efficient. The bucket heap is very simple implementation, it can store
64
  /// only integer priorities and it stores for each priority in the
65
  /// \f$ [0..C) \f$ range a list of items. So it should be used only when
66
  /// the priorities are small. It is not intended to use as dijkstra heap.
60
  /// This class implements the \e bucket \e heap data structure.
61
  /// It practically conforms to the \ref concepts::Heap "heap concept",
62
  /// but it has some limitations.
67 63
  ///
68
  /// \param IM A read and write Item int map, used internally
69
  /// to handle the cross references.
70
  /// \param MIN If the given parameter is false then instead of the
71
  /// minimum value the maximum can be retrivied with the top() and
72
  /// prio() member functions.
64
  /// The bucket heap is a very simple structure. It can store only
65
  /// \c int priorities and it maintains a list of items for each priority
66
  /// in the range <tt>[0..C)</tt>. So it should only be used when the
67
  /// priorities are small. It is not intended to use as a Dijkstra heap.
68
  ///
69
  /// \tparam IM A read-writable item map with \c int values, used
70
  /// internally to handle the cross references.
71
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
72
  /// The default is \e min-heap. If this parameter is set to \c false,
73
  /// then the comparison is reversed, so the top(), prio() and pop()
74
  /// functions deal with the item having maximum priority instead of the
75
  /// minimum.
76
  ///
77
  /// \sa SimpleBucketHeap
73 78
  template <typename IM, bool MIN = true>
74 79
  class BucketHeap {
75 80

	
76 81
  public:
77
    /// \e
78
    typedef typename IM::Key Item;
79
    /// \e
82

	
83
    /// Type of the item-int map.
84
    typedef IM ItemIntMap;
85
    /// Type of the priorities.
80 86
    typedef int Prio;
81
    /// \e
82
    typedef std::pair<Item, Prio> Pair;
83
    /// \e
84
    typedef IM ItemIntMap;
87
    /// Type of the items stored in the heap.
88
    typedef typename ItemIntMap::Key Item;
89
    /// Type of the item-priority pairs.
90
    typedef std::pair<Item,Prio> Pair;
85 91

	
86 92
  private:
87 93

	
88 94
    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
89 95

	
90 96
  public:
91 97

	
92
    /// \brief Type to represent the items states.
98
    /// \brief Type to represent the states of the items.
93 99
    ///
94
    /// Each Item element have a state associated to it. It may be "in heap",
95
    /// "pre heap" or "post heap". The latter two are indifferent from the
100
    /// Each item has a state associated to it. It can be "in heap",
101
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
96 102
    /// heap's point of view, but may be useful to the user.
97 103
    ///
98 104
    /// The item-int map must be initialized in such way that it assigns
99 105
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
100 106
    enum State {
101 107
      IN_HEAP = 0,    ///< = 0.
102 108
      PRE_HEAP = -1,  ///< = -1.
103 109
      POST_HEAP = -2  ///< = -2.
104 110
    };
105 111

	
106 112
  public:
107
    /// \brief The constructor.
113

	
114
    /// \brief Constructor.
108 115
    ///
109
    /// The constructor.
110
    /// \param map should be given to the constructor, since it is used
111
    /// internally to handle the cross references. The value of the map
112
    /// should be PRE_HEAP (-1) for each element.
116
    /// Constructor.
117
    /// \param map A map that assigns \c int values to the items.
118
    /// It is used internally to handle the cross references.
119
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
113 120
    explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {}
114 121

	
115
    /// The number of items stored in the heap.
122
    /// \brief The number of items stored in the heap.
116 123
    ///
117
    /// \brief Returns the number of items stored in the heap.
124
    /// This function returns the number of items stored in the heap.
118 125
    int size() const { return _data.size(); }
119 126

	
120
    /// \brief Checks if the heap stores no items.
127
    /// \brief Check if the heap is empty.
121 128
    ///
122
    /// Returns \c true if and only if the heap stores no items.
129
    /// This function returns \c true if the heap is empty.
123 130
    bool empty() const { return _data.empty(); }
124 131

	
125
    /// \brief Make empty this heap.
132
    /// \brief Make the heap empty.
126 133
    ///
127
    /// Make empty this heap. It does not change the cross reference
128
    /// map.  If you want to reuse a heap what is not surely empty you
129
    /// should first clear the heap and after that you should set the
130
    /// cross reference map for each item to \c PRE_HEAP.
134
    /// This functon makes the heap empty.
135
    /// It does not change the cross reference map. If you want to reuse
136
    /// a heap that is not surely empty, you should first clear it and
137
    /// then you should set the cross reference map to \c PRE_HEAP
138
    /// for each item.
131 139
    void clear() {
132 140
      _data.clear(); _first.clear(); _minimum = 0;
133 141
    }
134 142

	
135 143
  private:
136 144

	
137
    void relocate_last(int idx) {
145
    void relocateLast(int idx) {
138 146
      if (idx + 1 < int(_data.size())) {
139 147
        _data[idx] = _data.back();
140 148
        if (_data[idx].prev != -1) {
141 149
          _data[_data[idx].prev].next = idx;
142 150
        } else {
143 151
          _first[_data[idx].value] = idx;
... ...
@@ -171,99 +179,105 @@
171 179
      }
172 180
      _first[_data[idx].value] = idx;
173 181
      _data[idx].prev = -1;
174 182
    }
175 183

	
176 184
  public:
185

	
177 186
    /// \brief Insert a pair of item and priority into the heap.
178 187
    ///
179
    /// Adds \c p.first to the heap with priority \c p.second.
188
    /// This function inserts \c p.first to the heap with priority
189
    /// \c p.second.
180 190
    /// \param p The pair to insert.
191
    /// \pre \c p.first must not be stored in the heap.
181 192
    void push(const Pair& p) {
182 193
      push(p.first, p.second);
183 194
    }
184 195

	
185 196
    /// \brief Insert an item into the heap with the given priority.
186 197
    ///
187
    /// Adds \c i to the heap with priority \c p.
198
    /// This function inserts the given item into the heap with the
199
    /// given priority.
188 200
    /// \param i The item to insert.
189 201
    /// \param p The priority of the item.
202
    /// \pre \e i must not be stored in the heap.
190 203
    void push(const Item &i, const Prio &p) {
191 204
      int idx = _data.size();
192 205
      _iim[i] = idx;
193 206
      _data.push_back(BucketItem(i, p));
194 207
      lace(idx);
195 208
      if (Direction::less(p, _minimum)) {
196 209
        _minimum = p;
197 210
      }
198 211
    }
199 212

	
200
    /// \brief Returns the item with minimum priority.
213
    /// \brief Return the item having minimum priority.
201 214
    ///
202
    /// This method returns the item with minimum priority.
203
    /// \pre The heap must be nonempty.
215
    /// This function returns the item having minimum priority.
216
    /// \pre The heap must be non-empty.
204 217
    Item top() const {
205 218
      while (_first[_minimum] == -1) {
206 219
        Direction::increase(_minimum);
207 220
      }
208 221
      return _data[_first[_minimum]].item;
209 222
    }
210 223

	
211
    /// \brief Returns the minimum priority.
224
    /// \brief The minimum priority.
212 225
    ///
213
    /// It returns the minimum priority.
214
    /// \pre The heap must be nonempty.
226
    /// This function returns the minimum priority.
227
    /// \pre The heap must be non-empty.
215 228
    Prio prio() const {
216 229
      while (_first[_minimum] == -1) {
217 230
        Direction::increase(_minimum);
218 231
      }
219 232
      return _minimum;
220 233
    }
221 234

	
222
    /// \brief Deletes the item with minimum priority.
235
    /// \brief Remove the item having minimum priority.
223 236
    ///
224
    /// This method deletes the item with minimum priority from the heap.
237
    /// This function removes the item having minimum priority.
225 238
    /// \pre The heap must be non-empty.
226 239
    void pop() {
227 240
      while (_first[_minimum] == -1) {
228 241
        Direction::increase(_minimum);
229 242
      }
230 243
      int idx = _first[_minimum];
231 244
      _iim[_data[idx].item] = -2;
232 245
      unlace(idx);
233
      relocate_last(idx);
246
      relocateLast(idx);
234 247
    }
235 248

	
236
    /// \brief Deletes \c i from the heap.
249
    /// \brief Remove the given item from the heap.
237 250
    ///
238
    /// This method deletes item \c i from the heap, if \c i was
239
    /// already stored in the heap.
240
    /// \param i The item to erase.
251
    /// This function removes the given item from the heap if it is
252
    /// already stored.
253
    /// \param i The item to delete.
254
    /// \pre \e i must be in the heap.
241 255
    void erase(const Item &i) {
242 256
      int idx = _iim[i];
243 257
      _iim[_data[idx].item] = -2;
244 258
      unlace(idx);
245
      relocate_last(idx);
259
      relocateLast(idx);
246 260
    }
247 261

	
248

	
249
    /// \brief Returns the priority of \c i.
262
    /// \brief The priority of the given item.
250 263
    ///
251
    /// This function returns the priority of item \c i.
252
    /// \pre \c i must be in the heap.
264
    /// This function returns the priority of the given item.
253 265
    /// \param i The item.
266
    /// \pre \e i must be in the heap.
254 267
    Prio operator[](const Item &i) const {
255 268
      int idx = _iim[i];
256 269
      return _data[idx].value;
257 270
    }
258 271

	
259
    /// \brief \c i gets to the heap with priority \c p independently
260
    /// if \c i was already there.
272
    /// \brief Set the priority of an item or insert it, if it is
273
    /// not stored in the heap.
261 274
    ///
262
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
263
    /// in the heap and sets the priority of \c i to \c p otherwise.
275
    /// This method sets the priority of the given item if it is
276
    /// already stored in the heap. Otherwise it inserts the given
277
    /// item into the heap with the given priority.
264 278
    /// \param i The item.
265 279
    /// \param p The priority.
266 280
    void set(const Item &i, const Prio &p) {
267 281
      int idx = _iim[i];
268 282
      if (idx < 0) {
269 283
        push(i, p);
... ...
@@ -271,62 +285,60 @@
271 285
        decrease(i, p);
272 286
      } else {
273 287
        increase(i, p);
274 288
      }
275 289
    }
276 290

	
277
    /// \brief Decreases the priority of \c i to \c p.
291
    /// \brief Decrease the priority of an item to the given value.
278 292
    ///
279
    /// This method decreases the priority of item \c i to \c p.
280
    /// \pre \c i must be stored in the heap with priority at least \c
281
    /// p relative to \c Compare.
293
    /// This function decreases the priority of an item to the given value.
282 294
    /// \param i The item.
283 295
    /// \param p The priority.
296
    /// \pre \e i must be stored in the heap with priority at least \e p.
284 297
    void decrease(const Item &i, const Prio &p) {
285 298
      int idx = _iim[i];
286 299
      unlace(idx);
287 300
      _data[idx].value = p;
288 301
      if (Direction::less(p, _minimum)) {
289 302
        _minimum = p;
290 303
      }
291 304
      lace(idx);
292 305
    }
293 306

	
294
    /// \brief Increases the priority of \c i to \c p.
307
    /// \brief Increase the priority of an item to the given value.
295 308
    ///
296
    /// This method sets the priority of item \c i to \c p.
297
    /// \pre \c i must be stored in the heap with priority at most \c
298
    /// p relative to \c Compare.
309
    /// This function increases the priority of an item to the given value.
299 310
    /// \param i The item.
300 311
    /// \param p The priority.
312
    /// \pre \e i must be stored in the heap with priority at most \e p.
301 313
    void increase(const Item &i, const Prio &p) {
302 314
      int idx = _iim[i];
303 315
      unlace(idx);
304 316
      _data[idx].value = p;
305 317
      lace(idx);
306 318
    }
307 319

	
308
    /// \brief Returns if \c item is in, has already been in, or has
309
    /// never been in the heap.
320
    /// \brief Return the state of an item.
310 321
    ///
311
    /// This method returns PRE_HEAP if \c item has never been in the
312
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
313
    /// otherwise. In the latter case it is possible that \c item will
314
    /// get back to the heap again.
322
    /// This method returns \c PRE_HEAP if the given item has never
323
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
324
    /// and \c POST_HEAP otherwise.
325
    /// In the latter case it is possible that the item will get back
326
    /// to the heap again.
315 327
    /// \param i The item.
316 328
    State state(const Item &i) const {
317 329
      int idx = _iim[i];
318 330
      if (idx >= 0) idx = 0;
319 331
      return State(idx);
320 332
    }
321 333

	
322
    /// \brief Sets the state of the \c item in the heap.
334
    /// \brief Set the state of an item in the heap.
323 335
    ///
324
    /// Sets the state of the \c item in the heap. It can be used to
325
    /// manually clear the heap when it is important to achive the
326
    /// better time complexity.
336
    /// This function sets the state of the given item in the heap.
337
    /// It can be used to manually clear the heap when it is important
338
    /// to achive better time complexity.
327 339
    /// \param i The item.
328 340
    /// \param st The state. It should not be \c IN_HEAP.
329 341
    void state(const Item& i, State st) {
330 342
      switch (st) {
331 343
      case POST_HEAP:
332 344
      case PRE_HEAP:
... ...
@@ -356,104 +368,120 @@
356 368
    std::vector<int> _first;
357 369
    std::vector<BucketItem> _data;
358 370
    mutable int _minimum;
359 371

	
360 372
  }; // class BucketHeap
361 373

	
362
  /// \ingroup auxdat
374
  /// \ingroup heaps
363 375
  ///
364
  /// \brief A Simplified Bucket Heap implementation.
376
  /// \brief Simplified bucket heap data structure.
365 377
  ///
366 378
  /// This class implements a simplified \e bucket \e heap data
367
  /// structure.  It does not provide some functionality but it faster
368
  /// and simplier data structure than the BucketHeap. The main
369
  /// difference is that the BucketHeap stores for every key a double
370
  /// linked list while this class stores just simple lists. In the
371
  /// other way it does not support erasing each elements just the
372
  /// minimal and it does not supports key increasing, decreasing.
379
  /// structure. It does not provide some functionality, but it is
380
  /// faster and simpler than BucketHeap. The main difference is
381
  /// that BucketHeap stores a doubly-linked list for each key while
382
  /// this class stores only simply-linked lists. It supports erasing
383
  /// only for the item having minimum priority and it does not support
384
  /// key increasing and decreasing.
373 385
  ///
374
  /// \param IM A read and write Item int map, used internally
375
  /// to handle the cross references.
376
  /// \param MIN If the given parameter is false then instead of the
377
  /// minimum value the maximum can be retrivied with the top() and
378
  /// prio() member functions.
386
  /// Note that this implementation does not conform to the
387
  /// \ref concepts::Heap "heap concept" due to the lack of some 
388
  /// functionality.
389
  ///
390
  /// \tparam IM A read-writable item map with \c int values, used
391
  /// internally to handle the cross references.
392
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
393
  /// The default is \e min-heap. If this parameter is set to \c false,
394
  /// then the comparison is reversed, so the top(), prio() and pop()
395
  /// functions deal with the item having maximum priority instead of the
396
  /// minimum.
379 397
  ///
380 398
  /// \sa BucketHeap
381 399
  template <typename IM, bool MIN = true >
382 400
  class SimpleBucketHeap {
383 401

	
384 402
  public:
385
    typedef typename IM::Key Item;
403

	
404
    /// Type of the item-int map.
405
    typedef IM ItemIntMap;
406
    /// Type of the priorities.
386 407
    typedef int Prio;
387
    typedef std::pair<Item, Prio> Pair;
388
    typedef IM ItemIntMap;
408
    /// Type of the items stored in the heap.
409
    typedef typename ItemIntMap::Key Item;
410
    /// Type of the item-priority pairs.
411
    typedef std::pair<Item,Prio> Pair;
389 412

	
390 413
  private:
391 414

	
392 415
    typedef _bucket_heap_bits::DirectionTraits<MIN> Direction;
393 416

	
394 417
  public:
395 418

	
396
    /// \brief Type to represent the items states.
419
    /// \brief Type to represent the states of the items.
397 420
    ///
398
    /// Each Item element have a state associated to it. It may be "in heap",
399
    /// "pre heap" or "post heap". The latter two are indifferent from the
421
    /// Each item has a state associated to it. It can be "in heap",
422
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
400 423
    /// heap's point of view, but may be useful to the user.
401 424
    ///
402 425
    /// The item-int map must be initialized in such way that it assigns
403 426
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
404 427
    enum State {
405 428
      IN_HEAP = 0,    ///< = 0.
406 429
      PRE_HEAP = -1,  ///< = -1.
407 430
      POST_HEAP = -2  ///< = -2.
408 431
    };
409 432

	
410 433
  public:
411 434

	
412
    /// \brief The constructor.
435
    /// \brief Constructor.
413 436
    ///
414
    /// The constructor.
415
    /// \param map should be given to the constructor, since it is used
416
    /// internally to handle the cross references. The value of the map
417
    /// should be PRE_HEAP (-1) for each element.
437
    /// Constructor.
438
    /// \param map A map that assigns \c int values to the items.
439
    /// It is used internally to handle the cross references.
440
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
418 441
    explicit SimpleBucketHeap(ItemIntMap &map)
419 442
      : _iim(map), _free(-1), _num(0), _minimum(0) {}
420 443

	
421
    /// \brief Returns the number of items stored in the heap.
444
    /// \brief The number of items stored in the heap.
422 445
    ///
423
    /// The number of items stored in the heap.
446
    /// This function returns the number of items stored in the heap.
424 447
    int size() const { return _num; }
425 448

	
426
    /// \brief Checks if the heap stores no items.
449
    /// \brief Check if the heap is empty.
427 450
    ///
428
    /// Returns \c true if and only if the heap stores no items.
451
    /// This function returns \c true if the heap is empty.
429 452
    bool empty() const { return _num == 0; }
430 453

	
431
    /// \brief Make empty this heap.
454
    /// \brief Make the heap empty.
432 455
    ///
433
    /// Make empty this heap. It does not change the cross reference
434
    /// map.  If you want to reuse a heap what is not surely empty you
435
    /// should first clear the heap and after that you should set the
436
    /// cross reference map for each item to \c PRE_HEAP.
456
    /// This functon makes the heap empty.
457
    /// It does not change the cross reference map. If you want to reuse
458
    /// a heap that is not surely empty, you should first clear it and
459
    /// then you should set the cross reference map to \c PRE_HEAP
460
    /// for each item.
437 461
    void clear() {
438 462
      _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0;
439 463
    }
440 464

	
441 465
    /// \brief Insert a pair of item and priority into the heap.
442 466
    ///
443
    /// Adds \c p.first to the heap with priority \c p.second.
467
    /// This function inserts \c p.first to the heap with priority
468
    /// \c p.second.
444 469
    /// \param p The pair to insert.
470
    /// \pre \c p.first must not be stored in the heap.
445 471
    void push(const Pair& p) {
446 472
      push(p.first, p.second);
447 473
    }
448 474

	
449 475
    /// \brief Insert an item into the heap with the given priority.
450 476
    ///
451
    /// Adds \c i to the heap with priority \c p.
477
    /// This function inserts the given item into the heap with the
478
    /// given priority.
452 479
    /// \param i The item to insert.
453 480
    /// \param p The priority of the item.
481
    /// \pre \e i must not be stored in the heap.
454 482
    void push(const Item &i, const Prio &p) {
455 483
      int idx;
456 484
      if (_free == -1) {
457 485
        idx = _data.size();
458 486
        _data.push_back(BucketItem(i));
459 487
      } else {
... ...
@@ -468,37 +496,37 @@
468 496
      if (Direction::less(p, _minimum)) {
469 497
        _minimum = p;
470 498
      }
471 499
      ++_num;
472 500
    }
473 501

	
474
    /// \brief Returns the item with minimum priority.
502
    /// \brief Return the item having minimum priority.
475 503
    ///
476
    /// This method returns the item with minimum priority.
477
    /// \pre The heap must be nonempty.
504
    /// This function returns the item having minimum priority.
505
    /// \pre The heap must be non-empty.
478 506
    Item top() const {
479 507
      while (_first[_minimum] == -1) {
480 508
        Direction::increase(_minimum);
481 509
      }
482 510
      return _data[_first[_minimum]].item;
483 511
    }
484 512

	
485
    /// \brief Returns the minimum priority.
513
    /// \brief The minimum priority.
486 514
    ///
487
    /// It returns the minimum priority.
488
    /// \pre The heap must be nonempty.
515
    /// This function returns the minimum priority.
516
    /// \pre The heap must be non-empty.
489 517
    Prio prio() const {
490 518
      while (_first[_minimum] == -1) {
491 519
        Direction::increase(_minimum);
492 520
      }
493 521
      return _minimum;
494 522
    }
495 523

	
496
    /// \brief Deletes the item with minimum priority.
524
    /// \brief Remove the item having minimum priority.
497 525
    ///
498
    /// This method deletes the item with minimum priority from the heap.
526
    /// This function removes the item having minimum priority.
499 527
    /// \pre The heap must be non-empty.
500 528
    void pop() {
501 529
      while (_first[_minimum] == -1) {
502 530
        Direction::increase(_minimum);
503 531
      }
504 532
      int idx = _first[_minimum];
... ...
@@ -506,40 +534,39 @@
506 534
      _first[_minimum] = _data[idx].next;
507 535
      _data[idx].next = _free;
508 536
      _free = idx;
509 537
      --_num;
510 538
    }
511 539

	
512
    /// \brief Returns the priority of \c i.
540
    /// \brief The priority of the given item.
513 541
    ///
514
    /// This function returns the priority of item \c i.
515
    /// \warning This operator is not a constant time function
516
    /// because it scans the whole data structure to find the proper
517
    /// value.
518
    /// \pre \c i must be in the heap.
542
    /// This function returns the priority of the given item.
519 543
    /// \param i The item.
544
    /// \pre \e i must be in the heap.
545
    /// \warning This operator is not a constant time function because
546
    /// it scans the whole data structure to find the proper value.
520 547
    Prio operator[](const Item &i) const {
521
      for (int k = 0; k < _first.size(); ++k) {
548
      for (int k = 0; k < int(_first.size()); ++k) {
522 549
        int idx = _first[k];
523 550
        while (idx != -1) {
524 551
          if (_data[idx].item == i) {
525 552
            return k;
526 553
          }
527 554
          idx = _data[idx].next;
528 555
        }
529 556
      }
530 557
      return -1;
531 558
    }
532 559

	
533
    /// \brief Returns if \c item is in, has already been in, or has
534
    /// never been in the heap.
560
    /// \brief Return the state of an item.
535 561
    ///
536
    /// This method returns PRE_HEAP if \c item has never been in the
537
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
538
    /// otherwise. In the latter case it is possible that \c item will
539
    /// get back to the heap again.
562
    /// This method returns \c PRE_HEAP if the given item has never
563
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
564
    /// and \c POST_HEAP otherwise.
565
    /// In the latter case it is possible that the item will get back
566
    /// to the heap again.
540 567
    /// \param i The item.
541 568
    State state(const Item &i) const {
542 569
      int idx = _iim[i];
543 570
      if (idx >= 0) idx = 0;
544 571
      return State(idx);
545 572
    }
Ignore white space 6 line context
... ...
@@ -13,46 +13,52 @@
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_CONCEPTS_HEAP_H
20
#define LEMON_CONCEPTS_HEAP_H
21

	
19 22
///\ingroup concept
20 23
///\file
21 24
///\brief The concept of heaps.
22 25

	
23
#ifndef LEMON_CONCEPTS_HEAP_H
24
#define LEMON_CONCEPTS_HEAP_H
25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/concept_check.h>
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  namespace concepts {
32 32

	
33 33
    /// \addtogroup concept
34 34
    /// @{
35 35

	
36 36
    /// \brief The heap concept.
37 37
    ///
38
    /// Concept class describing the main interface of heaps. A \e heap
39
    /// is a data structure for storing items with specified values called
40
    /// \e priorities in such a way that finding the item with minimum
41
    /// priority is efficient. In a heap one can change the priority of an
42
    /// item, add or erase an item, etc.
38
    /// This concept class describes the main interface of heaps.
39
    /// The various \ref heaps "heap structures" are efficient
40
    /// implementations of the abstract data type \e priority \e queue.
41
    /// They store items with specified values called \e priorities
42
    /// in such a way that finding and removing the item with minimum
43
    /// priority are efficient. The basic operations are adding and
44
    /// erasing items, changing the priority of an item, etc.
43 45
    ///
44
    /// \tparam PR Type of the priority of the items.
45
    /// \tparam IM A read and writable item map with int values, used
46
    /// Heaps are crucial in several algorithms, such as Dijkstra and Prim.
47
    /// Any class that conforms to this concept can be used easily in such
48
    /// algorithms.
49
    ///
50
    /// \tparam PR Type of the priorities of the items.
51
    /// \tparam IM A read-writable item map with \c int values, used
46 52
    /// internally to handle the cross references.
47
    /// \tparam Comp A functor class for the ordering of the priorities.
53
    /// \tparam CMP A functor class for comparing the priorities.
48 54
    /// The default is \c std::less<PR>.
49 55
#ifdef DOXYGEN
50
    template <typename PR, typename IM, typename Comp = std::less<PR> >
56
    template <typename PR, typename IM, typename CMP>
51 57
#else
52
    template <typename PR, typename IM>
58
    template <typename PR, typename IM, typename CMP = std::less<PR> >
53 59
#endif
54 60
    class Heap {
55 61
    public:
56 62

	
57 63
      /// Type of the item-int map.
58 64
      typedef IM ItemIntMap;
... ...
@@ -61,129 +67,145 @@
61 67
      /// Type of the items stored in the heap.
62 68
      typedef typename ItemIntMap::Key Item;
63 69

	
64 70
      /// \brief Type to represent the states of the items.
65 71
      ///
66 72
      /// Each item has a state associated to it. It can be "in heap",
67
      /// "pre heap" or "post heap". The later two are indifferent
68
      /// from the point of view of the heap, but may be useful for
69
      /// the user.
73
      /// "pre-heap" or "post-heap". The latter two are indifferent from the
74
      /// heap's point of view, but may be useful to the user.
70 75
      ///
71 76
      /// The item-int map must be initialized in such way that it assigns
72 77
      /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
73 78
      enum State {
74 79
        IN_HEAP = 0,    ///< = 0. The "in heap" state constant.
75
        PRE_HEAP = -1,  ///< = -1. The "pre heap" state constant.
76
        POST_HEAP = -2  ///< = -2. The "post heap" state constant.
80
        PRE_HEAP = -1,  ///< = -1. The "pre-heap" state constant.
81
        POST_HEAP = -2  ///< = -2. The "post-heap" state constant.
77 82
      };
78 83

	
79
      /// \brief The constructor.
84
      /// \brief Constructor.
80 85
      ///
81
      /// The constructor.
86
      /// Constructor.
82 87
      /// \param map A map that assigns \c int values to keys of type
83 88
      /// \c Item. It is used internally by the heap implementations to
84 89
      /// handle the cross references. The assigned value must be
85
      /// \c PRE_HEAP (<tt>-1</tt>) for every item.
90
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
86 91
      explicit Heap(ItemIntMap &map) {}
87 92

	
93
      /// \brief Constructor.
94
      ///
95
      /// Constructor.
96
      /// \param map A map that assigns \c int values to keys of type
97
      /// \c Item. It is used internally by the heap implementations to
98
      /// handle the cross references. The assigned value must be
99
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
100
      /// \param comp The function object used for comparing the priorities.
101
      explicit Heap(ItemIntMap &map, const CMP &comp) {}
102

	
88 103
      /// \brief The number of items stored in the heap.
89 104
      ///
90
      /// Returns the number of items stored in the heap.
105
      /// This function returns the number of items stored in the heap.
91 106
      int size() const { return 0; }
92 107

	
93
      /// \brief Checks if the heap is empty.
108
      /// \brief Check if the heap is empty.
94 109
      ///
95
      /// Returns \c true if the heap is empty.
110
      /// This function returns \c true if the heap is empty.
96 111
      bool empty() const { return false; }
97 112

	
98
      /// \brief Makes the heap empty.
113
      /// \brief Make the heap empty.
99 114
      ///
100
      /// Makes the heap empty.
101
      void clear();
115
      /// This functon makes the heap empty.
116
      /// It does not change the cross reference map. If you want to reuse
117
      /// a heap that is not surely empty, you should first clear it and
118
      /// then you should set the cross reference map to \c PRE_HEAP
119
      /// for each item.
120
      void clear() {}
102 121

	
103
      /// \brief Inserts an item into the heap with the given priority.
122
      /// \brief Insert an item into the heap with the given priority.
104 123
      ///
105
      /// Inserts the given item into the heap with the given priority.
124
      /// This function inserts the given item into the heap with the
125
      /// given priority.
106 126
      /// \param i The item to insert.
107 127
      /// \param p The priority of the item.
128
      /// \pre \e i must not be stored in the heap.
108 129
      void push(const Item &i, const Prio &p) {}
109 130

	
110
      /// \brief Returns the item having minimum priority.
131
      /// \brief Return the item having minimum priority.
111 132
      ///
112
      /// Returns the item having minimum priority.
133
      /// This function returns the item having minimum priority.
113 134
      /// \pre The heap must be non-empty.
114 135
      Item top() const {}
115 136

	
116 137
      /// \brief The minimum priority.
117 138
      ///
118
      /// Returns the minimum priority.
139
      /// This function returns the minimum priority.
119 140
      /// \pre The heap must be non-empty.
120 141
      Prio prio() const {}
121 142

	
122
      /// \brief Removes the item having minimum priority.
143
      /// \brief Remove the item having minimum priority.
123 144
      ///
124
      /// Removes the item having minimum priority.
145
      /// This function removes the item having minimum priority.
125 146
      /// \pre The heap must be non-empty.
126 147
      void pop() {}
127 148

	
128
      /// \brief Removes an item from the heap.
149
      /// \brief Remove the given item from the heap.
129 150
      ///
130
      /// Removes the given item from the heap if it is already stored.
151
      /// This function removes the given item from the heap if it is
152
      /// already stored.
131 153
      /// \param i The item to delete.
154
      /// \pre \e i must be in the heap.
132 155
      void erase(const Item &i) {}
133 156

	
134
      /// \brief The priority of an item.
157
      /// \brief The priority of the given item.
135 158
      ///
136
      /// Returns the priority of the given item.
159
      /// This function returns the priority of the given item.
137 160
      /// \param i The item.
138
      /// \pre \c i must be in the heap.
161
      /// \pre \e i must be in the heap.
139 162
      Prio operator[](const Item &i) const {}
140 163

	
141
      /// \brief Sets the priority of an item or inserts it, if it is
164
      /// \brief Set the priority of an item or insert it, if it is
142 165
      /// not stored in the heap.
143 166
      ///
144 167
      /// This method sets the priority of the given item if it is
145
      /// already stored in the heap.
146
      /// Otherwise it inserts the given item with the given priority.
168
      /// already stored in the heap. Otherwise it inserts the given
169
      /// item into the heap with the given priority.
147 170
      ///
148 171
      /// \param i The item.
149 172
      /// \param p The priority.
150 173
      void set(const Item &i, const Prio &p) {}
151 174

	
152
      /// \brief Decreases the priority of an item to the given value.
175
      /// \brief Decrease the priority of an item to the given value.
153 176
      ///
154
      /// Decreases the priority of an item to the given value.
177
      /// This function decreases the priority of an item to the given value.
155 178
      /// \param i The item.
156 179
      /// \param p The priority.
157
      /// \pre \c i must be stored in the heap with priority at least \c p.
180
      /// \pre \e i must be stored in the heap with priority at least \e p.
158 181
      void decrease(const Item &i, const Prio &p) {}
159 182

	
160
      /// \brief Increases the priority of an item to the given value.
183
      /// \brief Increase the priority of an item to the given value.
161 184
      ///
162
      /// Increases the priority of an item to the given value.
185
      /// This function increases the priority of an item to the given value.
163 186
      /// \param i The item.
164 187
      /// \param p The priority.
165
      /// \pre \c i must be stored in the heap with priority at most \c p.
188
      /// \pre \e i must be stored in the heap with priority at most \e p.
166 189
      void increase(const Item &i, const Prio &p) {}
167 190

	
168
      /// \brief Returns if an item is in, has already been in, or has
169
      /// never been in the heap.
191
      /// \brief Return the state of an item.
170 192
      ///
171 193
      /// This method returns \c PRE_HEAP if the given item has never
172 194
      /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
173 195
      /// and \c POST_HEAP otherwise.
174 196
      /// In the latter case it is possible that the item will get back
175 197
      /// to the heap again.
176 198
      /// \param i The item.
177 199
      State state(const Item &i) const {}
178 200

	
179
      /// \brief Sets the state of an item in the heap.
201
      /// \brief Set the state of an item in the heap.
180 202
      ///
181
      /// Sets the state of the given item in the heap. It can be used
182
      /// to manually clear the heap when it is important to achive the
183
      /// better time complexity.
203
      /// This function sets the state of the given item in the heap.
204
      /// It can be used to manually clear the heap when it is important
205
      /// to achive better time complexity.
184 206
      /// \param i The item.
185 207
      /// \param st The state. It should not be \c IN_HEAP.
186 208
      void state(const Item& i, State st) {}
187 209

	
188 210

	
189 211
      template <typename _Heap>
Ignore white space 6 line context
... ...
@@ -17,59 +17,55 @@
17 17
 */
18 18

	
19 19
#ifndef LEMON_FIB_HEAP_H
20 20
#define LEMON_FIB_HEAP_H
21 21

	
22 22
///\file
23
///\ingroup auxdat
24
///\brief Fibonacci Heap implementation.
23
///\ingroup heaps
24
///\brief Fibonacci heap implementation.
25 25

	
26 26
#include <vector>
27
#include <utility>
27 28
#include <functional>
28 29
#include <lemon/math.h>
29 30

	
30 31
namespace lemon {
31 32

	
32
  /// \ingroup auxdat
33
  /// \ingroup heaps
33 34
  ///
34
  ///\brief Fibonacci Heap.
35
  /// \brief Fibonacci heap data structure.
35 36
  ///
36
  ///This class implements the \e Fibonacci \e heap data structure. A \e heap
37
  ///is a data structure for storing items with specified values called \e
38
  ///priorities in such a way that finding the item with minimum priority is
39
  ///efficient. \c CMP specifies the ordering of the priorities. In a heap
40
  ///one can change the priority of an item, add or erase an item, etc.
37
  /// This class implements the \e Fibonacci \e heap data structure.
38
  /// It fully conforms to the \ref concepts::Heap "heap concept".
41 39
  ///
42
  ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
43
  ///heap. In case of many calls to these operations, it is better to use a
44
  ///\ref BinHeap "binary heap".
40
  /// The methods \ref increase() and \ref erase() are not efficient in a
41
  /// Fibonacci heap. In case of many calls of these operations, it is
42
  /// better to use other heap structure, e.g. \ref BinHeap "binary heap".
45 43
  ///
46
  ///\param PRIO Type of the priority of the items.
47
  ///\param IM A read and writable Item int map, used internally
48
  ///to handle the cross references.
49
  ///\param CMP A class for the ordering of the priorities. The
50
  ///default is \c std::less<PRIO>.
51
  ///
52
  ///\sa BinHeap
53
  ///\sa Dijkstra
44
  /// \tparam PR Type of the priorities of the items.
45
  /// \tparam IM A read-writable item map with \c int values, used
46
  /// internally to handle the cross references.
47
  /// \tparam CMP A functor class for comparing the priorities.
48
  /// The default is \c std::less<PR>.
54 49
#ifdef DOXYGEN
55
  template <typename PRIO, typename IM, typename CMP>
50
  template <typename PR, typename IM, typename CMP>
56 51
#else
57
  template <typename PRIO, typename IM, typename CMP = std::less<PRIO> >
52
  template <typename PR, typename IM, typename CMP = std::less<PR> >
58 53
#endif
59 54
  class FibHeap {
60 55
  public:
61
    ///\e
56

	
57
    /// Type of the item-int map.
62 58
    typedef IM ItemIntMap;
63
    ///\e
64
    typedef PRIO Prio;
65
    ///\e
59
    /// Type of the priorities.
60
    typedef PR Prio;
61
    /// Type of the items stored in the heap.
66 62
    typedef typename ItemIntMap::Key Item;
67
    ///\e
63
    /// Type of the item-priority pairs.
68 64
    typedef std::pair<Item,Prio> Pair;
69
    ///\e
65
    /// Functor type for comparing the priorities.
70 66
    typedef CMP Compare;
71 67

	
72 68
  private:
73 69
    class Store;
74 70

	
75 71
    std::vector<Store> _data;
... ...
@@ -77,80 +73,74 @@
77 73
    ItemIntMap &_iim;
78 74
    Compare _comp;
79 75
    int _num;
80 76

	
81 77
  public:
82 78

	
83
    /// \brief Type to represent the items states.
79
    /// \brief Type to represent the states of the items.
84 80
    ///
85
    /// Each Item element have a state associated to it. It may be "in heap",
86
    /// "pre heap" or "post heap". The latter two are indifferent from the
81
    /// Each item has a state associated to it. It can be "in heap",
82
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
87 83
    /// heap's point of view, but may be useful to the user.
88 84
    ///
89 85
    /// The item-int map must be initialized in such way that it assigns
90 86
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
91 87
    enum State {
92 88
      IN_HEAP = 0,    ///< = 0.
93 89
      PRE_HEAP = -1,  ///< = -1.
94 90
      POST_HEAP = -2  ///< = -2.
95 91
    };
96 92

	
97
    /// \brief The constructor
93
    /// \brief Constructor.
98 94
    ///
99
    /// \c map should be given to the constructor, since it is
100
    ///   used internally to handle the cross references.
95
    /// Constructor.
96
    /// \param map A map that assigns \c int values to the items.
97
    /// It is used internally to handle the cross references.
98
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
101 99
    explicit FibHeap(ItemIntMap &map)
102 100
      : _minimum(0), _iim(map), _num() {}
103 101

	
104
    /// \brief The constructor
102
    /// \brief Constructor.
105 103
    ///
106
    /// \c map should be given to the constructor, since it is used
107
    /// internally to handle the cross references. \c comp is an
108
    /// object for ordering of the priorities.
104
    /// Constructor.
105
    /// \param map A map that assigns \c int values to the items.
106
    /// It is used internally to handle the cross references.
107
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
108
    /// \param comp The function object used for comparing the priorities.
109 109
    FibHeap(ItemIntMap &map, const Compare &comp)
110 110
      : _minimum(0), _iim(map), _comp(comp), _num() {}
111 111

	
112 112
    /// \brief The number of items stored in the heap.
113 113
    ///
114
    /// Returns the number of items stored in the heap.
114
    /// This function returns the number of items stored in the heap.
115 115
    int size() const { return _num; }
116 116

	
117
    /// \brief Checks if the heap stores no items.
117
    /// \brief Check if the heap is empty.
118 118
    ///
119
    ///   Returns \c true if and only if the heap stores no items.
119
    /// This function returns \c true if the heap is empty.
120 120
    bool empty() const { return _num==0; }
121 121

	
122
    /// \brief Make empty this heap.
122
    /// \brief Make the heap empty.
123 123
    ///
124
    /// Make empty this heap. It does not change the cross reference
125
    /// map.  If you want to reuse a heap what is not surely empty you
126
    /// should first clear the heap and after that you should set the
127
    /// cross reference map for each item to \c PRE_HEAP.
124
    /// This functon makes the heap empty.
125
    /// It does not change the cross reference map. If you want to reuse
126
    /// a heap that is not surely empty, you should first clear it and
127
    /// then you should set the cross reference map to \c PRE_HEAP
128
    /// for each item.
128 129
    void clear() {
129 130
      _data.clear(); _minimum = 0; _num = 0;
130 131
    }
131 132

	
132
    /// \brief \c item gets to the heap with priority \c value independently
133
    /// if \c item was already there.
133
    /// \brief Insert an item into the heap with the given priority.
134 134
    ///
135
    /// This method calls \ref push(\c item, \c value) if \c item is not
136
    /// stored in the heap and it calls \ref decrease(\c item, \c value) or
137
    /// \ref increase(\c item, \c value) otherwise.
138
    void set (const Item& item, const Prio& value) {
139
      int i=_iim[item];
140
      if ( i >= 0 && _data[i].in ) {
141
        if ( _comp(value, _data[i].prio) ) decrease(item, value);
142
        if ( _comp(_data[i].prio, value) ) increase(item, value);
143
      } else push(item, value);
144
    }
145

	
146
    /// \brief Adds \c item to the heap with priority \c value.
147
    ///
148
    /// Adds \c item to the heap with priority \c value.
149
    /// \pre \c item must not be stored in the heap.
150
    void push (const Item& item, const Prio& value) {
135
    /// This function inserts the given item into the heap with the
136
    /// given priority.
137
    /// \param item The item to insert.
138
    /// \param prio The priority of the item.
139
    /// \pre \e item must not be stored in the heap.
140
    void push (const Item& item, const Prio& prio) {
151 141
      int i=_iim[item];
152 142
      if ( i < 0 ) {
153 143
        int s=_data.size();
154 144
        _iim.set( item, s );
155 145
        Store st;
156 146
        st.name=item;
... ...
@@ -165,82 +155,74 @@
165 155

	
166 156
      if ( _num ) {
167 157
        _data[_data[_minimum].right_neighbor].left_neighbor=i;
168 158
        _data[i].right_neighbor=_data[_minimum].right_neighbor;
169 159
        _data[_minimum].right_neighbor=i;
170 160
        _data[i].left_neighbor=_minimum;
171
        if ( _comp( value, _data[_minimum].prio) ) _minimum=i;
161
        if ( _comp( prio, _data[_minimum].prio) ) _minimum=i;
172 162
      } else {
173 163
        _data[i].right_neighbor=_data[i].left_neighbor=i;
174 164
        _minimum=i;
175 165
      }
176
      _data[i].prio=value;
166
      _data[i].prio=prio;
177 167
      ++_num;
178 168
    }
179 169

	
180
    /// \brief Returns the item with minimum priority relative to \c Compare.
170
    /// \brief Return the item having minimum priority.
181 171
    ///
182
    /// This method returns the item with minimum priority relative to \c
183
    /// Compare.
184
    /// \pre The heap must be nonempty.
172
    /// This function returns the item having minimum priority.
173
    /// \pre The heap must be non-empty.
185 174
    Item top() const { return _data[_minimum].name; }
186 175

	
187
    /// \brief Returns the minimum priority relative to \c Compare.
176
    /// \brief The minimum priority.
188 177
    ///
189
    /// It returns the minimum priority relative to \c Compare.
190
    /// \pre The heap must be nonempty.
191
    const Prio& prio() const { return _data[_minimum].prio; }
178
    /// This function returns the minimum priority.
179
    /// \pre The heap must be non-empty.
180
    Prio prio() const { return _data[_minimum].prio; }
192 181

	
193
    /// \brief Returns the priority of \c item.
182
    /// \brief Remove the item having minimum priority.
194 183
    ///
195
    /// It returns the priority of \c item.
196
    /// \pre \c item must be in the heap.
197
    const Prio& operator[](const Item& item) const {
198
      return _data[_iim[item]].prio;
199
    }
200

	
201
    /// \brief Deletes the item with minimum priority relative to \c Compare.
202
    ///
203
    /// This method deletes the item with minimum priority relative to \c
204
    /// Compare from the heap.
184
    /// This function removes the item having minimum priority.
205 185
    /// \pre The heap must be non-empty.
206 186
    void pop() {
207 187
      /*The first case is that there are only one root.*/
208 188
      if ( _data[_minimum].left_neighbor==_minimum ) {
209 189
        _data[_minimum].in=false;
210 190
        if ( _data[_minimum].degree!=0 ) {
211
          makeroot(_data[_minimum].child);
191
          makeRoot(_data[_minimum].child);
212 192
          _minimum=_data[_minimum].child;
213 193
          balance();
214 194
        }
215 195
      } else {
216 196
        int right=_data[_minimum].right_neighbor;
217 197
        unlace(_minimum);
218 198
        _data[_minimum].in=false;
219 199
        if ( _data[_minimum].degree > 0 ) {
220 200
          int left=_data[_minimum].left_neighbor;
221 201
          int child=_data[_minimum].child;
222 202
          int last_child=_data[child].left_neighbor;
223 203

	
224
          makeroot(child);
204
          makeRoot(child);
225 205

	
226 206
          _data[left].right_neighbor=child;
227 207
          _data[child].left_neighbor=left;
228 208
          _data[right].left_neighbor=last_child;
229 209
          _data[last_child].right_neighbor=right;
230 210
        }
231 211
        _minimum=right;
232 212
        balance();
233 213
      } // the case where there are more roots
234 214
      --_num;
235 215
    }
236 216

	
237
    /// \brief Deletes \c item from the heap.
217
    /// \brief Remove the given item from the heap.
238 218
    ///
239
    /// This method deletes \c item from the heap, if \c item was already
240
    /// stored in the heap. It is quite inefficient in Fibonacci heaps.
219
    /// This function removes the given item from the heap if it is
220
    /// already stored.
221
    /// \param item The item to delete.
222
    /// \pre \e item must be in the heap.
241 223
    void erase (const Item& item) {
242 224
      int i=_iim[item];
243 225

	
244 226
      if ( i >= 0 && _data[i].in ) {
245 227
        if ( _data[i].parent!=-1 ) {
246 228
          int p=_data[i].parent;
... ...
@@ -249,63 +231,88 @@
249 231
        }
250 232
        _minimum=i;     //As if its prio would be -infinity
251 233
        pop();
252 234
      }
253 235
    }
254 236

	
255
    /// \brief Decreases the priority of \c item to \c value.
237
    /// \brief The priority of the given item.
256 238
    ///
257
    /// This method decreases the priority of \c item to \c value.
258
    /// \pre \c item must be stored in the heap with priority at least \c
259
    ///   value relative to \c Compare.
260
    void decrease (Item item, const Prio& value) {
239
    /// This function returns the priority of the given item.
240
    /// \param item The item.
241
    /// \pre \e item must be in the heap.
242
    Prio operator[](const Item& item) const {
243
      return _data[_iim[item]].prio;
244
    }
245

	
246
    /// \brief Set the priority of an item or insert it, if it is
247
    /// not stored in the heap.
248
    ///
249
    /// This method sets the priority of the given item if it is
250
    /// already stored in the heap. Otherwise it inserts the given
251
    /// item into the heap with the given priority.
252
    /// \param item The item.
253
    /// \param prio The priority.
254
    void set (const Item& item, const Prio& prio) {
261 255
      int i=_iim[item];
262
      _data[i].prio=value;
256
      if ( i >= 0 && _data[i].in ) {
257
        if ( _comp(prio, _data[i].prio) ) decrease(item, prio);
258
        if ( _comp(_data[i].prio, prio) ) increase(item, prio);
259
      } else push(item, prio);
260
    }
261

	
262
    /// \brief Decrease the priority of an item to the given value.
263
    ///
264
    /// This function decreases the priority of an item to the given value.
265
    /// \param item The item.
266
    /// \param prio The priority.
267
    /// \pre \e item must be stored in the heap with priority at least \e prio.
268
    void decrease (const Item& item, const Prio& prio) {
269
      int i=_iim[item];
270
      _data[i].prio=prio;
263 271
      int p=_data[i].parent;
264 272

	
265
      if ( p!=-1 && _comp(value, _data[p].prio) ) {
273
      if ( p!=-1 && _comp(prio, _data[p].prio) ) {
266 274
        cut(i,p);
267 275
        cascade(p);
268 276
      }
269
      if ( _comp(value, _data[_minimum].prio) ) _minimum=i;
277
      if ( _comp(prio, _data[_minimum].prio) ) _minimum=i;
270 278
    }
271 279

	
272
    /// \brief Increases the priority of \c item to \c value.
280
    /// \brief Increase the priority of an item to the given value.
273 281
    ///
274
    /// This method sets the priority of \c item to \c value. Though
275
    /// there is no precondition on the priority of \c item, this
276
    /// method should be used only if it is indeed necessary to increase
277
    /// (relative to \c Compare) the priority of \c item, because this
278
    /// method is inefficient.
279
    void increase (Item item, const Prio& value) {
282
    /// This function increases the priority of an item to the given value.
283
    /// \param item The item.
284
    /// \param prio The priority.
285
    /// \pre \e item must be stored in the heap with priority at most \e prio.
286
    void increase (const Item& item, const Prio& prio) {
280 287
      erase(item);
281
      push(item, value);
288
      push(item, prio);
282 289
    }
283 290

	
284

	
285
    /// \brief Returns if \c item is in, has already been in, or has never
286
    /// been in the heap.
291
    /// \brief Return the state of an item.
287 292
    ///
288
    /// This method returns PRE_HEAP if \c item has never been in the
289
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
290
    /// otherwise. In the latter case it is possible that \c item will
291
    /// get back to the heap again.
293
    /// This method returns \c PRE_HEAP if the given item has never
294
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
295
    /// and \c POST_HEAP otherwise.
296
    /// In the latter case it is possible that the item will get back
297
    /// to the heap again.
298
    /// \param item The item.
292 299
    State state(const Item &item) const {
293 300
      int i=_iim[item];
294 301
      if( i>=0 ) {
295 302
        if ( _data[i].in ) i=0;
296 303
        else i=-2;
297 304
      }
298 305
      return State(i);
299 306
    }
300 307

	
301
    /// \brief Sets the state of the \c item in the heap.
308
    /// \brief Set the state of an item in the heap.
302 309
    ///
303
    /// Sets the state of the \c item in the heap. It can be used to
304
    /// manually clear the heap when it is important to achive the
305
    /// better time _complexity.
310
    /// This function sets the state of the given item in the heap.
311
    /// It can be used to manually clear the heap when it is important
312
    /// to achive better time complexity.
306 313
    /// \param i The item.
307 314
    /// \param st The state. It should not be \c IN_HEAP.
308 315
    void state(const Item& i, State st) {
309 316
      switch (st) {
310 317
      case POST_HEAP:
311 318
      case PRE_HEAP:
... ...
@@ -362,13 +369,13 @@
362 369
      do {
363 370
        if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s;
364 371
        s=_data[s].right_neighbor;
365 372
      } while ( s != m );
366 373
    }
367 374

	
368
    void makeroot(int c) {
375
    void makeRoot(int c) {
369 376
      int s=c;
370 377
      do {
371 378
        _data[s].parent=-1;
372 379
        s=_data[s].right_neighbor;
373 380
      } while ( s != c );
374 381
    }
Ignore white space 12 line context
... ...
@@ -16,72 +16,70 @@
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_RADIX_HEAP_H
20 20
#define LEMON_RADIX_HEAP_H
21 21

	
22
///\ingroup auxdat
22
///\ingroup heaps
23 23
///\file
24
///\brief Radix Heap implementation.
24
///\brief Radix heap implementation.
25 25

	
26 26
#include <vector>
27 27
#include <lemon/error.h>
28 28

	
29 29
namespace lemon {
30 30

	
31 31

	
32
  /// \ingroup auxdata
32
  /// \ingroup heaps
33 33
  ///
34
  /// \brief A Radix Heap implementation.
34
  /// \brief Radix heap data structure.
35 35
  ///
36
  /// This class implements the \e radix \e heap data structure. A \e heap
37
  /// is a data structure for storing items with specified values called \e
38
  /// priorities in such a way that finding the item with minimum priority is
39
  /// efficient. This heap type can store only items with \e int priority.
40
  /// In a heap one can change the priority of an item, add or erase an
41
  /// item, but the priority cannot be decreased under the last removed
42
  /// item's priority.
36
  /// This class implements the \e radix \e heap data structure.
37
  /// It practically conforms to the \ref concepts::Heap "heap concept",
38
  /// but it has some limitations due its special implementation.
39
  /// The type of the priorities must be \c int and the priority of an
40
  /// item cannot be decreased under the priority of the last removed item.
43 41
  ///
44
  /// \param IM A read and writable Item int map, used internally
45
  /// to handle the cross references.
46
  ///
47
  /// \see BinHeap
48
  /// \see Dijkstra
42
  /// \tparam IM A read-writable item map with \c int values, used
43
  /// internally to handle the cross references.
49 44
  template <typename IM>
50 45
  class RadixHeap {
51 46

	
52 47
  public:
53
    typedef typename IM::Key Item;
48

	
49
    /// Type of the item-int map.
50
    typedef IM ItemIntMap;
51
    /// Type of the priorities.
54 52
    typedef int Prio;
55
    typedef IM ItemIntMap;
53
    /// Type of the items stored in the heap.
54
    typedef typename ItemIntMap::Key Item;
56 55

	
57 56
    /// \brief Exception thrown by RadixHeap.
58 57
    ///
59
    /// This Exception is thrown when a smaller priority
60
    /// is inserted into the \e RadixHeap then the last time erased.
58
    /// This exception is thrown when an item is inserted into a
59
    /// RadixHeap with a priority smaller than the last erased one.
61 60
    /// \see RadixHeap
62

	
63
    class UnderFlowPriorityError : public Exception {
61
    class PriorityUnderflowError : public Exception {
64 62
    public:
65 63
      virtual const char* what() const throw() {
66
        return "lemon::RadixHeap::UnderFlowPriorityError";
64
        return "lemon::RadixHeap::PriorityUnderflowError";
67 65
      }
68 66
    };
69 67

	
70
    /// \brief Type to represent the items states.
68
    /// \brief Type to represent the states of the items.
71 69
    ///
72
    /// Each Item element have a state associated to it. It may be "in heap",
73
    /// "pre heap" or "post heap". The latter two are indifferent from the
70
    /// Each item has a state associated to it. It can be "in heap",
71
    /// "pre-heap" or "post-heap". The latter two are indifferent from the
74 72
    /// heap's point of view, but may be useful to the user.
75 73
    ///
76
    /// The ItemIntMap \e should be initialized in such way that it maps
77
    /// PRE_HEAP (-1) to any element to be put in the heap...
74
    /// The item-int map must be initialized in such way that it assigns
75
    /// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap.
78 76
    enum State {
79
      IN_HEAP = 0,
80
      PRE_HEAP = -1,
81
      POST_HEAP = -2
77
      IN_HEAP = 0,    ///< = 0.
78
      PRE_HEAP = -1,  ///< = -1.
79
      POST_HEAP = -2  ///< = -2.
82 80
    };
83 81

	
84 82
  private:
85 83

	
86 84
    struct RadixItem {
87 85
      int prev, next, box;
... ...
@@ -93,326 +91,333 @@
93 91
    struct RadixBox {
94 92
      int first;
95 93
      int min, size;
96 94
      RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
97 95
    };
98 96

	
99
    std::vector<RadixItem> data;
100
    std::vector<RadixBox> boxes;
97
    std::vector<RadixItem> _data;
98
    std::vector<RadixBox> _boxes;
101 99

	
102 100
    ItemIntMap &_iim;
103 101

	
102
  public:
104 103

	
105
  public:
106
    /// \brief The constructor.
104
    /// \brief Constructor.
107 105
    ///
108
    /// The constructor.
109
    ///
110
    /// \param map It should be given to the constructor, since it is used
111
    /// internally to handle the cross references. The value of the map
112
    /// should be PRE_HEAP (-1) for each element.
113
    ///
114
    /// \param minimal The initial minimal value of the heap.
115
    /// \param capacity It determines the initial capacity of the heap.
116
    RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0)
117
      : _iim(map) {
118
      boxes.push_back(RadixBox(minimal, 1));
119
      boxes.push_back(RadixBox(minimal + 1, 1));
120
      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
106
    /// Constructor.
107
    /// \param map A map that assigns \c int values to the items.
108
    /// It is used internally to handle the cross references.
109
    /// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item.
110
    /// \param minimum The initial minimum value of the heap.
111
    /// \param capacity The initial capacity of the heap.
112
    RadixHeap(ItemIntMap &map, int minimum = 0, int capacity = 0)
113
      : _iim(map)
114
    {
115
      _boxes.push_back(RadixBox(minimum, 1));
116
      _boxes.push_back(RadixBox(minimum + 1, 1));
117
      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
121 118
        extend();
122 119
      }
123 120
    }
124 121

	
125
    /// The number of items stored in the heap.
122
    /// \brief The number of items stored in the heap.
126 123
    ///
127
    /// \brief Returns the number of items stored in the heap.
128
    int size() const { return data.size(); }
129
    /// \brief Checks if the heap stores no items.
124
    /// This function returns the number of items stored in the heap.
125
    int size() const { return _data.size(); }
126

	
127
    /// \brief Check if the heap is empty.
130 128
    ///
131
    /// Returns \c true if and only if the heap stores no items.
132
    bool empty() const { return data.empty(); }
129
    /// This function returns \c true if the heap is empty.
130
    bool empty() const { return _data.empty(); }
133 131

	
134
    /// \brief Make empty this heap.
132
    /// \brief Make the heap empty.
135 133
    ///
136
    /// Make empty this heap. It does not change the cross reference
137
    /// map.  If you want to reuse a heap what is not surely empty you
138
    /// should first clear the heap and after that you should set the
139
    /// cross reference map for each item to \c PRE_HEAP.
140
    void clear(int minimal = 0, int capacity = 0) {
141
      data.clear(); boxes.clear();
142
      boxes.push_back(RadixBox(minimal, 1));
143
      boxes.push_back(RadixBox(minimal + 1, 1));
144
      while (lower(boxes.size() - 1, capacity + minimal - 1)) {
134
    /// This functon makes the heap empty.
135
    /// It does not change the cross reference map. If you want to reuse
136
    /// a heap that is not surely empty, you should first clear it and
137
    /// then you should set the cross reference map to \c PRE_HEAP
138
    /// for each item.
139
    /// \param minimum The minimum value of the heap.
140
    /// \param capacity The capacity of the heap.
141
    void clear(int minimum = 0, int capacity = 0) {
142
      _data.clear(); _boxes.clear();
143
      _boxes.push_back(RadixBox(minimum, 1));
144
      _boxes.push_back(RadixBox(minimum + 1, 1));
145
      while (lower(_boxes.size() - 1, capacity + minimum - 1)) {
145 146
        extend();
146 147
      }
147 148
    }
148 149

	
149 150
  private:
150 151

	
151 152
    bool upper(int box, Prio pr) {
152
      return pr < boxes[box].min;
153
      return pr < _boxes[box].min;
153 154
    }
154 155

	
155 156
    bool lower(int box, Prio pr) {
156
      return pr >= boxes[box].min + boxes[box].size;
157
      return pr >= _boxes[box].min + _boxes[box].size;
157 158
    }
158 159

	
159
    /// \brief Remove item from the box list.
160
    // Remove item from the box list
160 161
    void remove(int index) {
161
      if (data[index].prev >= 0) {
162
        data[data[index].prev].next = data[index].next;
162
      if (_data[index].prev >= 0) {
163
        _data[_data[index].prev].next = _data[index].next;
163 164
      } else {
164
        boxes[data[index].box].first = data[index].next;
165
        _boxes[_data[index].box].first = _data[index].next;
165 166
      }
166
      if (data[index].next >= 0) {
167
        data[data[index].next].prev = data[index].prev;
167
      if (_data[index].next >= 0) {
168
        _data[_data[index].next].prev = _data[index].prev;
168 169
      }
169 170
    }
170 171

	
171
    /// \brief Insert item into the box list.
172
    // Insert item into the box list
172 173
    void insert(int box, int index) {
173
      if (boxes[box].first == -1) {
174
        boxes[box].first = index;
175
        data[index].next = data[index].prev = -1;
174
      if (_boxes[box].first == -1) {
175
        _boxes[box].first = index;
176
        _data[index].next = _data[index].prev = -1;
176 177
      } else {
177
        data[index].next = boxes[box].first;
178
        data[boxes[box].first].prev = index;
179
        data[index].prev = -1;
180
        boxes[box].first = index;
178
        _data[index].next = _boxes[box].first;
179
        _data[_boxes[box].first].prev = index;
180
        _data[index].prev = -1;
181
        _boxes[box].first = index;
181 182
      }
182
      data[index].box = box;
183
      _data[index].box = box;
183 184
    }
184 185

	
185
    /// \brief Add a new box to the box list.
186
    // Add a new box to the box list
186 187
    void extend() {
187
      int min = boxes.back().min + boxes.back().size;
188
      int bs = 2 * boxes.back().size;
189
      boxes.push_back(RadixBox(min, bs));
188
      int min = _boxes.back().min + _boxes.back().size;
189
      int bs = 2 * _boxes.back().size;
190
      _boxes.push_back(RadixBox(min, bs));
190 191
    }
191 192

	
192
    /// \brief Move an item up into the proper box.
193
    void bubble_up(int index) {
194
      if (!lower(data[index].box, data[index].prio)) return;
193
    // Move an item up into the proper box.
194
    void bubbleUp(int index) {
195
      if (!lower(_data[index].box, _data[index].prio)) return;
195 196
      remove(index);
196
      int box = findUp(data[index].box, data[index].prio);
197
      int box = findUp(_data[index].box, _data[index].prio);
197 198
      insert(box, index);
198 199
    }
199 200

	
200
    /// \brief Find up the proper box for the item with the given prio.
201
    // Find up the proper box for the item with the given priority
201 202
    int findUp(int start, int pr) {
202 203
      while (lower(start, pr)) {
203
        if (++start == int(boxes.size())) {
204
        if (++start == int(_boxes.size())) {
204 205
          extend();
205 206
        }
206 207
      }
207 208
      return start;
208 209
    }
209 210

	
210
    /// \brief Move an item down into the proper box.
211
    void bubble_down(int index) {
212
      if (!upper(data[index].box, data[index].prio)) return;
211
    // Move an item down into the proper box
212
    void bubbleDown(int index) {
213
      if (!upper(_data[index].box, _data[index].prio)) return;
213 214
      remove(index);
214
      int box = findDown(data[index].box, data[index].prio);
215
      int box = findDown(_data[index].box, _data[index].prio);
215 216
      insert(box, index);
216 217
    }
217 218

	
218
    /// \brief Find up the proper box for the item with the given prio.
219
    // Find down the proper box for the item with the given priority
219 220
    int findDown(int start, int pr) {
220 221
      while (upper(start, pr)) {
221
        if (--start < 0) throw UnderFlowPriorityError();
222
        if (--start < 0) throw PriorityUnderflowError();
222 223
      }
223 224
      return start;
224 225
    }
225 226

	
226
    /// \brief Find the first not empty box.
227
    // Find the first non-empty box
227 228
    int findFirst() {
228 229
      int first = 0;
229
      while (boxes[first].first == -1) ++first;
230
      while (_boxes[first].first == -1) ++first;
230 231
      return first;
231 232
    }
232 233

	
233
    /// \brief Gives back the minimal prio of the box.
234
    // Gives back the minimum priority of the given box
234 235
    int minValue(int box) {
235
      int min = data[boxes[box].first].prio;
236
      for (int k = boxes[box].first; k != -1; k = data[k].next) {
237
        if (data[k].prio < min) min = data[k].prio;
236
      int min = _data[_boxes[box].first].prio;
237
      for (int k = _boxes[box].first; k != -1; k = _data[k].next) {
238
        if (_data[k].prio < min) min = _data[k].prio;
238 239
      }
239 240
      return min;
240 241
    }
241 242

	
242
    /// \brief Rearrange the items of the heap and makes the
243
    /// first box not empty.
243
    // Rearrange the items of the heap and make the first box non-empty
244 244
    void moveDown() {
245 245
      int box = findFirst();
246 246
      if (box == 0) return;
247 247
      int min = minValue(box);
248 248
      for (int i = 0; i <= box; ++i) {
249
        boxes[i].min = min;
250
        min += boxes[i].size;
249
        _boxes[i].min = min;
250
        min += _boxes[i].size;
251 251
      }
252
      int curr = boxes[box].first, next;
252
      int curr = _boxes[box].first, next;
253 253
      while (curr != -1) {
254
        next = data[curr].next;
255
        bubble_down(curr);
254
        next = _data[curr].next;
255
        bubbleDown(curr);
256 256
        curr = next;
257 257
      }
258 258
    }
259 259

	
260
    void relocate_last(int index) {
261
      if (index != int(data.size()) - 1) {
262
        data[index] = data.back();
263
        if (data[index].prev != -1) {
264
          data[data[index].prev].next = index;
260
    void relocateLast(int index) {
261
      if (index != int(_data.size()) - 1) {
262
        _data[index] = _data.back();
263
        if (_data[index].prev != -1) {
264
          _data[_data[index].prev].next = index;
265 265
        } else {
266
          boxes[data[index].box].first = index;
266
          _boxes[_data[index].box].first = index;
267 267
        }
268
        if (data[index].next != -1) {
269
          data[data[index].next].prev = index;
268
        if (_data[index].next != -1) {
269
          _data[_data[index].next].prev = index;
270 270
        }
271
        _iim[data[index].item] = index;
271
        _iim[_data[index].item] = index;
272 272
      }
273
      data.pop_back();
273
      _data.pop_back();
274 274
    }
275 275

	
276 276
  public:
277 277

	
278 278
    /// \brief Insert an item into the heap with the given priority.
279 279
    ///
280
    /// Adds \c i to the heap with priority \c p.
280
    /// This function inserts the given item into the heap with the
281
    /// given priority.
281 282
    /// \param i The item to insert.
282 283
    /// \param p The priority of the item.
284
    /// \pre \e i must not be stored in the heap.
285
    /// \warning This method may throw an \c UnderFlowPriorityException.
283 286
    void push(const Item &i, const Prio &p) {
284
      int n = data.size();
287
      int n = _data.size();
285 288
      _iim.set(i, n);
286
      data.push_back(RadixItem(i, p));
287
      while (lower(boxes.size() - 1, p)) {
289
      _data.push_back(RadixItem(i, p));
290
      while (lower(_boxes.size() - 1, p)) {
288 291
        extend();
289 292
      }
290
      int box = findDown(boxes.size() - 1, p);
293
      int box = findDown(_boxes.size() - 1, p);
291 294
      insert(box, n);
292 295
    }
293 296

	
294
    /// \brief Returns the item with minimum priority.
297
    /// \brief Return the item having minimum priority.
295 298
    ///
296
    /// This method returns the item with minimum priority.
297
    /// \pre The heap must be nonempty.
299
    /// This function returns the item having minimum priority.
300
    /// \pre The heap must be non-empty.
298 301
    Item top() const {
299 302
      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
300
      return data[boxes[0].first].item;
303
      return _data[_boxes[0].first].item;
301 304
    }
302 305

	
303
    /// \brief Returns the minimum priority.
306
    /// \brief The minimum priority.
304 307
    ///
305
    /// It returns the minimum priority.
306
    /// \pre The heap must be nonempty.
308
    /// This function returns the minimum priority.
309
    /// \pre The heap must be non-empty.
307 310
    Prio prio() const {
308 311
      const_cast<RadixHeap<ItemIntMap>&>(*this).moveDown();
309
      return data[boxes[0].first].prio;
312
      return _data[_boxes[0].first].prio;
310 313
     }
311 314

	
312
    /// \brief Deletes the item with minimum priority.
315
    /// \brief Remove the item having minimum priority.
313 316
    ///
314
    /// This method deletes the item with minimum priority.
317
    /// This function removes the item having minimum priority.
315 318
    /// \pre The heap must be non-empty.
316 319
    void pop() {
317 320
      moveDown();
318
      int index = boxes[0].first;
319
      _iim[data[index].item] = POST_HEAP;
321
      int index = _boxes[0].first;
322
      _iim[_data[index].item] = POST_HEAP;
320 323
      remove(index);
321
      relocate_last(index);
324
      relocateLast(index);
322 325
    }
323 326

	
324
    /// \brief Deletes \c i from the heap.
327
    /// \brief Remove the given item from the heap.
325 328
    ///
326
    /// This method deletes item \c i from the heap, if \c i was
327
    /// already stored in the heap.
328
    /// \param i The item to erase.
329
    /// This function removes the given item from the heap if it is
330
    /// already stored.
331
    /// \param i The item to delete.
332
    /// \pre \e i must be in the heap.
329 333
    void erase(const Item &i) {
330 334
      int index = _iim[i];
331 335
      _iim[i] = POST_HEAP;
332 336
      remove(index);
333
      relocate_last(index);
337
      relocateLast(index);
334 338
   }
335 339

	
336
    /// \brief Returns the priority of \c i.
340
    /// \brief The priority of the given item.
337 341
    ///
338
    /// This function returns the priority of item \c i.
339
    /// \pre \c i must be in the heap.
342
    /// This function returns the priority of the given item.
340 343
    /// \param i The item.
344
    /// \pre \e i must be in the heap.
341 345
    Prio operator[](const Item &i) const {
342 346
      int idx = _iim[i];
343
      return data[idx].prio;
347
      return _data[idx].prio;
344 348
    }
345 349

	
346
    /// \brief \c i gets to the heap with priority \c p independently
347
    /// if \c i was already there.
350
    /// \brief Set the priority of an item or insert it, if it is
351
    /// not stored in the heap.
348 352
    ///
349
    /// This method calls \ref push(\c i, \c p) if \c i is not stored
350
    /// in the heap and sets the priority of \c i to \c p otherwise.
351
    /// It may throw an \e UnderFlowPriorityException.
353
    /// This method sets the priority of the given item if it is
354
    /// already stored in the heap. Otherwise it inserts the given
355
    /// item into the heap with the given priority.
352 356
    /// \param i The item.
353 357
    /// \param p The priority.
358
    /// \pre \e i must be in the heap.
359
    /// \warning This method may throw an \c UnderFlowPriorityException.
354 360
    void set(const Item &i, const Prio &p) {
355 361
      int idx = _iim[i];
356 362
      if( idx < 0 ) {
357 363
        push(i, p);
358 364
      }
359
      else if( p >= data[idx].prio ) {
360
        data[idx].prio = p;
361
        bubble_up(idx);
365
      else if( p >= _data[idx].prio ) {
366
        _data[idx].prio = p;
367
        bubbleUp(idx);
362 368
      } else {
363
        data[idx].prio = p;
364
        bubble_down(idx);
369
        _data[idx].prio = p;
370
        bubbleDown(idx);
365 371
      }
366 372
    }
367 373

	
368

	
369
    /// \brief Decreases the priority of \c i to \c p.
374
    /// \brief Decrease the priority of an item to the given value.
370 375
    ///
371
    /// This method decreases the priority of item \c i to \c p.
372
    /// \pre \c i must be stored in the heap with priority at least \c p, and
373
    /// \c should be greater or equal to the last removed item's priority.
376
    /// This function decreases the priority of an item to the given value.
374 377
    /// \param i The item.
375 378
    /// \param p The priority.
379
    /// \pre \e i must be stored in the heap with priority at least \e p.
380
    /// \warning This method may throw an \c UnderFlowPriorityException.
376 381
    void decrease(const Item &i, const Prio &p) {
377 382
      int idx = _iim[i];
378
      data[idx].prio = p;
379
      bubble_down(idx);
383
      _data[idx].prio = p;
384
      bubbleDown(idx);
380 385
    }
381 386

	
382
    /// \brief Increases the priority of \c i to \c p.
387
    /// \brief Increase the priority of an item to the given value.
383 388
    ///
384
    /// This method sets the priority of item \c i to \c p.
385
    /// \pre \c i must be stored in the heap with priority at most \c p
389
    /// This function increases the priority of an item to the given value.
386 390
    /// \param i The item.
387 391
    /// \param p The priority.
392
    /// \pre \e i must be stored in the heap with priority at most \e p.
388 393
    void increase(const Item &i, const Prio &p) {
389 394
      int idx = _iim[i];
390
      data[idx].prio = p;
391
      bubble_up(idx);
395
      _data[idx].prio = p;
396
      bubbleUp(idx);
392 397
    }
393 398

	
394
    /// \brief Returns if \c item is in, has already been in, or has
395
    /// never been in the heap.
399
    /// \brief Return the state of an item.
396 400
    ///
397
    /// This method returns PRE_HEAP if \c item has never been in the
398
    /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
399
    /// otherwise. In the latter case it is possible that \c item will
400
    /// get back to the heap again.
401
    /// This method returns \c PRE_HEAP if the given item has never
402
    /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
403
    /// and \c POST_HEAP otherwise.
404
    /// In the latter case it is possible that the item will get back
405
    /// to the heap again.
401 406
    /// \param i The item.
402 407
    State state(const Item &i) const {
403 408
      int s = _iim[i];
404 409
      if( s >= 0 ) s = 0;
405 410
      return State(s);
406 411
    }
407 412

	
408
    /// \brief Sets the state of the \c item in the heap.
413
    /// \brief Set the state of an item in the heap.
409 414
    ///
410
    /// Sets the state of the \c item in the heap. It can be used to
411
    /// manually clear the heap when it is important to achive the
412
    /// better time complexity.
415
    /// This function sets the state of the given item in the heap.
416
    /// It can be used to manually clear the heap when it is important
417
    /// to achive better time complexity.
413 418
    /// \param i The item.
414 419
    /// \param st The state. It should not be \c IN_HEAP.
415 420
    void state(const Item& i, State st) {
416 421
      switch (st) {
417 422
      case POST_HEAP:
418 423
      case PRE_HEAP:
0 comments (0 inline)