... | ... |
@@ -291,27 +291,26 @@ |
291 | 291 |
/// std::vector<Arc> tree(53); |
292 | 292 |
/// kruskal(g,cost,tree.begin()); |
293 | 293 |
///\endcode |
294 | 294 |
/// Or if we don't know in advance the size of the tree, we can |
295 | 295 |
/// write this. |
296 | 296 |
///\code |
297 | 297 |
/// std::vector<Arc> tree; |
298 | 298 |
/// kruskal(g,cost,std::back_inserter(tree)); |
299 | 299 |
///\endcode |
300 | 300 |
/// |
301 | 301 |
/// \return The total cost of the found spanning tree. |
302 | 302 |
/// |
303 |
/// \warning If Kruskal runs on an be consistent of using the same |
|
304 |
/// Arc type for input and output. |
|
305 |
/// |
|
303 |
/// \note If the input graph is not (weakly) connected, a spanning |
|
304 |
/// forest is calculated instead of a spanning tree. |
|
306 | 305 |
|
307 | 306 |
#ifdef DOXYGEN |
308 | 307 |
template <class Graph, class In, class Out> |
309 | 308 |
Value kruskal(GR const& g, const In& in, Out& out) |
310 | 309 |
#else |
311 | 310 |
template <class Graph, class In, class Out> |
312 | 311 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
313 | 312 |
kruskal(const Graph& graph, const In& in, Out& out) |
314 | 313 |
#endif |
315 | 314 |
{ |
316 | 315 |
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
317 | 316 |
kruskal(graph, in, out); |
0 comments (0 inline)