gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Fix and improve refine methods in CostScaling (#417)
0 1 0
default
1 file changed with 46 insertions and 25 deletions:
↑ Collapse diff ↑
Show white space 3072 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_COST_SCALING_H
20 20
#define LEMON_COST_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
/// \file
24 24
/// \brief Cost scaling algorithm for finding a minimum cost flow.
25 25

	
26 26
#include <vector>
27 27
#include <deque>
28 28
#include <limits>
29 29

	
30 30
#include <lemon/core.h>
31 31
#include <lemon/maps.h>
32 32
#include <lemon/math.h>
33 33
#include <lemon/static_graph.h>
34 34
#include <lemon/circulation.h>
35 35
#include <lemon/bellman_ford.h>
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \brief Default traits class of CostScaling algorithm.
40 40
  ///
41 41
  /// Default traits class of CostScaling algorithm.
42 42
  /// \tparam GR Digraph type.
43 43
  /// \tparam V The number type used for flow amounts, capacity bounds
44 44
  /// and supply values. By default it is \c int.
45 45
  /// \tparam C The number type used for costs and potentials.
46 46
  /// By default it is the same as \c V.
47 47
#ifdef DOXYGEN
48 48
  template <typename GR, typename V = int, typename C = V>
49 49
#else
50 50
  template < typename GR, typename V = int, typename C = V,
51 51
             bool integer = std::numeric_limits<C>::is_integer >
52 52
#endif
53 53
  struct CostScalingDefaultTraits
54 54
  {
55 55
    /// The type of the digraph
56 56
    typedef GR Digraph;
57 57
    /// The type of the flow amounts, capacity bounds and supply values
58 58
    typedef V Value;
59 59
    /// The type of the arc costs
60 60
    typedef C Cost;
61 61

	
62 62
    /// \brief The large cost type used for internal computations
63 63
    ///
64 64
    /// The large cost type used for internal computations.
65 65
    /// It is \c long \c long if the \c Cost type is integer,
66 66
    /// otherwise it is \c double.
67 67
    /// \c Cost must be convertible to \c LargeCost.
68 68
    typedef double LargeCost;
69 69
  };
70 70

	
71 71
  // Default traits class for integer cost types
72 72
  template <typename GR, typename V, typename C>
73 73
  struct CostScalingDefaultTraits<GR, V, C, true>
74 74
  {
75 75
    typedef GR Digraph;
76 76
    typedef V Value;
77 77
    typedef C Cost;
78 78
#ifdef LEMON_HAVE_LONG_LONG
79 79
    typedef long long LargeCost;
80 80
#else
81 81
    typedef long LargeCost;
82 82
#endif
83 83
  };
84 84

	
85 85

	
86 86
  /// \addtogroup min_cost_flow_algs
87 87
  /// @{
88 88

	
89 89
  /// \brief Implementation of the Cost Scaling algorithm for
90 90
  /// finding a \ref min_cost_flow "minimum cost flow".
91 91
  ///
92 92
  /// \ref CostScaling implements a cost scaling algorithm that performs
93 93
  /// push/augment and relabel operations for finding a \ref min_cost_flow
94 94
  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 95
  /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 96
  /// It is a highly efficient primal-dual solution method, which
97 97
  /// can be viewed as the generalization of the \ref Preflow
98 98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
99 99
  ///
100 100
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
101 101
  /// implementations available in LEMON for this problem.
102 102
  ///
103 103
  /// Most of the parameters of the problem (except for the digraph)
104 104
  /// can be given using separate functions, and the algorithm can be
105 105
  /// executed using the \ref run() function. If some parameters are not
106 106
  /// specified, then default values will be used.
107 107
  ///
108 108
  /// \tparam GR The digraph type the algorithm runs on.
109 109
  /// \tparam V The number type used for flow amounts, capacity bounds
110 110
  /// and supply values in the algorithm. By default, it is \c int.
111 111
  /// \tparam C The number type used for costs and potentials in the
112 112
  /// algorithm. By default, it is the same as \c V.
113 113
  /// \tparam TR The traits class that defines various types used by the
114 114
  /// algorithm. By default, it is \ref CostScalingDefaultTraits
115 115
  /// "CostScalingDefaultTraits<GR, V, C>".
116 116
  /// In most cases, this parameter should not be set directly,
117 117
  /// consider to use the named template parameters instead.
118 118
  ///
119 119
  /// \warning Both \c V and \c C must be signed number types.
120 120
  /// \warning All input data (capacities, supply values, and costs) must
121 121
  /// be integer.
122 122
  /// \warning This algorithm does not support negative costs for
123 123
  /// arcs having infinite upper bound.
124 124
  ///
125 125
  /// \note %CostScaling provides three different internal methods,
126 126
  /// from which the most efficient one is used by default.
127 127
  /// For more information, see \ref Method.
128 128
#ifdef DOXYGEN
129 129
  template <typename GR, typename V, typename C, typename TR>
130 130
#else
131 131
  template < typename GR, typename V = int, typename C = V,
132 132
             typename TR = CostScalingDefaultTraits<GR, V, C> >
133 133
#endif
134 134
  class CostScaling
135 135
  {
136 136
  public:
137 137

	
138 138
    /// The type of the digraph
139 139
    typedef typename TR::Digraph Digraph;
140 140
    /// The type of the flow amounts, capacity bounds and supply values
141 141
    typedef typename TR::Value Value;
142 142
    /// The type of the arc costs
143 143
    typedef typename TR::Cost Cost;
144 144

	
145 145
    /// \brief The large cost type
146 146
    ///
147 147
    /// The large cost type used for internal computations.
148 148
    /// By default, it is \c long \c long if the \c Cost type is integer,
149 149
    /// otherwise it is \c double.
150 150
    typedef typename TR::LargeCost LargeCost;
151 151

	
152 152
    /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
153 153
    typedef TR Traits;
154 154

	
155 155
  public:
156 156

	
157 157
    /// \brief Problem type constants for the \c run() function.
158 158
    ///
159 159
    /// Enum type containing the problem type constants that can be
160 160
    /// returned by the \ref run() function of the algorithm.
161 161
    enum ProblemType {
162 162
      /// The problem has no feasible solution (flow).
163 163
      INFEASIBLE,
164 164
      /// The problem has optimal solution (i.e. it is feasible and
165 165
      /// bounded), and the algorithm has found optimal flow and node
166 166
      /// potentials (primal and dual solutions).
167 167
      OPTIMAL,
168 168
      /// The digraph contains an arc of negative cost and infinite
169 169
      /// upper bound. It means that the objective function is unbounded
170 170
      /// on that arc, however, note that it could actually be bounded
171 171
      /// over the feasible flows, but this algroithm cannot handle
172 172
      /// these cases.
173 173
      UNBOUNDED
174 174
    };
175 175

	
176 176
    /// \brief Constants for selecting the internal method.
177 177
    ///
178 178
    /// Enum type containing constants for selecting the internal method
179 179
    /// for the \ref run() function.
180 180
    ///
181 181
    /// \ref CostScaling provides three internal methods that differ mainly
182 182
    /// in their base operations, which are used in conjunction with the
183 183
    /// relabel operation.
184 184
    /// By default, the so called \ref PARTIAL_AUGMENT
185 185
    /// "Partial Augment-Relabel" method is used, which turned out to be
186 186
    /// the most efficient and the most robust on various test inputs.
187 187
    /// However, the other methods can be selected using the \ref run()
188 188
    /// function with the proper parameter.
189 189
    enum Method {
190 190
      /// Local push operations are used, i.e. flow is moved only on one
191 191
      /// admissible arc at once.
192 192
      PUSH,
193 193
      /// Augment operations are used, i.e. flow is moved on admissible
194 194
      /// paths from a node with excess to a node with deficit.
195 195
      AUGMENT,
196 196
      /// Partial augment operations are used, i.e. flow is moved on
197 197
      /// admissible paths started from a node with excess, but the
198 198
      /// lengths of these paths are limited. This method can be viewed
199 199
      /// as a combined version of the previous two operations.
200 200
      PARTIAL_AUGMENT
201 201
    };
202 202

	
203 203
  private:
204 204

	
205 205
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
206 206

	
207 207
    typedef std::vector<int> IntVector;
208 208
    typedef std::vector<Value> ValueVector;
209 209
    typedef std::vector<Cost> CostVector;
210 210
    typedef std::vector<LargeCost> LargeCostVector;
211 211
    typedef std::vector<char> BoolVector;
212 212
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
213 213

	
214 214
  private:
215 215

	
216 216
    template <typename KT, typename VT>
217 217
    class StaticVectorMap {
218 218
    public:
219 219
      typedef KT Key;
220 220
      typedef VT Value;
221 221

	
222 222
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
223 223

	
224 224
      const Value& operator[](const Key& key) const {
225 225
        return _v[StaticDigraph::id(key)];
226 226
      }
227 227

	
228 228
      Value& operator[](const Key& key) {
229 229
        return _v[StaticDigraph::id(key)];
230 230
      }
231 231

	
232 232
      void set(const Key& key, const Value& val) {
233 233
        _v[StaticDigraph::id(key)] = val;
234 234
      }
235 235

	
236 236
    private:
237 237
      std::vector<Value>& _v;
238 238
    };
239 239

	
240 240
    typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
241 241
    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
242 242

	
243 243
  private:
244 244

	
245 245
    // Data related to the underlying digraph
246 246
    const GR &_graph;
247 247
    int _node_num;
248 248
    int _arc_num;
249 249
    int _res_node_num;
250 250
    int _res_arc_num;
251 251
    int _root;
252 252

	
253 253
    // Parameters of the problem
254 254
    bool _have_lower;
255 255
    Value _sum_supply;
256 256
    int _sup_node_num;
257 257

	
258 258
    // Data structures for storing the digraph
259 259
    IntNodeMap _node_id;
260 260
    IntArcMap _arc_idf;
261 261
    IntArcMap _arc_idb;
262 262
    IntVector _first_out;
263 263
    BoolVector _forward;
264 264
    IntVector _source;
265 265
    IntVector _target;
266 266
    IntVector _reverse;
267 267

	
268 268
    // Node and arc data
269 269
    ValueVector _lower;
270 270
    ValueVector _upper;
271 271
    CostVector _scost;
272 272
    ValueVector _supply;
273 273

	
274 274
    ValueVector _res_cap;
275 275
    LargeCostVector _cost;
276 276
    LargeCostVector _pi;
277 277
    ValueVector _excess;
278 278
    IntVector _next_out;
279 279
    std::deque<int> _active_nodes;
280 280

	
281 281
    // Data for scaling
282 282
    LargeCost _epsilon;
283 283
    int _alpha;
284 284

	
285 285
    IntVector _buckets;
286 286
    IntVector _bucket_next;
287 287
    IntVector _bucket_prev;
288 288
    IntVector _rank;
289 289
    int _max_rank;
290 290

	
291 291
    // Data for a StaticDigraph structure
292 292
    typedef std::pair<int, int> IntPair;
293 293
    StaticDigraph _sgr;
294 294
    std::vector<IntPair> _arc_vec;
295 295
    std::vector<LargeCost> _cost_vec;
296 296
    LargeCostArcMap _cost_map;
297 297
    LargeCostNodeMap _pi_map;
298 298

	
299 299
  public:
300 300

	
301 301
    /// \brief Constant for infinite upper bounds (capacities).
302 302
    ///
303 303
    /// Constant for infinite upper bounds (capacities).
304 304
    /// It is \c std::numeric_limits<Value>::infinity() if available,
305 305
    /// \c std::numeric_limits<Value>::max() otherwise.
306 306
    const Value INF;
307 307

	
308 308
  public:
309 309

	
310 310
    /// \name Named Template Parameters
311 311
    /// @{
312 312

	
313 313
    template <typename T>
314 314
    struct SetLargeCostTraits : public Traits {
315 315
      typedef T LargeCost;
316 316
    };
317 317

	
318 318
    /// \brief \ref named-templ-param "Named parameter" for setting
319 319
    /// \c LargeCost type.
320 320
    ///
321 321
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
322 322
    /// type, which is used for internal computations in the algorithm.
323 323
    /// \c Cost must be convertible to \c LargeCost.
324 324
    template <typename T>
325 325
    struct SetLargeCost
326 326
      : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
327 327
      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
328 328
    };
329 329

	
330 330
    /// @}
331 331

	
332 332
  protected:
333 333

	
334 334
    CostScaling() {}
335 335

	
336 336
  public:
337 337

	
338 338
    /// \brief Constructor.
339 339
    ///
340 340
    /// The constructor of the class.
341 341
    ///
342 342
    /// \param graph The digraph the algorithm runs on.
343 343
    CostScaling(const GR& graph) :
344 344
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
345 345
      _cost_map(_cost_vec), _pi_map(_pi),
346 346
      INF(std::numeric_limits<Value>::has_infinity ?
347 347
          std::numeric_limits<Value>::infinity() :
348 348
          std::numeric_limits<Value>::max())
349 349
    {
350 350
      // Check the number types
351 351
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
352 352
        "The flow type of CostScaling must be signed");
353 353
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
354 354
        "The cost type of CostScaling must be signed");
355 355

	
356 356
      // Reset data structures
357 357
      reset();
358 358
    }
359 359

	
360 360
    /// \name Parameters
361 361
    /// The parameters of the algorithm can be specified using these
362 362
    /// functions.
363 363

	
364 364
    /// @{
365 365

	
366 366
    /// \brief Set the lower bounds on the arcs.
367 367
    ///
368 368
    /// This function sets the lower bounds on the arcs.
369 369
    /// If it is not used before calling \ref run(), the lower bounds
370 370
    /// will be set to zero on all arcs.
371 371
    ///
372 372
    /// \param map An arc map storing the lower bounds.
373 373
    /// Its \c Value type must be convertible to the \c Value type
374 374
    /// of the algorithm.
375 375
    ///
376 376
    /// \return <tt>(*this)</tt>
377 377
    template <typename LowerMap>
378 378
    CostScaling& lowerMap(const LowerMap& map) {
379 379
      _have_lower = true;
380 380
      for (ArcIt a(_graph); a != INVALID; ++a) {
381 381
        _lower[_arc_idf[a]] = map[a];
382 382
        _lower[_arc_idb[a]] = map[a];
383 383
      }
384 384
      return *this;
385 385
    }
386 386

	
387 387
    /// \brief Set the upper bounds (capacities) on the arcs.
388 388
    ///
389 389
    /// This function sets the upper bounds (capacities) on the arcs.
390 390
    /// If it is not used before calling \ref run(), the upper bounds
391 391
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
392 392
    /// unbounded from above).
393 393
    ///
394 394
    /// \param map An arc map storing the upper bounds.
395 395
    /// Its \c Value type must be convertible to the \c Value type
396 396
    /// of the algorithm.
397 397
    ///
398 398
    /// \return <tt>(*this)</tt>
399 399
    template<typename UpperMap>
400 400
    CostScaling& upperMap(const UpperMap& map) {
401 401
      for (ArcIt a(_graph); a != INVALID; ++a) {
402 402
        _upper[_arc_idf[a]] = map[a];
403 403
      }
404 404
      return *this;
405 405
    }
406 406

	
407 407
    /// \brief Set the costs of the arcs.
408 408
    ///
409 409
    /// This function sets the costs of the arcs.
410 410
    /// If it is not used before calling \ref run(), the costs
411 411
    /// will be set to \c 1 on all arcs.
412 412
    ///
413 413
    /// \param map An arc map storing the costs.
414 414
    /// Its \c Value type must be convertible to the \c Cost type
415 415
    /// of the algorithm.
416 416
    ///
417 417
    /// \return <tt>(*this)</tt>
418 418
    template<typename CostMap>
419 419
    CostScaling& costMap(const CostMap& map) {
420 420
      for (ArcIt a(_graph); a != INVALID; ++a) {
421 421
        _scost[_arc_idf[a]] =  map[a];
422 422
        _scost[_arc_idb[a]] = -map[a];
423 423
      }
424 424
      return *this;
425 425
    }
426 426

	
427 427
    /// \brief Set the supply values of the nodes.
428 428
    ///
429 429
    /// This function sets the supply values of the nodes.
430 430
    /// If neither this function nor \ref stSupply() is used before
431 431
    /// calling \ref run(), the supply of each node will be set to zero.
432 432
    ///
433 433
    /// \param map A node map storing the supply values.
434 434
    /// Its \c Value type must be convertible to the \c Value type
435 435
    /// of the algorithm.
436 436
    ///
437 437
    /// \return <tt>(*this)</tt>
438 438
    template<typename SupplyMap>
439 439
    CostScaling& supplyMap(const SupplyMap& map) {
440 440
      for (NodeIt n(_graph); n != INVALID; ++n) {
441 441
        _supply[_node_id[n]] = map[n];
442 442
      }
443 443
      return *this;
444 444
    }
445 445

	
446 446
    /// \brief Set single source and target nodes and a supply value.
447 447
    ///
448 448
    /// This function sets a single source node and a single target node
449 449
    /// and the required flow value.
450 450
    /// If neither this function nor \ref supplyMap() is used before
451 451
    /// calling \ref run(), the supply of each node will be set to zero.
452 452
    ///
453 453
    /// Using this function has the same effect as using \ref supplyMap()
454 454
    /// with a map in which \c k is assigned to \c s, \c -k is
455 455
    /// assigned to \c t and all other nodes have zero supply value.
456 456
    ///
457 457
    /// \param s The source node.
458 458
    /// \param t The target node.
459 459
    /// \param k The required amount of flow from node \c s to node \c t
460 460
    /// (i.e. the supply of \c s and the demand of \c t).
461 461
    ///
462 462
    /// \return <tt>(*this)</tt>
463 463
    CostScaling& stSupply(const Node& s, const Node& t, Value k) {
464 464
      for (int i = 0; i != _res_node_num; ++i) {
465 465
        _supply[i] = 0;
466 466
      }
467 467
      _supply[_node_id[s]] =  k;
468 468
      _supply[_node_id[t]] = -k;
469 469
      return *this;
470 470
    }
471 471

	
472 472
    /// @}
473 473

	
474 474
    /// \name Execution control
475 475
    /// The algorithm can be executed using \ref run().
476 476

	
477 477
    /// @{
478 478

	
479 479
    /// \brief Run the algorithm.
480 480
    ///
481 481
    /// This function runs the algorithm.
482 482
    /// The paramters can be specified using functions \ref lowerMap(),
483 483
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
484 484
    /// For example,
485 485
    /// \code
486 486
    ///   CostScaling<ListDigraph> cs(graph);
487 487
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
488 488
    ///     .supplyMap(sup).run();
489 489
    /// \endcode
490 490
    ///
491 491
    /// This function can be called more than once. All the given parameters
492 492
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
493 493
    /// is used, thus only the modified parameters have to be set again.
494 494
    /// If the underlying digraph was also modified after the construction
495 495
    /// of the class (or the last \ref reset() call), then the \ref reset()
496 496
    /// function must be called.
497 497
    ///
498 498
    /// \param method The internal method that will be used in the
499 499
    /// algorithm. For more information, see \ref Method.
500 500
    /// \param factor The cost scaling factor. It must be larger than one.
501 501
    ///
502 502
    /// \return \c INFEASIBLE if no feasible flow exists,
503 503
    /// \n \c OPTIMAL if the problem has optimal solution
504 504
    /// (i.e. it is feasible and bounded), and the algorithm has found
505 505
    /// optimal flow and node potentials (primal and dual solutions),
506 506
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
507 507
    /// and infinite upper bound. It means that the objective function
508 508
    /// is unbounded on that arc, however, note that it could actually be
509 509
    /// bounded over the feasible flows, but this algroithm cannot handle
510 510
    /// these cases.
511 511
    ///
512 512
    /// \see ProblemType, Method
513 513
    /// \see resetParams(), reset()
514 514
    ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
515 515
      _alpha = factor;
516 516
      ProblemType pt = init();
517 517
      if (pt != OPTIMAL) return pt;
518 518
      start(method);
519 519
      return OPTIMAL;
520 520
    }
521 521

	
522 522
    /// \brief Reset all the parameters that have been given before.
523 523
    ///
524 524
    /// This function resets all the paramaters that have been given
525 525
    /// before using functions \ref lowerMap(), \ref upperMap(),
526 526
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
527 527
    ///
528 528
    /// It is useful for multiple \ref run() calls. Basically, all the given
529 529
    /// parameters are kept for the next \ref run() call, unless
530 530
    /// \ref resetParams() or \ref reset() is used.
531 531
    /// If the underlying digraph was also modified after the construction
532 532
    /// of the class or the last \ref reset() call, then the \ref reset()
533 533
    /// function must be used, otherwise \ref resetParams() is sufficient.
534 534
    ///
535 535
    /// For example,
536 536
    /// \code
537 537
    ///   CostScaling<ListDigraph> cs(graph);
538 538
    ///
539 539
    ///   // First run
540 540
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
541 541
    ///     .supplyMap(sup).run();
542 542
    ///
543 543
    ///   // Run again with modified cost map (resetParams() is not called,
544 544
    ///   // so only the cost map have to be set again)
545 545
    ///   cost[e] += 100;
546 546
    ///   cs.costMap(cost).run();
547 547
    ///
548 548
    ///   // Run again from scratch using resetParams()
549 549
    ///   // (the lower bounds will be set to zero on all arcs)
550 550
    ///   cs.resetParams();
551 551
    ///   cs.upperMap(capacity).costMap(cost)
552 552
    ///     .supplyMap(sup).run();
553 553
    /// \endcode
554 554
    ///
555 555
    /// \return <tt>(*this)</tt>
556 556
    ///
557 557
    /// \see reset(), run()
558 558
    CostScaling& resetParams() {
559 559
      for (int i = 0; i != _res_node_num; ++i) {
560 560
        _supply[i] = 0;
561 561
      }
562 562
      int limit = _first_out[_root];
563 563
      for (int j = 0; j != limit; ++j) {
564 564
        _lower[j] = 0;
565 565
        _upper[j] = INF;
566 566
        _scost[j] = _forward[j] ? 1 : -1;
567 567
      }
568 568
      for (int j = limit; j != _res_arc_num; ++j) {
569 569
        _lower[j] = 0;
570 570
        _upper[j] = INF;
571 571
        _scost[j] = 0;
572 572
        _scost[_reverse[j]] = 0;
573 573
      }
574 574
      _have_lower = false;
575 575
      return *this;
576 576
    }
577 577

	
578 578
    /// \brief Reset the internal data structures and all the parameters
579 579
    /// that have been given before.
580 580
    ///
581 581
    /// This function resets the internal data structures and all the
582 582
    /// paramaters that have been given before using functions \ref lowerMap(),
583 583
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
584 584
    ///
585 585
    /// It is useful for multiple \ref run() calls. By default, all the given
586 586
    /// parameters are kept for the next \ref run() call, unless
587 587
    /// \ref resetParams() or \ref reset() is used.
588 588
    /// If the underlying digraph was also modified after the construction
589 589
    /// of the class or the last \ref reset() call, then the \ref reset()
590 590
    /// function must be used, otherwise \ref resetParams() is sufficient.
591 591
    ///
592 592
    /// See \ref resetParams() for examples.
593 593
    ///
594 594
    /// \return <tt>(*this)</tt>
595 595
    ///
596 596
    /// \see resetParams(), run()
597 597
    CostScaling& reset() {
598 598
      // Resize vectors
599 599
      _node_num = countNodes(_graph);
600 600
      _arc_num = countArcs(_graph);
601 601
      _res_node_num = _node_num + 1;
602 602
      _res_arc_num = 2 * (_arc_num + _node_num);
603 603
      _root = _node_num;
604 604

	
605 605
      _first_out.resize(_res_node_num + 1);
606 606
      _forward.resize(_res_arc_num);
607 607
      _source.resize(_res_arc_num);
608 608
      _target.resize(_res_arc_num);
609 609
      _reverse.resize(_res_arc_num);
610 610

	
611 611
      _lower.resize(_res_arc_num);
612 612
      _upper.resize(_res_arc_num);
613 613
      _scost.resize(_res_arc_num);
614 614
      _supply.resize(_res_node_num);
615 615

	
616 616
      _res_cap.resize(_res_arc_num);
617 617
      _cost.resize(_res_arc_num);
618 618
      _pi.resize(_res_node_num);
619 619
      _excess.resize(_res_node_num);
620 620
      _next_out.resize(_res_node_num);
621 621

	
622 622
      _arc_vec.reserve(_res_arc_num);
623 623
      _cost_vec.reserve(_res_arc_num);
624 624

	
625 625
      // Copy the graph
626 626
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
627 627
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
628 628
        _node_id[n] = i;
629 629
      }
630 630
      i = 0;
631 631
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
632 632
        _first_out[i] = j;
633 633
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
634 634
          _arc_idf[a] = j;
635 635
          _forward[j] = true;
636 636
          _source[j] = i;
637 637
          _target[j] = _node_id[_graph.runningNode(a)];
638 638
        }
639 639
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
640 640
          _arc_idb[a] = j;
641 641
          _forward[j] = false;
642 642
          _source[j] = i;
643 643
          _target[j] = _node_id[_graph.runningNode(a)];
644 644
        }
645 645
        _forward[j] = false;
646 646
        _source[j] = i;
647 647
        _target[j] = _root;
648 648
        _reverse[j] = k;
649 649
        _forward[k] = true;
650 650
        _source[k] = _root;
651 651
        _target[k] = i;
652 652
        _reverse[k] = j;
653 653
        ++j; ++k;
654 654
      }
655 655
      _first_out[i] = j;
656 656
      _first_out[_res_node_num] = k;
657 657
      for (ArcIt a(_graph); a != INVALID; ++a) {
658 658
        int fi = _arc_idf[a];
659 659
        int bi = _arc_idb[a];
660 660
        _reverse[fi] = bi;
661 661
        _reverse[bi] = fi;
662 662
      }
663 663

	
664 664
      // Reset parameters
665 665
      resetParams();
666 666
      return *this;
667 667
    }
668 668

	
669 669
    /// @}
670 670

	
671 671
    /// \name Query Functions
672 672
    /// The results of the algorithm can be obtained using these
673 673
    /// functions.\n
674 674
    /// The \ref run() function must be called before using them.
675 675

	
676 676
    /// @{
677 677

	
678 678
    /// \brief Return the total cost of the found flow.
679 679
    ///
680 680
    /// This function returns the total cost of the found flow.
681 681
    /// Its complexity is O(e).
682 682
    ///
683 683
    /// \note The return type of the function can be specified as a
684 684
    /// template parameter. For example,
685 685
    /// \code
686 686
    ///   cs.totalCost<double>();
687 687
    /// \endcode
688 688
    /// It is useful if the total cost cannot be stored in the \c Cost
689 689
    /// type of the algorithm, which is the default return type of the
690 690
    /// function.
691 691
    ///
692 692
    /// \pre \ref run() must be called before using this function.
693 693
    template <typename Number>
694 694
    Number totalCost() const {
695 695
      Number c = 0;
696 696
      for (ArcIt a(_graph); a != INVALID; ++a) {
697 697
        int i = _arc_idb[a];
698 698
        c += static_cast<Number>(_res_cap[i]) *
699 699
             (-static_cast<Number>(_scost[i]));
700 700
      }
701 701
      return c;
702 702
    }
703 703

	
704 704
#ifndef DOXYGEN
705 705
    Cost totalCost() const {
706 706
      return totalCost<Cost>();
707 707
    }
708 708
#endif
709 709

	
710 710
    /// \brief Return the flow on the given arc.
711 711
    ///
712 712
    /// This function returns the flow on the given arc.
713 713
    ///
714 714
    /// \pre \ref run() must be called before using this function.
715 715
    Value flow(const Arc& a) const {
716 716
      return _res_cap[_arc_idb[a]];
717 717
    }
718 718

	
719 719
    /// \brief Return the flow map (the primal solution).
720 720
    ///
721 721
    /// This function copies the flow value on each arc into the given
722 722
    /// map. The \c Value type of the algorithm must be convertible to
723 723
    /// the \c Value type of the map.
724 724
    ///
725 725
    /// \pre \ref run() must be called before using this function.
726 726
    template <typename FlowMap>
727 727
    void flowMap(FlowMap &map) const {
728 728
      for (ArcIt a(_graph); a != INVALID; ++a) {
729 729
        map.set(a, _res_cap[_arc_idb[a]]);
730 730
      }
731 731
    }
732 732

	
733 733
    /// \brief Return the potential (dual value) of the given node.
734 734
    ///
735 735
    /// This function returns the potential (dual value) of the
736 736
    /// given node.
737 737
    ///
738 738
    /// \pre \ref run() must be called before using this function.
739 739
    Cost potential(const Node& n) const {
740 740
      return static_cast<Cost>(_pi[_node_id[n]]);
741 741
    }
742 742

	
743 743
    /// \brief Return the potential map (the dual solution).
744 744
    ///
745 745
    /// This function copies the potential (dual value) of each node
746 746
    /// into the given map.
747 747
    /// The \c Cost type of the algorithm must be convertible to the
748 748
    /// \c Value type of the map.
749 749
    ///
750 750
    /// \pre \ref run() must be called before using this function.
751 751
    template <typename PotentialMap>
752 752
    void potentialMap(PotentialMap &map) const {
753 753
      for (NodeIt n(_graph); n != INVALID; ++n) {
754 754
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
755 755
      }
756 756
    }
757 757

	
758 758
    /// @}
759 759

	
760 760
  private:
761 761

	
762 762
    // Initialize the algorithm
763 763
    ProblemType init() {
764 764
      if (_res_node_num <= 1) return INFEASIBLE;
765 765

	
766 766
      // Check the sum of supply values
767 767
      _sum_supply = 0;
768 768
      for (int i = 0; i != _root; ++i) {
769 769
        _sum_supply += _supply[i];
770 770
      }
771 771
      if (_sum_supply > 0) return INFEASIBLE;
772 772

	
773 773

	
774 774
      // Initialize vectors
775 775
      for (int i = 0; i != _res_node_num; ++i) {
776 776
        _pi[i] = 0;
777 777
        _excess[i] = _supply[i];
778 778
      }
779 779

	
780 780
      // Remove infinite upper bounds and check negative arcs
781 781
      const Value MAX = std::numeric_limits<Value>::max();
782 782
      int last_out;
783 783
      if (_have_lower) {
784 784
        for (int i = 0; i != _root; ++i) {
785 785
          last_out = _first_out[i+1];
786 786
          for (int j = _first_out[i]; j != last_out; ++j) {
787 787
            if (_forward[j]) {
788 788
              Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
789 789
              if (c >= MAX) return UNBOUNDED;
790 790
              _excess[i] -= c;
791 791
              _excess[_target[j]] += c;
792 792
            }
793 793
          }
794 794
        }
795 795
      } else {
796 796
        for (int i = 0; i != _root; ++i) {
797 797
          last_out = _first_out[i+1];
798 798
          for (int j = _first_out[i]; j != last_out; ++j) {
799 799
            if (_forward[j] && _scost[j] < 0) {
800 800
              Value c = _upper[j];
801 801
              if (c >= MAX) return UNBOUNDED;
802 802
              _excess[i] -= c;
803 803
              _excess[_target[j]] += c;
804 804
            }
805 805
          }
806 806
        }
807 807
      }
808 808
      Value ex, max_cap = 0;
809 809
      for (int i = 0; i != _res_node_num; ++i) {
810 810
        ex = _excess[i];
811 811
        _excess[i] = 0;
812 812
        if (ex < 0) max_cap -= ex;
813 813
      }
814 814
      for (int j = 0; j != _res_arc_num; ++j) {
815 815
        if (_upper[j] >= MAX) _upper[j] = max_cap;
816 816
      }
817 817

	
818 818
      // Initialize the large cost vector and the epsilon parameter
819 819
      _epsilon = 0;
820 820
      LargeCost lc;
821 821
      for (int i = 0; i != _root; ++i) {
822 822
        last_out = _first_out[i+1];
823 823
        for (int j = _first_out[i]; j != last_out; ++j) {
824 824
          lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
825 825
          _cost[j] = lc;
826 826
          if (lc > _epsilon) _epsilon = lc;
827 827
        }
828 828
      }
829 829
      _epsilon /= _alpha;
830 830

	
831 831
      // Initialize maps for Circulation and remove non-zero lower bounds
832 832
      ConstMap<Arc, Value> low(0);
833 833
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
834 834
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
835 835
      ValueArcMap cap(_graph), flow(_graph);
836 836
      ValueNodeMap sup(_graph);
837 837
      for (NodeIt n(_graph); n != INVALID; ++n) {
838 838
        sup[n] = _supply[_node_id[n]];
839 839
      }
840 840
      if (_have_lower) {
841 841
        for (ArcIt a(_graph); a != INVALID; ++a) {
842 842
          int j = _arc_idf[a];
843 843
          Value c = _lower[j];
844 844
          cap[a] = _upper[j] - c;
845 845
          sup[_graph.source(a)] -= c;
846 846
          sup[_graph.target(a)] += c;
847 847
        }
848 848
      } else {
849 849
        for (ArcIt a(_graph); a != INVALID; ++a) {
850 850
          cap[a] = _upper[_arc_idf[a]];
851 851
        }
852 852
      }
853 853

	
854 854
      _sup_node_num = 0;
855 855
      for (NodeIt n(_graph); n != INVALID; ++n) {
856 856
        if (sup[n] > 0) ++_sup_node_num;
857 857
      }
858 858

	
859 859
      // Find a feasible flow using Circulation
860 860
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
861 861
        circ(_graph, low, cap, sup);
862 862
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
863 863

	
864 864
      // Set residual capacities and handle GEQ supply type
865 865
      if (_sum_supply < 0) {
866 866
        for (ArcIt a(_graph); a != INVALID; ++a) {
867 867
          Value fa = flow[a];
868 868
          _res_cap[_arc_idf[a]] = cap[a] - fa;
869 869
          _res_cap[_arc_idb[a]] = fa;
870 870
          sup[_graph.source(a)] -= fa;
871 871
          sup[_graph.target(a)] += fa;
872 872
        }
873 873
        for (NodeIt n(_graph); n != INVALID; ++n) {
874 874
          _excess[_node_id[n]] = sup[n];
875 875
        }
876 876
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
877 877
          int u = _target[a];
878 878
          int ra = _reverse[a];
879 879
          _res_cap[a] = -_sum_supply + 1;
880 880
          _res_cap[ra] = -_excess[u];
881 881
          _cost[a] = 0;
882 882
          _cost[ra] = 0;
883 883
          _excess[u] = 0;
884 884
        }
885 885
      } else {
886 886
        for (ArcIt a(_graph); a != INVALID; ++a) {
887 887
          Value fa = flow[a];
888 888
          _res_cap[_arc_idf[a]] = cap[a] - fa;
889 889
          _res_cap[_arc_idb[a]] = fa;
890 890
        }
891 891
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
892 892
          int ra = _reverse[a];
893 893
          _res_cap[a] = 0;
894 894
          _res_cap[ra] = 0;
895 895
          _cost[a] = 0;
896 896
          _cost[ra] = 0;
897 897
        }
898 898
      }
899 899

	
900 900
      // Initialize data structures for buckets
901 901
      _max_rank = _alpha * _res_node_num;
902 902
      _buckets.resize(_max_rank);
903 903
      _bucket_next.resize(_res_node_num + 1);
904 904
      _bucket_prev.resize(_res_node_num + 1);
905 905
      _rank.resize(_res_node_num + 1);
906 906

	
907 907
      return OPTIMAL;
908 908
    }
909 909

	
910 910
    // Execute the algorithm and transform the results
911 911
    void start(Method method) {
912 912
      const int MAX_PARTIAL_PATH_LENGTH = 4;
913 913

	
914 914
      switch (method) {
915 915
        case PUSH:
916 916
          startPush();
917 917
          break;
918 918
        case AUGMENT:
919 919
          startAugment(_res_node_num - 1);
920 920
          break;
921 921
        case PARTIAL_AUGMENT:
922 922
          startAugment(MAX_PARTIAL_PATH_LENGTH);
923 923
          break;
924 924
      }
925 925

	
926 926
      // Compute node potentials for the original costs
927 927
      _arc_vec.clear();
928 928
      _cost_vec.clear();
929 929
      for (int j = 0; j != _res_arc_num; ++j) {
930 930
        if (_res_cap[j] > 0) {
931 931
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
932 932
          _cost_vec.push_back(_scost[j]);
933 933
        }
934 934
      }
935 935
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
936 936

	
937 937
      typename BellmanFord<StaticDigraph, LargeCostArcMap>
938 938
        ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
939 939
      bf.distMap(_pi_map);
940 940
      bf.init(0);
941 941
      bf.start();
942 942

	
943 943
      // Handle non-zero lower bounds
944 944
      if (_have_lower) {
945 945
        int limit = _first_out[_root];
946 946
        for (int j = 0; j != limit; ++j) {
947 947
          if (!_forward[j]) _res_cap[j] += _lower[j];
948 948
        }
949 949
      }
950 950
    }
951 951

	
952 952
    // Initialize a cost scaling phase
953 953
    void initPhase() {
954 954
      // Saturate arcs not satisfying the optimality condition
955 955
      for (int u = 0; u != _res_node_num; ++u) {
956 956
        int last_out = _first_out[u+1];
957 957
        LargeCost pi_u = _pi[u];
958 958
        for (int a = _first_out[u]; a != last_out; ++a) {
959 959
          Value delta = _res_cap[a];
960 960
          if (delta > 0) {
961 961
            int v = _target[a];
962 962
            if (_cost[a] + pi_u - _pi[v] < 0) {
963 963
              _excess[u] -= delta;
964 964
              _excess[v] += delta;
965 965
              _res_cap[a] = 0;
966 966
              _res_cap[_reverse[a]] += delta;
967 967
            }
968 968
          }
969 969
        }
970 970
      }
971 971

	
972 972
      // Find active nodes (i.e. nodes with positive excess)
973 973
      for (int u = 0; u != _res_node_num; ++u) {
974 974
        if (_excess[u] > 0) _active_nodes.push_back(u);
975 975
      }
976 976

	
977 977
      // Initialize the next arcs
978 978
      for (int u = 0; u != _res_node_num; ++u) {
979 979
        _next_out[u] = _first_out[u];
980 980
      }
981 981
    }
982 982

	
983 983
    // Early termination heuristic
984 984
    bool earlyTermination() {
985 985
      const double EARLY_TERM_FACTOR = 3.0;
986 986

	
987 987
      // Build a static residual graph
988 988
      _arc_vec.clear();
989 989
      _cost_vec.clear();
990 990
      for (int j = 0; j != _res_arc_num; ++j) {
991 991
        if (_res_cap[j] > 0) {
992 992
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
993 993
          _cost_vec.push_back(_cost[j] + 1);
994 994
        }
995 995
      }
996 996
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
997 997

	
998 998
      // Run Bellman-Ford algorithm to check if the current flow is optimal
999 999
      BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
1000 1000
      bf.init(0);
1001 1001
      bool done = false;
1002 1002
      int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
1003 1003
      for (int i = 0; i < K && !done; ++i) {
1004 1004
        done = bf.processNextWeakRound();
1005 1005
      }
1006 1006
      return done;
1007 1007
    }
1008 1008

	
1009 1009
    // Global potential update heuristic
1010 1010
    void globalUpdate() {
1011 1011
      const int bucket_end = _root + 1;
1012 1012

	
1013 1013
      // Initialize buckets
1014 1014
      for (int r = 0; r != _max_rank; ++r) {
1015 1015
        _buckets[r] = bucket_end;
1016 1016
      }
1017 1017
      Value total_excess = 0;
1018 1018
      int b0 = bucket_end;
1019 1019
      for (int i = 0; i != _res_node_num; ++i) {
1020 1020
        if (_excess[i] < 0) {
1021 1021
          _rank[i] = 0;
1022 1022
          _bucket_next[i] = b0;
1023 1023
          _bucket_prev[b0] = i;
1024 1024
          b0 = i;
1025 1025
        } else {
1026 1026
          total_excess += _excess[i];
1027 1027
          _rank[i] = _max_rank;
1028 1028
        }
1029 1029
      }
1030 1030
      if (total_excess == 0) return;
1031 1031
      _buckets[0] = b0;
1032 1032

	
1033 1033
      // Search the buckets
1034 1034
      int r = 0;
1035 1035
      for ( ; r != _max_rank; ++r) {
1036 1036
        while (_buckets[r] != bucket_end) {
1037 1037
          // Remove the first node from the current bucket
1038 1038
          int u = _buckets[r];
1039 1039
          _buckets[r] = _bucket_next[u];
1040 1040

	
1041 1041
          // Search the incomming arcs of u
1042 1042
          LargeCost pi_u = _pi[u];
1043 1043
          int last_out = _first_out[u+1];
1044 1044
          for (int a = _first_out[u]; a != last_out; ++a) {
1045 1045
            int ra = _reverse[a];
1046 1046
            if (_res_cap[ra] > 0) {
1047 1047
              int v = _source[ra];
1048 1048
              int old_rank_v = _rank[v];
1049 1049
              if (r < old_rank_v) {
1050 1050
                // Compute the new rank of v
1051 1051
                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1052 1052
                int new_rank_v = old_rank_v;
1053 1053
                if (nrc < LargeCost(_max_rank)) {
1054 1054
                  new_rank_v = r + 1 + static_cast<int>(nrc);
1055 1055
                }
1056 1056

	
1057 1057
                // Change the rank of v
1058 1058
                if (new_rank_v < old_rank_v) {
1059 1059
                  _rank[v] = new_rank_v;
1060 1060
                  _next_out[v] = _first_out[v];
1061 1061

	
1062 1062
                  // Remove v from its old bucket
1063 1063
                  if (old_rank_v < _max_rank) {
1064 1064
                    if (_buckets[old_rank_v] == v) {
1065 1065
                      _buckets[old_rank_v] = _bucket_next[v];
1066 1066
                    } else {
1067 1067
                      int pv = _bucket_prev[v], nv = _bucket_next[v];
1068 1068
                      _bucket_next[pv] = nv;
1069 1069
                      _bucket_prev[nv] = pv;
1070 1070
                    }
1071 1071
                  }
1072 1072

	
1073 1073
                  // Insert v into its new bucket
1074 1074
                  int nv = _buckets[new_rank_v];
1075 1075
                  _bucket_next[v] = nv;
1076 1076
                  _bucket_prev[nv] = v;
1077 1077
                  _buckets[new_rank_v] = v;
1078 1078
                }
1079 1079
              }
1080 1080
            }
1081 1081
          }
1082 1082

	
1083 1083
          // Finish search if there are no more active nodes
1084 1084
          if (_excess[u] > 0) {
1085 1085
            total_excess -= _excess[u];
1086 1086
            if (total_excess <= 0) break;
1087 1087
          }
1088 1088
        }
1089 1089
        if (total_excess <= 0) break;
1090 1090
      }
1091 1091

	
1092 1092
      // Relabel nodes
1093 1093
      for (int u = 0; u != _res_node_num; ++u) {
1094 1094
        int k = std::min(_rank[u], r);
1095 1095
        if (k > 0) {
1096 1096
          _pi[u] -= _epsilon * k;
1097 1097
          _next_out[u] = _first_out[u];
1098 1098
        }
1099 1099
      }
1100 1100
    }
1101 1101

	
1102 1102
    /// Execute the algorithm performing augment and relabel operations
1103 1103
    void startAugment(int max_length) {
1104 1104
      // Paramters for heuristics
1105 1105
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1106
      const double GLOBAL_UPDATE_FACTOR = 3.0;
1107

	
1108
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1106
      const double GLOBAL_UPDATE_FACTOR = 1.0;
1107
      const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
1109 1108
        (_res_node_num + _sup_node_num * _sup_node_num));
1110
      int next_update_limit = global_update_freq;
1111

	
1112
      int relabel_cnt = 0;
1109
      int next_global_update_limit = global_update_skip;
1113 1110

	
1114 1111
      // Perform cost scaling phases
1115
      std::vector<int> path;
1112
      IntVector path;
1113
      BoolVector path_arc(_res_arc_num, false);
1114
      int relabel_cnt = 0;
1116 1115
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1117 1116
                                        1 : _epsilon / _alpha )
1118 1117
      {
1119 1118
        // Early termination heuristic
1120 1119
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1121 1120
          if (earlyTermination()) break;
1122 1121
        }
1123 1122

	
1124 1123
        // Initialize current phase
1125 1124
        initPhase();
1126 1125

	
1127 1126
        // Perform partial augment and relabel operations
1128 1127
        while (true) {
1129 1128
          // Select an active node (FIFO selection)
1130 1129
          while (_active_nodes.size() > 0 &&
1131 1130
                 _excess[_active_nodes.front()] <= 0) {
1132 1131
            _active_nodes.pop_front();
1133 1132
          }
1134 1133
          if (_active_nodes.size() == 0) break;
1135 1134
          int start = _active_nodes.front();
1136 1135

	
1137 1136
          // Find an augmenting path from the start node
1138
          path.clear();
1139 1137
          int tip = start;
1140
          while (_excess[tip] >= 0 && int(path.size()) < max_length) {
1138
          while (int(path.size()) < max_length && _excess[tip] >= 0) {
1141 1139
            int u;
1142
            LargeCost min_red_cost, rc, pi_tip = _pi[tip];
1140
            LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max();
1141
            LargeCost pi_tip = _pi[tip];
1143 1142
            int last_out = _first_out[tip+1];
1144 1143
            for (int a = _next_out[tip]; a != last_out; ++a) {
1144
              if (_res_cap[a] > 0) {
1145 1145
              u = _target[a];
1146
              if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
1146
                rc = _cost[a] + pi_tip - _pi[u];
1147
                if (rc < 0) {
1147 1148
                path.push_back(a);
1148 1149
                _next_out[tip] = a;
1150
                  if (path_arc[a]) {
1151
                    goto augment;   // a cycle is found, stop path search
1152
                  }
1149 1153
                tip = u;
1154
                  path_arc[a] = true;
1150 1155
                goto next_step;
1151 1156
              }
1157
                else if (rc < min_red_cost) {
1158
                  min_red_cost = rc;
1159
                }
1160
              }
1152 1161
            }
1153 1162

	
1154 1163
            // Relabel tip node
1155
            min_red_cost = std::numeric_limits<LargeCost>::max();
1156 1164
            if (tip != start) {
1157 1165
              int ra = _reverse[path.back()];
1158
              min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
1166
              min_red_cost =
1167
                std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]);
1159 1168
            }
1169
            last_out = _next_out[tip];
1160 1170
            for (int a = _first_out[tip]; a != last_out; ++a) {
1171
              if (_res_cap[a] > 0) {
1161 1172
              rc = _cost[a] + pi_tip - _pi[_target[a]];
1162
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1173
                if (rc < min_red_cost) {
1163 1174
                min_red_cost = rc;
1164 1175
              }
1165 1176
            }
1177
            }
1166 1178
            _pi[tip] -= min_red_cost + _epsilon;
1167 1179
            _next_out[tip] = _first_out[tip];
1168 1180
            ++relabel_cnt;
1169 1181

	
1170 1182
            // Step back
1171 1183
            if (tip != start) {
1172
              tip = _source[path.back()];
1184
              int pa = path.back();
1185
              path_arc[pa] = false;
1186
              tip = _source[pa];
1173 1187
              path.pop_back();
1174 1188
            }
1175 1189

	
1176 1190
          next_step: ;
1177 1191
          }
1178 1192

	
1179 1193
          // Augment along the found path (as much flow as possible)
1194
        augment:
1180 1195
          Value delta;
1181 1196
          int pa, u, v = start;
1182 1197
          for (int i = 0; i != int(path.size()); ++i) {
1183 1198
            pa = path[i];
1184 1199
            u = v;
1185 1200
            v = _target[pa];
1201
            path_arc[pa] = false;
1186 1202
            delta = std::min(_res_cap[pa], _excess[u]);
1187 1203
            _res_cap[pa] -= delta;
1188 1204
            _res_cap[_reverse[pa]] += delta;
1189 1205
            _excess[u] -= delta;
1190 1206
            _excess[v] += delta;
1191
            if (_excess[v] > 0 && _excess[v] <= delta)
1207
            if (_excess[v] > 0 && _excess[v] <= delta) {
1192 1208
              _active_nodes.push_back(v);
1193 1209
          }
1210
          }
1211
          path.clear();
1194 1212

	
1195 1213
          // Global update heuristic
1196
          if (relabel_cnt >= next_update_limit) {
1214
          if (relabel_cnt >= next_global_update_limit) {
1197 1215
            globalUpdate();
1198
            next_update_limit += global_update_freq;
1216
            next_global_update_limit += global_update_skip;
1199 1217
          }
1200 1218
        }
1219

	
1201 1220
      }
1221

	
1202 1222
    }
1203 1223

	
1204 1224
    /// Execute the algorithm performing push and relabel operations
1205 1225
    void startPush() {
1206 1226
      // Paramters for heuristics
1207 1227
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1208 1228
      const double GLOBAL_UPDATE_FACTOR = 2.0;
1209 1229

	
1210
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1230
      const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR *
1211 1231
        (_res_node_num + _sup_node_num * _sup_node_num));
1212
      int next_update_limit = global_update_freq;
1213

	
1214
      int relabel_cnt = 0;
1232
      int next_global_update_limit = global_update_skip;
1215 1233

	
1216 1234
      // Perform cost scaling phases
1217 1235
      BoolVector hyper(_res_node_num, false);
1218 1236
      LargeCostVector hyper_cost(_res_node_num);
1237
      int relabel_cnt = 0;
1219 1238
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1220 1239
                                        1 : _epsilon / _alpha )
1221 1240
      {
1222 1241
        // Early termination heuristic
1223 1242
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1224 1243
          if (earlyTermination()) break;
1225 1244
        }
1226 1245

	
1227 1246
        // Initialize current phase
1228 1247
        initPhase();
1229 1248

	
1230 1249
        // Perform push and relabel operations
1231 1250
        while (_active_nodes.size() > 0) {
1232 1251
          LargeCost min_red_cost, rc, pi_n;
1233 1252
          Value delta;
1234 1253
          int n, t, a, last_out = _res_arc_num;
1235 1254

	
1236 1255
        next_node:
1237 1256
          // Select an active node (FIFO selection)
1238 1257
          n = _active_nodes.front();
1239 1258
          last_out = _first_out[n+1];
1240 1259
          pi_n = _pi[n];
1241 1260

	
1242 1261
          // Perform push operations if there are admissible arcs
1243 1262
          if (_excess[n] > 0) {
1244 1263
            for (a = _next_out[n]; a != last_out; ++a) {
1245 1264
              if (_res_cap[a] > 0 &&
1246 1265
                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
1247 1266
                delta = std::min(_res_cap[a], _excess[n]);
1248 1267
                t = _target[a];
1249 1268

	
1250 1269
                // Push-look-ahead heuristic
1251 1270
                Value ahead = -_excess[t];
1252 1271
                int last_out_t = _first_out[t+1];
1253 1272
                LargeCost pi_t = _pi[t];
1254 1273
                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1255 1274
                  if (_res_cap[ta] > 0 &&
1256 1275
                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1257 1276
                    ahead += _res_cap[ta];
1258 1277
                  if (ahead >= delta) break;
1259 1278
                }
1260 1279
                if (ahead < 0) ahead = 0;
1261 1280

	
1262 1281
                // Push flow along the arc
1263 1282
                if (ahead < delta && !hyper[t]) {
1264 1283
                  _res_cap[a] -= ahead;
1265 1284
                  _res_cap[_reverse[a]] += ahead;
1266 1285
                  _excess[n] -= ahead;
1267 1286
                  _excess[t] += ahead;
1268 1287
                  _active_nodes.push_front(t);
1269 1288
                  hyper[t] = true;
1270 1289
                  hyper_cost[t] = _cost[a] + pi_n - pi_t;
1271 1290
                  _next_out[n] = a;
1272 1291
                  goto next_node;
1273 1292
                } else {
1274 1293
                  _res_cap[a] -= delta;
1275 1294
                  _res_cap[_reverse[a]] += delta;
1276 1295
                  _excess[n] -= delta;
1277 1296
                  _excess[t] += delta;
1278 1297
                  if (_excess[t] > 0 && _excess[t] <= delta)
1279 1298
                    _active_nodes.push_back(t);
1280 1299
                }
1281 1300

	
1282 1301
                if (_excess[n] == 0) {
1283 1302
                  _next_out[n] = a;
1284 1303
                  goto remove_nodes;
1285 1304
                }
1286 1305
              }
1287 1306
            }
1288 1307
            _next_out[n] = a;
1289 1308
          }
1290 1309

	
1291 1310
          // Relabel the node if it is still active (or hyper)
1292 1311
          if (_excess[n] > 0 || hyper[n]) {
1293 1312
             min_red_cost = hyper[n] ? -hyper_cost[n] :
1294 1313
               std::numeric_limits<LargeCost>::max();
1295 1314
            for (int a = _first_out[n]; a != last_out; ++a) {
1315
              if (_res_cap[a] > 0) {
1296 1316
              rc = _cost[a] + pi_n - _pi[_target[a]];
1297
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1317
                if (rc < min_red_cost) {
1298 1318
                min_red_cost = rc;
1299 1319
              }
1300 1320
            }
1321
            }
1301 1322
            _pi[n] -= min_red_cost + _epsilon;
1302 1323
            _next_out[n] = _first_out[n];
1303 1324
            hyper[n] = false;
1304 1325
            ++relabel_cnt;
1305 1326
          }
1306 1327

	
1307 1328
          // Remove nodes that are not active nor hyper
1308 1329
        remove_nodes:
1309 1330
          while ( _active_nodes.size() > 0 &&
1310 1331
                  _excess[_active_nodes.front()] <= 0 &&
1311 1332
                  !hyper[_active_nodes.front()] ) {
1312 1333
            _active_nodes.pop_front();
1313 1334
          }
1314 1335

	
1315 1336
          // Global update heuristic
1316
          if (relabel_cnt >= next_update_limit) {
1337
          if (relabel_cnt >= next_global_update_limit) {
1317 1338
            globalUpdate();
1318 1339
            for (int u = 0; u != _res_node_num; ++u)
1319 1340
              hyper[u] = false;
1320
            next_update_limit += global_update_freq;
1341
            next_global_update_limit += global_update_skip;
1321 1342
          }
1322 1343
        }
1323 1344
      }
1324 1345
    }
1325 1346

	
1326 1347
  }; //class CostScaling
1327 1348

	
1328 1349
  ///@}
1329 1350

	
1330 1351
} //namespace lemon
1331 1352

	
1332 1353
#endif //LEMON_COST_SCALING_H
0 comments (0 inline)