1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2010 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_COST_SCALING_H |
20 | 20 |
#define LEMON_COST_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <deque> |
28 | 28 |
#include <limits> |
29 | 29 |
|
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
#include <lemon/static_graph.h> |
34 | 34 |
#include <lemon/circulation.h> |
35 | 35 |
#include <lemon/bellman_ford.h> |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \brief Default traits class of CostScaling algorithm. |
40 | 40 |
/// |
41 | 41 |
/// Default traits class of CostScaling algorithm. |
42 | 42 |
/// \tparam GR Digraph type. |
43 | 43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
44 | 44 |
/// and supply values. By default it is \c int. |
45 | 45 |
/// \tparam C The number type used for costs and potentials. |
46 | 46 |
/// By default it is the same as \c V. |
47 | 47 |
#ifdef DOXYGEN |
48 | 48 |
template <typename GR, typename V = int, typename C = V> |
49 | 49 |
#else |
50 | 50 |
template < typename GR, typename V = int, typename C = V, |
51 | 51 |
bool integer = std::numeric_limits<C>::is_integer > |
52 | 52 |
#endif |
53 | 53 |
struct CostScalingDefaultTraits |
54 | 54 |
{ |
55 | 55 |
/// The type of the digraph |
56 | 56 |
typedef GR Digraph; |
57 | 57 |
/// The type of the flow amounts, capacity bounds and supply values |
58 | 58 |
typedef V Value; |
59 | 59 |
/// The type of the arc costs |
60 | 60 |
typedef C Cost; |
61 | 61 |
|
62 | 62 |
/// \brief The large cost type used for internal computations |
63 | 63 |
/// |
64 | 64 |
/// The large cost type used for internal computations. |
65 | 65 |
/// It is \c long \c long if the \c Cost type is integer, |
66 | 66 |
/// otherwise it is \c double. |
67 | 67 |
/// \c Cost must be convertible to \c LargeCost. |
68 | 68 |
typedef double LargeCost; |
69 | 69 |
}; |
70 | 70 |
|
71 | 71 |
// Default traits class for integer cost types |
72 | 72 |
template <typename GR, typename V, typename C> |
73 | 73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
74 | 74 |
{ |
75 | 75 |
typedef GR Digraph; |
76 | 76 |
typedef V Value; |
77 | 77 |
typedef C Cost; |
78 | 78 |
#ifdef LEMON_HAVE_LONG_LONG |
79 | 79 |
typedef long long LargeCost; |
80 | 80 |
#else |
81 | 81 |
typedef long LargeCost; |
82 | 82 |
#endif |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// \addtogroup min_cost_flow_algs |
87 | 87 |
/// @{ |
88 | 88 |
|
89 | 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
90 | 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
91 | 91 |
/// |
92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
93 | 93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
94 | 94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
95 | 95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
96 | 96 |
/// It is a highly efficient primal-dual solution method, which |
97 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
98 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
99 | 99 |
/// |
100 | 100 |
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest |
101 | 101 |
/// implementations available in LEMON for this problem. |
102 | 102 |
/// |
103 | 103 |
/// Most of the parameters of the problem (except for the digraph) |
104 | 104 |
/// can be given using separate functions, and the algorithm can be |
105 | 105 |
/// executed using the \ref run() function. If some parameters are not |
106 | 106 |
/// specified, then default values will be used. |
107 | 107 |
/// |
108 | 108 |
/// \tparam GR The digraph type the algorithm runs on. |
109 | 109 |
/// \tparam V The number type used for flow amounts, capacity bounds |
110 | 110 |
/// and supply values in the algorithm. By default, it is \c int. |
111 | 111 |
/// \tparam C The number type used for costs and potentials in the |
112 | 112 |
/// algorithm. By default, it is the same as \c V. |
113 | 113 |
/// \tparam TR The traits class that defines various types used by the |
114 | 114 |
/// algorithm. By default, it is \ref CostScalingDefaultTraits |
115 | 115 |
/// "CostScalingDefaultTraits<GR, V, C>". |
116 | 116 |
/// In most cases, this parameter should not be set directly, |
117 | 117 |
/// consider to use the named template parameters instead. |
118 | 118 |
/// |
119 | 119 |
/// \warning Both \c V and \c C must be signed number types. |
120 | 120 |
/// \warning All input data (capacities, supply values, and costs) must |
121 | 121 |
/// be integer. |
122 | 122 |
/// \warning This algorithm does not support negative costs for |
123 | 123 |
/// arcs having infinite upper bound. |
124 | 124 |
/// |
125 | 125 |
/// \note %CostScaling provides three different internal methods, |
126 | 126 |
/// from which the most efficient one is used by default. |
127 | 127 |
/// For more information, see \ref Method. |
128 | 128 |
#ifdef DOXYGEN |
129 | 129 |
template <typename GR, typename V, typename C, typename TR> |
130 | 130 |
#else |
131 | 131 |
template < typename GR, typename V = int, typename C = V, |
132 | 132 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
133 | 133 |
#endif |
134 | 134 |
class CostScaling |
135 | 135 |
{ |
136 | 136 |
public: |
137 | 137 |
|
138 | 138 |
/// The type of the digraph |
139 | 139 |
typedef typename TR::Digraph Digraph; |
140 | 140 |
/// The type of the flow amounts, capacity bounds and supply values |
141 | 141 |
typedef typename TR::Value Value; |
142 | 142 |
/// The type of the arc costs |
143 | 143 |
typedef typename TR::Cost Cost; |
144 | 144 |
|
145 | 145 |
/// \brief The large cost type |
146 | 146 |
/// |
147 | 147 |
/// The large cost type used for internal computations. |
148 | 148 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
149 | 149 |
/// otherwise it is \c double. |
150 | 150 |
typedef typename TR::LargeCost LargeCost; |
151 | 151 |
|
152 | 152 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
153 | 153 |
typedef TR Traits; |
154 | 154 |
|
155 | 155 |
public: |
156 | 156 |
|
157 | 157 |
/// \brief Problem type constants for the \c run() function. |
158 | 158 |
/// |
159 | 159 |
/// Enum type containing the problem type constants that can be |
160 | 160 |
/// returned by the \ref run() function of the algorithm. |
161 | 161 |
enum ProblemType { |
162 | 162 |
/// The problem has no feasible solution (flow). |
163 | 163 |
INFEASIBLE, |
164 | 164 |
/// The problem has optimal solution (i.e. it is feasible and |
165 | 165 |
/// bounded), and the algorithm has found optimal flow and node |
166 | 166 |
/// potentials (primal and dual solutions). |
167 | 167 |
OPTIMAL, |
168 | 168 |
/// The digraph contains an arc of negative cost and infinite |
169 | 169 |
/// upper bound. It means that the objective function is unbounded |
170 | 170 |
/// on that arc, however, note that it could actually be bounded |
171 | 171 |
/// over the feasible flows, but this algroithm cannot handle |
172 | 172 |
/// these cases. |
173 | 173 |
UNBOUNDED |
174 | 174 |
}; |
175 | 175 |
|
176 | 176 |
/// \brief Constants for selecting the internal method. |
177 | 177 |
/// |
178 | 178 |
/// Enum type containing constants for selecting the internal method |
179 | 179 |
/// for the \ref run() function. |
180 | 180 |
/// |
181 | 181 |
/// \ref CostScaling provides three internal methods that differ mainly |
182 | 182 |
/// in their base operations, which are used in conjunction with the |
183 | 183 |
/// relabel operation. |
184 | 184 |
/// By default, the so called \ref PARTIAL_AUGMENT |
185 | 185 |
/// "Partial Augment-Relabel" method is used, which turned out to be |
186 | 186 |
/// the most efficient and the most robust on various test inputs. |
187 | 187 |
/// However, the other methods can be selected using the \ref run() |
188 | 188 |
/// function with the proper parameter. |
189 | 189 |
enum Method { |
190 | 190 |
/// Local push operations are used, i.e. flow is moved only on one |
191 | 191 |
/// admissible arc at once. |
192 | 192 |
PUSH, |
193 | 193 |
/// Augment operations are used, i.e. flow is moved on admissible |
194 | 194 |
/// paths from a node with excess to a node with deficit. |
195 | 195 |
AUGMENT, |
196 | 196 |
/// Partial augment operations are used, i.e. flow is moved on |
197 | 197 |
/// admissible paths started from a node with excess, but the |
198 | 198 |
/// lengths of these paths are limited. This method can be viewed |
199 | 199 |
/// as a combined version of the previous two operations. |
200 | 200 |
PARTIAL_AUGMENT |
201 | 201 |
}; |
202 | 202 |
|
203 | 203 |
private: |
204 | 204 |
|
205 | 205 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
206 | 206 |
|
207 | 207 |
typedef std::vector<int> IntVector; |
208 | 208 |
typedef std::vector<Value> ValueVector; |
209 | 209 |
typedef std::vector<Cost> CostVector; |
210 | 210 |
typedef std::vector<LargeCost> LargeCostVector; |
211 | 211 |
typedef std::vector<char> BoolVector; |
212 | 212 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
213 | 213 |
|
214 | 214 |
private: |
215 | 215 |
|
216 | 216 |
template <typename KT, typename VT> |
217 | 217 |
class StaticVectorMap { |
218 | 218 |
public: |
219 | 219 |
typedef KT Key; |
220 | 220 |
typedef VT Value; |
221 | 221 |
|
222 | 222 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {} |
223 | 223 |
|
224 | 224 |
const Value& operator[](const Key& key) const { |
225 | 225 |
return _v[StaticDigraph::id(key)]; |
226 | 226 |
} |
227 | 227 |
|
228 | 228 |
Value& operator[](const Key& key) { |
229 | 229 |
return _v[StaticDigraph::id(key)]; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
void set(const Key& key, const Value& val) { |
233 | 233 |
_v[StaticDigraph::id(key)] = val; |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
private: |
237 | 237 |
std::vector<Value>& _v; |
238 | 238 |
}; |
239 | 239 |
|
240 | 240 |
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
241 | 241 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
242 | 242 |
|
243 | 243 |
private: |
244 | 244 |
|
245 | 245 |
// Data related to the underlying digraph |
246 | 246 |
const GR &_graph; |
247 | 247 |
int _node_num; |
248 | 248 |
int _arc_num; |
249 | 249 |
int _res_node_num; |
250 | 250 |
int _res_arc_num; |
251 | 251 |
int _root; |
252 | 252 |
|
253 | 253 |
// Parameters of the problem |
254 | 254 |
bool _have_lower; |
255 | 255 |
Value _sum_supply; |
256 | 256 |
int _sup_node_num; |
257 | 257 |
|
258 | 258 |
// Data structures for storing the digraph |
259 | 259 |
IntNodeMap _node_id; |
260 | 260 |
IntArcMap _arc_idf; |
261 | 261 |
IntArcMap _arc_idb; |
262 | 262 |
IntVector _first_out; |
263 | 263 |
BoolVector _forward; |
264 | 264 |
IntVector _source; |
265 | 265 |
IntVector _target; |
266 | 266 |
IntVector _reverse; |
267 | 267 |
|
268 | 268 |
// Node and arc data |
269 | 269 |
ValueVector _lower; |
270 | 270 |
ValueVector _upper; |
271 | 271 |
CostVector _scost; |
272 | 272 |
ValueVector _supply; |
273 | 273 |
|
274 | 274 |
ValueVector _res_cap; |
275 | 275 |
LargeCostVector _cost; |
276 | 276 |
LargeCostVector _pi; |
277 | 277 |
ValueVector _excess; |
278 | 278 |
IntVector _next_out; |
279 | 279 |
std::deque<int> _active_nodes; |
280 | 280 |
|
281 | 281 |
// Data for scaling |
282 | 282 |
LargeCost _epsilon; |
283 | 283 |
int _alpha; |
284 | 284 |
|
285 | 285 |
IntVector _buckets; |
286 | 286 |
IntVector _bucket_next; |
287 | 287 |
IntVector _bucket_prev; |
288 | 288 |
IntVector _rank; |
289 | 289 |
int _max_rank; |
290 | 290 |
|
291 | 291 |
// Data for a StaticDigraph structure |
292 | 292 |
typedef std::pair<int, int> IntPair; |
293 | 293 |
StaticDigraph _sgr; |
294 | 294 |
std::vector<IntPair> _arc_vec; |
295 | 295 |
std::vector<LargeCost> _cost_vec; |
296 | 296 |
LargeCostArcMap _cost_map; |
297 | 297 |
LargeCostNodeMap _pi_map; |
298 | 298 |
|
299 | 299 |
public: |
300 | 300 |
|
301 | 301 |
/// \brief Constant for infinite upper bounds (capacities). |
302 | 302 |
/// |
303 | 303 |
/// Constant for infinite upper bounds (capacities). |
304 | 304 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
305 | 305 |
/// \c std::numeric_limits<Value>::max() otherwise. |
306 | 306 |
const Value INF; |
307 | 307 |
|
308 | 308 |
public: |
309 | 309 |
|
310 | 310 |
/// \name Named Template Parameters |
311 | 311 |
/// @{ |
312 | 312 |
|
313 | 313 |
template <typename T> |
314 | 314 |
struct SetLargeCostTraits : public Traits { |
315 | 315 |
typedef T LargeCost; |
316 | 316 |
}; |
317 | 317 |
|
318 | 318 |
/// \brief \ref named-templ-param "Named parameter" for setting |
319 | 319 |
/// \c LargeCost type. |
320 | 320 |
/// |
321 | 321 |
/// \ref named-templ-param "Named parameter" for setting \c LargeCost |
322 | 322 |
/// type, which is used for internal computations in the algorithm. |
323 | 323 |
/// \c Cost must be convertible to \c LargeCost. |
324 | 324 |
template <typename T> |
325 | 325 |
struct SetLargeCost |
326 | 326 |
: public CostScaling<GR, V, C, SetLargeCostTraits<T> > { |
327 | 327 |
typedef CostScaling<GR, V, C, SetLargeCostTraits<T> > Create; |
328 | 328 |
}; |
329 | 329 |
|
330 | 330 |
/// @} |
331 | 331 |
|
332 | 332 |
protected: |
333 | 333 |
|
334 | 334 |
CostScaling() {} |
335 | 335 |
|
336 | 336 |
public: |
337 | 337 |
|
338 | 338 |
/// \brief Constructor. |
339 | 339 |
/// |
340 | 340 |
/// The constructor of the class. |
341 | 341 |
/// |
342 | 342 |
/// \param graph The digraph the algorithm runs on. |
343 | 343 |
CostScaling(const GR& graph) : |
344 | 344 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
345 | 345 |
_cost_map(_cost_vec), _pi_map(_pi), |
346 | 346 |
INF(std::numeric_limits<Value>::has_infinity ? |
347 | 347 |
std::numeric_limits<Value>::infinity() : |
348 | 348 |
std::numeric_limits<Value>::max()) |
349 | 349 |
{ |
350 | 350 |
// Check the number types |
351 | 351 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
352 | 352 |
"The flow type of CostScaling must be signed"); |
353 | 353 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
354 | 354 |
"The cost type of CostScaling must be signed"); |
355 | 355 |
|
356 | 356 |
// Reset data structures |
357 | 357 |
reset(); |
358 | 358 |
} |
359 | 359 |
|
360 | 360 |
/// \name Parameters |
361 | 361 |
/// The parameters of the algorithm can be specified using these |
362 | 362 |
/// functions. |
363 | 363 |
|
364 | 364 |
/// @{ |
365 | 365 |
|
366 | 366 |
/// \brief Set the lower bounds on the arcs. |
367 | 367 |
/// |
368 | 368 |
/// This function sets the lower bounds on the arcs. |
369 | 369 |
/// If it is not used before calling \ref run(), the lower bounds |
370 | 370 |
/// will be set to zero on all arcs. |
371 | 371 |
/// |
372 | 372 |
/// \param map An arc map storing the lower bounds. |
373 | 373 |
/// Its \c Value type must be convertible to the \c Value type |
374 | 374 |
/// of the algorithm. |
375 | 375 |
/// |
376 | 376 |
/// \return <tt>(*this)</tt> |
377 | 377 |
template <typename LowerMap> |
378 | 378 |
CostScaling& lowerMap(const LowerMap& map) { |
379 | 379 |
_have_lower = true; |
380 | 380 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
381 | 381 |
_lower[_arc_idf[a]] = map[a]; |
382 | 382 |
_lower[_arc_idb[a]] = map[a]; |
383 | 383 |
} |
384 | 384 |
return *this; |
385 | 385 |
} |
386 | 386 |
|
387 | 387 |
/// \brief Set the upper bounds (capacities) on the arcs. |
388 | 388 |
/// |
389 | 389 |
/// This function sets the upper bounds (capacities) on the arcs. |
390 | 390 |
/// If it is not used before calling \ref run(), the upper bounds |
391 | 391 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
392 | 392 |
/// unbounded from above). |
393 | 393 |
/// |
394 | 394 |
/// \param map An arc map storing the upper bounds. |
395 | 395 |
/// Its \c Value type must be convertible to the \c Value type |
396 | 396 |
/// of the algorithm. |
397 | 397 |
/// |
398 | 398 |
/// \return <tt>(*this)</tt> |
399 | 399 |
template<typename UpperMap> |
400 | 400 |
CostScaling& upperMap(const UpperMap& map) { |
401 | 401 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
402 | 402 |
_upper[_arc_idf[a]] = map[a]; |
403 | 403 |
} |
404 | 404 |
return *this; |
405 | 405 |
} |
406 | 406 |
|
407 | 407 |
/// \brief Set the costs of the arcs. |
408 | 408 |
/// |
409 | 409 |
/// This function sets the costs of the arcs. |
410 | 410 |
/// If it is not used before calling \ref run(), the costs |
411 | 411 |
/// will be set to \c 1 on all arcs. |
412 | 412 |
/// |
413 | 413 |
/// \param map An arc map storing the costs. |
414 | 414 |
/// Its \c Value type must be convertible to the \c Cost type |
415 | 415 |
/// of the algorithm. |
416 | 416 |
/// |
417 | 417 |
/// \return <tt>(*this)</tt> |
418 | 418 |
template<typename CostMap> |
419 | 419 |
CostScaling& costMap(const CostMap& map) { |
420 | 420 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
421 | 421 |
_scost[_arc_idf[a]] = map[a]; |
422 | 422 |
_scost[_arc_idb[a]] = -map[a]; |
423 | 423 |
} |
424 | 424 |
return *this; |
425 | 425 |
} |
426 | 426 |
|
427 | 427 |
/// \brief Set the supply values of the nodes. |
428 | 428 |
/// |
429 | 429 |
/// This function sets the supply values of the nodes. |
430 | 430 |
/// If neither this function nor \ref stSupply() is used before |
431 | 431 |
/// calling \ref run(), the supply of each node will be set to zero. |
432 | 432 |
/// |
433 | 433 |
/// \param map A node map storing the supply values. |
434 | 434 |
/// Its \c Value type must be convertible to the \c Value type |
435 | 435 |
/// of the algorithm. |
436 | 436 |
/// |
437 | 437 |
/// \return <tt>(*this)</tt> |
438 | 438 |
template<typename SupplyMap> |
439 | 439 |
CostScaling& supplyMap(const SupplyMap& map) { |
440 | 440 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
441 | 441 |
_supply[_node_id[n]] = map[n]; |
442 | 442 |
} |
443 | 443 |
return *this; |
444 | 444 |
} |
445 | 445 |
|
446 | 446 |
/// \brief Set single source and target nodes and a supply value. |
447 | 447 |
/// |
448 | 448 |
/// This function sets a single source node and a single target node |
449 | 449 |
/// and the required flow value. |
450 | 450 |
/// If neither this function nor \ref supplyMap() is used before |
451 | 451 |
/// calling \ref run(), the supply of each node will be set to zero. |
452 | 452 |
/// |
453 | 453 |
/// Using this function has the same effect as using \ref supplyMap() |
454 | 454 |
/// with a map in which \c k is assigned to \c s, \c -k is |
455 | 455 |
/// assigned to \c t and all other nodes have zero supply value. |
456 | 456 |
/// |
457 | 457 |
/// \param s The source node. |
458 | 458 |
/// \param t The target node. |
459 | 459 |
/// \param k The required amount of flow from node \c s to node \c t |
460 | 460 |
/// (i.e. the supply of \c s and the demand of \c t). |
461 | 461 |
/// |
462 | 462 |
/// \return <tt>(*this)</tt> |
463 | 463 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) { |
464 | 464 |
for (int i = 0; i != _res_node_num; ++i) { |
465 | 465 |
_supply[i] = 0; |
466 | 466 |
} |
467 | 467 |
_supply[_node_id[s]] = k; |
468 | 468 |
_supply[_node_id[t]] = -k; |
469 | 469 |
return *this; |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
/// @} |
473 | 473 |
|
474 | 474 |
/// \name Execution control |
475 | 475 |
/// The algorithm can be executed using \ref run(). |
476 | 476 |
|
477 | 477 |
/// @{ |
478 | 478 |
|
479 | 479 |
/// \brief Run the algorithm. |
480 | 480 |
/// |
481 | 481 |
/// This function runs the algorithm. |
482 | 482 |
/// The paramters can be specified using functions \ref lowerMap(), |
483 | 483 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
484 | 484 |
/// For example, |
485 | 485 |
/// \code |
486 | 486 |
/// CostScaling<ListDigraph> cs(graph); |
487 | 487 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
488 | 488 |
/// .supplyMap(sup).run(); |
489 | 489 |
/// \endcode |
490 | 490 |
/// |
491 | 491 |
/// This function can be called more than once. All the given parameters |
492 | 492 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
493 | 493 |
/// is used, thus only the modified parameters have to be set again. |
494 | 494 |
/// If the underlying digraph was also modified after the construction |
495 | 495 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
496 | 496 |
/// function must be called. |
497 | 497 |
/// |
498 | 498 |
/// \param method The internal method that will be used in the |
499 | 499 |
/// algorithm. For more information, see \ref Method. |
500 | 500 |
/// \param factor The cost scaling factor. It must be larger than one. |
501 | 501 |
/// |
502 | 502 |
/// \return \c INFEASIBLE if no feasible flow exists, |
503 | 503 |
/// \n \c OPTIMAL if the problem has optimal solution |
504 | 504 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
505 | 505 |
/// optimal flow and node potentials (primal and dual solutions), |
506 | 506 |
/// \n \c UNBOUNDED if the digraph contains an arc of negative cost |
507 | 507 |
/// and infinite upper bound. It means that the objective function |
508 | 508 |
/// is unbounded on that arc, however, note that it could actually be |
509 | 509 |
/// bounded over the feasible flows, but this algroithm cannot handle |
510 | 510 |
/// these cases. |
511 | 511 |
/// |
512 | 512 |
/// \see ProblemType, Method |
513 | 513 |
/// \see resetParams(), reset() |
514 | 514 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { |
515 | 515 |
_alpha = factor; |
516 | 516 |
ProblemType pt = init(); |
517 | 517 |
if (pt != OPTIMAL) return pt; |
518 | 518 |
start(method); |
519 | 519 |
return OPTIMAL; |
520 | 520 |
} |
521 | 521 |
|
522 | 522 |
/// \brief Reset all the parameters that have been given before. |
523 | 523 |
/// |
524 | 524 |
/// This function resets all the paramaters that have been given |
525 | 525 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
526 | 526 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
527 | 527 |
/// |
528 | 528 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
529 | 529 |
/// parameters are kept for the next \ref run() call, unless |
530 | 530 |
/// \ref resetParams() or \ref reset() is used. |
531 | 531 |
/// If the underlying digraph was also modified after the construction |
532 | 532 |
/// of the class or the last \ref reset() call, then the \ref reset() |
533 | 533 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
534 | 534 |
/// |
535 | 535 |
/// For example, |
536 | 536 |
/// \code |
537 | 537 |
/// CostScaling<ListDigraph> cs(graph); |
538 | 538 |
/// |
539 | 539 |
/// // First run |
540 | 540 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
541 | 541 |
/// .supplyMap(sup).run(); |
542 | 542 |
/// |
543 | 543 |
/// // Run again with modified cost map (resetParams() is not called, |
544 | 544 |
/// // so only the cost map have to be set again) |
545 | 545 |
/// cost[e] += 100; |
546 | 546 |
/// cs.costMap(cost).run(); |
547 | 547 |
/// |
548 | 548 |
/// // Run again from scratch using resetParams() |
549 | 549 |
/// // (the lower bounds will be set to zero on all arcs) |
550 | 550 |
/// cs.resetParams(); |
551 | 551 |
/// cs.upperMap(capacity).costMap(cost) |
552 | 552 |
/// .supplyMap(sup).run(); |
553 | 553 |
/// \endcode |
554 | 554 |
/// |
555 | 555 |
/// \return <tt>(*this)</tt> |
556 | 556 |
/// |
557 | 557 |
/// \see reset(), run() |
558 | 558 |
CostScaling& resetParams() { |
559 | 559 |
for (int i = 0; i != _res_node_num; ++i) { |
560 | 560 |
_supply[i] = 0; |
561 | 561 |
} |
562 | 562 |
int limit = _first_out[_root]; |
563 | 563 |
for (int j = 0; j != limit; ++j) { |
564 | 564 |
_lower[j] = 0; |
565 | 565 |
_upper[j] = INF; |
566 | 566 |
_scost[j] = _forward[j] ? 1 : -1; |
567 | 567 |
} |
568 | 568 |
for (int j = limit; j != _res_arc_num; ++j) { |
569 | 569 |
_lower[j] = 0; |
570 | 570 |
_upper[j] = INF; |
571 | 571 |
_scost[j] = 0; |
572 | 572 |
_scost[_reverse[j]] = 0; |
573 | 573 |
} |
574 | 574 |
_have_lower = false; |
575 | 575 |
return *this; |
576 | 576 |
} |
577 | 577 |
|
578 | 578 |
/// \brief Reset the internal data structures and all the parameters |
579 | 579 |
/// that have been given before. |
580 | 580 |
/// |
581 | 581 |
/// This function resets the internal data structures and all the |
582 | 582 |
/// paramaters that have been given before using functions \ref lowerMap(), |
583 | 583 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
584 | 584 |
/// |
585 | 585 |
/// It is useful for multiple \ref run() calls. By default, all the given |
586 | 586 |
/// parameters are kept for the next \ref run() call, unless |
587 | 587 |
/// \ref resetParams() or \ref reset() is used. |
588 | 588 |
/// If the underlying digraph was also modified after the construction |
589 | 589 |
/// of the class or the last \ref reset() call, then the \ref reset() |
590 | 590 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
591 | 591 |
/// |
592 | 592 |
/// See \ref resetParams() for examples. |
593 | 593 |
/// |
594 | 594 |
/// \return <tt>(*this)</tt> |
595 | 595 |
/// |
596 | 596 |
/// \see resetParams(), run() |
597 | 597 |
CostScaling& reset() { |
598 | 598 |
// Resize vectors |
599 | 599 |
_node_num = countNodes(_graph); |
600 | 600 |
_arc_num = countArcs(_graph); |
601 | 601 |
_res_node_num = _node_num + 1; |
602 | 602 |
_res_arc_num = 2 * (_arc_num + _node_num); |
603 | 603 |
_root = _node_num; |
604 | 604 |
|
605 | 605 |
_first_out.resize(_res_node_num + 1); |
606 | 606 |
_forward.resize(_res_arc_num); |
607 | 607 |
_source.resize(_res_arc_num); |
608 | 608 |
_target.resize(_res_arc_num); |
609 | 609 |
_reverse.resize(_res_arc_num); |
610 | 610 |
|
611 | 611 |
_lower.resize(_res_arc_num); |
612 | 612 |
_upper.resize(_res_arc_num); |
613 | 613 |
_scost.resize(_res_arc_num); |
614 | 614 |
_supply.resize(_res_node_num); |
615 | 615 |
|
616 | 616 |
_res_cap.resize(_res_arc_num); |
617 | 617 |
_cost.resize(_res_arc_num); |
618 | 618 |
_pi.resize(_res_node_num); |
619 | 619 |
_excess.resize(_res_node_num); |
620 | 620 |
_next_out.resize(_res_node_num); |
621 | 621 |
|
622 | 622 |
_arc_vec.reserve(_res_arc_num); |
623 | 623 |
_cost_vec.reserve(_res_arc_num); |
624 | 624 |
|
625 | 625 |
// Copy the graph |
626 | 626 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
627 | 627 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
628 | 628 |
_node_id[n] = i; |
629 | 629 |
} |
630 | 630 |
i = 0; |
631 | 631 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
632 | 632 |
_first_out[i] = j; |
633 | 633 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
634 | 634 |
_arc_idf[a] = j; |
635 | 635 |
_forward[j] = true; |
636 | 636 |
_source[j] = i; |
637 | 637 |
_target[j] = _node_id[_graph.runningNode(a)]; |
638 | 638 |
} |
639 | 639 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
640 | 640 |
_arc_idb[a] = j; |
641 | 641 |
_forward[j] = false; |
642 | 642 |
_source[j] = i; |
643 | 643 |
_target[j] = _node_id[_graph.runningNode(a)]; |
644 | 644 |
} |
645 | 645 |
_forward[j] = false; |
646 | 646 |
_source[j] = i; |
647 | 647 |
_target[j] = _root; |
648 | 648 |
_reverse[j] = k; |
649 | 649 |
_forward[k] = true; |
650 | 650 |
_source[k] = _root; |
651 | 651 |
_target[k] = i; |
652 | 652 |
_reverse[k] = j; |
653 | 653 |
++j; ++k; |
654 | 654 |
} |
655 | 655 |
_first_out[i] = j; |
656 | 656 |
_first_out[_res_node_num] = k; |
657 | 657 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
658 | 658 |
int fi = _arc_idf[a]; |
659 | 659 |
int bi = _arc_idb[a]; |
660 | 660 |
_reverse[fi] = bi; |
661 | 661 |
_reverse[bi] = fi; |
662 | 662 |
} |
663 | 663 |
|
664 | 664 |
// Reset parameters |
665 | 665 |
resetParams(); |
666 | 666 |
return *this; |
667 | 667 |
} |
668 | 668 |
|
669 | 669 |
/// @} |
670 | 670 |
|
671 | 671 |
/// \name Query Functions |
672 | 672 |
/// The results of the algorithm can be obtained using these |
673 | 673 |
/// functions.\n |
674 | 674 |
/// The \ref run() function must be called before using them. |
675 | 675 |
|
676 | 676 |
/// @{ |
677 | 677 |
|
678 | 678 |
/// \brief Return the total cost of the found flow. |
679 | 679 |
/// |
680 | 680 |
/// This function returns the total cost of the found flow. |
681 | 681 |
/// Its complexity is O(e). |
682 | 682 |
/// |
683 | 683 |
/// \note The return type of the function can be specified as a |
684 | 684 |
/// template parameter. For example, |
685 | 685 |
/// \code |
686 | 686 |
/// cs.totalCost<double>(); |
687 | 687 |
/// \endcode |
688 | 688 |
/// It is useful if the total cost cannot be stored in the \c Cost |
689 | 689 |
/// type of the algorithm, which is the default return type of the |
690 | 690 |
/// function. |
691 | 691 |
/// |
692 | 692 |
/// \pre \ref run() must be called before using this function. |
693 | 693 |
template <typename Number> |
694 | 694 |
Number totalCost() const { |
695 | 695 |
Number c = 0; |
696 | 696 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
697 | 697 |
int i = _arc_idb[a]; |
698 | 698 |
c += static_cast<Number>(_res_cap[i]) * |
699 | 699 |
(-static_cast<Number>(_scost[i])); |
700 | 700 |
} |
701 | 701 |
return c; |
702 | 702 |
} |
703 | 703 |
|
704 | 704 |
#ifndef DOXYGEN |
705 | 705 |
Cost totalCost() const { |
706 | 706 |
return totalCost<Cost>(); |
707 | 707 |
} |
708 | 708 |
#endif |
709 | 709 |
|
710 | 710 |
/// \brief Return the flow on the given arc. |
711 | 711 |
/// |
712 | 712 |
/// This function returns the flow on the given arc. |
713 | 713 |
/// |
714 | 714 |
/// \pre \ref run() must be called before using this function. |
715 | 715 |
Value flow(const Arc& a) const { |
716 | 716 |
return _res_cap[_arc_idb[a]]; |
717 | 717 |
} |
718 | 718 |
|
719 | 719 |
/// \brief Return the flow map (the primal solution). |
720 | 720 |
/// |
721 | 721 |
/// This function copies the flow value on each arc into the given |
722 | 722 |
/// map. The \c Value type of the algorithm must be convertible to |
723 | 723 |
/// the \c Value type of the map. |
724 | 724 |
/// |
725 | 725 |
/// \pre \ref run() must be called before using this function. |
726 | 726 |
template <typename FlowMap> |
727 | 727 |
void flowMap(FlowMap &map) const { |
728 | 728 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
729 | 729 |
map.set(a, _res_cap[_arc_idb[a]]); |
730 | 730 |
} |
731 | 731 |
} |
732 | 732 |
|
733 | 733 |
/// \brief Return the potential (dual value) of the given node. |
734 | 734 |
/// |
735 | 735 |
/// This function returns the potential (dual value) of the |
736 | 736 |
/// given node. |
737 | 737 |
/// |
738 | 738 |
/// \pre \ref run() must be called before using this function. |
739 | 739 |
Cost potential(const Node& n) const { |
740 | 740 |
return static_cast<Cost>(_pi[_node_id[n]]); |
741 | 741 |
} |
742 | 742 |
|
743 | 743 |
/// \brief Return the potential map (the dual solution). |
744 | 744 |
/// |
745 | 745 |
/// This function copies the potential (dual value) of each node |
746 | 746 |
/// into the given map. |
747 | 747 |
/// The \c Cost type of the algorithm must be convertible to the |
748 | 748 |
/// \c Value type of the map. |
749 | 749 |
/// |
750 | 750 |
/// \pre \ref run() must be called before using this function. |
751 | 751 |
template <typename PotentialMap> |
752 | 752 |
void potentialMap(PotentialMap &map) const { |
753 | 753 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
754 | 754 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
755 | 755 |
} |
756 | 756 |
} |
757 | 757 |
|
758 | 758 |
/// @} |
759 | 759 |
|
760 | 760 |
private: |
761 | 761 |
|
762 | 762 |
// Initialize the algorithm |
763 | 763 |
ProblemType init() { |
764 | 764 |
if (_res_node_num <= 1) return INFEASIBLE; |
765 | 765 |
|
766 | 766 |
// Check the sum of supply values |
767 | 767 |
_sum_supply = 0; |
768 | 768 |
for (int i = 0; i != _root; ++i) { |
769 | 769 |
_sum_supply += _supply[i]; |
770 | 770 |
} |
771 | 771 |
if (_sum_supply > 0) return INFEASIBLE; |
772 | 772 |
|
773 | 773 |
|
774 | 774 |
// Initialize vectors |
775 | 775 |
for (int i = 0; i != _res_node_num; ++i) { |
776 | 776 |
_pi[i] = 0; |
777 | 777 |
_excess[i] = _supply[i]; |
778 | 778 |
} |
779 | 779 |
|
780 | 780 |
// Remove infinite upper bounds and check negative arcs |
781 | 781 |
const Value MAX = std::numeric_limits<Value>::max(); |
782 | 782 |
int last_out; |
783 | 783 |
if (_have_lower) { |
784 | 784 |
for (int i = 0; i != _root; ++i) { |
785 | 785 |
last_out = _first_out[i+1]; |
786 | 786 |
for (int j = _first_out[i]; j != last_out; ++j) { |
787 | 787 |
if (_forward[j]) { |
788 | 788 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
789 | 789 |
if (c >= MAX) return UNBOUNDED; |
790 | 790 |
_excess[i] -= c; |
791 | 791 |
_excess[_target[j]] += c; |
792 | 792 |
} |
793 | 793 |
} |
794 | 794 |
} |
795 | 795 |
} else { |
796 | 796 |
for (int i = 0; i != _root; ++i) { |
797 | 797 |
last_out = _first_out[i+1]; |
798 | 798 |
for (int j = _first_out[i]; j != last_out; ++j) { |
799 | 799 |
if (_forward[j] && _scost[j] < 0) { |
800 | 800 |
Value c = _upper[j]; |
801 | 801 |
if (c >= MAX) return UNBOUNDED; |
802 | 802 |
_excess[i] -= c; |
803 | 803 |
_excess[_target[j]] += c; |
804 | 804 |
} |
805 | 805 |
} |
806 | 806 |
} |
807 | 807 |
} |
808 | 808 |
Value ex, max_cap = 0; |
809 | 809 |
for (int i = 0; i != _res_node_num; ++i) { |
810 | 810 |
ex = _excess[i]; |
811 | 811 |
_excess[i] = 0; |
812 | 812 |
if (ex < 0) max_cap -= ex; |
813 | 813 |
} |
814 | 814 |
for (int j = 0; j != _res_arc_num; ++j) { |
815 | 815 |
if (_upper[j] >= MAX) _upper[j] = max_cap; |
816 | 816 |
} |
817 | 817 |
|
818 | 818 |
// Initialize the large cost vector and the epsilon parameter |
819 | 819 |
_epsilon = 0; |
820 | 820 |
LargeCost lc; |
821 | 821 |
for (int i = 0; i != _root; ++i) { |
822 | 822 |
last_out = _first_out[i+1]; |
823 | 823 |
for (int j = _first_out[i]; j != last_out; ++j) { |
824 | 824 |
lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha; |
825 | 825 |
_cost[j] = lc; |
826 | 826 |
if (lc > _epsilon) _epsilon = lc; |
827 | 827 |
} |
828 | 828 |
} |
829 | 829 |
_epsilon /= _alpha; |
830 | 830 |
|
831 | 831 |
// Initialize maps for Circulation and remove non-zero lower bounds |
832 | 832 |
ConstMap<Arc, Value> low(0); |
833 | 833 |
typedef typename Digraph::template ArcMap<Value> ValueArcMap; |
834 | 834 |
typedef typename Digraph::template NodeMap<Value> ValueNodeMap; |
835 | 835 |
ValueArcMap cap(_graph), flow(_graph); |
836 | 836 |
ValueNodeMap sup(_graph); |
837 | 837 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
838 | 838 |
sup[n] = _supply[_node_id[n]]; |
839 | 839 |
} |
840 | 840 |
if (_have_lower) { |
841 | 841 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
842 | 842 |
int j = _arc_idf[a]; |
843 | 843 |
Value c = _lower[j]; |
844 | 844 |
cap[a] = _upper[j] - c; |
845 | 845 |
sup[_graph.source(a)] -= c; |
846 | 846 |
sup[_graph.target(a)] += c; |
847 | 847 |
} |
848 | 848 |
} else { |
849 | 849 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
850 | 850 |
cap[a] = _upper[_arc_idf[a]]; |
851 | 851 |
} |
852 | 852 |
} |
853 | 853 |
|
854 | 854 |
_sup_node_num = 0; |
855 | 855 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
856 | 856 |
if (sup[n] > 0) ++_sup_node_num; |
857 | 857 |
} |
858 | 858 |
|
859 | 859 |
// Find a feasible flow using Circulation |
860 | 860 |
Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap> |
861 | 861 |
circ(_graph, low, cap, sup); |
862 | 862 |
if (!circ.flowMap(flow).run()) return INFEASIBLE; |
863 | 863 |
|
864 | 864 |
// Set residual capacities and handle GEQ supply type |
865 | 865 |
if (_sum_supply < 0) { |
866 | 866 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
867 | 867 |
Value fa = flow[a]; |
868 | 868 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
869 | 869 |
_res_cap[_arc_idb[a]] = fa; |
870 | 870 |
sup[_graph.source(a)] -= fa; |
871 | 871 |
sup[_graph.target(a)] += fa; |
872 | 872 |
} |
873 | 873 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
874 | 874 |
_excess[_node_id[n]] = sup[n]; |
875 | 875 |
} |
876 | 876 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
877 | 877 |
int u = _target[a]; |
878 | 878 |
int ra = _reverse[a]; |
879 | 879 |
_res_cap[a] = -_sum_supply + 1; |
880 | 880 |
_res_cap[ra] = -_excess[u]; |
881 | 881 |
_cost[a] = 0; |
882 | 882 |
_cost[ra] = 0; |
883 | 883 |
_excess[u] = 0; |
884 | 884 |
} |
885 | 885 |
} else { |
886 | 886 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
887 | 887 |
Value fa = flow[a]; |
888 | 888 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
889 | 889 |
_res_cap[_arc_idb[a]] = fa; |
890 | 890 |
} |
891 | 891 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
892 | 892 |
int ra = _reverse[a]; |
893 | 893 |
_res_cap[a] = 0; |
894 | 894 |
_res_cap[ra] = 0; |
895 | 895 |
_cost[a] = 0; |
896 | 896 |
_cost[ra] = 0; |
897 | 897 |
} |
898 | 898 |
} |
899 | 899 |
|
900 | 900 |
// Initialize data structures for buckets |
901 | 901 |
_max_rank = _alpha * _res_node_num; |
902 | 902 |
_buckets.resize(_max_rank); |
903 | 903 |
_bucket_next.resize(_res_node_num + 1); |
904 | 904 |
_bucket_prev.resize(_res_node_num + 1); |
905 | 905 |
_rank.resize(_res_node_num + 1); |
906 | 906 |
|
907 | 907 |
return OPTIMAL; |
908 | 908 |
} |
909 | 909 |
|
910 | 910 |
// Execute the algorithm and transform the results |
911 | 911 |
void start(Method method) { |
912 | 912 |
const int MAX_PARTIAL_PATH_LENGTH = 4; |
913 | 913 |
|
914 | 914 |
switch (method) { |
915 | 915 |
case PUSH: |
916 | 916 |
startPush(); |
917 | 917 |
break; |
918 | 918 |
case AUGMENT: |
919 | 919 |
startAugment(_res_node_num - 1); |
920 | 920 |
break; |
921 | 921 |
case PARTIAL_AUGMENT: |
922 | 922 |
startAugment(MAX_PARTIAL_PATH_LENGTH); |
923 | 923 |
break; |
924 | 924 |
} |
925 | 925 |
|
926 | 926 |
// Compute node potentials for the original costs |
927 | 927 |
_arc_vec.clear(); |
928 | 928 |
_cost_vec.clear(); |
929 | 929 |
for (int j = 0; j != _res_arc_num; ++j) { |
930 | 930 |
if (_res_cap[j] > 0) { |
931 | 931 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
932 | 932 |
_cost_vec.push_back(_scost[j]); |
933 | 933 |
} |
934 | 934 |
} |
935 | 935 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
936 | 936 |
|
937 | 937 |
typename BellmanFord<StaticDigraph, LargeCostArcMap> |
938 | 938 |
::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map); |
939 | 939 |
bf.distMap(_pi_map); |
940 | 940 |
bf.init(0); |
941 | 941 |
bf.start(); |
942 | 942 |
|
943 | 943 |
// Handle non-zero lower bounds |
944 | 944 |
if (_have_lower) { |
945 | 945 |
int limit = _first_out[_root]; |
946 | 946 |
for (int j = 0; j != limit; ++j) { |
947 | 947 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
948 | 948 |
} |
949 | 949 |
} |
950 | 950 |
} |
951 | 951 |
|
952 | 952 |
// Initialize a cost scaling phase |
953 | 953 |
void initPhase() { |
954 | 954 |
// Saturate arcs not satisfying the optimality condition |
955 | 955 |
for (int u = 0; u != _res_node_num; ++u) { |
956 | 956 |
int last_out = _first_out[u+1]; |
957 | 957 |
LargeCost pi_u = _pi[u]; |
958 | 958 |
for (int a = _first_out[u]; a != last_out; ++a) { |
959 | 959 |
Value delta = _res_cap[a]; |
960 | 960 |
if (delta > 0) { |
961 | 961 |
int v = _target[a]; |
962 | 962 |
if (_cost[a] + pi_u - _pi[v] < 0) { |
963 | 963 |
_excess[u] -= delta; |
964 | 964 |
_excess[v] += delta; |
965 | 965 |
_res_cap[a] = 0; |
966 | 966 |
_res_cap[_reverse[a]] += delta; |
967 | 967 |
} |
968 | 968 |
} |
969 | 969 |
} |
970 | 970 |
} |
971 | 971 |
|
972 | 972 |
// Find active nodes (i.e. nodes with positive excess) |
973 | 973 |
for (int u = 0; u != _res_node_num; ++u) { |
974 | 974 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
975 | 975 |
} |
976 | 976 |
|
977 | 977 |
// Initialize the next arcs |
978 | 978 |
for (int u = 0; u != _res_node_num; ++u) { |
979 | 979 |
_next_out[u] = _first_out[u]; |
980 | 980 |
} |
981 | 981 |
} |
982 | 982 |
|
983 | 983 |
// Early termination heuristic |
984 | 984 |
bool earlyTermination() { |
985 | 985 |
const double EARLY_TERM_FACTOR = 3.0; |
986 | 986 |
|
987 | 987 |
// Build a static residual graph |
988 | 988 |
_arc_vec.clear(); |
989 | 989 |
_cost_vec.clear(); |
990 | 990 |
for (int j = 0; j != _res_arc_num; ++j) { |
991 | 991 |
if (_res_cap[j] > 0) { |
992 | 992 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
993 | 993 |
_cost_vec.push_back(_cost[j] + 1); |
994 | 994 |
} |
995 | 995 |
} |
996 | 996 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
997 | 997 |
|
998 | 998 |
// Run Bellman-Ford algorithm to check if the current flow is optimal |
999 | 999 |
BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map); |
1000 | 1000 |
bf.init(0); |
1001 | 1001 |
bool done = false; |
1002 | 1002 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
1003 | 1003 |
for (int i = 0; i < K && !done; ++i) { |
1004 | 1004 |
done = bf.processNextWeakRound(); |
1005 | 1005 |
} |
1006 | 1006 |
return done; |
1007 | 1007 |
} |
1008 | 1008 |
|
1009 | 1009 |
// Global potential update heuristic |
1010 | 1010 |
void globalUpdate() { |
1011 | 1011 |
const int bucket_end = _root + 1; |
1012 | 1012 |
|
1013 | 1013 |
// Initialize buckets |
1014 | 1014 |
for (int r = 0; r != _max_rank; ++r) { |
1015 | 1015 |
_buckets[r] = bucket_end; |
1016 | 1016 |
} |
1017 | 1017 |
Value total_excess = 0; |
1018 | 1018 |
int b0 = bucket_end; |
1019 | 1019 |
for (int i = 0; i != _res_node_num; ++i) { |
1020 | 1020 |
if (_excess[i] < 0) { |
1021 | 1021 |
_rank[i] = 0; |
1022 | 1022 |
_bucket_next[i] = b0; |
1023 | 1023 |
_bucket_prev[b0] = i; |
1024 | 1024 |
b0 = i; |
1025 | 1025 |
} else { |
1026 | 1026 |
total_excess += _excess[i]; |
1027 | 1027 |
_rank[i] = _max_rank; |
1028 | 1028 |
} |
1029 | 1029 |
} |
1030 | 1030 |
if (total_excess == 0) return; |
1031 | 1031 |
_buckets[0] = b0; |
1032 | 1032 |
|
1033 | 1033 |
// Search the buckets |
1034 | 1034 |
int r = 0; |
1035 | 1035 |
for ( ; r != _max_rank; ++r) { |
1036 | 1036 |
while (_buckets[r] != bucket_end) { |
1037 | 1037 |
// Remove the first node from the current bucket |
1038 | 1038 |
int u = _buckets[r]; |
1039 | 1039 |
_buckets[r] = _bucket_next[u]; |
1040 | 1040 |
|
1041 | 1041 |
// Search the incomming arcs of u |
1042 | 1042 |
LargeCost pi_u = _pi[u]; |
1043 | 1043 |
int last_out = _first_out[u+1]; |
1044 | 1044 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1045 | 1045 |
int ra = _reverse[a]; |
1046 | 1046 |
if (_res_cap[ra] > 0) { |
1047 | 1047 |
int v = _source[ra]; |
1048 | 1048 |
int old_rank_v = _rank[v]; |
1049 | 1049 |
if (r < old_rank_v) { |
1050 | 1050 |
// Compute the new rank of v |
1051 | 1051 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
1052 | 1052 |
int new_rank_v = old_rank_v; |
1053 | 1053 |
if (nrc < LargeCost(_max_rank)) { |
1054 | 1054 |
new_rank_v = r + 1 + static_cast<int>(nrc); |
1055 | 1055 |
} |
1056 | 1056 |
|
1057 | 1057 |
// Change the rank of v |
1058 | 1058 |
if (new_rank_v < old_rank_v) { |
1059 | 1059 |
_rank[v] = new_rank_v; |
1060 | 1060 |
_next_out[v] = _first_out[v]; |
1061 | 1061 |
|
1062 | 1062 |
// Remove v from its old bucket |
1063 | 1063 |
if (old_rank_v < _max_rank) { |
1064 | 1064 |
if (_buckets[old_rank_v] == v) { |
1065 | 1065 |
_buckets[old_rank_v] = _bucket_next[v]; |
1066 | 1066 |
} else { |
1067 | 1067 |
int pv = _bucket_prev[v], nv = _bucket_next[v]; |
1068 | 1068 |
_bucket_next[pv] = nv; |
1069 | 1069 |
_bucket_prev[nv] = pv; |
1070 | 1070 |
} |
1071 | 1071 |
} |
1072 | 1072 |
|
1073 | 1073 |
// Insert v into its new bucket |
1074 | 1074 |
int nv = _buckets[new_rank_v]; |
1075 | 1075 |
_bucket_next[v] = nv; |
1076 | 1076 |
_bucket_prev[nv] = v; |
1077 | 1077 |
_buckets[new_rank_v] = v; |
1078 | 1078 |
} |
1079 | 1079 |
} |
1080 | 1080 |
} |
1081 | 1081 |
} |
1082 | 1082 |
|
1083 | 1083 |
// Finish search if there are no more active nodes |
1084 | 1084 |
if (_excess[u] > 0) { |
1085 | 1085 |
total_excess -= _excess[u]; |
1086 | 1086 |
if (total_excess <= 0) break; |
1087 | 1087 |
} |
1088 | 1088 |
} |
1089 | 1089 |
if (total_excess <= 0) break; |
1090 | 1090 |
} |
1091 | 1091 |
|
1092 | 1092 |
// Relabel nodes |
1093 | 1093 |
for (int u = 0; u != _res_node_num; ++u) { |
1094 | 1094 |
int k = std::min(_rank[u], r); |
1095 | 1095 |
if (k > 0) { |
1096 | 1096 |
_pi[u] -= _epsilon * k; |
1097 | 1097 |
_next_out[u] = _first_out[u]; |
1098 | 1098 |
} |
1099 | 1099 |
} |
1100 | 1100 |
} |
1101 | 1101 |
|
1102 | 1102 |
/// Execute the algorithm performing augment and relabel operations |
1103 | 1103 |
void startAugment(int max_length) { |
1104 | 1104 |
// Paramters for heuristics |
1105 | 1105 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1106 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
|
1107 |
|
|
1108 |
const |
|
1106 |
const double GLOBAL_UPDATE_FACTOR = 1.0; |
|
1107 |
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR * |
|
1109 | 1108 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1110 |
int next_update_limit = global_update_freq; |
|
1111 |
|
|
1112 |
int |
|
1109 |
int next_global_update_limit = global_update_skip; |
|
1113 | 1110 |
|
1114 | 1111 |
// Perform cost scaling phases |
1115 |
|
|
1112 |
IntVector path; |
|
1113 |
BoolVector path_arc(_res_arc_num, false); |
|
1114 |
int relabel_cnt = 0; |
|
1116 | 1115 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1117 | 1116 |
1 : _epsilon / _alpha ) |
1118 | 1117 |
{ |
1119 | 1118 |
// Early termination heuristic |
1120 | 1119 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1121 | 1120 |
if (earlyTermination()) break; |
1122 | 1121 |
} |
1123 | 1122 |
|
1124 | 1123 |
// Initialize current phase |
1125 | 1124 |
initPhase(); |
1126 | 1125 |
|
1127 | 1126 |
// Perform partial augment and relabel operations |
1128 | 1127 |
while (true) { |
1129 | 1128 |
// Select an active node (FIFO selection) |
1130 | 1129 |
while (_active_nodes.size() > 0 && |
1131 | 1130 |
_excess[_active_nodes.front()] <= 0) { |
1132 | 1131 |
_active_nodes.pop_front(); |
1133 | 1132 |
} |
1134 | 1133 |
if (_active_nodes.size() == 0) break; |
1135 | 1134 |
int start = _active_nodes.front(); |
1136 | 1135 |
|
1137 | 1136 |
// Find an augmenting path from the start node |
1138 |
path.clear(); |
|
1139 | 1137 |
int tip = start; |
1140 |
while ( |
|
1138 |
while (int(path.size()) < max_length && _excess[tip] >= 0) { |
|
1141 | 1139 |
int u; |
1142 |
LargeCost |
|
1140 |
LargeCost rc, min_red_cost = std::numeric_limits<LargeCost>::max(); |
|
1141 |
LargeCost pi_tip = _pi[tip]; |
|
1143 | 1142 |
int last_out = _first_out[tip+1]; |
1144 | 1143 |
for (int a = _next_out[tip]; a != last_out; ++a) { |
1144 |
if (_res_cap[a] > 0) { |
|
1145 | 1145 |
u = _target[a]; |
1146 |
|
|
1146 |
rc = _cost[a] + pi_tip - _pi[u]; |
|
1147 |
if (rc < 0) { |
|
1147 | 1148 |
path.push_back(a); |
1148 | 1149 |
_next_out[tip] = a; |
1150 |
if (path_arc[a]) { |
|
1151 |
goto augment; // a cycle is found, stop path search |
|
1152 |
} |
|
1149 | 1153 |
tip = u; |
1154 |
path_arc[a] = true; |
|
1150 | 1155 |
goto next_step; |
1151 | 1156 |
} |
1157 |
else if (rc < min_red_cost) { |
|
1158 |
min_red_cost = rc; |
|
1159 |
} |
|
1160 |
} |
|
1152 | 1161 |
} |
1153 | 1162 |
|
1154 | 1163 |
// Relabel tip node |
1155 |
min_red_cost = std::numeric_limits<LargeCost>::max(); |
|
1156 | 1164 |
if (tip != start) { |
1157 | 1165 |
int ra = _reverse[path.back()]; |
1158 |
min_red_cost = |
|
1166 |
min_red_cost = |
|
1167 |
std::min(min_red_cost, _cost[ra] + pi_tip - _pi[_target[ra]]); |
|
1159 | 1168 |
} |
1169 |
last_out = _next_out[tip]; |
|
1160 | 1170 |
for (int a = _first_out[tip]; a != last_out; ++a) { |
1171 |
if (_res_cap[a] > 0) { |
|
1161 | 1172 |
rc = _cost[a] + pi_tip - _pi[_target[a]]; |
1162 |
if ( |
|
1173 |
if (rc < min_red_cost) { |
|
1163 | 1174 |
min_red_cost = rc; |
1164 | 1175 |
} |
1165 | 1176 |
} |
1177 |
} |
|
1166 | 1178 |
_pi[tip] -= min_red_cost + _epsilon; |
1167 | 1179 |
_next_out[tip] = _first_out[tip]; |
1168 | 1180 |
++relabel_cnt; |
1169 | 1181 |
|
1170 | 1182 |
// Step back |
1171 | 1183 |
if (tip != start) { |
1172 |
|
|
1184 |
int pa = path.back(); |
|
1185 |
path_arc[pa] = false; |
|
1186 |
tip = _source[pa]; |
|
1173 | 1187 |
path.pop_back(); |
1174 | 1188 |
} |
1175 | 1189 |
|
1176 | 1190 |
next_step: ; |
1177 | 1191 |
} |
1178 | 1192 |
|
1179 | 1193 |
// Augment along the found path (as much flow as possible) |
1194 |
augment: |
|
1180 | 1195 |
Value delta; |
1181 | 1196 |
int pa, u, v = start; |
1182 | 1197 |
for (int i = 0; i != int(path.size()); ++i) { |
1183 | 1198 |
pa = path[i]; |
1184 | 1199 |
u = v; |
1185 | 1200 |
v = _target[pa]; |
1201 |
path_arc[pa] = false; |
|
1186 | 1202 |
delta = std::min(_res_cap[pa], _excess[u]); |
1187 | 1203 |
_res_cap[pa] -= delta; |
1188 | 1204 |
_res_cap[_reverse[pa]] += delta; |
1189 | 1205 |
_excess[u] -= delta; |
1190 | 1206 |
_excess[v] += delta; |
1191 |
if (_excess[v] > 0 && _excess[v] <= delta) |
|
1207 |
if (_excess[v] > 0 && _excess[v] <= delta) { |
|
1192 | 1208 |
_active_nodes.push_back(v); |
1193 | 1209 |
} |
1210 |
} |
|
1211 |
path.clear(); |
|
1194 | 1212 |
|
1195 | 1213 |
// Global update heuristic |
1196 |
if (relabel_cnt >= |
|
1214 |
if (relabel_cnt >= next_global_update_limit) { |
|
1197 | 1215 |
globalUpdate(); |
1198 |
|
|
1216 |
next_global_update_limit += global_update_skip; |
|
1199 | 1217 |
} |
1200 | 1218 |
} |
1219 |
|
|
1201 | 1220 |
} |
1221 |
|
|
1202 | 1222 |
} |
1203 | 1223 |
|
1204 | 1224 |
/// Execute the algorithm performing push and relabel operations |
1205 | 1225 |
void startPush() { |
1206 | 1226 |
// Paramters for heuristics |
1207 | 1227 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1208 | 1228 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
1209 | 1229 |
|
1210 |
const int |
|
1230 |
const int global_update_skip = static_cast<int>(GLOBAL_UPDATE_FACTOR * |
|
1211 | 1231 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1212 |
int next_update_limit = global_update_freq; |
|
1213 |
|
|
1214 |
int |
|
1232 |
int next_global_update_limit = global_update_skip; |
|
1215 | 1233 |
|
1216 | 1234 |
// Perform cost scaling phases |
1217 | 1235 |
BoolVector hyper(_res_node_num, false); |
1218 | 1236 |
LargeCostVector hyper_cost(_res_node_num); |
1237 |
int relabel_cnt = 0; |
|
1219 | 1238 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1220 | 1239 |
1 : _epsilon / _alpha ) |
1221 | 1240 |
{ |
1222 | 1241 |
// Early termination heuristic |
1223 | 1242 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1224 | 1243 |
if (earlyTermination()) break; |
1225 | 1244 |
} |
1226 | 1245 |
|
1227 | 1246 |
// Initialize current phase |
1228 | 1247 |
initPhase(); |
1229 | 1248 |
|
1230 | 1249 |
// Perform push and relabel operations |
1231 | 1250 |
while (_active_nodes.size() > 0) { |
1232 | 1251 |
LargeCost min_red_cost, rc, pi_n; |
1233 | 1252 |
Value delta; |
1234 | 1253 |
int n, t, a, last_out = _res_arc_num; |
1235 | 1254 |
|
1236 | 1255 |
next_node: |
1237 | 1256 |
// Select an active node (FIFO selection) |
1238 | 1257 |
n = _active_nodes.front(); |
1239 | 1258 |
last_out = _first_out[n+1]; |
1240 | 1259 |
pi_n = _pi[n]; |
1241 | 1260 |
|
1242 | 1261 |
// Perform push operations if there are admissible arcs |
1243 | 1262 |
if (_excess[n] > 0) { |
1244 | 1263 |
for (a = _next_out[n]; a != last_out; ++a) { |
1245 | 1264 |
if (_res_cap[a] > 0 && |
1246 | 1265 |
_cost[a] + pi_n - _pi[_target[a]] < 0) { |
1247 | 1266 |
delta = std::min(_res_cap[a], _excess[n]); |
1248 | 1267 |
t = _target[a]; |
1249 | 1268 |
|
1250 | 1269 |
// Push-look-ahead heuristic |
1251 | 1270 |
Value ahead = -_excess[t]; |
1252 | 1271 |
int last_out_t = _first_out[t+1]; |
1253 | 1272 |
LargeCost pi_t = _pi[t]; |
1254 | 1273 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) { |
1255 | 1274 |
if (_res_cap[ta] > 0 && |
1256 | 1275 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
1257 | 1276 |
ahead += _res_cap[ta]; |
1258 | 1277 |
if (ahead >= delta) break; |
1259 | 1278 |
} |
1260 | 1279 |
if (ahead < 0) ahead = 0; |
1261 | 1280 |
|
1262 | 1281 |
// Push flow along the arc |
1263 | 1282 |
if (ahead < delta && !hyper[t]) { |
1264 | 1283 |
_res_cap[a] -= ahead; |
1265 | 1284 |
_res_cap[_reverse[a]] += ahead; |
1266 | 1285 |
_excess[n] -= ahead; |
1267 | 1286 |
_excess[t] += ahead; |
1268 | 1287 |
_active_nodes.push_front(t); |
1269 | 1288 |
hyper[t] = true; |
1270 | 1289 |
hyper_cost[t] = _cost[a] + pi_n - pi_t; |
1271 | 1290 |
_next_out[n] = a; |
1272 | 1291 |
goto next_node; |
1273 | 1292 |
} else { |
1274 | 1293 |
_res_cap[a] -= delta; |
1275 | 1294 |
_res_cap[_reverse[a]] += delta; |
1276 | 1295 |
_excess[n] -= delta; |
1277 | 1296 |
_excess[t] += delta; |
1278 | 1297 |
if (_excess[t] > 0 && _excess[t] <= delta) |
1279 | 1298 |
_active_nodes.push_back(t); |
1280 | 1299 |
} |
1281 | 1300 |
|
1282 | 1301 |
if (_excess[n] == 0) { |
1283 | 1302 |
_next_out[n] = a; |
1284 | 1303 |
goto remove_nodes; |
1285 | 1304 |
} |
1286 | 1305 |
} |
1287 | 1306 |
} |
1288 | 1307 |
_next_out[n] = a; |
1289 | 1308 |
} |
1290 | 1309 |
|
1291 | 1310 |
// Relabel the node if it is still active (or hyper) |
1292 | 1311 |
if (_excess[n] > 0 || hyper[n]) { |
1293 | 1312 |
min_red_cost = hyper[n] ? -hyper_cost[n] : |
1294 | 1313 |
std::numeric_limits<LargeCost>::max(); |
1295 | 1314 |
for (int a = _first_out[n]; a != last_out; ++a) { |
1315 |
if (_res_cap[a] > 0) { |
|
1296 | 1316 |
rc = _cost[a] + pi_n - _pi[_target[a]]; |
1297 |
if ( |
|
1317 |
if (rc < min_red_cost) { |
|
1298 | 1318 |
min_red_cost = rc; |
1299 | 1319 |
} |
1300 | 1320 |
} |
1321 |
} |
|
1301 | 1322 |
_pi[n] -= min_red_cost + _epsilon; |
1302 | 1323 |
_next_out[n] = _first_out[n]; |
1303 | 1324 |
hyper[n] = false; |
1304 | 1325 |
++relabel_cnt; |
1305 | 1326 |
} |
1306 | 1327 |
|
1307 | 1328 |
// Remove nodes that are not active nor hyper |
1308 | 1329 |
remove_nodes: |
1309 | 1330 |
while ( _active_nodes.size() > 0 && |
1310 | 1331 |
_excess[_active_nodes.front()] <= 0 && |
1311 | 1332 |
!hyper[_active_nodes.front()] ) { |
1312 | 1333 |
_active_nodes.pop_front(); |
1313 | 1334 |
} |
1314 | 1335 |
|
1315 | 1336 |
// Global update heuristic |
1316 |
if (relabel_cnt >= |
|
1337 |
if (relabel_cnt >= next_global_update_limit) { |
|
1317 | 1338 |
globalUpdate(); |
1318 | 1339 |
for (int u = 0; u != _res_node_num; ++u) |
1319 | 1340 |
hyper[u] = false; |
1320 |
|
|
1341 |
next_global_update_limit += global_update_skip; |
|
1321 | 1342 |
} |
1322 | 1343 |
} |
1323 | 1344 |
} |
1324 | 1345 |
} |
1325 | 1346 |
|
1326 | 1347 |
}; //class CostScaling |
1327 | 1348 |
|
1328 | 1349 |
///@} |
1329 | 1350 |
|
1330 | 1351 |
} //namespace lemon |
1331 | 1352 |
|
1332 | 1353 |
#endif //LEMON_COST_SCALING_H |
0 comments (0 inline)