0
3
2
| 1 |
/* -*- C++ -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
| 20 |
#define LEMON_BELLMAN_FORD_H |
|
| 21 |
|
|
| 22 |
/// \ingroup shortest_path |
|
| 23 |
/// \file |
|
| 24 |
/// \brief Bellman-Ford algorithm. |
|
| 25 |
|
|
| 26 |
#include <lemon/bits/path_dump.h> |
|
| 27 |
#include <lemon/core.h> |
|
| 28 |
#include <lemon/error.h> |
|
| 29 |
#include <lemon/maps.h> |
|
| 30 |
#include <lemon/path.h> |
|
| 31 |
|
|
| 32 |
#include <limits> |
|
| 33 |
|
|
| 34 |
namespace lemon {
|
|
| 35 |
|
|
| 36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
| 37 |
/// |
|
| 38 |
/// This operation traits class defines all computational operations |
|
| 39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
| 40 |
/// The default implementation is based on the \c numeric_limits class. |
|
| 41 |
/// If the numeric type does not have infinity value, then the maximum |
|
| 42 |
/// value is used as extremal infinity value. |
|
| 43 |
template < |
|
| 44 |
typename V, |
|
| 45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
| 46 |
struct BellmanFordDefaultOperationTraits {
|
|
| 47 |
/// \e |
|
| 48 |
typedef V Value; |
|
| 49 |
/// \brief Gives back the zero value of the type. |
|
| 50 |
static Value zero() {
|
|
| 51 |
return static_cast<Value>(0); |
|
| 52 |
} |
|
| 53 |
/// \brief Gives back the positive infinity value of the type. |
|
| 54 |
static Value infinity() {
|
|
| 55 |
return std::numeric_limits<Value>::infinity(); |
|
| 56 |
} |
|
| 57 |
/// \brief Gives back the sum of the given two elements. |
|
| 58 |
static Value plus(const Value& left, const Value& right) {
|
|
| 59 |
return left + right; |
|
| 60 |
} |
|
| 61 |
/// \brief Gives back \c true only if the first value is less than |
|
| 62 |
/// the second. |
|
| 63 |
static bool less(const Value& left, const Value& right) {
|
|
| 64 |
return left < right; |
|
| 65 |
} |
|
| 66 |
}; |
|
| 67 |
|
|
| 68 |
template <typename V> |
|
| 69 |
struct BellmanFordDefaultOperationTraits<V, false> {
|
|
| 70 |
typedef V Value; |
|
| 71 |
static Value zero() {
|
|
| 72 |
return static_cast<Value>(0); |
|
| 73 |
} |
|
| 74 |
static Value infinity() {
|
|
| 75 |
return std::numeric_limits<Value>::max(); |
|
| 76 |
} |
|
| 77 |
static Value plus(const Value& left, const Value& right) {
|
|
| 78 |
if (left == infinity() || right == infinity()) return infinity(); |
|
| 79 |
return left + right; |
|
| 80 |
} |
|
| 81 |
static bool less(const Value& left, const Value& right) {
|
|
| 82 |
return left < right; |
|
| 83 |
} |
|
| 84 |
}; |
|
| 85 |
|
|
| 86 |
/// \brief Default traits class of BellmanFord class. |
|
| 87 |
/// |
|
| 88 |
/// Default traits class of BellmanFord class. |
|
| 89 |
/// \param GR The type of the digraph. |
|
| 90 |
/// \param LEN The type of the length map. |
|
| 91 |
template<typename GR, typename LEN> |
|
| 92 |
struct BellmanFordDefaultTraits {
|
|
| 93 |
/// The type of the digraph the algorithm runs on. |
|
| 94 |
typedef GR Digraph; |
|
| 95 |
|
|
| 96 |
/// \brief The type of the map that stores the arc lengths. |
|
| 97 |
/// |
|
| 98 |
/// The type of the map that stores the arc lengths. |
|
| 99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
| 100 |
typedef LEN LengthMap; |
|
| 101 |
|
|
| 102 |
/// The type of the arc lengths. |
|
| 103 |
typedef typename LEN::Value Value; |
|
| 104 |
|
|
| 105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 106 |
/// |
|
| 107 |
/// It defines the used operations and the infinity value for the |
|
| 108 |
/// given \c Value type. |
|
| 109 |
/// \see BellmanFordDefaultOperationTraits |
|
| 110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 111 |
|
|
| 112 |
/// \brief The type of the map that stores the last arcs of the |
|
| 113 |
/// shortest paths. |
|
| 114 |
/// |
|
| 115 |
/// The type of the map that stores the last |
|
| 116 |
/// arcs of the shortest paths. |
|
| 117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 119 |
|
|
| 120 |
/// \brief Instantiates a \c PredMap. |
|
| 121 |
/// |
|
| 122 |
/// This function instantiates a \ref PredMap. |
|
| 123 |
/// \param g is the digraph to which we would like to define the |
|
| 124 |
/// \ref PredMap. |
|
| 125 |
static PredMap *createPredMap(const GR& g) {
|
|
| 126 |
return new PredMap(g); |
|
| 127 |
} |
|
| 128 |
|
|
| 129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 130 |
/// |
|
| 131 |
/// The type of the map that stores the distances of the nodes. |
|
| 132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
| 134 |
|
|
| 135 |
/// \brief Instantiates a \c DistMap. |
|
| 136 |
/// |
|
| 137 |
/// This function instantiates a \ref DistMap. |
|
| 138 |
/// \param g is the digraph to which we would like to define the |
|
| 139 |
/// \ref DistMap. |
|
| 140 |
static DistMap *createDistMap(const GR& g) {
|
|
| 141 |
return new DistMap(g); |
|
| 142 |
} |
|
| 143 |
|
|
| 144 |
}; |
|
| 145 |
|
|
| 146 |
/// \brief %BellmanFord algorithm class. |
|
| 147 |
/// |
|
| 148 |
/// \ingroup shortest_path |
|
| 149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
| 150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
| 151 |
/// <tt>O(ne)</tt>. |
|
| 152 |
/// |
|
| 153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
| 154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
| 155 |
/// should not contain directed cycles with negative total length. |
|
| 156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
| 157 |
/// algorithm instead, since it is more efficient. |
|
| 158 |
/// |
|
| 159 |
/// The arc lengths are passed to the algorithm using a |
|
| 160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
| 161 |
/// kind of length. The type of the length values is determined by the |
|
| 162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
| 163 |
/// |
|
| 164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
| 165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
| 166 |
/// it can be used easier. |
|
| 167 |
/// |
|
| 168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
| 169 |
/// The default type is \ref ListDigraph. |
|
| 170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
| 171 |
/// the lengths of the arcs. The default map type is |
|
| 172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
| 173 |
#ifdef DOXYGEN |
|
| 174 |
template <typename GR, typename LEN, typename TR> |
|
| 175 |
#else |
|
| 176 |
template <typename GR=ListDigraph, |
|
| 177 |
typename LEN=typename GR::template ArcMap<int>, |
|
| 178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
| 179 |
#endif |
|
| 180 |
class BellmanFord {
|
|
| 181 |
public: |
|
| 182 |
|
|
| 183 |
///The type of the underlying digraph. |
|
| 184 |
typedef typename TR::Digraph Digraph; |
|
| 185 |
|
|
| 186 |
/// \brief The type of the arc lengths. |
|
| 187 |
typedef typename TR::LengthMap::Value Value; |
|
| 188 |
/// \brief The type of the map that stores the arc lengths. |
|
| 189 |
typedef typename TR::LengthMap LengthMap; |
|
| 190 |
/// \brief The type of the map that stores the last |
|
| 191 |
/// arcs of the shortest paths. |
|
| 192 |
typedef typename TR::PredMap PredMap; |
|
| 193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 194 |
typedef typename TR::DistMap DistMap; |
|
| 195 |
/// The type of the paths. |
|
| 196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
| 197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
| 198 |
/// "operation traits class" of the algorithm. |
|
| 199 |
typedef typename TR::OperationTraits OperationTraits; |
|
| 200 |
|
|
| 201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
| 202 |
typedef TR Traits; |
|
| 203 |
|
|
| 204 |
private: |
|
| 205 |
|
|
| 206 |
typedef typename Digraph::Node Node; |
|
| 207 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 208 |
typedef typename Digraph::Arc Arc; |
|
| 209 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
| 210 |
|
|
| 211 |
// Pointer to the underlying digraph. |
|
| 212 |
const Digraph *_gr; |
|
| 213 |
// Pointer to the length map |
|
| 214 |
const LengthMap *_length; |
|
| 215 |
// Pointer to the map of predecessors arcs. |
|
| 216 |
PredMap *_pred; |
|
| 217 |
// Indicates if _pred is locally allocated (true) or not. |
|
| 218 |
bool _local_pred; |
|
| 219 |
// Pointer to the map of distances. |
|
| 220 |
DistMap *_dist; |
|
| 221 |
// Indicates if _dist is locally allocated (true) or not. |
|
| 222 |
bool _local_dist; |
|
| 223 |
|
|
| 224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
| 225 |
MaskMap *_mask; |
|
| 226 |
|
|
| 227 |
std::vector<Node> _process; |
|
| 228 |
|
|
| 229 |
// Creates the maps if necessary. |
|
| 230 |
void create_maps() {
|
|
| 231 |
if(!_pred) {
|
|
| 232 |
_local_pred = true; |
|
| 233 |
_pred = Traits::createPredMap(*_gr); |
|
| 234 |
} |
|
| 235 |
if(!_dist) {
|
|
| 236 |
_local_dist = true; |
|
| 237 |
_dist = Traits::createDistMap(*_gr); |
|
| 238 |
} |
|
| 239 |
_mask = new MaskMap(*_gr, false); |
|
| 240 |
} |
|
| 241 |
|
|
| 242 |
public : |
|
| 243 |
|
|
| 244 |
typedef BellmanFord Create; |
|
| 245 |
|
|
| 246 |
/// \name Named Template Parameters |
|
| 247 |
|
|
| 248 |
///@{
|
|
| 249 |
|
|
| 250 |
template <class T> |
|
| 251 |
struct SetPredMapTraits : public Traits {
|
|
| 252 |
typedef T PredMap; |
|
| 253 |
static PredMap *createPredMap(const Digraph&) {
|
|
| 254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
| 255 |
return 0; // ignore warnings |
|
| 256 |
} |
|
| 257 |
}; |
|
| 258 |
|
|
| 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 260 |
/// \c PredMap type. |
|
| 261 |
/// |
|
| 262 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 263 |
/// \c PredMap type. |
|
| 264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 265 |
template <class T> |
|
| 266 |
struct SetPredMap |
|
| 267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
|
|
| 268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
| 269 |
}; |
|
| 270 |
|
|
| 271 |
template <class T> |
|
| 272 |
struct SetDistMapTraits : public Traits {
|
|
| 273 |
typedef T DistMap; |
|
| 274 |
static DistMap *createDistMap(const Digraph&) {
|
|
| 275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
| 276 |
return 0; // ignore warnings |
|
| 277 |
} |
|
| 278 |
}; |
|
| 279 |
|
|
| 280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 281 |
/// \c DistMap type. |
|
| 282 |
/// |
|
| 283 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 284 |
/// \c DistMap type. |
|
| 285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 286 |
template <class T> |
|
| 287 |
struct SetDistMap |
|
| 288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
|
|
| 289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
| 290 |
}; |
|
| 291 |
|
|
| 292 |
template <class T> |
|
| 293 |
struct SetOperationTraitsTraits : public Traits {
|
|
| 294 |
typedef T OperationTraits; |
|
| 295 |
}; |
|
| 296 |
|
|
| 297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 298 |
/// \c OperationTraits type. |
|
| 299 |
/// |
|
| 300 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 301 |
/// \c OperationTraits type. |
|
| 302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
| 303 |
template <class T> |
|
| 304 |
struct SetOperationTraits |
|
| 305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
|
|
| 306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
| 307 |
Create; |
|
| 308 |
}; |
|
| 309 |
|
|
| 310 |
///@} |
|
| 311 |
|
|
| 312 |
protected: |
|
| 313 |
|
|
| 314 |
BellmanFord() {}
|
|
| 315 |
|
|
| 316 |
public: |
|
| 317 |
|
|
| 318 |
/// \brief Constructor. |
|
| 319 |
/// |
|
| 320 |
/// Constructor. |
|
| 321 |
/// \param g The digraph the algorithm runs on. |
|
| 322 |
/// \param length The length map used by the algorithm. |
|
| 323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
| 324 |
_gr(&g), _length(&length), |
|
| 325 |
_pred(0), _local_pred(false), |
|
| 326 |
_dist(0), _local_dist(false), _mask(0) {}
|
|
| 327 |
|
|
| 328 |
///Destructor. |
|
| 329 |
~BellmanFord() {
|
|
| 330 |
if(_local_pred) delete _pred; |
|
| 331 |
if(_local_dist) delete _dist; |
|
| 332 |
if(_mask) delete _mask; |
|
| 333 |
} |
|
| 334 |
|
|
| 335 |
/// \brief Sets the length map. |
|
| 336 |
/// |
|
| 337 |
/// Sets the length map. |
|
| 338 |
/// \return <tt>(*this)</tt> |
|
| 339 |
BellmanFord &lengthMap(const LengthMap &map) {
|
|
| 340 |
_length = ↦ |
|
| 341 |
return *this; |
|
| 342 |
} |
|
| 343 |
|
|
| 344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
| 345 |
/// |
|
| 346 |
/// Sets the map that stores the predecessor arcs. |
|
| 347 |
/// If you don't use this function before calling \ref run() |
|
| 348 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 349 |
/// The destructor deallocates this automatically allocated map, |
|
| 350 |
/// of course. |
|
| 351 |
/// \return <tt>(*this)</tt> |
|
| 352 |
BellmanFord &predMap(PredMap &map) {
|
|
| 353 |
if(_local_pred) {
|
|
| 354 |
delete _pred; |
|
| 355 |
_local_pred=false; |
|
| 356 |
} |
|
| 357 |
_pred = ↦ |
|
| 358 |
return *this; |
|
| 359 |
} |
|
| 360 |
|
|
| 361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
| 362 |
/// |
|
| 363 |
/// Sets the map that stores the distances of the nodes calculated |
|
| 364 |
/// by the algorithm. |
|
| 365 |
/// If you don't use this function before calling \ref run() |
|
| 366 |
/// or \ref init(), an instance will be allocated automatically. |
|
| 367 |
/// The destructor deallocates this automatically allocated map, |
|
| 368 |
/// of course. |
|
| 369 |
/// \return <tt>(*this)</tt> |
|
| 370 |
BellmanFord &distMap(DistMap &map) {
|
|
| 371 |
if(_local_dist) {
|
|
| 372 |
delete _dist; |
|
| 373 |
_local_dist=false; |
|
| 374 |
} |
|
| 375 |
_dist = ↦ |
|
| 376 |
return *this; |
|
| 377 |
} |
|
| 378 |
|
|
| 379 |
/// \name Execution Control |
|
| 380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
| 381 |
/// one of the member functions called \ref run().\n |
|
| 382 |
/// If you need better control on the execution, you have to call |
|
| 383 |
/// \ref init() first, then you can add several source nodes |
|
| 384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
| 385 |
/// performed with \ref start(), \ref checkedStart() or |
|
| 386 |
/// \ref limitedStart(). |
|
| 387 |
|
|
| 388 |
///@{
|
|
| 389 |
|
|
| 390 |
/// \brief Initializes the internal data structures. |
|
| 391 |
/// |
|
| 392 |
/// Initializes the internal data structures. The optional parameter |
|
| 393 |
/// is the initial distance of each node. |
|
| 394 |
void init(const Value value = OperationTraits::infinity()) {
|
|
| 395 |
create_maps(); |
|
| 396 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 397 |
_pred->set(it, INVALID); |
|
| 398 |
_dist->set(it, value); |
|
| 399 |
} |
|
| 400 |
_process.clear(); |
|
| 401 |
if (OperationTraits::less(value, OperationTraits::infinity())) {
|
|
| 402 |
for (NodeIt it(*_gr); it != INVALID; ++it) {
|
|
| 403 |
_process.push_back(it); |
|
| 404 |
_mask->set(it, true); |
|
| 405 |
} |
|
| 406 |
} |
|
| 407 |
} |
|
| 408 |
|
|
| 409 |
/// \brief Adds a new source node. |
|
| 410 |
/// |
|
| 411 |
/// This function adds a new source node. The optional second parameter |
|
| 412 |
/// is the initial distance of the node. |
|
| 413 |
void addSource(Node source, Value dst = OperationTraits::zero()) {
|
|
| 414 |
_dist->set(source, dst); |
|
| 415 |
if (!(*_mask)[source]) {
|
|
| 416 |
_process.push_back(source); |
|
| 417 |
_mask->set(source, true); |
|
| 418 |
} |
|
| 419 |
} |
|
| 420 |
|
|
| 421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
| 422 |
/// |
|
| 423 |
/// If the algoritm calculated the distances in the previous round |
|
| 424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
| 425 |
/// will calculate the distances exactly for the paths of at most |
|
| 426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
| 427 |
/// calculates the shortest path distances exactly for the paths |
|
| 428 |
/// consisting of at most \c k arcs. |
|
| 429 |
/// |
|
| 430 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 432 |
/// need the shortest paths and not only the distances, you should |
|
| 433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 434 |
/// and build the path manually. |
|
| 435 |
/// |
|
| 436 |
/// \return \c true when the algorithm have not found more shorter |
|
| 437 |
/// paths. |
|
| 438 |
/// |
|
| 439 |
/// \see ActiveIt |
|
| 440 |
bool processNextRound() {
|
|
| 441 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 442 |
_mask->set(_process[i], false); |
|
| 443 |
} |
|
| 444 |
std::vector<Node> nextProcess; |
|
| 445 |
std::vector<Value> values(_process.size()); |
|
| 446 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 447 |
values[i] = (*_dist)[_process[i]]; |
|
| 448 |
} |
|
| 449 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 451 |
Node target = _gr->target(it); |
|
| 452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
| 453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 454 |
_pred->set(target, it); |
|
| 455 |
_dist->set(target, relaxed); |
|
| 456 |
if (!(*_mask)[target]) {
|
|
| 457 |
_mask->set(target, true); |
|
| 458 |
nextProcess.push_back(target); |
|
| 459 |
} |
|
| 460 |
} |
|
| 461 |
} |
|
| 462 |
} |
|
| 463 |
_process.swap(nextProcess); |
|
| 464 |
return _process.empty(); |
|
| 465 |
} |
|
| 466 |
|
|
| 467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
| 468 |
/// |
|
| 469 |
/// If the algorithm calculated the distances in the previous round |
|
| 470 |
/// at least for the paths of at most \c k arcs, then this function |
|
| 471 |
/// will calculate the distances at least for the paths of at most |
|
| 472 |
/// <tt>k+1</tt> arcs. |
|
| 473 |
/// This function does not make it possible to calculate the shortest |
|
| 474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
| 475 |
/// this is why it is called weak round. |
|
| 476 |
/// |
|
| 477 |
/// \return \c true when the algorithm have not found more shorter |
|
| 478 |
/// paths. |
|
| 479 |
/// |
|
| 480 |
/// \see ActiveIt |
|
| 481 |
bool processNextWeakRound() {
|
|
| 482 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 483 |
_mask->set(_process[i], false); |
|
| 484 |
} |
|
| 485 |
std::vector<Node> nextProcess; |
|
| 486 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
|
|
| 488 |
Node target = _gr->target(it); |
|
| 489 |
Value relaxed = |
|
| 490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
| 491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) {
|
|
| 492 |
_pred->set(target, it); |
|
| 493 |
_dist->set(target, relaxed); |
|
| 494 |
if (!(*_mask)[target]) {
|
|
| 495 |
_mask->set(target, true); |
|
| 496 |
nextProcess.push_back(target); |
|
| 497 |
} |
|
| 498 |
} |
|
| 499 |
} |
|
| 500 |
} |
|
| 501 |
_process.swap(nextProcess); |
|
| 502 |
return _process.empty(); |
|
| 503 |
} |
|
| 504 |
|
|
| 505 |
/// \brief Executes the algorithm. |
|
| 506 |
/// |
|
| 507 |
/// Executes the algorithm. |
|
| 508 |
/// |
|
| 509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 510 |
/// in order to compute the shortest path to each node. |
|
| 511 |
/// |
|
| 512 |
/// The algorithm computes |
|
| 513 |
/// - the shortest path tree (forest), |
|
| 514 |
/// - the distance of each node from the root(s). |
|
| 515 |
/// |
|
| 516 |
/// \pre init() must be called and at least one root node should be |
|
| 517 |
/// added with addSource() before using this function. |
|
| 518 |
void start() {
|
|
| 519 |
int num = countNodes(*_gr) - 1; |
|
| 520 |
for (int i = 0; i < num; ++i) {
|
|
| 521 |
if (processNextWeakRound()) break; |
|
| 522 |
} |
|
| 523 |
} |
|
| 524 |
|
|
| 525 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
| 526 |
/// |
|
| 527 |
/// Executes the algorithm and checks the negative cycles. |
|
| 528 |
/// |
|
| 529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 530 |
/// in order to compute the shortest path to each node and also checks |
|
| 531 |
/// if the digraph contains cycles with negative total length. |
|
| 532 |
/// |
|
| 533 |
/// The algorithm computes |
|
| 534 |
/// - the shortest path tree (forest), |
|
| 535 |
/// - the distance of each node from the root(s). |
|
| 536 |
/// |
|
| 537 |
/// \return \c false if there is a negative cycle in the digraph. |
|
| 538 |
/// |
|
| 539 |
/// \pre init() must be called and at least one root node should be |
|
| 540 |
/// added with addSource() before using this function. |
|
| 541 |
bool checkedStart() {
|
|
| 542 |
int num = countNodes(*_gr); |
|
| 543 |
for (int i = 0; i < num; ++i) {
|
|
| 544 |
if (processNextWeakRound()) return true; |
|
| 545 |
} |
|
| 546 |
return _process.empty(); |
|
| 547 |
} |
|
| 548 |
|
|
| 549 |
/// \brief Executes the algorithm with arc number limit. |
|
| 550 |
/// |
|
| 551 |
/// Executes the algorithm with arc number limit. |
|
| 552 |
/// |
|
| 553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
| 554 |
/// in order to compute the shortest path distance for each node |
|
| 555 |
/// using only the paths consisting of at most \c num arcs. |
|
| 556 |
/// |
|
| 557 |
/// The algorithm computes |
|
| 558 |
/// - the limited distance of each node from the root(s), |
|
| 559 |
/// - the predecessor arc for each node. |
|
| 560 |
/// |
|
| 561 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 563 |
/// need the shortest paths and not only the distances, you should |
|
| 564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 565 |
/// and build the path manually. |
|
| 566 |
/// |
|
| 567 |
/// \pre init() must be called and at least one root node should be |
|
| 568 |
/// added with addSource() before using this function. |
|
| 569 |
void limitedStart(int num) {
|
|
| 570 |
for (int i = 0; i < num; ++i) {
|
|
| 571 |
if (processNextRound()) break; |
|
| 572 |
} |
|
| 573 |
} |
|
| 574 |
|
|
| 575 |
/// \brief Runs the algorithm from the given root node. |
|
| 576 |
/// |
|
| 577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 578 |
/// node \c s in order to compute the shortest path to each node. |
|
| 579 |
/// |
|
| 580 |
/// The algorithm computes |
|
| 581 |
/// - the shortest path tree (forest), |
|
| 582 |
/// - the distance of each node from the root(s). |
|
| 583 |
/// |
|
| 584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
| 585 |
/// \code |
|
| 586 |
/// bf.init(); |
|
| 587 |
/// bf.addSource(s); |
|
| 588 |
/// bf.start(); |
|
| 589 |
/// \endcode |
|
| 590 |
void run(Node s) {
|
|
| 591 |
init(); |
|
| 592 |
addSource(s); |
|
| 593 |
start(); |
|
| 594 |
} |
|
| 595 |
|
|
| 596 |
/// \brief Runs the algorithm from the given root node with arc |
|
| 597 |
/// number limit. |
|
| 598 |
/// |
|
| 599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
| 600 |
/// node \c s in order to compute the shortest path distance for each |
|
| 601 |
/// node using only the paths consisting of at most \c num arcs. |
|
| 602 |
/// |
|
| 603 |
/// The algorithm computes |
|
| 604 |
/// - the limited distance of each node from the root(s), |
|
| 605 |
/// - the predecessor arc for each node. |
|
| 606 |
/// |
|
| 607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
| 608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
| 609 |
/// need the shortest paths and not only the distances, you should |
|
| 610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
| 611 |
/// and build the path manually. |
|
| 612 |
/// |
|
| 613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
| 614 |
/// \code |
|
| 615 |
/// bf.init(); |
|
| 616 |
/// bf.addSource(s); |
|
| 617 |
/// bf.limitedStart(num); |
|
| 618 |
/// \endcode |
|
| 619 |
void run(Node s, int num) {
|
|
| 620 |
init(); |
|
| 621 |
addSource(s); |
|
| 622 |
limitedStart(num); |
|
| 623 |
} |
|
| 624 |
|
|
| 625 |
///@} |
|
| 626 |
|
|
| 627 |
/// \brief LEMON iterator for getting the active nodes. |
|
| 628 |
/// |
|
| 629 |
/// This class provides a common style LEMON iterator that traverses |
|
| 630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
| 631 |
/// phase. These nodes should be checked in the next phase to |
|
| 632 |
/// find augmenting arcs outgoing from them. |
|
| 633 |
class ActiveIt {
|
|
| 634 |
public: |
|
| 635 |
|
|
| 636 |
/// \brief Constructor. |
|
| 637 |
/// |
|
| 638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
| 639 |
/// instance. |
|
| 640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
| 641 |
{
|
|
| 642 |
_index = _algorithm->_process.size() - 1; |
|
| 643 |
} |
|
| 644 |
|
|
| 645 |
/// \brief Invalid constructor. |
|
| 646 |
/// |
|
| 647 |
/// Invalid constructor. |
|
| 648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
|
|
| 649 |
|
|
| 650 |
/// \brief Conversion to \c Node. |
|
| 651 |
/// |
|
| 652 |
/// Conversion to \c Node. |
|
| 653 |
operator Node() const {
|
|
| 654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
| 655 |
} |
|
| 656 |
|
|
| 657 |
/// \brief Increment operator. |
|
| 658 |
/// |
|
| 659 |
/// Increment operator. |
|
| 660 |
ActiveIt& operator++() {
|
|
| 661 |
--_index; |
|
| 662 |
return *this; |
|
| 663 |
} |
|
| 664 |
|
|
| 665 |
bool operator==(const ActiveIt& it) const {
|
|
| 666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
| 667 |
} |
|
| 668 |
bool operator!=(const ActiveIt& it) const {
|
|
| 669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
| 670 |
} |
|
| 671 |
bool operator<(const ActiveIt& it) const {
|
|
| 672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
| 673 |
} |
|
| 674 |
|
|
| 675 |
private: |
|
| 676 |
const BellmanFord* _algorithm; |
|
| 677 |
int _index; |
|
| 678 |
}; |
|
| 679 |
|
|
| 680 |
/// \name Query Functions |
|
| 681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
| 682 |
/// functions.\n |
|
| 683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
| 684 |
|
|
| 685 |
///@{
|
|
| 686 |
|
|
| 687 |
/// \brief The shortest path to the given node. |
|
| 688 |
/// |
|
| 689 |
/// Gives back the shortest path to the given node from the root(s). |
|
| 690 |
/// |
|
| 691 |
/// \warning \c t should be reached from the root(s). |
|
| 692 |
/// |
|
| 693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 694 |
/// using this function. |
|
| 695 |
Path path(Node t) const |
|
| 696 |
{
|
|
| 697 |
return Path(*_gr, *_pred, t); |
|
| 698 |
} |
|
| 699 |
|
|
| 700 |
/// \brief The distance of the given node from the root(s). |
|
| 701 |
/// |
|
| 702 |
/// Returns the distance of the given node from the root(s). |
|
| 703 |
/// |
|
| 704 |
/// \warning If node \c v is not reached from the root(s), then |
|
| 705 |
/// the return value of this function is undefined. |
|
| 706 |
/// |
|
| 707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 708 |
/// using this function. |
|
| 709 |
Value dist(Node v) const { return (*_dist)[v]; }
|
|
| 710 |
|
|
| 711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
| 712 |
/// the given node. |
|
| 713 |
/// |
|
| 714 |
/// This function returns the 'previous arc' of the shortest path |
|
| 715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
| 716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 717 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 718 |
/// |
|
| 719 |
/// The shortest path tree used here is equal to the shortest path |
|
| 720 |
/// tree used in \ref predNode() and \predMap(). |
|
| 721 |
/// |
|
| 722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 723 |
/// using this function. |
|
| 724 |
Arc predArc(Node v) const { return (*_pred)[v]; }
|
|
| 725 |
|
|
| 726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
| 727 |
/// the given node. |
|
| 728 |
/// |
|
| 729 |
/// This function returns the 'previous node' of the shortest path |
|
| 730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
| 731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
| 732 |
/// is not reached from the root(s) or if \c v is a root. |
|
| 733 |
/// |
|
| 734 |
/// The shortest path tree used here is equal to the shortest path |
|
| 735 |
/// tree used in \ref predArc() and \predMap(). |
|
| 736 |
/// |
|
| 737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 738 |
/// using this function. |
|
| 739 |
Node predNode(Node v) const {
|
|
| 740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
| 741 |
} |
|
| 742 |
|
|
| 743 |
/// \brief Returns a const reference to the node map that stores the |
|
| 744 |
/// distances of the nodes. |
|
| 745 |
/// |
|
| 746 |
/// Returns a const reference to the node map that stores the distances |
|
| 747 |
/// of the nodes calculated by the algorithm. |
|
| 748 |
/// |
|
| 749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 750 |
/// using this function. |
|
| 751 |
const DistMap &distMap() const { return *_dist;}
|
|
| 752 |
|
|
| 753 |
/// \brief Returns a const reference to the node map that stores the |
|
| 754 |
/// predecessor arcs. |
|
| 755 |
/// |
|
| 756 |
/// Returns a const reference to the node map that stores the predecessor |
|
| 757 |
/// arcs, which form the shortest path tree (forest). |
|
| 758 |
/// |
|
| 759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 760 |
/// using this function. |
|
| 761 |
const PredMap &predMap() const { return *_pred; }
|
|
| 762 |
|
|
| 763 |
/// \brief Checks if a node is reached from the root(s). |
|
| 764 |
/// |
|
| 765 |
/// Returns \c true if \c v is reached from the root(s). |
|
| 766 |
/// |
|
| 767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
| 768 |
/// using this function. |
|
| 769 |
bool reached(Node v) const {
|
|
| 770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
| 771 |
} |
|
| 772 |
|
|
| 773 |
/// \brief Gives back a negative cycle. |
|
| 774 |
/// |
|
| 775 |
/// This function gives back a directed cycle with negative total |
|
| 776 |
/// length if the algorithm has already found one. |
|
| 777 |
/// Otherwise it gives back an empty path. |
|
| 778 |
lemon::Path<Digraph> negativeCycle() {
|
|
| 779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
| 780 |
lemon::Path<Digraph> cycle; |
|
| 781 |
for (int i = 0; i < int(_process.size()); ++i) {
|
|
| 782 |
if (state[_process[i]] != -1) continue; |
|
| 783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
| 784 |
v = _gr->source((*_pred)[v])) {
|
|
| 785 |
if (state[v] == i) {
|
|
| 786 |
cycle.addFront((*_pred)[v]); |
|
| 787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
| 788 |
u = _gr->source((*_pred)[u])) {
|
|
| 789 |
cycle.addFront((*_pred)[u]); |
|
| 790 |
} |
|
| 791 |
return cycle; |
|
| 792 |
} |
|
| 793 |
else if (state[v] >= 0) {
|
|
| 794 |
break; |
|
| 795 |
} |
|
| 796 |
state[v] = i; |
|
| 797 |
} |
|
| 798 |
} |
|
| 799 |
return cycle; |
|
| 800 |
} |
|
| 801 |
|
|
| 802 |
///@} |
|
| 803 |
}; |
|
| 804 |
|
|
| 805 |
/// \brief Default traits class of bellmanFord() function. |
|
| 806 |
/// |
|
| 807 |
/// Default traits class of bellmanFord() function. |
|
| 808 |
/// \tparam GR The type of the digraph. |
|
| 809 |
/// \tparam LEN The type of the length map. |
|
| 810 |
template <typename GR, typename LEN> |
|
| 811 |
struct BellmanFordWizardDefaultTraits {
|
|
| 812 |
/// The type of the digraph the algorithm runs on. |
|
| 813 |
typedef GR Digraph; |
|
| 814 |
|
|
| 815 |
/// \brief The type of the map that stores the arc lengths. |
|
| 816 |
/// |
|
| 817 |
/// The type of the map that stores the arc lengths. |
|
| 818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
| 819 |
typedef LEN LengthMap; |
|
| 820 |
|
|
| 821 |
/// The type of the arc lengths. |
|
| 822 |
typedef typename LEN::Value Value; |
|
| 823 |
|
|
| 824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
| 825 |
/// |
|
| 826 |
/// It defines the used operations and the infinity value for the |
|
| 827 |
/// given \c Value type. |
|
| 828 |
/// \see BellmanFordDefaultOperationTraits |
|
| 829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
| 830 |
|
|
| 831 |
/// \brief The type of the map that stores the last |
|
| 832 |
/// arcs of the shortest paths. |
|
| 833 |
/// |
|
| 834 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
| 835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
| 837 |
|
|
| 838 |
/// \brief Instantiates a \c PredMap. |
|
| 839 |
/// |
|
| 840 |
/// This function instantiates a \ref PredMap. |
|
| 841 |
/// \param g is the digraph to which we would like to define the |
|
| 842 |
/// \ref PredMap. |
|
| 843 |
static PredMap *createPredMap(const GR &g) {
|
|
| 844 |
return new PredMap(g); |
|
| 845 |
} |
|
| 846 |
|
|
| 847 |
/// \brief The type of the map that stores the distances of the nodes. |
|
| 848 |
/// |
|
| 849 |
/// The type of the map that stores the distances of the nodes. |
|
| 850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
| 851 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
| 852 |
|
|
| 853 |
/// \brief Instantiates a \c DistMap. |
|
| 854 |
/// |
|
| 855 |
/// This function instantiates a \ref DistMap. |
|
| 856 |
/// \param g is the digraph to which we would like to define the |
|
| 857 |
/// \ref DistMap. |
|
| 858 |
static DistMap *createDistMap(const GR &g) {
|
|
| 859 |
return new DistMap(g); |
|
| 860 |
} |
|
| 861 |
|
|
| 862 |
///The type of the shortest paths. |
|
| 863 |
|
|
| 864 |
///The type of the shortest paths. |
|
| 865 |
///It must meet the \ref concepts::Path "Path" concept. |
|
| 866 |
typedef lemon::Path<Digraph> Path; |
|
| 867 |
}; |
|
| 868 |
|
|
| 869 |
/// \brief Default traits class used by BellmanFordWizard. |
|
| 870 |
/// |
|
| 871 |
/// Default traits class used by BellmanFordWizard. |
|
| 872 |
/// \tparam GR The type of the digraph. |
|
| 873 |
/// \tparam LEN The type of the length map. |
|
| 874 |
template <typename GR, typename LEN> |
|
| 875 |
class BellmanFordWizardBase |
|
| 876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> {
|
|
| 877 |
|
|
| 878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
| 879 |
protected: |
|
| 880 |
// Type of the nodes in the digraph. |
|
| 881 |
typedef typename Base::Digraph::Node Node; |
|
| 882 |
|
|
| 883 |
// Pointer to the underlying digraph. |
|
| 884 |
void *_graph; |
|
| 885 |
// Pointer to the length map |
|
| 886 |
void *_length; |
|
| 887 |
// Pointer to the map of predecessors arcs. |
|
| 888 |
void *_pred; |
|
| 889 |
// Pointer to the map of distances. |
|
| 890 |
void *_dist; |
|
| 891 |
//Pointer to the shortest path to the target node. |
|
| 892 |
void *_path; |
|
| 893 |
//Pointer to the distance of the target node. |
|
| 894 |
void *_di; |
|
| 895 |
|
|
| 896 |
public: |
|
| 897 |
/// Constructor. |
|
| 898 |
|
|
| 899 |
/// This constructor does not require parameters, it initiates |
|
| 900 |
/// all of the attributes to default values \c 0. |
|
| 901 |
BellmanFordWizardBase() : |
|
| 902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 903 |
|
|
| 904 |
/// Constructor. |
|
| 905 |
|
|
| 906 |
/// This constructor requires two parameters, |
|
| 907 |
/// others are initiated to \c 0. |
|
| 908 |
/// \param gr The digraph the algorithm runs on. |
|
| 909 |
/// \param len The length map. |
|
| 910 |
BellmanFordWizardBase(const GR& gr, |
|
| 911 |
const LEN& len) : |
|
| 912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
| 913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
| 914 |
_pred(0), _dist(0), _path(0), _di(0) {}
|
|
| 915 |
|
|
| 916 |
}; |
|
| 917 |
|
|
| 918 |
/// \brief Auxiliary class for the function-type interface of the |
|
| 919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 920 |
/// |
|
| 921 |
/// This auxiliary class is created to implement the |
|
| 922 |
/// \ref bellmanFord() "function-type interface" of the |
|
| 923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
| 924 |
/// It does not have own \ref run() method, it uses the |
|
| 925 |
/// functions and features of the plain \ref BellmanFord. |
|
| 926 |
/// |
|
| 927 |
/// This class should only be used through the \ref bellmanFord() |
|
| 928 |
/// function, which makes it easier to use the algorithm. |
|
| 929 |
template<class TR> |
|
| 930 |
class BellmanFordWizard : public TR {
|
|
| 931 |
typedef TR Base; |
|
| 932 |
|
|
| 933 |
typedef typename TR::Digraph Digraph; |
|
| 934 |
|
|
| 935 |
typedef typename Digraph::Node Node; |
|
| 936 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 937 |
typedef typename Digraph::Arc Arc; |
|
| 938 |
typedef typename Digraph::OutArcIt ArcIt; |
|
| 939 |
|
|
| 940 |
typedef typename TR::LengthMap LengthMap; |
|
| 941 |
typedef typename LengthMap::Value Value; |
|
| 942 |
typedef typename TR::PredMap PredMap; |
|
| 943 |
typedef typename TR::DistMap DistMap; |
|
| 944 |
typedef typename TR::Path Path; |
|
| 945 |
|
|
| 946 |
public: |
|
| 947 |
/// Constructor. |
|
| 948 |
BellmanFordWizard() : TR() {}
|
|
| 949 |
|
|
| 950 |
/// \brief Constructor that requires parameters. |
|
| 951 |
/// |
|
| 952 |
/// Constructor that requires parameters. |
|
| 953 |
/// These parameters will be the default values for the traits class. |
|
| 954 |
/// \param gr The digraph the algorithm runs on. |
|
| 955 |
/// \param len The length map. |
|
| 956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
| 957 |
: TR(gr, len) {}
|
|
| 958 |
|
|
| 959 |
/// \brief Copy constructor |
|
| 960 |
BellmanFordWizard(const TR &b) : TR(b) {}
|
|
| 961 |
|
|
| 962 |
~BellmanFordWizard() {}
|
|
| 963 |
|
|
| 964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
| 965 |
/// |
|
| 966 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
| 967 |
/// node in order to compute the shortest path to each node. |
|
| 968 |
void run(Node s) {
|
|
| 969 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 974 |
bf.run(s); |
|
| 975 |
} |
|
| 976 |
|
|
| 977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
| 978 |
/// between \c s and \c t. |
|
| 979 |
/// |
|
| 980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
| 981 |
/// in order to compute the shortest path to node \c t. |
|
| 982 |
/// Actually, it computes the shortest path to each node, but using |
|
| 983 |
/// this function you can retrieve the distance and the shortest path |
|
| 984 |
/// for a single target node easier. |
|
| 985 |
/// |
|
| 986 |
/// \return \c true if \c t is reachable form \c s. |
|
| 987 |
bool run(Node s, Node t) {
|
|
| 988 |
BellmanFord<Digraph,LengthMap,TR> |
|
| 989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
| 990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
| 991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
| 992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
| 993 |
bf.run(s); |
|
| 994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
| 995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
| 996 |
return bf.reached(t); |
|
| 997 |
} |
|
| 998 |
|
|
| 999 |
template<class T> |
|
| 1000 |
struct SetPredMapBase : public Base {
|
|
| 1001 |
typedef T PredMap; |
|
| 1002 |
static PredMap *createPredMap(const Digraph &) { return 0; };
|
|
| 1003 |
SetPredMapBase(const TR &b) : TR(b) {}
|
|
| 1004 |
}; |
|
| 1005 |
|
|
| 1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1007 |
/// the predecessor map. |
|
| 1008 |
/// |
|
| 1009 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1010 |
/// the map that stores the predecessor arcs of the nodes. |
|
| 1011 |
template<class T> |
|
| 1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
|
|
| 1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
| 1015 |
} |
|
| 1016 |
|
|
| 1017 |
template<class T> |
|
| 1018 |
struct SetDistMapBase : public Base {
|
|
| 1019 |
typedef T DistMap; |
|
| 1020 |
static DistMap *createDistMap(const Digraph &) { return 0; };
|
|
| 1021 |
SetDistMapBase(const TR &b) : TR(b) {}
|
|
| 1022 |
}; |
|
| 1023 |
|
|
| 1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
| 1025 |
/// the distance map. |
|
| 1026 |
/// |
|
| 1027 |
/// \ref named-templ-param "Named parameter" for setting |
|
| 1028 |
/// the map that stores the distances of the nodes calculated |
|
| 1029 |
/// by the algorithm. |
|
| 1030 |
template<class T> |
|
| 1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
|
|
| 1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
| 1034 |
} |
|
| 1035 |
|
|
| 1036 |
template<class T> |
|
| 1037 |
struct SetPathBase : public Base {
|
|
| 1038 |
typedef T Path; |
|
| 1039 |
SetPathBase(const TR &b) : TR(b) {}
|
|
| 1040 |
}; |
|
| 1041 |
|
|
| 1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1043 |
/// the shortest path to the target node. |
|
| 1044 |
/// |
|
| 1045 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1046 |
/// the shortest path to the target node. |
|
| 1047 |
template<class T> |
|
| 1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
| 1049 |
{
|
|
| 1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
| 1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
| 1052 |
} |
|
| 1053 |
|
|
| 1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
| 1055 |
/// the distance of the target node. |
|
| 1056 |
/// |
|
| 1057 |
/// \ref named-func-param "Named parameter" for getting |
|
| 1058 |
/// the distance of the target node. |
|
| 1059 |
BellmanFordWizard dist(const Value &d) |
|
| 1060 |
{
|
|
| 1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
| 1062 |
return *this; |
|
| 1063 |
} |
|
| 1064 |
|
|
| 1065 |
}; |
|
| 1066 |
|
|
| 1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1068 |
/// algorithm. |
|
| 1069 |
/// |
|
| 1070 |
/// \ingroup shortest_path |
|
| 1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
| 1072 |
/// algorithm. |
|
| 1073 |
/// |
|
| 1074 |
/// This function also has several \ref named-templ-func-param |
|
| 1075 |
/// "named parameters", they are declared as the members of class |
|
| 1076 |
/// \ref BellmanFordWizard. |
|
| 1077 |
/// The following examples show how to use these parameters. |
|
| 1078 |
/// \code |
|
| 1079 |
/// // Compute shortest path from node s to each node |
|
| 1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
| 1081 |
/// |
|
| 1082 |
/// // Compute shortest path from s to t |
|
| 1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
| 1084 |
/// \endcode |
|
| 1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
| 1086 |
/// to the end of the parameter list. |
|
| 1087 |
/// \sa BellmanFordWizard |
|
| 1088 |
/// \sa BellmanFord |
|
| 1089 |
template<typename GR, typename LEN> |
|
| 1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
| 1091 |
bellmanFord(const GR& digraph, |
|
| 1092 |
const LEN& length) |
|
| 1093 |
{
|
|
| 1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
| 1095 |
} |
|
| 1096 |
|
|
| 1097 |
} //END OF NAMESPACE LEMON |
|
| 1098 |
|
|
| 1099 |
#endif |
|
| 1100 |
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <lemon/concepts/digraph.h> |
|
| 20 |
#include <lemon/smart_graph.h> |
|
| 21 |
#include <lemon/list_graph.h> |
|
| 22 |
#include <lemon/lgf_reader.h> |
|
| 23 |
#include <lemon/bellman_ford.h> |
|
| 24 |
#include <lemon/path.h> |
|
| 25 |
|
|
| 26 |
#include "graph_test.h" |
|
| 27 |
#include "test_tools.h" |
|
| 28 |
|
|
| 29 |
using namespace lemon; |
|
| 30 |
|
|
| 31 |
char test_lgf[] = |
|
| 32 |
"@nodes\n" |
|
| 33 |
"label\n" |
|
| 34 |
"0\n" |
|
| 35 |
"1\n" |
|
| 36 |
"2\n" |
|
| 37 |
"3\n" |
|
| 38 |
"4\n" |
|
| 39 |
"@arcs\n" |
|
| 40 |
" length\n" |
|
| 41 |
"0 1 3\n" |
|
| 42 |
"1 2 -3\n" |
|
| 43 |
"1 2 -5\n" |
|
| 44 |
"1 3 -2\n" |
|
| 45 |
"0 2 -1\n" |
|
| 46 |
"1 2 -4\n" |
|
| 47 |
"0 3 2\n" |
|
| 48 |
"4 2 -5\n" |
|
| 49 |
"2 3 1\n" |
|
| 50 |
"@attributes\n" |
|
| 51 |
"source 0\n" |
|
| 52 |
"target 3\n"; |
|
| 53 |
|
|
| 54 |
|
|
| 55 |
void checkBellmanFordCompile() |
|
| 56 |
{
|
|
| 57 |
typedef int Value; |
|
| 58 |
typedef concepts::Digraph Digraph; |
|
| 59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
| 60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
|
| 61 |
typedef Digraph::Node Node; |
|
| 62 |
typedef Digraph::Arc Arc; |
|
| 63 |
|
|
| 64 |
Digraph gr; |
|
| 65 |
Node s, t, n; |
|
| 66 |
Arc e; |
|
| 67 |
Value l; |
|
| 68 |
int k; |
|
| 69 |
bool b; |
|
| 70 |
BF::DistMap d(gr); |
|
| 71 |
BF::PredMap p(gr); |
|
| 72 |
LengthMap length; |
|
| 73 |
concepts::Path<Digraph> pp; |
|
| 74 |
|
|
| 75 |
{
|
|
| 76 |
BF bf_test(gr,length); |
|
| 77 |
const BF& const_bf_test = bf_test; |
|
| 78 |
|
|
| 79 |
bf_test.run(s); |
|
| 80 |
bf_test.run(s,k); |
|
| 81 |
|
|
| 82 |
bf_test.init(); |
|
| 83 |
bf_test.addSource(s); |
|
| 84 |
bf_test.addSource(s, 1); |
|
| 85 |
b = bf_test.processNextRound(); |
|
| 86 |
b = bf_test.processNextWeakRound(); |
|
| 87 |
|
|
| 88 |
bf_test.start(); |
|
| 89 |
bf_test.checkedStart(); |
|
| 90 |
bf_test.limitedStart(k); |
|
| 91 |
|
|
| 92 |
l = const_bf_test.dist(t); |
|
| 93 |
e = const_bf_test.predArc(t); |
|
| 94 |
s = const_bf_test.predNode(t); |
|
| 95 |
b = const_bf_test.reached(t); |
|
| 96 |
d = const_bf_test.distMap(); |
|
| 97 |
p = const_bf_test.predMap(); |
|
| 98 |
pp = const_bf_test.path(t); |
|
| 99 |
|
|
| 100 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
|
|
| 101 |
} |
|
| 102 |
{
|
|
| 103 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
| 104 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
|
| 105 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
|
| 106 |
::Create bf_test(gr,length); |
|
| 107 |
|
|
| 108 |
LengthMap length_map; |
|
| 109 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
|
| 110 |
concepts::ReadWriteMap<Node,Value> dist_map; |
|
| 111 |
|
|
| 112 |
bf_test |
|
| 113 |
.lengthMap(length_map) |
|
| 114 |
.predMap(pred_map) |
|
| 115 |
.distMap(dist_map); |
|
| 116 |
|
|
| 117 |
bf_test.run(s); |
|
| 118 |
bf_test.run(s,k); |
|
| 119 |
|
|
| 120 |
bf_test.init(); |
|
| 121 |
bf_test.addSource(s); |
|
| 122 |
bf_test.addSource(s, 1); |
|
| 123 |
b = bf_test.processNextRound(); |
|
| 124 |
b = bf_test.processNextWeakRound(); |
|
| 125 |
|
|
| 126 |
bf_test.start(); |
|
| 127 |
bf_test.checkedStart(); |
|
| 128 |
bf_test.limitedStart(k); |
|
| 129 |
|
|
| 130 |
l = bf_test.dist(t); |
|
| 131 |
e = bf_test.predArc(t); |
|
| 132 |
s = bf_test.predNode(t); |
|
| 133 |
b = bf_test.reached(t); |
|
| 134 |
pp = bf_test.path(t); |
|
| 135 |
} |
|
| 136 |
} |
|
| 137 |
|
|
| 138 |
void checkBellmanFordFunctionCompile() |
|
| 139 |
{
|
|
| 140 |
typedef int Value; |
|
| 141 |
typedef concepts::Digraph Digraph; |
|
| 142 |
typedef Digraph::Arc Arc; |
|
| 143 |
typedef Digraph::Node Node; |
|
| 144 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
| 145 |
|
|
| 146 |
Digraph g; |
|
| 147 |
bool b; |
|
| 148 |
bellmanFord(g,LengthMap()).run(Node()); |
|
| 149 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
|
| 150 |
bellmanFord(g,LengthMap()) |
|
| 151 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
| 152 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
| 153 |
.run(Node()); |
|
| 154 |
b=bellmanFord(g,LengthMap()) |
|
| 155 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
| 156 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
| 157 |
.path(concepts::Path<Digraph>()) |
|
| 158 |
.dist(Value()) |
|
| 159 |
.run(Node(),Node()); |
|
| 160 |
} |
|
| 161 |
|
|
| 162 |
|
|
| 163 |
template <typename Digraph, typename Value> |
|
| 164 |
void checkBellmanFord() {
|
|
| 165 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
| 166 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
|
| 167 |
|
|
| 168 |
Digraph gr; |
|
| 169 |
Node s, t; |
|
| 170 |
LengthMap length(gr); |
|
| 171 |
|
|
| 172 |
std::istringstream input(test_lgf); |
|
| 173 |
digraphReader(gr, input). |
|
| 174 |
arcMap("length", length).
|
|
| 175 |
node("source", s).
|
|
| 176 |
node("target", t).
|
|
| 177 |
run(); |
|
| 178 |
|
|
| 179 |
BellmanFord<Digraph, LengthMap> |
|
| 180 |
bf(gr, length); |
|
| 181 |
bf.run(s); |
|
| 182 |
Path<Digraph> p = bf.path(t); |
|
| 183 |
|
|
| 184 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
|
| 185 |
check(p.length() == 3, "path() found a wrong path."); |
|
| 186 |
check(checkPath(gr, p), "path() found a wrong path."); |
|
| 187 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
|
| 188 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
|
| 189 |
|
|
| 190 |
ListPath<Digraph> path; |
|
| 191 |
Value dist; |
|
| 192 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
|
| 193 |
|
|
| 194 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
|
| 195 |
check(path.length() == 3, "path() found a wrong path."); |
|
| 196 |
check(checkPath(gr, path), "path() found a wrong path."); |
|
| 197 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
|
| 198 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
|
| 199 |
|
|
| 200 |
for(ArcIt e(gr); e!=INVALID; ++e) {
|
|
| 201 |
Node u=gr.source(e); |
|
| 202 |
Node v=gr.target(e); |
|
| 203 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
|
| 204 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
|
| 205 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
| 206 |
} |
|
| 207 |
|
|
| 208 |
for(NodeIt v(gr); v!=INVALID; ++v) {
|
|
| 209 |
if (bf.reached(v)) {
|
|
| 210 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
|
| 211 |
if (bf.predArc(v)!=INVALID ) {
|
|
| 212 |
Arc e=bf.predArc(v); |
|
| 213 |
Node u=gr.source(e); |
|
| 214 |
check(u==bf.predNode(v),"Wrong tree."); |
|
| 215 |
check(bf.dist(v) - bf.dist(u) == length[e], |
|
| 216 |
"Wrong distance! Difference: " << |
|
| 217 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
| 218 |
} |
|
| 219 |
} |
|
| 220 |
} |
|
| 221 |
} |
|
| 222 |
|
|
| 223 |
void checkBellmanFordNegativeCycle() {
|
|
| 224 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
| 225 |
|
|
| 226 |
SmartDigraph gr; |
|
| 227 |
IntArcMap length(gr); |
|
| 228 |
|
|
| 229 |
Node n1 = gr.addNode(); |
|
| 230 |
Node n2 = gr.addNode(); |
|
| 231 |
Node n3 = gr.addNode(); |
|
| 232 |
Node n4 = gr.addNode(); |
|
| 233 |
|
|
| 234 |
Arc a1 = gr.addArc(n1, n2); |
|
| 235 |
Arc a2 = gr.addArc(n2, n2); |
|
| 236 |
|
|
| 237 |
length[a1] = 2; |
|
| 238 |
length[a2] = -1; |
|
| 239 |
|
|
| 240 |
{
|
|
| 241 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 242 |
bf.run(n1); |
|
| 243 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
| 244 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
|
| 245 |
"Wrong negative cycle."); |
|
| 246 |
} |
|
| 247 |
|
|
| 248 |
length[a2] = 0; |
|
| 249 |
|
|
| 250 |
{
|
|
| 251 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 252 |
bf.run(n1); |
|
| 253 |
check(bf.negativeCycle().empty(), |
|
| 254 |
"Negative cycle should not be found."); |
|
| 255 |
} |
|
| 256 |
|
|
| 257 |
length[gr.addArc(n1, n3)] = 5; |
|
| 258 |
length[gr.addArc(n4, n3)] = 1; |
|
| 259 |
length[gr.addArc(n2, n4)] = 2; |
|
| 260 |
length[gr.addArc(n3, n2)] = -4; |
|
| 261 |
|
|
| 262 |
{
|
|
| 263 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
| 264 |
bf.init(); |
|
| 265 |
bf.addSource(n1); |
|
| 266 |
for (int i = 0; i < 4; ++i) {
|
|
| 267 |
check(bf.negativeCycle().empty(), |
|
| 268 |
"Negative cycle should not be found."); |
|
| 269 |
bf.processNextRound(); |
|
| 270 |
} |
|
| 271 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
| 272 |
check(p.length() == 3, "Wrong negative cycle."); |
|
| 273 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
|
| 274 |
"Wrong negative cycle."); |
|
| 275 |
} |
|
| 276 |
} |
|
| 277 |
|
|
| 278 |
int main() {
|
|
| 279 |
checkBellmanFord<ListDigraph, int>(); |
|
| 280 |
checkBellmanFord<SmartDigraph, double>(); |
|
| 281 |
checkBellmanFordNegativeCycle(); |
|
| 282 |
return 0; |
|
| 283 |
} |
0 comments (0 inline)