gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 3 2
merge default
1 file changed with 1387 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 4096 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_BELLMAN_FORD_H
20
#define LEMON_BELLMAN_FORD_H
21

	
22
/// \ingroup shortest_path
23
/// \file
24
/// \brief Bellman-Ford algorithm.
25

	
26
#include <lemon/bits/path_dump.h>
27
#include <lemon/core.h>
28
#include <lemon/error.h>
29
#include <lemon/maps.h>
30
#include <lemon/path.h>
31

	
32
#include <limits>
33

	
34
namespace lemon {
35

	
36
  /// \brief Default OperationTraits for the BellmanFord algorithm class.
37
  ///  
38
  /// This operation traits class defines all computational operations
39
  /// and constants that are used in the Bellman-Ford algorithm.
40
  /// The default implementation is based on the \c numeric_limits class.
41
  /// If the numeric type does not have infinity value, then the maximum
42
  /// value is used as extremal infinity value.
43
  template <
44
    typename V, 
45
    bool has_inf = std::numeric_limits<V>::has_infinity>
46
  struct BellmanFordDefaultOperationTraits {
47
    /// \e
48
    typedef V Value;
49
    /// \brief Gives back the zero value of the type.
50
    static Value zero() {
51
      return static_cast<Value>(0);
52
    }
53
    /// \brief Gives back the positive infinity value of the type.
54
    static Value infinity() {
55
      return std::numeric_limits<Value>::infinity();
56
    }
57
    /// \brief Gives back the sum of the given two elements.
58
    static Value plus(const Value& left, const Value& right) {
59
      return left + right;
60
    }
61
    /// \brief Gives back \c true only if the first value is less than
62
    /// the second.
63
    static bool less(const Value& left, const Value& right) {
64
      return left < right;
65
    }
66
  };
67

	
68
  template <typename V>
69
  struct BellmanFordDefaultOperationTraits<V, false> {
70
    typedef V Value;
71
    static Value zero() {
72
      return static_cast<Value>(0);
73
    }
74
    static Value infinity() {
75
      return std::numeric_limits<Value>::max();
76
    }
77
    static Value plus(const Value& left, const Value& right) {
78
      if (left == infinity() || right == infinity()) return infinity();
79
      return left + right;
80
    }
81
    static bool less(const Value& left, const Value& right) {
82
      return left < right;
83
    }
84
  };
85
  
86
  /// \brief Default traits class of BellmanFord class.
87
  ///
88
  /// Default traits class of BellmanFord class.
89
  /// \param GR The type of the digraph.
90
  /// \param LEN The type of the length map.
91
  template<typename GR, typename LEN>
92
  struct BellmanFordDefaultTraits {
93
    /// The type of the digraph the algorithm runs on. 
94
    typedef GR Digraph;
95

	
96
    /// \brief The type of the map that stores the arc lengths.
97
    ///
98
    /// The type of the map that stores the arc lengths.
99
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
100
    typedef LEN LengthMap;
101

	
102
    /// The type of the arc lengths.
103
    typedef typename LEN::Value Value;
104

	
105
    /// \brief Operation traits for Bellman-Ford algorithm.
106
    ///
107
    /// It defines the used operations and the infinity value for the
108
    /// given \c Value type.
109
    /// \see BellmanFordDefaultOperationTraits
110
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
111
 
112
    /// \brief The type of the map that stores the last arcs of the 
113
    /// shortest paths.
114
    /// 
115
    /// The type of the map that stores the last
116
    /// arcs of the shortest paths.
117
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
118
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
119

	
120
    /// \brief Instantiates a \c PredMap.
121
    /// 
122
    /// This function instantiates a \ref PredMap. 
123
    /// \param g is the digraph to which we would like to define the
124
    /// \ref PredMap.
125
    static PredMap *createPredMap(const GR& g) {
126
      return new PredMap(g);
127
    }
128

	
129
    /// \brief The type of the map that stores the distances of the nodes.
130
    ///
131
    /// The type of the map that stores the distances of the nodes.
132
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
133
    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
134

	
135
    /// \brief Instantiates a \c DistMap.
136
    ///
137
    /// This function instantiates a \ref DistMap. 
138
    /// \param g is the digraph to which we would like to define the 
139
    /// \ref DistMap.
140
    static DistMap *createDistMap(const GR& g) {
141
      return new DistMap(g);
142
    }
143

	
144
  };
145
  
146
  /// \brief %BellmanFord algorithm class.
147
  ///
148
  /// \ingroup shortest_path
149
  /// This class provides an efficient implementation of the Bellman-Ford 
150
  /// algorithm. The maximum time complexity of the algorithm is
151
  /// <tt>O(ne)</tt>.
152
  ///
153
  /// The Bellman-Ford algorithm solves the single-source shortest path
154
  /// problem when the arcs can have negative lengths, but the digraph
155
  /// should not contain directed cycles with negative total length.
156
  /// If all arc costs are non-negative, consider to use the Dijkstra
157
  /// algorithm instead, since it is more efficient.
158
  ///
159
  /// The arc lengths are passed to the algorithm using a
160
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
161
  /// kind of length. The type of the length values is determined by the
162
  /// \ref concepts::ReadMap::Value "Value" type of the length map.
163
  ///
164
  /// There is also a \ref bellmanFord() "function-type interface" for the
165
  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
166
  /// it can be used easier.
167
  ///
168
  /// \tparam GR The type of the digraph the algorithm runs on.
169
  /// The default type is \ref ListDigraph.
170
  /// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
171
  /// the lengths of the arcs. The default map type is
172
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
173
#ifdef DOXYGEN
174
  template <typename GR, typename LEN, typename TR>
175
#else
176
  template <typename GR=ListDigraph,
177
            typename LEN=typename GR::template ArcMap<int>,
178
            typename TR=BellmanFordDefaultTraits<GR,LEN> >
179
#endif
180
  class BellmanFord {
181
  public:
182

	
183
    ///The type of the underlying digraph.
184
    typedef typename TR::Digraph Digraph;
185
    
186
    /// \brief The type of the arc lengths.
187
    typedef typename TR::LengthMap::Value Value;
188
    /// \brief The type of the map that stores the arc lengths.
189
    typedef typename TR::LengthMap LengthMap;
190
    /// \brief The type of the map that stores the last
191
    /// arcs of the shortest paths.
192
    typedef typename TR::PredMap PredMap;
193
    /// \brief The type of the map that stores the distances of the nodes.
194
    typedef typename TR::DistMap DistMap;
195
    /// The type of the paths.
196
    typedef PredMapPath<Digraph, PredMap> Path;
197
    ///\brief The \ref BellmanFordDefaultOperationTraits
198
    /// "operation traits class" of the algorithm.
199
    typedef typename TR::OperationTraits OperationTraits;
200

	
201
    ///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
202
    typedef TR Traits;
203

	
204
  private:
205

	
206
    typedef typename Digraph::Node Node;
207
    typedef typename Digraph::NodeIt NodeIt;
208
    typedef typename Digraph::Arc Arc;
209
    typedef typename Digraph::OutArcIt OutArcIt;
210

	
211
    // Pointer to the underlying digraph.
212
    const Digraph *_gr;
213
    // Pointer to the length map
214
    const LengthMap *_length;
215
    // Pointer to the map of predecessors arcs.
216
    PredMap *_pred;
217
    // Indicates if _pred is locally allocated (true) or not.
218
    bool _local_pred;
219
    // Pointer to the map of distances.
220
    DistMap *_dist;
221
    // Indicates if _dist is locally allocated (true) or not.
222
    bool _local_dist;
223

	
224
    typedef typename Digraph::template NodeMap<bool> MaskMap;
225
    MaskMap *_mask;
226

	
227
    std::vector<Node> _process;
228

	
229
    // Creates the maps if necessary.
230
    void create_maps() {
231
      if(!_pred) {
232
	_local_pred = true;
233
	_pred = Traits::createPredMap(*_gr);
234
      }
235
      if(!_dist) {
236
	_local_dist = true;
237
	_dist = Traits::createDistMap(*_gr);
238
      }
239
      _mask = new MaskMap(*_gr, false);
240
    }
241
    
242
  public :
243
 
244
    typedef BellmanFord Create;
245

	
246
    /// \name Named Template Parameters
247

	
248
    ///@{
249

	
250
    template <class T>
251
    struct SetPredMapTraits : public Traits {
252
      typedef T PredMap;
253
      static PredMap *createPredMap(const Digraph&) {
254
        LEMON_ASSERT(false, "PredMap is not initialized");
255
        return 0; // ignore warnings
256
      }
257
    };
258

	
259
    /// \brief \ref named-templ-param "Named parameter" for setting
260
    /// \c PredMap type.
261
    ///
262
    /// \ref named-templ-param "Named parameter" for setting
263
    /// \c PredMap type.
264
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
265
    template <class T>
266
    struct SetPredMap 
267
      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
268
      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
269
    };
270
    
271
    template <class T>
272
    struct SetDistMapTraits : public Traits {
273
      typedef T DistMap;
274
      static DistMap *createDistMap(const Digraph&) {
275
        LEMON_ASSERT(false, "DistMap is not initialized");
276
        return 0; // ignore warnings
277
      }
278
    };
279

	
280
    /// \brief \ref named-templ-param "Named parameter" for setting
281
    /// \c DistMap type.
282
    ///
283
    /// \ref named-templ-param "Named parameter" for setting
284
    /// \c DistMap type.
285
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
286
    template <class T>
287
    struct SetDistMap 
288
      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
289
      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
290
    };
291

	
292
    template <class T>
293
    struct SetOperationTraitsTraits : public Traits {
294
      typedef T OperationTraits;
295
    };
296
    
297
    /// \brief \ref named-templ-param "Named parameter" for setting 
298
    /// \c OperationTraits type.
299
    ///
300
    /// \ref named-templ-param "Named parameter" for setting
301
    /// \c OperationTraits type.
302
    /// For more information see \ref BellmanFordDefaultOperationTraits.
303
    template <class T>
304
    struct SetOperationTraits
305
      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
306
      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
307
      Create;
308
    };
309
    
310
    ///@}
311

	
312
  protected:
313
    
314
    BellmanFord() {}
315

	
316
  public:      
317
    
318
    /// \brief Constructor.
319
    ///
320
    /// Constructor.
321
    /// \param g The digraph the algorithm runs on.
322
    /// \param length The length map used by the algorithm.
323
    BellmanFord(const Digraph& g, const LengthMap& length) :
324
      _gr(&g), _length(&length),
325
      _pred(0), _local_pred(false),
326
      _dist(0), _local_dist(false), _mask(0) {}
327
    
328
    ///Destructor.
329
    ~BellmanFord() {
330
      if(_local_pred) delete _pred;
331
      if(_local_dist) delete _dist;
332
      if(_mask) delete _mask;
333
    }
334

	
335
    /// \brief Sets the length map.
336
    ///
337
    /// Sets the length map.
338
    /// \return <tt>(*this)</tt>
339
    BellmanFord &lengthMap(const LengthMap &map) {
340
      _length = &map;
341
      return *this;
342
    }
343

	
344
    /// \brief Sets the map that stores the predecessor arcs.
345
    ///
346
    /// Sets the map that stores the predecessor arcs.
347
    /// If you don't use this function before calling \ref run()
348
    /// or \ref init(), an instance will be allocated automatically.
349
    /// The destructor deallocates this automatically allocated map,
350
    /// of course.
351
    /// \return <tt>(*this)</tt>
352
    BellmanFord &predMap(PredMap &map) {
353
      if(_local_pred) {
354
	delete _pred;
355
	_local_pred=false;
356
      }
357
      _pred = &map;
358
      return *this;
359
    }
360

	
361
    /// \brief Sets the map that stores the distances of the nodes.
362
    ///
363
    /// Sets the map that stores the distances of the nodes calculated
364
    /// by the algorithm.
365
    /// If you don't use this function before calling \ref run()
366
    /// or \ref init(), an instance will be allocated automatically.
367
    /// The destructor deallocates this automatically allocated map,
368
    /// of course.
369
    /// \return <tt>(*this)</tt>
370
    BellmanFord &distMap(DistMap &map) {
371
      if(_local_dist) {
372
	delete _dist;
373
	_local_dist=false;
374
      }
375
      _dist = &map;
376
      return *this;
377
    }
378

	
379
    /// \name Execution Control
380
    /// The simplest way to execute the Bellman-Ford algorithm is to use
381
    /// one of the member functions called \ref run().\n
382
    /// If you need better control on the execution, you have to call
383
    /// \ref init() first, then you can add several source nodes
384
    /// with \ref addSource(). Finally the actual path computation can be
385
    /// performed with \ref start(), \ref checkedStart() or
386
    /// \ref limitedStart().
387

	
388
    ///@{
389

	
390
    /// \brief Initializes the internal data structures.
391
    /// 
392
    /// Initializes the internal data structures. The optional parameter
393
    /// is the initial distance of each node.
394
    void init(const Value value = OperationTraits::infinity()) {
395
      create_maps();
396
      for (NodeIt it(*_gr); it != INVALID; ++it) {
397
	_pred->set(it, INVALID);
398
	_dist->set(it, value);
399
      }
400
      _process.clear();
401
      if (OperationTraits::less(value, OperationTraits::infinity())) {
402
	for (NodeIt it(*_gr); it != INVALID; ++it) {
403
	  _process.push_back(it);
404
	  _mask->set(it, true);
405
	}
406
      }
407
    }
408
    
409
    /// \brief Adds a new source node.
410
    ///
411
    /// This function adds a new source node. The optional second parameter
412
    /// is the initial distance of the node.
413
    void addSource(Node source, Value dst = OperationTraits::zero()) {
414
      _dist->set(source, dst);
415
      if (!(*_mask)[source]) {
416
	_process.push_back(source);
417
	_mask->set(source, true);
418
      }
419
    }
420

	
421
    /// \brief Executes one round from the Bellman-Ford algorithm.
422
    ///
423
    /// If the algoritm calculated the distances in the previous round
424
    /// exactly for the paths of at most \c k arcs, then this function
425
    /// will calculate the distances exactly for the paths of at most
426
    /// <tt>k+1</tt> arcs. Performing \c k iterations using this function
427
    /// calculates the shortest path distances exactly for the paths
428
    /// consisting of at most \c k arcs.
429
    ///
430
    /// \warning The paths with limited arc number cannot be retrieved
431
    /// easily with \ref path() or \ref predArc() functions. If you also
432
    /// need the shortest paths and not only the distances, you should
433
    /// store the \ref predMap() "predecessor map" after each iteration
434
    /// and build the path manually.
435
    ///
436
    /// \return \c true when the algorithm have not found more shorter
437
    /// paths.
438
    ///
439
    /// \see ActiveIt
440
    bool processNextRound() {
441
      for (int i = 0; i < int(_process.size()); ++i) {
442
	_mask->set(_process[i], false);
443
      }
444
      std::vector<Node> nextProcess;
445
      std::vector<Value> values(_process.size());
446
      for (int i = 0; i < int(_process.size()); ++i) {
447
	values[i] = (*_dist)[_process[i]];
448
      }
449
      for (int i = 0; i < int(_process.size()); ++i) {
450
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
451
	  Node target = _gr->target(it);
452
	  Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
453
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
454
	    _pred->set(target, it);
455
	    _dist->set(target, relaxed);
456
	    if (!(*_mask)[target]) {
457
	      _mask->set(target, true);
458
	      nextProcess.push_back(target);
459
	    }
460
	  }	  
461
	}
462
      }
463
      _process.swap(nextProcess);
464
      return _process.empty();
465
    }
466

	
467
    /// \brief Executes one weak round from the Bellman-Ford algorithm.
468
    ///
469
    /// If the algorithm calculated the distances in the previous round
470
    /// at least for the paths of at most \c k arcs, then this function
471
    /// will calculate the distances at least for the paths of at most
472
    /// <tt>k+1</tt> arcs.
473
    /// This function does not make it possible to calculate the shortest
474
    /// path distances exactly for paths consisting of at most \c k arcs,
475
    /// this is why it is called weak round.
476
    ///
477
    /// \return \c true when the algorithm have not found more shorter
478
    /// paths.
479
    ///
480
    /// \see ActiveIt
481
    bool processNextWeakRound() {
482
      for (int i = 0; i < int(_process.size()); ++i) {
483
	_mask->set(_process[i], false);
484
      }
485
      std::vector<Node> nextProcess;
486
      for (int i = 0; i < int(_process.size()); ++i) {
487
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
488
	  Node target = _gr->target(it);
489
	  Value relaxed = 
490
	    OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
491
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
492
	    _pred->set(target, it);
493
	    _dist->set(target, relaxed);
494
	    if (!(*_mask)[target]) {
495
	      _mask->set(target, true);
496
	      nextProcess.push_back(target);
497
	    }
498
	  }	  
499
	}
500
      }
501
      _process.swap(nextProcess);
502
      return _process.empty();
503
    }
504

	
505
    /// \brief Executes the algorithm.
506
    ///
507
    /// Executes the algorithm.
508
    ///
509
    /// This method runs the Bellman-Ford algorithm from the root node(s)
510
    /// in order to compute the shortest path to each node.
511
    ///
512
    /// The algorithm computes
513
    /// - the shortest path tree (forest),
514
    /// - the distance of each node from the root(s).
515
    ///
516
    /// \pre init() must be called and at least one root node should be
517
    /// added with addSource() before using this function.
518
    void start() {
519
      int num = countNodes(*_gr) - 1;
520
      for (int i = 0; i < num; ++i) {
521
	if (processNextWeakRound()) break;
522
      }
523
    }
524

	
525
    /// \brief Executes the algorithm and checks the negative cycles.
526
    ///
527
    /// Executes the algorithm and checks the negative cycles.
528
    ///
529
    /// This method runs the Bellman-Ford algorithm from the root node(s)
530
    /// in order to compute the shortest path to each node and also checks
531
    /// if the digraph contains cycles with negative total length.
532
    ///
533
    /// The algorithm computes 
534
    /// - the shortest path tree (forest),
535
    /// - the distance of each node from the root(s).
536
    /// 
537
    /// \return \c false if there is a negative cycle in the digraph.
538
    ///
539
    /// \pre init() must be called and at least one root node should be
540
    /// added with addSource() before using this function. 
541
    bool checkedStart() {
542
      int num = countNodes(*_gr);
543
      for (int i = 0; i < num; ++i) {
544
	if (processNextWeakRound()) return true;
545
      }
546
      return _process.empty();
547
    }
548

	
549
    /// \brief Executes the algorithm with arc number limit.
550
    ///
551
    /// Executes the algorithm with arc number limit.
552
    ///
553
    /// This method runs the Bellman-Ford algorithm from the root node(s)
554
    /// in order to compute the shortest path distance for each node
555
    /// using only the paths consisting of at most \c num arcs.
556
    ///
557
    /// The algorithm computes
558
    /// - the limited distance of each node from the root(s),
559
    /// - the predecessor arc for each node.
560
    ///
561
    /// \warning The paths with limited arc number cannot be retrieved
562
    /// easily with \ref path() or \ref predArc() functions. If you also
563
    /// need the shortest paths and not only the distances, you should
564
    /// store the \ref predMap() "predecessor map" after each iteration
565
    /// and build the path manually.
566
    ///
567
    /// \pre init() must be called and at least one root node should be
568
    /// added with addSource() before using this function. 
569
    void limitedStart(int num) {
570
      for (int i = 0; i < num; ++i) {
571
	if (processNextRound()) break;
572
      }
573
    }
574
    
575
    /// \brief Runs the algorithm from the given root node.
576
    ///    
577
    /// This method runs the Bellman-Ford algorithm from the given root
578
    /// node \c s in order to compute the shortest path to each node.
579
    ///
580
    /// The algorithm computes
581
    /// - the shortest path tree (forest),
582
    /// - the distance of each node from the root(s).
583
    ///
584
    /// \note bf.run(s) is just a shortcut of the following code.
585
    /// \code
586
    ///   bf.init();
587
    ///   bf.addSource(s);
588
    ///   bf.start();
589
    /// \endcode
590
    void run(Node s) {
591
      init();
592
      addSource(s);
593
      start();
594
    }
595
    
596
    /// \brief Runs the algorithm from the given root node with arc
597
    /// number limit.
598
    ///    
599
    /// This method runs the Bellman-Ford algorithm from the given root
600
    /// node \c s in order to compute the shortest path distance for each
601
    /// node using only the paths consisting of at most \c num arcs.
602
    ///
603
    /// The algorithm computes
604
    /// - the limited distance of each node from the root(s),
605
    /// - the predecessor arc for each node.
606
    ///
607
    /// \warning The paths with limited arc number cannot be retrieved
608
    /// easily with \ref path() or \ref predArc() functions. If you also
609
    /// need the shortest paths and not only the distances, you should
610
    /// store the \ref predMap() "predecessor map" after each iteration
611
    /// and build the path manually.
612
    ///
613
    /// \note bf.run(s, num) is just a shortcut of the following code.
614
    /// \code
615
    ///   bf.init();
616
    ///   bf.addSource(s);
617
    ///   bf.limitedStart(num);
618
    /// \endcode
619
    void run(Node s, int num) {
620
      init();
621
      addSource(s);
622
      limitedStart(num);
623
    }
624
    
625
    ///@}
626

	
627
    /// \brief LEMON iterator for getting the active nodes.
628
    ///
629
    /// This class provides a common style LEMON iterator that traverses
630
    /// the active nodes of the Bellman-Ford algorithm after the last
631
    /// phase. These nodes should be checked in the next phase to
632
    /// find augmenting arcs outgoing from them.
633
    class ActiveIt {
634
    public:
635

	
636
      /// \brief Constructor.
637
      ///
638
      /// Constructor for getting the active nodes of the given BellmanFord
639
      /// instance. 
640
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
641
      {
642
        _index = _algorithm->_process.size() - 1;
643
      }
644

	
645
      /// \brief Invalid constructor.
646
      ///
647
      /// Invalid constructor.
648
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
649

	
650
      /// \brief Conversion to \c Node.
651
      ///
652
      /// Conversion to \c Node.
653
      operator Node() const { 
654
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
655
      }
656

	
657
      /// \brief Increment operator.
658
      ///
659
      /// Increment operator.
660
      ActiveIt& operator++() {
661
        --_index;
662
        return *this; 
663
      }
664

	
665
      bool operator==(const ActiveIt& it) const { 
666
        return static_cast<Node>(*this) == static_cast<Node>(it); 
667
      }
668
      bool operator!=(const ActiveIt& it) const { 
669
        return static_cast<Node>(*this) != static_cast<Node>(it); 
670
      }
671
      bool operator<(const ActiveIt& it) const { 
672
        return static_cast<Node>(*this) < static_cast<Node>(it); 
673
      }
674
      
675
    private:
676
      const BellmanFord* _algorithm;
677
      int _index;
678
    };
679
    
680
    /// \name Query Functions
681
    /// The result of the Bellman-Ford algorithm can be obtained using these
682
    /// functions.\n
683
    /// Either \ref run() or \ref init() should be called before using them.
684
    
685
    ///@{
686

	
687
    /// \brief The shortest path to the given node.
688
    ///    
689
    /// Gives back the shortest path to the given node from the root(s).
690
    ///
691
    /// \warning \c t should be reached from the root(s).
692
    ///
693
    /// \pre Either \ref run() or \ref init() must be called before
694
    /// using this function.
695
    Path path(Node t) const
696
    {
697
      return Path(*_gr, *_pred, t);
698
    }
699
	  
700
    /// \brief The distance of the given node from the root(s).
701
    ///
702
    /// Returns the distance of the given node from the root(s).
703
    ///
704
    /// \warning If node \c v is not reached from the root(s), then
705
    /// the return value of this function is undefined.
706
    ///
707
    /// \pre Either \ref run() or \ref init() must be called before
708
    /// using this function.
709
    Value dist(Node v) const { return (*_dist)[v]; }
710

	
711
    /// \brief Returns the 'previous arc' of the shortest path tree for
712
    /// the given node.
713
    ///
714
    /// This function returns the 'previous arc' of the shortest path
715
    /// tree for node \c v, i.e. it returns the last arc of a
716
    /// shortest path from a root to \c v. It is \c INVALID if \c v
717
    /// is not reached from the root(s) or if \c v is a root.
718
    ///
719
    /// The shortest path tree used here is equal to the shortest path
720
    /// tree used in \ref predNode() and \predMap().
721
    ///
722
    /// \pre Either \ref run() or \ref init() must be called before
723
    /// using this function.
724
    Arc predArc(Node v) const { return (*_pred)[v]; }
725

	
726
    /// \brief Returns the 'previous node' of the shortest path tree for
727
    /// the given node.
728
    ///
729
    /// This function returns the 'previous node' of the shortest path
730
    /// tree for node \c v, i.e. it returns the last but one node of
731
    /// a shortest path from a root to \c v. It is \c INVALID if \c v
732
    /// is not reached from the root(s) or if \c v is a root.
733
    ///
734
    /// The shortest path tree used here is equal to the shortest path
735
    /// tree used in \ref predArc() and \predMap().
736
    ///
737
    /// \pre Either \ref run() or \ref init() must be called before
738
    /// using this function.
739
    Node predNode(Node v) const { 
740
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); 
741
    }
742
    
743
    /// \brief Returns a const reference to the node map that stores the
744
    /// distances of the nodes.
745
    ///
746
    /// Returns a const reference to the node map that stores the distances
747
    /// of the nodes calculated by the algorithm.
748
    ///
749
    /// \pre Either \ref run() or \ref init() must be called before
750
    /// using this function.
751
    const DistMap &distMap() const { return *_dist;}
752
 
753
    /// \brief Returns a const reference to the node map that stores the
754
    /// predecessor arcs.
755
    ///
756
    /// Returns a const reference to the node map that stores the predecessor
757
    /// arcs, which form the shortest path tree (forest).
758
    ///
759
    /// \pre Either \ref run() or \ref init() must be called before
760
    /// using this function.
761
    const PredMap &predMap() const { return *_pred; }
762
 
763
    /// \brief Checks if a node is reached from the root(s).
764
    ///
765
    /// Returns \c true if \c v is reached from the root(s).
766
    ///
767
    /// \pre Either \ref run() or \ref init() must be called before
768
    /// using this function.
769
    bool reached(Node v) const {
770
      return (*_dist)[v] != OperationTraits::infinity();
771
    }
772

	
773
    /// \brief Gives back a negative cycle.
774
    ///    
775
    /// This function gives back a directed cycle with negative total
776
    /// length if the algorithm has already found one.
777
    /// Otherwise it gives back an empty path.
778
    lemon::Path<Digraph> negativeCycle() {
779
      typename Digraph::template NodeMap<int> state(*_gr, -1);
780
      lemon::Path<Digraph> cycle;
781
      for (int i = 0; i < int(_process.size()); ++i) {
782
        if (state[_process[i]] != -1) continue;
783
        for (Node v = _process[i]; (*_pred)[v] != INVALID;
784
             v = _gr->source((*_pred)[v])) {
785
          if (state[v] == i) {
786
            cycle.addFront((*_pred)[v]);
787
            for (Node u = _gr->source((*_pred)[v]); u != v;
788
                 u = _gr->source((*_pred)[u])) {
789
              cycle.addFront((*_pred)[u]);
790
            }
791
            return cycle;
792
          }
793
          else if (state[v] >= 0) {
794
            break;
795
          }
796
          state[v] = i;
797
        }
798
      }
799
      return cycle;
800
    }
801
    
802
    ///@}
803
  };
804
 
805
  /// \brief Default traits class of bellmanFord() function.
806
  ///
807
  /// Default traits class of bellmanFord() function.
808
  /// \tparam GR The type of the digraph.
809
  /// \tparam LEN The type of the length map.
810
  template <typename GR, typename LEN>
811
  struct BellmanFordWizardDefaultTraits {
812
    /// The type of the digraph the algorithm runs on. 
813
    typedef GR Digraph;
814

	
815
    /// \brief The type of the map that stores the arc lengths.
816
    ///
817
    /// The type of the map that stores the arc lengths.
818
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
819
    typedef LEN LengthMap;
820

	
821
    /// The type of the arc lengths.
822
    typedef typename LEN::Value Value;
823

	
824
    /// \brief Operation traits for Bellman-Ford algorithm.
825
    ///
826
    /// It defines the used operations and the infinity value for the
827
    /// given \c Value type.
828
    /// \see BellmanFordDefaultOperationTraits
829
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
830

	
831
    /// \brief The type of the map that stores the last
832
    /// arcs of the shortest paths.
833
    /// 
834
    /// The type of the map that stores the last arcs of the shortest paths.
835
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
836
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
837

	
838
    /// \brief Instantiates a \c PredMap.
839
    /// 
840
    /// This function instantiates a \ref PredMap.
841
    /// \param g is the digraph to which we would like to define the
842
    /// \ref PredMap.
843
    static PredMap *createPredMap(const GR &g) {
844
      return new PredMap(g);
845
    }
846

	
847
    /// \brief The type of the map that stores the distances of the nodes.
848
    ///
849
    /// The type of the map that stores the distances of the nodes.
850
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
851
    typedef typename GR::template NodeMap<Value> DistMap;
852

	
853
    /// \brief Instantiates a \c DistMap.
854
    ///
855
    /// This function instantiates a \ref DistMap. 
856
    /// \param g is the digraph to which we would like to define the
857
    /// \ref DistMap.
858
    static DistMap *createDistMap(const GR &g) {
859
      return new DistMap(g);
860
    }
861

	
862
    ///The type of the shortest paths.
863

	
864
    ///The type of the shortest paths.
865
    ///It must meet the \ref concepts::Path "Path" concept.
866
    typedef lemon::Path<Digraph> Path;
867
  };
868
  
869
  /// \brief Default traits class used by BellmanFordWizard.
870
  ///
871
  /// Default traits class used by BellmanFordWizard.
872
  /// \tparam GR The type of the digraph.
873
  /// \tparam LEN The type of the length map.
874
  template <typename GR, typename LEN>
875
  class BellmanFordWizardBase 
876
    : public BellmanFordWizardDefaultTraits<GR, LEN> {
877

	
878
    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
879
  protected:
880
    // Type of the nodes in the digraph.
881
    typedef typename Base::Digraph::Node Node;
882

	
883
    // Pointer to the underlying digraph.
884
    void *_graph;
885
    // Pointer to the length map
886
    void *_length;
887
    // Pointer to the map of predecessors arcs.
888
    void *_pred;
889
    // Pointer to the map of distances.
890
    void *_dist;
891
    //Pointer to the shortest path to the target node.
892
    void *_path;
893
    //Pointer to the distance of the target node.
894
    void *_di;
895

	
896
    public:
897
    /// Constructor.
898
    
899
    /// This constructor does not require parameters, it initiates
900
    /// all of the attributes to default values \c 0.
901
    BellmanFordWizardBase() :
902
      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
903

	
904
    /// Constructor.
905
    
906
    /// This constructor requires two parameters,
907
    /// others are initiated to \c 0.
908
    /// \param gr The digraph the algorithm runs on.
909
    /// \param len The length map.
910
    BellmanFordWizardBase(const GR& gr, 
911
			  const LEN& len) :
912
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), 
913
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), 
914
      _pred(0), _dist(0), _path(0), _di(0) {}
915

	
916
  };
917
  
918
  /// \brief Auxiliary class for the function-type interface of the
919
  /// \ref BellmanFord "Bellman-Ford" algorithm.
920
  ///
921
  /// This auxiliary class is created to implement the
922
  /// \ref bellmanFord() "function-type interface" of the
923
  /// \ref BellmanFord "Bellman-Ford" algorithm.
924
  /// It does not have own \ref run() method, it uses the
925
  /// functions and features of the plain \ref BellmanFord.
926
  ///
927
  /// This class should only be used through the \ref bellmanFord()
928
  /// function, which makes it easier to use the algorithm.
929
  template<class TR>
930
  class BellmanFordWizard : public TR {
931
    typedef TR Base;
932

	
933
    typedef typename TR::Digraph Digraph;
934

	
935
    typedef typename Digraph::Node Node;
936
    typedef typename Digraph::NodeIt NodeIt;
937
    typedef typename Digraph::Arc Arc;
938
    typedef typename Digraph::OutArcIt ArcIt;
939
    
940
    typedef typename TR::LengthMap LengthMap;
941
    typedef typename LengthMap::Value Value;
942
    typedef typename TR::PredMap PredMap;
943
    typedef typename TR::DistMap DistMap;
944
    typedef typename TR::Path Path;
945

	
946
  public:
947
    /// Constructor.
948
    BellmanFordWizard() : TR() {}
949

	
950
    /// \brief Constructor that requires parameters.
951
    ///
952
    /// Constructor that requires parameters.
953
    /// These parameters will be the default values for the traits class.
954
    /// \param gr The digraph the algorithm runs on.
955
    /// \param len The length map.
956
    BellmanFordWizard(const Digraph& gr, const LengthMap& len) 
957
      : TR(gr, len) {}
958

	
959
    /// \brief Copy constructor
960
    BellmanFordWizard(const TR &b) : TR(b) {}
961

	
962
    ~BellmanFordWizard() {}
963

	
964
    /// \brief Runs the Bellman-Ford algorithm from the given source node.
965
    ///    
966
    /// This method runs the Bellman-Ford algorithm from the given source
967
    /// node in order to compute the shortest path to each node.
968
    void run(Node s) {
969
      BellmanFord<Digraph,LengthMap,TR> 
970
	bf(*reinterpret_cast<const Digraph*>(Base::_graph), 
971
           *reinterpret_cast<const LengthMap*>(Base::_length));
972
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
973
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
974
      bf.run(s);
975
    }
976

	
977
    /// \brief Runs the Bellman-Ford algorithm to find the shortest path
978
    /// between \c s and \c t.
979
    ///
980
    /// This method runs the Bellman-Ford algorithm from node \c s
981
    /// in order to compute the shortest path to node \c t.
982
    /// Actually, it computes the shortest path to each node, but using
983
    /// this function you can retrieve the distance and the shortest path
984
    /// for a single target node easier.
985
    ///
986
    /// \return \c true if \c t is reachable form \c s.
987
    bool run(Node s, Node t) {
988
      BellmanFord<Digraph,LengthMap,TR>
989
        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
990
           *reinterpret_cast<const LengthMap*>(Base::_length));
991
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
992
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
993
      bf.run(s);
994
      if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
995
      if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
996
      return bf.reached(t);
997
    }
998

	
999
    template<class T>
1000
    struct SetPredMapBase : public Base {
1001
      typedef T PredMap;
1002
      static PredMap *createPredMap(const Digraph &) { return 0; };
1003
      SetPredMapBase(const TR &b) : TR(b) {}
1004
    };
1005
    
1006
    /// \brief \ref named-templ-param "Named parameter" for setting
1007
    /// the predecessor map.
1008
    ///
1009
    /// \ref named-templ-param "Named parameter" for setting
1010
    /// the map that stores the predecessor arcs of the nodes.
1011
    template<class T>
1012
    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
1013
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1014
      return BellmanFordWizard<SetPredMapBase<T> >(*this);
1015
    }
1016
    
1017
    template<class T>
1018
    struct SetDistMapBase : public Base {
1019
      typedef T DistMap;
1020
      static DistMap *createDistMap(const Digraph &) { return 0; };
1021
      SetDistMapBase(const TR &b) : TR(b) {}
1022
    };
1023
    
1024
    /// \brief \ref named-templ-param "Named parameter" for setting
1025
    /// the distance map.
1026
    ///
1027
    /// \ref named-templ-param "Named parameter" for setting
1028
    /// the map that stores the distances of the nodes calculated
1029
    /// by the algorithm.
1030
    template<class T>
1031
    BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
1032
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1033
      return BellmanFordWizard<SetDistMapBase<T> >(*this);
1034
    }
1035

	
1036
    template<class T>
1037
    struct SetPathBase : public Base {
1038
      typedef T Path;
1039
      SetPathBase(const TR &b) : TR(b) {}
1040
    };
1041

	
1042
    /// \brief \ref named-func-param "Named parameter" for getting
1043
    /// the shortest path to the target node.
1044
    ///
1045
    /// \ref named-func-param "Named parameter" for getting
1046
    /// the shortest path to the target node.
1047
    template<class T>
1048
    BellmanFordWizard<SetPathBase<T> > path(const T &t)
1049
    {
1050
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1051
      return BellmanFordWizard<SetPathBase<T> >(*this);
1052
    }
1053

	
1054
    /// \brief \ref named-func-param "Named parameter" for getting
1055
    /// the distance of the target node.
1056
    ///
1057
    /// \ref named-func-param "Named parameter" for getting
1058
    /// the distance of the target node.
1059
    BellmanFordWizard dist(const Value &d)
1060
    {
1061
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1062
      return *this;
1063
    }
1064
    
1065
  };
1066
  
1067
  /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
1068
  /// algorithm.
1069
  ///
1070
  /// \ingroup shortest_path
1071
  /// Function type interface for the \ref BellmanFord "Bellman-Ford"
1072
  /// algorithm.
1073
  ///
1074
  /// This function also has several \ref named-templ-func-param 
1075
  /// "named parameters", they are declared as the members of class 
1076
  /// \ref BellmanFordWizard.
1077
  /// The following examples show how to use these parameters.
1078
  /// \code
1079
  ///   // Compute shortest path from node s to each node
1080
  ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
1081
  ///
1082
  ///   // Compute shortest path from s to t
1083
  ///   bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
1084
  /// \endcode
1085
  /// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
1086
  /// to the end of the parameter list.
1087
  /// \sa BellmanFordWizard
1088
  /// \sa BellmanFord
1089
  template<typename GR, typename LEN>
1090
  BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
1091
  bellmanFord(const GR& digraph,
1092
	      const LEN& length)
1093
  {
1094
    return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
1095
  }
1096

	
1097
} //END OF NAMESPACE LEMON
1098

	
1099
#endif
1100

	
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2009
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#include <lemon/concepts/digraph.h>
20
#include <lemon/smart_graph.h>
21
#include <lemon/list_graph.h>
22
#include <lemon/lgf_reader.h>
23
#include <lemon/bellman_ford.h>
24
#include <lemon/path.h>
25

	
26
#include "graph_test.h"
27
#include "test_tools.h"
28

	
29
using namespace lemon;
30

	
31
char test_lgf[] =
32
  "@nodes\n"
33
  "label\n"
34
  "0\n"
35
  "1\n"
36
  "2\n"
37
  "3\n"
38
  "4\n"
39
  "@arcs\n"
40
  "    length\n"
41
  "0 1 3\n"
42
  "1 2 -3\n"
43
  "1 2 -5\n"
44
  "1 3 -2\n"
45
  "0 2 -1\n"
46
  "1 2 -4\n"
47
  "0 3 2\n"
48
  "4 2 -5\n"
49
  "2 3 1\n"
50
  "@attributes\n"
51
  "source 0\n"
52
  "target 3\n";
53

	
54

	
55
void checkBellmanFordCompile()
56
{
57
  typedef int Value;
58
  typedef concepts::Digraph Digraph;
59
  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
60
  typedef BellmanFord<Digraph, LengthMap> BF;
61
  typedef Digraph::Node Node;
62
  typedef Digraph::Arc Arc;
63

	
64
  Digraph gr;
65
  Node s, t, n;
66
  Arc e;
67
  Value l;
68
  int k;
69
  bool b;
70
  BF::DistMap d(gr);
71
  BF::PredMap p(gr);
72
  LengthMap length;
73
  concepts::Path<Digraph> pp;
74

	
75
  {
76
    BF bf_test(gr,length);
77
    const BF& const_bf_test = bf_test;
78

	
79
    bf_test.run(s);
80
    bf_test.run(s,k);
81

	
82
    bf_test.init();
83
    bf_test.addSource(s);
84
    bf_test.addSource(s, 1);
85
    b = bf_test.processNextRound();
86
    b = bf_test.processNextWeakRound();
87

	
88
    bf_test.start();
89
    bf_test.checkedStart();
90
    bf_test.limitedStart(k);
91

	
92
    l  = const_bf_test.dist(t);
93
    e  = const_bf_test.predArc(t);
94
    s  = const_bf_test.predNode(t);
95
    b  = const_bf_test.reached(t);
96
    d  = const_bf_test.distMap();
97
    p  = const_bf_test.predMap();
98
    pp = const_bf_test.path(t);
99
    
100
    for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
101
  }
102
  {
103
    BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
104
      ::SetDistMap<concepts::ReadWriteMap<Node,Value> >
105
      ::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> >
106
      ::Create bf_test(gr,length);
107

	
108
    LengthMap length_map;
109
    concepts::ReadWriteMap<Node,Arc> pred_map;
110
    concepts::ReadWriteMap<Node,Value> dist_map;
111
    
112
    bf_test
113
      .lengthMap(length_map)
114
      .predMap(pred_map)
115
      .distMap(dist_map);
116

	
117
    bf_test.run(s);
118
    bf_test.run(s,k);
119

	
120
    bf_test.init();
121
    bf_test.addSource(s);
122
    bf_test.addSource(s, 1);
123
    b = bf_test.processNextRound();
124
    b = bf_test.processNextWeakRound();
125

	
126
    bf_test.start();
127
    bf_test.checkedStart();
128
    bf_test.limitedStart(k);
129

	
130
    l  = bf_test.dist(t);
131
    e  = bf_test.predArc(t);
132
    s  = bf_test.predNode(t);
133
    b  = bf_test.reached(t);
134
    pp = bf_test.path(t);
135
  }
136
}
137

	
138
void checkBellmanFordFunctionCompile()
139
{
140
  typedef int Value;
141
  typedef concepts::Digraph Digraph;
142
  typedef Digraph::Arc Arc;
143
  typedef Digraph::Node Node;
144
  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
145

	
146
  Digraph g;
147
  bool b;
148
  bellmanFord(g,LengthMap()).run(Node());
149
  b = bellmanFord(g,LengthMap()).run(Node(),Node());
150
  bellmanFord(g,LengthMap())
151
    .predMap(concepts::ReadWriteMap<Node,Arc>())
152
    .distMap(concepts::ReadWriteMap<Node,Value>())
153
    .run(Node());
154
  b=bellmanFord(g,LengthMap())
155
    .predMap(concepts::ReadWriteMap<Node,Arc>())
156
    .distMap(concepts::ReadWriteMap<Node,Value>())
157
    .path(concepts::Path<Digraph>())
158
    .dist(Value())
159
    .run(Node(),Node());
160
}
161

	
162

	
163
template <typename Digraph, typename Value>
164
void checkBellmanFord() {
165
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
166
  typedef typename Digraph::template ArcMap<Value> LengthMap;
167

	
168
  Digraph gr;
169
  Node s, t;
170
  LengthMap length(gr);
171

	
172
  std::istringstream input(test_lgf);
173
  digraphReader(gr, input).
174
    arcMap("length", length).
175
    node("source", s).
176
    node("target", t).
177
    run();
178

	
179
  BellmanFord<Digraph, LengthMap>
180
    bf(gr, length);
181
  bf.run(s);
182
  Path<Digraph> p = bf.path(t);
183

	
184
  check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path.");
185
  check(p.length() == 3, "path() found a wrong path.");
186
  check(checkPath(gr, p), "path() found a wrong path.");
187
  check(pathSource(gr, p) == s, "path() found a wrong path.");
188
  check(pathTarget(gr, p) == t, "path() found a wrong path.");
189
  
190
  ListPath<Digraph> path;
191
  Value dist;
192
  bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t);
193

	
194
  check(reached && dist == -1, "Bellman-Ford found a wrong path.");
195
  check(path.length() == 3, "path() found a wrong path.");
196
  check(checkPath(gr, path), "path() found a wrong path.");
197
  check(pathSource(gr, path) == s, "path() found a wrong path.");
198
  check(pathTarget(gr, path) == t, "path() found a wrong path.");
199

	
200
  for(ArcIt e(gr); e!=INVALID; ++e) {
201
    Node u=gr.source(e);
202
    Node v=gr.target(e);
203
    check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]),
204
          "Wrong output. dist(target)-dist(source)-arc_length=" <<
205
          bf.dist(v) - bf.dist(u) - length[e]);
206
  }
207

	
208
  for(NodeIt v(gr); v!=INVALID; ++v) {
209
    if (bf.reached(v)) {
210
      check(v==s || bf.predArc(v)!=INVALID, "Wrong tree.");
211
      if (bf.predArc(v)!=INVALID ) {
212
        Arc e=bf.predArc(v);
213
        Node u=gr.source(e);
214
        check(u==bf.predNode(v),"Wrong tree.");
215
        check(bf.dist(v) - bf.dist(u) == length[e],
216
              "Wrong distance! Difference: " <<
217
              bf.dist(v) - bf.dist(u) - length[e]);
218
      }
219
    }
220
  }
221
}
222

	
223
void checkBellmanFordNegativeCycle() {
224
  DIGRAPH_TYPEDEFS(SmartDigraph);
225

	
226
  SmartDigraph gr;
227
  IntArcMap length(gr);
228
  
229
  Node n1 = gr.addNode();
230
  Node n2 = gr.addNode();
231
  Node n3 = gr.addNode();
232
  Node n4 = gr.addNode();
233
  
234
  Arc a1 = gr.addArc(n1, n2);
235
  Arc a2 = gr.addArc(n2, n2);
236
  
237
  length[a1] = 2;
238
  length[a2] = -1;
239
  
240
  {
241
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
242
    bf.run(n1);
243
    StaticPath<SmartDigraph> p = bf.negativeCycle();
244
    check(p.length() == 1 && p.front() == p.back() && p.front() == a2,
245
          "Wrong negative cycle.");
246
  }
247
 
248
  length[a2] = 0;
249
  
250
  {
251
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
252
    bf.run(n1);
253
    check(bf.negativeCycle().empty(),
254
          "Negative cycle should not be found.");
255
  }
256
  
257
  length[gr.addArc(n1, n3)] = 5;
258
  length[gr.addArc(n4, n3)] = 1;
259
  length[gr.addArc(n2, n4)] = 2;
260
  length[gr.addArc(n3, n2)] = -4;
261
  
262
  {
263
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
264
    bf.init();
265
    bf.addSource(n1);
266
    for (int i = 0; i < 4; ++i) {
267
      check(bf.negativeCycle().empty(),
268
            "Negative cycle should not be found.");
269
      bf.processNextRound();
270
    }
271
    StaticPath<SmartDigraph> p = bf.negativeCycle();
272
    check(p.length() == 3, "Wrong negative cycle.");
273
    check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1,
274
          "Wrong negative cycle.");
275
  }
276
}
277

	
278
int main() {
279
  checkBellmanFord<ListDigraph, int>();
280
  checkBellmanFord<SmartDigraph, double>();
281
  checkBellmanFordNegativeCycle();
282
  return 0;
283
}
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	lemon/lemon.pc.in \
3 3
	lemon/CMakeLists.txt \
4 4
	lemon/config.h.cmake
5 5

	
6 6
pkgconfig_DATA += lemon/lemon.pc
7 7

	
8 8
lib_LTLIBRARIES += lemon/libemon.la
9 9

	
10 10
lemon_libemon_la_SOURCES = \
11 11
	lemon/arg_parser.cc \
12 12
	lemon/base.cc \
13 13
	lemon/color.cc \
14 14
	lemon/lp_base.cc \
15 15
	lemon/lp_skeleton.cc \
16 16
	lemon/random.cc \
17 17
	lemon/bits/windows.cc
18 18

	
19 19
nodist_lemon_HEADERS = lemon/config.h	
20 20

	
21 21
lemon_libemon_la_CXXFLAGS = \
22 22
	$(AM_CXXFLAGS) \
23 23
	$(GLPK_CFLAGS) \
24 24
	$(CPLEX_CFLAGS) \
25 25
	$(SOPLEX_CXXFLAGS) \
26 26
	$(CLP_CXXFLAGS) \
27 27
	$(CBC_CXXFLAGS)
28 28

	
29 29
lemon_libemon_la_LDFLAGS = \
30 30
	$(GLPK_LIBS) \
31 31
	$(CPLEX_LIBS) \
32 32
	$(SOPLEX_LIBS) \
33 33
	$(CLP_LIBS) \
34 34
	$(CBC_LIBS)
35 35

	
36 36
if HAVE_GLPK
37 37
lemon_libemon_la_SOURCES += lemon/glpk.cc
38 38
endif
39 39

	
40 40
if HAVE_CPLEX
41 41
lemon_libemon_la_SOURCES += lemon/cplex.cc
42 42
endif
43 43

	
44 44
if HAVE_SOPLEX
45 45
lemon_libemon_la_SOURCES += lemon/soplex.cc
46 46
endif
47 47

	
48 48
if HAVE_CLP
49 49
lemon_libemon_la_SOURCES += lemon/clp.cc
50 50
endif
51 51

	
52 52
if HAVE_CBC
53 53
lemon_libemon_la_SOURCES += lemon/cbc.cc
54 54
endif
55 55

	
56 56
lemon_HEADERS += \
57 57
	lemon/adaptors.h \
58 58
	lemon/arg_parser.h \
59 59
	lemon/assert.h \
60
	lemon/bellman_ford.h \
60 61
	lemon/bfs.h \
61 62
	lemon/bin_heap.h \
62 63
	lemon/bucket_heap.h \
63 64
	lemon/cbc.h \
64 65
	lemon/circulation.h \
65 66
	lemon/clp.h \
66 67
	lemon/color.h \
67 68
	lemon/concept_check.h \
68 69
	lemon/connectivity.h \
69 70
	lemon/counter.h \
70 71
	lemon/core.h \
71 72
	lemon/cplex.h \
72 73
	lemon/dfs.h \
73 74
	lemon/dijkstra.h \
74 75
	lemon/dim2.h \
75 76
	lemon/dimacs.h \
76 77
	lemon/edge_set.h \
77 78
	lemon/elevator.h \
78 79
	lemon/error.h \
79 80
	lemon/euler.h \
80 81
	lemon/fib_heap.h \
81 82
	lemon/full_graph.h \
82 83
	lemon/glpk.h \
83 84
	lemon/gomory_hu.h \
84 85
	lemon/graph_to_eps.h \
85 86
	lemon/grid_graph.h \
86 87
	lemon/hypercube_graph.h \
87 88
	lemon/kruskal.h \
88 89
	lemon/hao_orlin.h \
89 90
	lemon/lgf_reader.h \
90 91
	lemon/lgf_writer.h \
91 92
	lemon/list_graph.h \
92 93
	lemon/lp.h \
93 94
	lemon/lp_base.h \
94 95
	lemon/lp_skeleton.h \
95 96
	lemon/maps.h \
96 97
	lemon/matching.h \
97 98
	lemon/math.h \
98 99
	lemon/min_cost_arborescence.h \
99 100
	lemon/nauty_reader.h \
100 101
	lemon/network_simplex.h \
101 102
	lemon/path.h \
102 103
	lemon/preflow.h \
103 104
	lemon/radix_heap.h \
104 105
	lemon/radix_sort.h \
105 106
	lemon/random.h \
106 107
	lemon/smart_graph.h \
107 108
	lemon/soplex.h \
108 109
	lemon/suurballe.h \
109 110
	lemon/time_measure.h \
110 111
	lemon/tolerance.h \
111 112
	lemon/unionfind.h \
112 113
	lemon/bits/windows.h
113 114

	
114 115
bits_HEADERS += \
115 116
	lemon/bits/alteration_notifier.h \
116 117
	lemon/bits/array_map.h \
117 118
	lemon/bits/bezier.h \
118 119
	lemon/bits/default_map.h \
119 120
	lemon/bits/edge_set_extender.h \
120 121
	lemon/bits/enable_if.h \
121 122
	lemon/bits/graph_adaptor_extender.h \
122 123
	lemon/bits/graph_extender.h \
123 124
	lemon/bits/map_extender.h \
124 125
	lemon/bits/path_dump.h \
125 126
	lemon/bits/solver_bits.h \
126 127
	lemon/bits/traits.h \
127 128
	lemon/bits/variant.h \
128 129
	lemon/bits/vector_map.h
129 130

	
130 131
concept_HEADERS += \
131 132
	lemon/concepts/digraph.h \
132 133
	lemon/concepts/graph.h \
133 134
	lemon/concepts/graph_components.h \
134 135
	lemon/concepts/heap.h \
135 136
	lemon/concepts/maps.h \
136 137
	lemon/concepts/path.h
Ignore white space 6 line context
1 1
INCLUDE_DIRECTORIES(
2 2
  ${PROJECT_SOURCE_DIR}
3 3
  ${PROJECT_BINARY_DIR}
4 4
)
5 5

	
6 6
LINK_DIRECTORIES(
7 7
  ${PROJECT_BINARY_DIR}/lemon
8 8
)
9 9

	
10 10
SET(TESTS
11 11
  adaptors_test
12
  bellman_ford_test
12 13
  bfs_test
13 14
  circulation_test
14 15
  connectivity_test
15 16
  counter_test
16 17
  dfs_test
17 18
  digraph_test
18 19
  dijkstra_test
19 20
  dim_test
20 21
  edge_set_test
21 22
  error_test
22 23
  euler_test
23 24
  gomory_hu_test
24 25
  graph_copy_test
25 26
  graph_test
26 27
  graph_utils_test
27 28
  hao_orlin_test
28 29
  heap_test
29 30
  kruskal_test
30 31
  maps_test
31 32
  matching_test
32 33
  min_cost_arborescence_test
33 34
  min_cost_flow_test
34 35
  path_test
35 36
  preflow_test
36 37
  radix_sort_test
37 38
  random_test
38 39
  suurballe_test
39 40
  time_measure_test
40 41
  unionfind_test
41 42
)
42 43

	
43 44
IF(LEMON_HAVE_LP)
44 45
  ADD_EXECUTABLE(lp_test lp_test.cc)
45 46
  SET(LP_TEST_LIBS lemon)
46 47

	
47 48
  IF(LEMON_HAVE_GLPK)
48 49
    SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${GLPK_LIBRARIES})
49 50
  ENDIF()
50 51
  IF(LEMON_HAVE_CPLEX)
51 52
    SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${CPLEX_LIBRARIES})
52 53
  ENDIF()
53 54
  IF(LEMON_HAVE_CLP)
54 55
    SET(LP_TEST_LIBS ${LP_TEST_LIBS} ${COIN_CLP_LIBRARIES})
55 56
  ENDIF()
56 57

	
57 58
  TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS})
58 59
  ADD_TEST(lp_test lp_test)
59 60

	
60 61
  IF(WIN32 AND LEMON_HAVE_GLPK)
61 62
    GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION)
62 63
    GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
63 64
    ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD
64 65
      COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH}
65 66
      COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH}
66 67
      COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH}
67 68
    )
68 69
  ENDIF()
69 70

	
70 71
  IF(WIN32 AND LEMON_HAVE_CPLEX)
71 72
    GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION)
72 73
    GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
73 74
    ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD
74 75
      COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH}
75 76
    )
76 77
  ENDIF()
77 78
ENDIF()
78 79

	
79 80
IF(LEMON_HAVE_MIP)
80 81
  ADD_EXECUTABLE(mip_test mip_test.cc)
81 82
  SET(MIP_TEST_LIBS lemon)
82 83

	
83 84
  IF(LEMON_HAVE_GLPK)
84 85
    SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${GLPK_LIBRARIES})
85 86
  ENDIF()
86 87
  IF(LEMON_HAVE_CPLEX)
87 88
    SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${CPLEX_LIBRARIES})
88 89
  ENDIF()
89 90
  IF(LEMON_HAVE_CBC)
90 91
    SET(MIP_TEST_LIBS ${MIP_TEST_LIBS} ${COIN_CBC_LIBRARIES})
91 92
  ENDIF()
92 93

	
93 94
  TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS})
94 95
  ADD_TEST(mip_test mip_test)
95 96

	
96 97
  IF(WIN32 AND LEMON_HAVE_GLPK)
97 98
    GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION)
98 99
    GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
99 100
    ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD
100 101
      COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH}
101 102
      COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH}
102 103
      COMMAND ${CMAKE_COMMAND} -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH}
103 104
    )
104 105
  ENDIF()
105 106

	
106 107
  IF(WIN32 AND LEMON_HAVE_CPLEX)
107 108
    GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION)
108 109
    GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH)
109 110
    ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD
110 111
      COMMAND ${CMAKE_COMMAND} -E copy ${CPLEX_BIN_DIR}/cplex91.dll ${TARGET_PATH}
111 112
    )
112 113
  ENDIF()
113 114
ENDIF()
114 115

	
115 116
FOREACH(TEST_NAME ${TESTS})
116 117
  ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc)
117 118
  TARGET_LINK_LIBRARIES(${TEST_NAME} lemon)
118 119
  ADD_TEST(${TEST_NAME} ${TEST_NAME})
119 120
ENDFOREACH()
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	test/CMakeLists.txt
3 3

	
4 4
noinst_HEADERS += \
5 5
	test/graph_test.h \
6 6
	test/test_tools.h
7 7

	
8 8
check_PROGRAMS += \
9 9
	test/adaptors_test \
10
	test/bellman_ford_test \
10 11
	test/bfs_test \
11 12
	test/circulation_test \
12 13
	test/connectivity_test \
13 14
	test/counter_test \
14 15
	test/dfs_test \
15 16
	test/digraph_test \
16 17
	test/dijkstra_test \
17 18
	test/dim_test \
18 19
	test/edge_set_test \
19 20
	test/error_test \
20 21
	test/euler_test \
21 22
	test/gomory_hu_test \
22 23
	test/graph_copy_test \
23 24
	test/graph_test \
24 25
	test/graph_utils_test \
25 26
	test/hao_orlin_test \
26 27
	test/heap_test \
27 28
	test/kruskal_test \
28 29
	test/maps_test \
29 30
	test/matching_test \
30 31
	test/min_cost_arborescence_test \
31 32
	test/min_cost_flow_test \
32 33
	test/path_test \
33 34
	test/preflow_test \
34 35
	test/radix_sort_test \
35 36
	test/random_test \
36 37
	test/suurballe_test \
37 38
	test/test_tools_fail \
38 39
	test/test_tools_pass \
39 40
	test/time_measure_test \
40 41
	test/unionfind_test
41 42

	
42 43
test_test_tools_pass_DEPENDENCIES = demo
43 44

	
44 45
if HAVE_LP
45 46
check_PROGRAMS += test/lp_test
46 47
endif HAVE_LP
47 48
if HAVE_MIP
48 49
check_PROGRAMS += test/mip_test
49 50
endif HAVE_MIP
50 51

	
51 52
TESTS += $(check_PROGRAMS)
52 53
XFAIL_TESTS += test/test_tools_fail$(EXEEXT)
53 54

	
54 55
test_adaptors_test_SOURCES = test/adaptors_test.cc
56
test_bellman_ford_test_SOURCES = test/bellman_ford_test.cc
55 57
test_bfs_test_SOURCES = test/bfs_test.cc
56 58
test_circulation_test_SOURCES = test/circulation_test.cc
57 59
test_counter_test_SOURCES = test/counter_test.cc
58 60
test_connectivity_test_SOURCES = test/connectivity_test.cc
59 61
test_dfs_test_SOURCES = test/dfs_test.cc
60 62
test_digraph_test_SOURCES = test/digraph_test.cc
61 63
test_dijkstra_test_SOURCES = test/dijkstra_test.cc
62 64
test_dim_test_SOURCES = test/dim_test.cc
63 65
test_edge_set_test_SOURCES = test/edge_set_test.cc
64 66
test_error_test_SOURCES = test/error_test.cc
65 67
test_euler_test_SOURCES = test/euler_test.cc
66 68
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc
67 69
test_graph_copy_test_SOURCES = test/graph_copy_test.cc
68 70
test_graph_test_SOURCES = test/graph_test.cc
69 71
test_graph_utils_test_SOURCES = test/graph_utils_test.cc
70 72
test_heap_test_SOURCES = test/heap_test.cc
71 73
test_kruskal_test_SOURCES = test/kruskal_test.cc
72 74
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc
73 75
test_lp_test_SOURCES = test/lp_test.cc
74 76
test_maps_test_SOURCES = test/maps_test.cc
75 77
test_mip_test_SOURCES = test/mip_test.cc
76 78
test_matching_test_SOURCES = test/matching_test.cc
77 79
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc
78 80
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc
79 81
test_path_test_SOURCES = test/path_test.cc
80 82
test_preflow_test_SOURCES = test/preflow_test.cc
81 83
test_radix_sort_test_SOURCES = test/radix_sort_test.cc
82 84
test_suurballe_test_SOURCES = test/suurballe_test.cc
83 85
test_random_test_SOURCES = test/random_test.cc
84 86
test_test_tools_fail_SOURCES = test/test_tools_fail.cc
85 87
test_test_tools_pass_SOURCES = test/test_tools_pass.cc
86 88
test_time_measure_test_SOURCES = test/time_measure_test.cc
87 89
test_unionfind_test_SOURCES = test/unionfind_test.cc
0 comments (0 inline)