0
3
2
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_BELLMAN_FORD_H |
|
20 |
#define LEMON_BELLMAN_FORD_H |
|
21 |
|
|
22 |
/// \ingroup shortest_path |
|
23 |
/// \file |
|
24 |
/// \brief Bellman-Ford algorithm. |
|
25 |
|
|
26 |
#include <lemon/bits/path_dump.h> |
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/error.h> |
|
29 |
#include <lemon/maps.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
|
|
32 |
#include <limits> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default OperationTraits for the BellmanFord algorithm class. |
|
37 |
/// |
|
38 |
/// This operation traits class defines all computational operations |
|
39 |
/// and constants that are used in the Bellman-Ford algorithm. |
|
40 |
/// The default implementation is based on the \c numeric_limits class. |
|
41 |
/// If the numeric type does not have infinity value, then the maximum |
|
42 |
/// value is used as extremal infinity value. |
|
43 |
template < |
|
44 |
typename V, |
|
45 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
|
46 |
struct BellmanFordDefaultOperationTraits { |
|
47 |
/// \e |
|
48 |
typedef V Value; |
|
49 |
/// \brief Gives back the zero value of the type. |
|
50 |
static Value zero() { |
|
51 |
return static_cast<Value>(0); |
|
52 |
} |
|
53 |
/// \brief Gives back the positive infinity value of the type. |
|
54 |
static Value infinity() { |
|
55 |
return std::numeric_limits<Value>::infinity(); |
|
56 |
} |
|
57 |
/// \brief Gives back the sum of the given two elements. |
|
58 |
static Value plus(const Value& left, const Value& right) { |
|
59 |
return left + right; |
|
60 |
} |
|
61 |
/// \brief Gives back \c true only if the first value is less than |
|
62 |
/// the second. |
|
63 |
static bool less(const Value& left, const Value& right) { |
|
64 |
return left < right; |
|
65 |
} |
|
66 |
}; |
|
67 |
|
|
68 |
template <typename V> |
|
69 |
struct BellmanFordDefaultOperationTraits<V, false> { |
|
70 |
typedef V Value; |
|
71 |
static Value zero() { |
|
72 |
return static_cast<Value>(0); |
|
73 |
} |
|
74 |
static Value infinity() { |
|
75 |
return std::numeric_limits<Value>::max(); |
|
76 |
} |
|
77 |
static Value plus(const Value& left, const Value& right) { |
|
78 |
if (left == infinity() || right == infinity()) return infinity(); |
|
79 |
return left + right; |
|
80 |
} |
|
81 |
static bool less(const Value& left, const Value& right) { |
|
82 |
return left < right; |
|
83 |
} |
|
84 |
}; |
|
85 |
|
|
86 |
/// \brief Default traits class of BellmanFord class. |
|
87 |
/// |
|
88 |
/// Default traits class of BellmanFord class. |
|
89 |
/// \param GR The type of the digraph. |
|
90 |
/// \param LEN The type of the length map. |
|
91 |
template<typename GR, typename LEN> |
|
92 |
struct BellmanFordDefaultTraits { |
|
93 |
/// The type of the digraph the algorithm runs on. |
|
94 |
typedef GR Digraph; |
|
95 |
|
|
96 |
/// \brief The type of the map that stores the arc lengths. |
|
97 |
/// |
|
98 |
/// The type of the map that stores the arc lengths. |
|
99 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
100 |
typedef LEN LengthMap; |
|
101 |
|
|
102 |
/// The type of the arc lengths. |
|
103 |
typedef typename LEN::Value Value; |
|
104 |
|
|
105 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
106 |
/// |
|
107 |
/// It defines the used operations and the infinity value for the |
|
108 |
/// given \c Value type. |
|
109 |
/// \see BellmanFordDefaultOperationTraits |
|
110 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
111 |
|
|
112 |
/// \brief The type of the map that stores the last arcs of the |
|
113 |
/// shortest paths. |
|
114 |
/// |
|
115 |
/// The type of the map that stores the last |
|
116 |
/// arcs of the shortest paths. |
|
117 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
118 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
119 |
|
|
120 |
/// \brief Instantiates a \c PredMap. |
|
121 |
/// |
|
122 |
/// This function instantiates a \ref PredMap. |
|
123 |
/// \param g is the digraph to which we would like to define the |
|
124 |
/// \ref PredMap. |
|
125 |
static PredMap *createPredMap(const GR& g) { |
|
126 |
return new PredMap(g); |
|
127 |
} |
|
128 |
|
|
129 |
/// \brief The type of the map that stores the distances of the nodes. |
|
130 |
/// |
|
131 |
/// The type of the map that stores the distances of the nodes. |
|
132 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
133 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
|
134 |
|
|
135 |
/// \brief Instantiates a \c DistMap. |
|
136 |
/// |
|
137 |
/// This function instantiates a \ref DistMap. |
|
138 |
/// \param g is the digraph to which we would like to define the |
|
139 |
/// \ref DistMap. |
|
140 |
static DistMap *createDistMap(const GR& g) { |
|
141 |
return new DistMap(g); |
|
142 |
} |
|
143 |
|
|
144 |
}; |
|
145 |
|
|
146 |
/// \brief %BellmanFord algorithm class. |
|
147 |
/// |
|
148 |
/// \ingroup shortest_path |
|
149 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
150 |
/// algorithm. The maximum time complexity of the algorithm is |
|
151 |
/// <tt>O(ne)</tt>. |
|
152 |
/// |
|
153 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
|
154 |
/// problem when the arcs can have negative lengths, but the digraph |
|
155 |
/// should not contain directed cycles with negative total length. |
|
156 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
|
157 |
/// algorithm instead, since it is more efficient. |
|
158 |
/// |
|
159 |
/// The arc lengths are passed to the algorithm using a |
|
160 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
161 |
/// kind of length. The type of the length values is determined by the |
|
162 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
|
163 |
/// |
|
164 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
|
165 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
|
166 |
/// it can be used easier. |
|
167 |
/// |
|
168 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
169 |
/// The default type is \ref ListDigraph. |
|
170 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
|
171 |
/// the lengths of the arcs. The default map type is |
|
172 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
173 |
#ifdef DOXYGEN |
|
174 |
template <typename GR, typename LEN, typename TR> |
|
175 |
#else |
|
176 |
template <typename GR=ListDigraph, |
|
177 |
typename LEN=typename GR::template ArcMap<int>, |
|
178 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
|
179 |
#endif |
|
180 |
class BellmanFord { |
|
181 |
public: |
|
182 |
|
|
183 |
///The type of the underlying digraph. |
|
184 |
typedef typename TR::Digraph Digraph; |
|
185 |
|
|
186 |
/// \brief The type of the arc lengths. |
|
187 |
typedef typename TR::LengthMap::Value Value; |
|
188 |
/// \brief The type of the map that stores the arc lengths. |
|
189 |
typedef typename TR::LengthMap LengthMap; |
|
190 |
/// \brief The type of the map that stores the last |
|
191 |
/// arcs of the shortest paths. |
|
192 |
typedef typename TR::PredMap PredMap; |
|
193 |
/// \brief The type of the map that stores the distances of the nodes. |
|
194 |
typedef typename TR::DistMap DistMap; |
|
195 |
/// The type of the paths. |
|
196 |
typedef PredMapPath<Digraph, PredMap> Path; |
|
197 |
///\brief The \ref BellmanFordDefaultOperationTraits |
|
198 |
/// "operation traits class" of the algorithm. |
|
199 |
typedef typename TR::OperationTraits OperationTraits; |
|
200 |
|
|
201 |
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm. |
|
202 |
typedef TR Traits; |
|
203 |
|
|
204 |
private: |
|
205 |
|
|
206 |
typedef typename Digraph::Node Node; |
|
207 |
typedef typename Digraph::NodeIt NodeIt; |
|
208 |
typedef typename Digraph::Arc Arc; |
|
209 |
typedef typename Digraph::OutArcIt OutArcIt; |
|
210 |
|
|
211 |
// Pointer to the underlying digraph. |
|
212 |
const Digraph *_gr; |
|
213 |
// Pointer to the length map |
|
214 |
const LengthMap *_length; |
|
215 |
// Pointer to the map of predecessors arcs. |
|
216 |
PredMap *_pred; |
|
217 |
// Indicates if _pred is locally allocated (true) or not. |
|
218 |
bool _local_pred; |
|
219 |
// Pointer to the map of distances. |
|
220 |
DistMap *_dist; |
|
221 |
// Indicates if _dist is locally allocated (true) or not. |
|
222 |
bool _local_dist; |
|
223 |
|
|
224 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
|
225 |
MaskMap *_mask; |
|
226 |
|
|
227 |
std::vector<Node> _process; |
|
228 |
|
|
229 |
// Creates the maps if necessary. |
|
230 |
void create_maps() { |
|
231 |
if(!_pred) { |
|
232 |
_local_pred = true; |
|
233 |
_pred = Traits::createPredMap(*_gr); |
|
234 |
} |
|
235 |
if(!_dist) { |
|
236 |
_local_dist = true; |
|
237 |
_dist = Traits::createDistMap(*_gr); |
|
238 |
} |
|
239 |
_mask = new MaskMap(*_gr, false); |
|
240 |
} |
|
241 |
|
|
242 |
public : |
|
243 |
|
|
244 |
typedef BellmanFord Create; |
|
245 |
|
|
246 |
/// \name Named Template Parameters |
|
247 |
|
|
248 |
///@{ |
|
249 |
|
|
250 |
template <class T> |
|
251 |
struct SetPredMapTraits : public Traits { |
|
252 |
typedef T PredMap; |
|
253 |
static PredMap *createPredMap(const Digraph&) { |
|
254 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
|
255 |
return 0; // ignore warnings |
|
256 |
} |
|
257 |
}; |
|
258 |
|
|
259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
260 |
/// \c PredMap type. |
|
261 |
/// |
|
262 |
/// \ref named-templ-param "Named parameter" for setting |
|
263 |
/// \c PredMap type. |
|
264 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
265 |
template <class T> |
|
266 |
struct SetPredMap |
|
267 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
|
268 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
269 |
}; |
|
270 |
|
|
271 |
template <class T> |
|
272 |
struct SetDistMapTraits : public Traits { |
|
273 |
typedef T DistMap; |
|
274 |
static DistMap *createDistMap(const Digraph&) { |
|
275 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
|
276 |
return 0; // ignore warnings |
|
277 |
} |
|
278 |
}; |
|
279 |
|
|
280 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
281 |
/// \c DistMap type. |
|
282 |
/// |
|
283 |
/// \ref named-templ-param "Named parameter" for setting |
|
284 |
/// \c DistMap type. |
|
285 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
286 |
template <class T> |
|
287 |
struct SetDistMap |
|
288 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
|
289 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
290 |
}; |
|
291 |
|
|
292 |
template <class T> |
|
293 |
struct SetOperationTraitsTraits : public Traits { |
|
294 |
typedef T OperationTraits; |
|
295 |
}; |
|
296 |
|
|
297 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
298 |
/// \c OperationTraits type. |
|
299 |
/// |
|
300 |
/// \ref named-templ-param "Named parameter" for setting |
|
301 |
/// \c OperationTraits type. |
|
302 |
/// For more information see \ref BellmanFordDefaultOperationTraits. |
|
303 |
template <class T> |
|
304 |
struct SetOperationTraits |
|
305 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
|
306 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
307 |
Create; |
|
308 |
}; |
|
309 |
|
|
310 |
///@} |
|
311 |
|
|
312 |
protected: |
|
313 |
|
|
314 |
BellmanFord() {} |
|
315 |
|
|
316 |
public: |
|
317 |
|
|
318 |
/// \brief Constructor. |
|
319 |
/// |
|
320 |
/// Constructor. |
|
321 |
/// \param g The digraph the algorithm runs on. |
|
322 |
/// \param length The length map used by the algorithm. |
|
323 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
|
324 |
_gr(&g), _length(&length), |
|
325 |
_pred(0), _local_pred(false), |
|
326 |
_dist(0), _local_dist(false), _mask(0) {} |
|
327 |
|
|
328 |
///Destructor. |
|
329 |
~BellmanFord() { |
|
330 |
if(_local_pred) delete _pred; |
|
331 |
if(_local_dist) delete _dist; |
|
332 |
if(_mask) delete _mask; |
|
333 |
} |
|
334 |
|
|
335 |
/// \brief Sets the length map. |
|
336 |
/// |
|
337 |
/// Sets the length map. |
|
338 |
/// \return <tt>(*this)</tt> |
|
339 |
BellmanFord &lengthMap(const LengthMap &map) { |
|
340 |
_length = ↦ |
|
341 |
return *this; |
|
342 |
} |
|
343 |
|
|
344 |
/// \brief Sets the map that stores the predecessor arcs. |
|
345 |
/// |
|
346 |
/// Sets the map that stores the predecessor arcs. |
|
347 |
/// If you don't use this function before calling \ref run() |
|
348 |
/// or \ref init(), an instance will be allocated automatically. |
|
349 |
/// The destructor deallocates this automatically allocated map, |
|
350 |
/// of course. |
|
351 |
/// \return <tt>(*this)</tt> |
|
352 |
BellmanFord &predMap(PredMap &map) { |
|
353 |
if(_local_pred) { |
|
354 |
delete _pred; |
|
355 |
_local_pred=false; |
|
356 |
} |
|
357 |
_pred = ↦ |
|
358 |
return *this; |
|
359 |
} |
|
360 |
|
|
361 |
/// \brief Sets the map that stores the distances of the nodes. |
|
362 |
/// |
|
363 |
/// Sets the map that stores the distances of the nodes calculated |
|
364 |
/// by the algorithm. |
|
365 |
/// If you don't use this function before calling \ref run() |
|
366 |
/// or \ref init(), an instance will be allocated automatically. |
|
367 |
/// The destructor deallocates this automatically allocated map, |
|
368 |
/// of course. |
|
369 |
/// \return <tt>(*this)</tt> |
|
370 |
BellmanFord &distMap(DistMap &map) { |
|
371 |
if(_local_dist) { |
|
372 |
delete _dist; |
|
373 |
_local_dist=false; |
|
374 |
} |
|
375 |
_dist = ↦ |
|
376 |
return *this; |
|
377 |
} |
|
378 |
|
|
379 |
/// \name Execution Control |
|
380 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
|
381 |
/// one of the member functions called \ref run().\n |
|
382 |
/// If you need better control on the execution, you have to call |
|
383 |
/// \ref init() first, then you can add several source nodes |
|
384 |
/// with \ref addSource(). Finally the actual path computation can be |
|
385 |
/// performed with \ref start(), \ref checkedStart() or |
|
386 |
/// \ref limitedStart(). |
|
387 |
|
|
388 |
///@{ |
|
389 |
|
|
390 |
/// \brief Initializes the internal data structures. |
|
391 |
/// |
|
392 |
/// Initializes the internal data structures. The optional parameter |
|
393 |
/// is the initial distance of each node. |
|
394 |
void init(const Value value = OperationTraits::infinity()) { |
|
395 |
create_maps(); |
|
396 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
397 |
_pred->set(it, INVALID); |
|
398 |
_dist->set(it, value); |
|
399 |
} |
|
400 |
_process.clear(); |
|
401 |
if (OperationTraits::less(value, OperationTraits::infinity())) { |
|
402 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
403 |
_process.push_back(it); |
|
404 |
_mask->set(it, true); |
|
405 |
} |
|
406 |
} |
|
407 |
} |
|
408 |
|
|
409 |
/// \brief Adds a new source node. |
|
410 |
/// |
|
411 |
/// This function adds a new source node. The optional second parameter |
|
412 |
/// is the initial distance of the node. |
|
413 |
void addSource(Node source, Value dst = OperationTraits::zero()) { |
|
414 |
_dist->set(source, dst); |
|
415 |
if (!(*_mask)[source]) { |
|
416 |
_process.push_back(source); |
|
417 |
_mask->set(source, true); |
|
418 |
} |
|
419 |
} |
|
420 |
|
|
421 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
|
422 |
/// |
|
423 |
/// If the algoritm calculated the distances in the previous round |
|
424 |
/// exactly for the paths of at most \c k arcs, then this function |
|
425 |
/// will calculate the distances exactly for the paths of at most |
|
426 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
|
427 |
/// calculates the shortest path distances exactly for the paths |
|
428 |
/// consisting of at most \c k arcs. |
|
429 |
/// |
|
430 |
/// \warning The paths with limited arc number cannot be retrieved |
|
431 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
432 |
/// need the shortest paths and not only the distances, you should |
|
433 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
434 |
/// and build the path manually. |
|
435 |
/// |
|
436 |
/// \return \c true when the algorithm have not found more shorter |
|
437 |
/// paths. |
|
438 |
/// |
|
439 |
/// \see ActiveIt |
|
440 |
bool processNextRound() { |
|
441 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
442 |
_mask->set(_process[i], false); |
|
443 |
} |
|
444 |
std::vector<Node> nextProcess; |
|
445 |
std::vector<Value> values(_process.size()); |
|
446 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
447 |
values[i] = (*_dist)[_process[i]]; |
|
448 |
} |
|
449 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
450 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
451 |
Node target = _gr->target(it); |
|
452 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
453 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
454 |
_pred->set(target, it); |
|
455 |
_dist->set(target, relaxed); |
|
456 |
if (!(*_mask)[target]) { |
|
457 |
_mask->set(target, true); |
|
458 |
nextProcess.push_back(target); |
|
459 |
} |
|
460 |
} |
|
461 |
} |
|
462 |
} |
|
463 |
_process.swap(nextProcess); |
|
464 |
return _process.empty(); |
|
465 |
} |
|
466 |
|
|
467 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
|
468 |
/// |
|
469 |
/// If the algorithm calculated the distances in the previous round |
|
470 |
/// at least for the paths of at most \c k arcs, then this function |
|
471 |
/// will calculate the distances at least for the paths of at most |
|
472 |
/// <tt>k+1</tt> arcs. |
|
473 |
/// This function does not make it possible to calculate the shortest |
|
474 |
/// path distances exactly for paths consisting of at most \c k arcs, |
|
475 |
/// this is why it is called weak round. |
|
476 |
/// |
|
477 |
/// \return \c true when the algorithm have not found more shorter |
|
478 |
/// paths. |
|
479 |
/// |
|
480 |
/// \see ActiveIt |
|
481 |
bool processNextWeakRound() { |
|
482 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
483 |
_mask->set(_process[i], false); |
|
484 |
} |
|
485 |
std::vector<Node> nextProcess; |
|
486 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
487 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
488 |
Node target = _gr->target(it); |
|
489 |
Value relaxed = |
|
490 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
491 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
492 |
_pred->set(target, it); |
|
493 |
_dist->set(target, relaxed); |
|
494 |
if (!(*_mask)[target]) { |
|
495 |
_mask->set(target, true); |
|
496 |
nextProcess.push_back(target); |
|
497 |
} |
|
498 |
} |
|
499 |
} |
|
500 |
} |
|
501 |
_process.swap(nextProcess); |
|
502 |
return _process.empty(); |
|
503 |
} |
|
504 |
|
|
505 |
/// \brief Executes the algorithm. |
|
506 |
/// |
|
507 |
/// Executes the algorithm. |
|
508 |
/// |
|
509 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
510 |
/// in order to compute the shortest path to each node. |
|
511 |
/// |
|
512 |
/// The algorithm computes |
|
513 |
/// - the shortest path tree (forest), |
|
514 |
/// - the distance of each node from the root(s). |
|
515 |
/// |
|
516 |
/// \pre init() must be called and at least one root node should be |
|
517 |
/// added with addSource() before using this function. |
|
518 |
void start() { |
|
519 |
int num = countNodes(*_gr) - 1; |
|
520 |
for (int i = 0; i < num; ++i) { |
|
521 |
if (processNextWeakRound()) break; |
|
522 |
} |
|
523 |
} |
|
524 |
|
|
525 |
/// \brief Executes the algorithm and checks the negative cycles. |
|
526 |
/// |
|
527 |
/// Executes the algorithm and checks the negative cycles. |
|
528 |
/// |
|
529 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
530 |
/// in order to compute the shortest path to each node and also checks |
|
531 |
/// if the digraph contains cycles with negative total length. |
|
532 |
/// |
|
533 |
/// The algorithm computes |
|
534 |
/// - the shortest path tree (forest), |
|
535 |
/// - the distance of each node from the root(s). |
|
536 |
/// |
|
537 |
/// \return \c false if there is a negative cycle in the digraph. |
|
538 |
/// |
|
539 |
/// \pre init() must be called and at least one root node should be |
|
540 |
/// added with addSource() before using this function. |
|
541 |
bool checkedStart() { |
|
542 |
int num = countNodes(*_gr); |
|
543 |
for (int i = 0; i < num; ++i) { |
|
544 |
if (processNextWeakRound()) return true; |
|
545 |
} |
|
546 |
return _process.empty(); |
|
547 |
} |
|
548 |
|
|
549 |
/// \brief Executes the algorithm with arc number limit. |
|
550 |
/// |
|
551 |
/// Executes the algorithm with arc number limit. |
|
552 |
/// |
|
553 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
|
554 |
/// in order to compute the shortest path distance for each node |
|
555 |
/// using only the paths consisting of at most \c num arcs. |
|
556 |
/// |
|
557 |
/// The algorithm computes |
|
558 |
/// - the limited distance of each node from the root(s), |
|
559 |
/// - the predecessor arc for each node. |
|
560 |
/// |
|
561 |
/// \warning The paths with limited arc number cannot be retrieved |
|
562 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
563 |
/// need the shortest paths and not only the distances, you should |
|
564 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
565 |
/// and build the path manually. |
|
566 |
/// |
|
567 |
/// \pre init() must be called and at least one root node should be |
|
568 |
/// added with addSource() before using this function. |
|
569 |
void limitedStart(int num) { |
|
570 |
for (int i = 0; i < num; ++i) { |
|
571 |
if (processNextRound()) break; |
|
572 |
} |
|
573 |
} |
|
574 |
|
|
575 |
/// \brief Runs the algorithm from the given root node. |
|
576 |
/// |
|
577 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
578 |
/// node \c s in order to compute the shortest path to each node. |
|
579 |
/// |
|
580 |
/// The algorithm computes |
|
581 |
/// - the shortest path tree (forest), |
|
582 |
/// - the distance of each node from the root(s). |
|
583 |
/// |
|
584 |
/// \note bf.run(s) is just a shortcut of the following code. |
|
585 |
/// \code |
|
586 |
/// bf.init(); |
|
587 |
/// bf.addSource(s); |
|
588 |
/// bf.start(); |
|
589 |
/// \endcode |
|
590 |
void run(Node s) { |
|
591 |
init(); |
|
592 |
addSource(s); |
|
593 |
start(); |
|
594 |
} |
|
595 |
|
|
596 |
/// \brief Runs the algorithm from the given root node with arc |
|
597 |
/// number limit. |
|
598 |
/// |
|
599 |
/// This method runs the Bellman-Ford algorithm from the given root |
|
600 |
/// node \c s in order to compute the shortest path distance for each |
|
601 |
/// node using only the paths consisting of at most \c num arcs. |
|
602 |
/// |
|
603 |
/// The algorithm computes |
|
604 |
/// - the limited distance of each node from the root(s), |
|
605 |
/// - the predecessor arc for each node. |
|
606 |
/// |
|
607 |
/// \warning The paths with limited arc number cannot be retrieved |
|
608 |
/// easily with \ref path() or \ref predArc() functions. If you also |
|
609 |
/// need the shortest paths and not only the distances, you should |
|
610 |
/// store the \ref predMap() "predecessor map" after each iteration |
|
611 |
/// and build the path manually. |
|
612 |
/// |
|
613 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
|
614 |
/// \code |
|
615 |
/// bf.init(); |
|
616 |
/// bf.addSource(s); |
|
617 |
/// bf.limitedStart(num); |
|
618 |
/// \endcode |
|
619 |
void run(Node s, int num) { |
|
620 |
init(); |
|
621 |
addSource(s); |
|
622 |
limitedStart(num); |
|
623 |
} |
|
624 |
|
|
625 |
///@} |
|
626 |
|
|
627 |
/// \brief LEMON iterator for getting the active nodes. |
|
628 |
/// |
|
629 |
/// This class provides a common style LEMON iterator that traverses |
|
630 |
/// the active nodes of the Bellman-Ford algorithm after the last |
|
631 |
/// phase. These nodes should be checked in the next phase to |
|
632 |
/// find augmenting arcs outgoing from them. |
|
633 |
class ActiveIt { |
|
634 |
public: |
|
635 |
|
|
636 |
/// \brief Constructor. |
|
637 |
/// |
|
638 |
/// Constructor for getting the active nodes of the given BellmanFord |
|
639 |
/// instance. |
|
640 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
|
641 |
{ |
|
642 |
_index = _algorithm->_process.size() - 1; |
|
643 |
} |
|
644 |
|
|
645 |
/// \brief Invalid constructor. |
|
646 |
/// |
|
647 |
/// Invalid constructor. |
|
648 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
|
649 |
|
|
650 |
/// \brief Conversion to \c Node. |
|
651 |
/// |
|
652 |
/// Conversion to \c Node. |
|
653 |
operator Node() const { |
|
654 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
|
655 |
} |
|
656 |
|
|
657 |
/// \brief Increment operator. |
|
658 |
/// |
|
659 |
/// Increment operator. |
|
660 |
ActiveIt& operator++() { |
|
661 |
--_index; |
|
662 |
return *this; |
|
663 |
} |
|
664 |
|
|
665 |
bool operator==(const ActiveIt& it) const { |
|
666 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
667 |
} |
|
668 |
bool operator!=(const ActiveIt& it) const { |
|
669 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
670 |
} |
|
671 |
bool operator<(const ActiveIt& it) const { |
|
672 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
673 |
} |
|
674 |
|
|
675 |
private: |
|
676 |
const BellmanFord* _algorithm; |
|
677 |
int _index; |
|
678 |
}; |
|
679 |
|
|
680 |
/// \name Query Functions |
|
681 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
|
682 |
/// functions.\n |
|
683 |
/// Either \ref run() or \ref init() should be called before using them. |
|
684 |
|
|
685 |
///@{ |
|
686 |
|
|
687 |
/// \brief The shortest path to the given node. |
|
688 |
/// |
|
689 |
/// Gives back the shortest path to the given node from the root(s). |
|
690 |
/// |
|
691 |
/// \warning \c t should be reached from the root(s). |
|
692 |
/// |
|
693 |
/// \pre Either \ref run() or \ref init() must be called before |
|
694 |
/// using this function. |
|
695 |
Path path(Node t) const |
|
696 |
{ |
|
697 |
return Path(*_gr, *_pred, t); |
|
698 |
} |
|
699 |
|
|
700 |
/// \brief The distance of the given node from the root(s). |
|
701 |
/// |
|
702 |
/// Returns the distance of the given node from the root(s). |
|
703 |
/// |
|
704 |
/// \warning If node \c v is not reached from the root(s), then |
|
705 |
/// the return value of this function is undefined. |
|
706 |
/// |
|
707 |
/// \pre Either \ref run() or \ref init() must be called before |
|
708 |
/// using this function. |
|
709 |
Value dist(Node v) const { return (*_dist)[v]; } |
|
710 |
|
|
711 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
|
712 |
/// the given node. |
|
713 |
/// |
|
714 |
/// This function returns the 'previous arc' of the shortest path |
|
715 |
/// tree for node \c v, i.e. it returns the last arc of a |
|
716 |
/// shortest path from a root to \c v. It is \c INVALID if \c v |
|
717 |
/// is not reached from the root(s) or if \c v is a root. |
|
718 |
/// |
|
719 |
/// The shortest path tree used here is equal to the shortest path |
|
720 |
/// tree used in \ref predNode() and \predMap(). |
|
721 |
/// |
|
722 |
/// \pre Either \ref run() or \ref init() must be called before |
|
723 |
/// using this function. |
|
724 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
|
725 |
|
|
726 |
/// \brief Returns the 'previous node' of the shortest path tree for |
|
727 |
/// the given node. |
|
728 |
/// |
|
729 |
/// This function returns the 'previous node' of the shortest path |
|
730 |
/// tree for node \c v, i.e. it returns the last but one node of |
|
731 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
|
732 |
/// is not reached from the root(s) or if \c v is a root. |
|
733 |
/// |
|
734 |
/// The shortest path tree used here is equal to the shortest path |
|
735 |
/// tree used in \ref predArc() and \predMap(). |
|
736 |
/// |
|
737 |
/// \pre Either \ref run() or \ref init() must be called before |
|
738 |
/// using this function. |
|
739 |
Node predNode(Node v) const { |
|
740 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
741 |
} |
|
742 |
|
|
743 |
/// \brief Returns a const reference to the node map that stores the |
|
744 |
/// distances of the nodes. |
|
745 |
/// |
|
746 |
/// Returns a const reference to the node map that stores the distances |
|
747 |
/// of the nodes calculated by the algorithm. |
|
748 |
/// |
|
749 |
/// \pre Either \ref run() or \ref init() must be called before |
|
750 |
/// using this function. |
|
751 |
const DistMap &distMap() const { return *_dist;} |
|
752 |
|
|
753 |
/// \brief Returns a const reference to the node map that stores the |
|
754 |
/// predecessor arcs. |
|
755 |
/// |
|
756 |
/// Returns a const reference to the node map that stores the predecessor |
|
757 |
/// arcs, which form the shortest path tree (forest). |
|
758 |
/// |
|
759 |
/// \pre Either \ref run() or \ref init() must be called before |
|
760 |
/// using this function. |
|
761 |
const PredMap &predMap() const { return *_pred; } |
|
762 |
|
|
763 |
/// \brief Checks if a node is reached from the root(s). |
|
764 |
/// |
|
765 |
/// Returns \c true if \c v is reached from the root(s). |
|
766 |
/// |
|
767 |
/// \pre Either \ref run() or \ref init() must be called before |
|
768 |
/// using this function. |
|
769 |
bool reached(Node v) const { |
|
770 |
return (*_dist)[v] != OperationTraits::infinity(); |
|
771 |
} |
|
772 |
|
|
773 |
/// \brief Gives back a negative cycle. |
|
774 |
/// |
|
775 |
/// This function gives back a directed cycle with negative total |
|
776 |
/// length if the algorithm has already found one. |
|
777 |
/// Otherwise it gives back an empty path. |
|
778 |
lemon::Path<Digraph> negativeCycle() { |
|
779 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
|
780 |
lemon::Path<Digraph> cycle; |
|
781 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
782 |
if (state[_process[i]] != -1) continue; |
|
783 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
|
784 |
v = _gr->source((*_pred)[v])) { |
|
785 |
if (state[v] == i) { |
|
786 |
cycle.addFront((*_pred)[v]); |
|
787 |
for (Node u = _gr->source((*_pred)[v]); u != v; |
|
788 |
u = _gr->source((*_pred)[u])) { |
|
789 |
cycle.addFront((*_pred)[u]); |
|
790 |
} |
|
791 |
return cycle; |
|
792 |
} |
|
793 |
else if (state[v] >= 0) { |
|
794 |
break; |
|
795 |
} |
|
796 |
state[v] = i; |
|
797 |
} |
|
798 |
} |
|
799 |
return cycle; |
|
800 |
} |
|
801 |
|
|
802 |
///@} |
|
803 |
}; |
|
804 |
|
|
805 |
/// \brief Default traits class of bellmanFord() function. |
|
806 |
/// |
|
807 |
/// Default traits class of bellmanFord() function. |
|
808 |
/// \tparam GR The type of the digraph. |
|
809 |
/// \tparam LEN The type of the length map. |
|
810 |
template <typename GR, typename LEN> |
|
811 |
struct BellmanFordWizardDefaultTraits { |
|
812 |
/// The type of the digraph the algorithm runs on. |
|
813 |
typedef GR Digraph; |
|
814 |
|
|
815 |
/// \brief The type of the map that stores the arc lengths. |
|
816 |
/// |
|
817 |
/// The type of the map that stores the arc lengths. |
|
818 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
819 |
typedef LEN LengthMap; |
|
820 |
|
|
821 |
/// The type of the arc lengths. |
|
822 |
typedef typename LEN::Value Value; |
|
823 |
|
|
824 |
/// \brief Operation traits for Bellman-Ford algorithm. |
|
825 |
/// |
|
826 |
/// It defines the used operations and the infinity value for the |
|
827 |
/// given \c Value type. |
|
828 |
/// \see BellmanFordDefaultOperationTraits |
|
829 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
|
830 |
|
|
831 |
/// \brief The type of the map that stores the last |
|
832 |
/// arcs of the shortest paths. |
|
833 |
/// |
|
834 |
/// The type of the map that stores the last arcs of the shortest paths. |
|
835 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
836 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
|
837 |
|
|
838 |
/// \brief Instantiates a \c PredMap. |
|
839 |
/// |
|
840 |
/// This function instantiates a \ref PredMap. |
|
841 |
/// \param g is the digraph to which we would like to define the |
|
842 |
/// \ref PredMap. |
|
843 |
static PredMap *createPredMap(const GR &g) { |
|
844 |
return new PredMap(g); |
|
845 |
} |
|
846 |
|
|
847 |
/// \brief The type of the map that stores the distances of the nodes. |
|
848 |
/// |
|
849 |
/// The type of the map that stores the distances of the nodes. |
|
850 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
851 |
typedef typename GR::template NodeMap<Value> DistMap; |
|
852 |
|
|
853 |
/// \brief Instantiates a \c DistMap. |
|
854 |
/// |
|
855 |
/// This function instantiates a \ref DistMap. |
|
856 |
/// \param g is the digraph to which we would like to define the |
|
857 |
/// \ref DistMap. |
|
858 |
static DistMap *createDistMap(const GR &g) { |
|
859 |
return new DistMap(g); |
|
860 |
} |
|
861 |
|
|
862 |
///The type of the shortest paths. |
|
863 |
|
|
864 |
///The type of the shortest paths. |
|
865 |
///It must meet the \ref concepts::Path "Path" concept. |
|
866 |
typedef lemon::Path<Digraph> Path; |
|
867 |
}; |
|
868 |
|
|
869 |
/// \brief Default traits class used by BellmanFordWizard. |
|
870 |
/// |
|
871 |
/// Default traits class used by BellmanFordWizard. |
|
872 |
/// \tparam GR The type of the digraph. |
|
873 |
/// \tparam LEN The type of the length map. |
|
874 |
template <typename GR, typename LEN> |
|
875 |
class BellmanFordWizardBase |
|
876 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
|
877 |
|
|
878 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
|
879 |
protected: |
|
880 |
// Type of the nodes in the digraph. |
|
881 |
typedef typename Base::Digraph::Node Node; |
|
882 |
|
|
883 |
// Pointer to the underlying digraph. |
|
884 |
void *_graph; |
|
885 |
// Pointer to the length map |
|
886 |
void *_length; |
|
887 |
// Pointer to the map of predecessors arcs. |
|
888 |
void *_pred; |
|
889 |
// Pointer to the map of distances. |
|
890 |
void *_dist; |
|
891 |
//Pointer to the shortest path to the target node. |
|
892 |
void *_path; |
|
893 |
//Pointer to the distance of the target node. |
|
894 |
void *_di; |
|
895 |
|
|
896 |
public: |
|
897 |
/// Constructor. |
|
898 |
|
|
899 |
/// This constructor does not require parameters, it initiates |
|
900 |
/// all of the attributes to default values \c 0. |
|
901 |
BellmanFordWizardBase() : |
|
902 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
|
903 |
|
|
904 |
/// Constructor. |
|
905 |
|
|
906 |
/// This constructor requires two parameters, |
|
907 |
/// others are initiated to \c 0. |
|
908 |
/// \param gr The digraph the algorithm runs on. |
|
909 |
/// \param len The length map. |
|
910 |
BellmanFordWizardBase(const GR& gr, |
|
911 |
const LEN& len) : |
|
912 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
913 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
914 |
_pred(0), _dist(0), _path(0), _di(0) {} |
|
915 |
|
|
916 |
}; |
|
917 |
|
|
918 |
/// \brief Auxiliary class for the function-type interface of the |
|
919 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
920 |
/// |
|
921 |
/// This auxiliary class is created to implement the |
|
922 |
/// \ref bellmanFord() "function-type interface" of the |
|
923 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
|
924 |
/// It does not have own \ref run() method, it uses the |
|
925 |
/// functions and features of the plain \ref BellmanFord. |
|
926 |
/// |
|
927 |
/// This class should only be used through the \ref bellmanFord() |
|
928 |
/// function, which makes it easier to use the algorithm. |
|
929 |
template<class TR> |
|
930 |
class BellmanFordWizard : public TR { |
|
931 |
typedef TR Base; |
|
932 |
|
|
933 |
typedef typename TR::Digraph Digraph; |
|
934 |
|
|
935 |
typedef typename Digraph::Node Node; |
|
936 |
typedef typename Digraph::NodeIt NodeIt; |
|
937 |
typedef typename Digraph::Arc Arc; |
|
938 |
typedef typename Digraph::OutArcIt ArcIt; |
|
939 |
|
|
940 |
typedef typename TR::LengthMap LengthMap; |
|
941 |
typedef typename LengthMap::Value Value; |
|
942 |
typedef typename TR::PredMap PredMap; |
|
943 |
typedef typename TR::DistMap DistMap; |
|
944 |
typedef typename TR::Path Path; |
|
945 |
|
|
946 |
public: |
|
947 |
/// Constructor. |
|
948 |
BellmanFordWizard() : TR() {} |
|
949 |
|
|
950 |
/// \brief Constructor that requires parameters. |
|
951 |
/// |
|
952 |
/// Constructor that requires parameters. |
|
953 |
/// These parameters will be the default values for the traits class. |
|
954 |
/// \param gr The digraph the algorithm runs on. |
|
955 |
/// \param len The length map. |
|
956 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
957 |
: TR(gr, len) {} |
|
958 |
|
|
959 |
/// \brief Copy constructor |
|
960 |
BellmanFordWizard(const TR &b) : TR(b) {} |
|
961 |
|
|
962 |
~BellmanFordWizard() {} |
|
963 |
|
|
964 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
|
965 |
/// |
|
966 |
/// This method runs the Bellman-Ford algorithm from the given source |
|
967 |
/// node in order to compute the shortest path to each node. |
|
968 |
void run(Node s) { |
|
969 |
BellmanFord<Digraph,LengthMap,TR> |
|
970 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
971 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
972 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
973 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
974 |
bf.run(s); |
|
975 |
} |
|
976 |
|
|
977 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
|
978 |
/// between \c s and \c t. |
|
979 |
/// |
|
980 |
/// This method runs the Bellman-Ford algorithm from node \c s |
|
981 |
/// in order to compute the shortest path to node \c t. |
|
982 |
/// Actually, it computes the shortest path to each node, but using |
|
983 |
/// this function you can retrieve the distance and the shortest path |
|
984 |
/// for a single target node easier. |
|
985 |
/// |
|
986 |
/// \return \c true if \c t is reachable form \c s. |
|
987 |
bool run(Node s, Node t) { |
|
988 |
BellmanFord<Digraph,LengthMap,TR> |
|
989 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
990 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
|
991 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
|
992 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
|
993 |
bf.run(s); |
|
994 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
|
995 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
|
996 |
return bf.reached(t); |
|
997 |
} |
|
998 |
|
|
999 |
template<class T> |
|
1000 |
struct SetPredMapBase : public Base { |
|
1001 |
typedef T PredMap; |
|
1002 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
|
1003 |
SetPredMapBase(const TR &b) : TR(b) {} |
|
1004 |
}; |
|
1005 |
|
|
1006 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1007 |
/// the predecessor map. |
|
1008 |
/// |
|
1009 |
/// \ref named-templ-param "Named parameter" for setting |
|
1010 |
/// the map that stores the predecessor arcs of the nodes. |
|
1011 |
template<class T> |
|
1012 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
|
1013 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1014 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
|
1015 |
} |
|
1016 |
|
|
1017 |
template<class T> |
|
1018 |
struct SetDistMapBase : public Base { |
|
1019 |
typedef T DistMap; |
|
1020 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
|
1021 |
SetDistMapBase(const TR &b) : TR(b) {} |
|
1022 |
}; |
|
1023 |
|
|
1024 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
1025 |
/// the distance map. |
|
1026 |
/// |
|
1027 |
/// \ref named-templ-param "Named parameter" for setting |
|
1028 |
/// the map that stores the distances of the nodes calculated |
|
1029 |
/// by the algorithm. |
|
1030 |
template<class T> |
|
1031 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
|
1032 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1033 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
|
1034 |
} |
|
1035 |
|
|
1036 |
template<class T> |
|
1037 |
struct SetPathBase : public Base { |
|
1038 |
typedef T Path; |
|
1039 |
SetPathBase(const TR &b) : TR(b) {} |
|
1040 |
}; |
|
1041 |
|
|
1042 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1043 |
/// the shortest path to the target node. |
|
1044 |
/// |
|
1045 |
/// \ref named-func-param "Named parameter" for getting |
|
1046 |
/// the shortest path to the target node. |
|
1047 |
template<class T> |
|
1048 |
BellmanFordWizard<SetPathBase<T> > path(const T &t) |
|
1049 |
{ |
|
1050 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
|
1051 |
return BellmanFordWizard<SetPathBase<T> >(*this); |
|
1052 |
} |
|
1053 |
|
|
1054 |
/// \brief \ref named-func-param "Named parameter" for getting |
|
1055 |
/// the distance of the target node. |
|
1056 |
/// |
|
1057 |
/// \ref named-func-param "Named parameter" for getting |
|
1058 |
/// the distance of the target node. |
|
1059 |
BellmanFordWizard dist(const Value &d) |
|
1060 |
{ |
|
1061 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
|
1062 |
return *this; |
|
1063 |
} |
|
1064 |
|
|
1065 |
}; |
|
1066 |
|
|
1067 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1068 |
/// algorithm. |
|
1069 |
/// |
|
1070 |
/// \ingroup shortest_path |
|
1071 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
|
1072 |
/// algorithm. |
|
1073 |
/// |
|
1074 |
/// This function also has several \ref named-templ-func-param |
|
1075 |
/// "named parameters", they are declared as the members of class |
|
1076 |
/// \ref BellmanFordWizard. |
|
1077 |
/// The following examples show how to use these parameters. |
|
1078 |
/// \code |
|
1079 |
/// // Compute shortest path from node s to each node |
|
1080 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
|
1081 |
/// |
|
1082 |
/// // Compute shortest path from s to t |
|
1083 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
|
1084 |
/// \endcode |
|
1085 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
|
1086 |
/// to the end of the parameter list. |
|
1087 |
/// \sa BellmanFordWizard |
|
1088 |
/// \sa BellmanFord |
|
1089 |
template<typename GR, typename LEN> |
|
1090 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
|
1091 |
bellmanFord(const GR& digraph, |
|
1092 |
const LEN& length) |
|
1093 |
{ |
|
1094 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
|
1095 |
} |
|
1096 |
|
|
1097 |
} //END OF NAMESPACE LEMON |
|
1098 |
|
|
1099 |
#endif |
|
1100 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <lemon/concepts/digraph.h> |
|
20 |
#include <lemon/smart_graph.h> |
|
21 |
#include <lemon/list_graph.h> |
|
22 |
#include <lemon/lgf_reader.h> |
|
23 |
#include <lemon/bellman_ford.h> |
|
24 |
#include <lemon/path.h> |
|
25 |
|
|
26 |
#include "graph_test.h" |
|
27 |
#include "test_tools.h" |
|
28 |
|
|
29 |
using namespace lemon; |
|
30 |
|
|
31 |
char test_lgf[] = |
|
32 |
"@nodes\n" |
|
33 |
"label\n" |
|
34 |
"0\n" |
|
35 |
"1\n" |
|
36 |
"2\n" |
|
37 |
"3\n" |
|
38 |
"4\n" |
|
39 |
"@arcs\n" |
|
40 |
" length\n" |
|
41 |
"0 1 3\n" |
|
42 |
"1 2 -3\n" |
|
43 |
"1 2 -5\n" |
|
44 |
"1 3 -2\n" |
|
45 |
"0 2 -1\n" |
|
46 |
"1 2 -4\n" |
|
47 |
"0 3 2\n" |
|
48 |
"4 2 -5\n" |
|
49 |
"2 3 1\n" |
|
50 |
"@attributes\n" |
|
51 |
"source 0\n" |
|
52 |
"target 3\n"; |
|
53 |
|
|
54 |
|
|
55 |
void checkBellmanFordCompile() |
|
56 |
{ |
|
57 |
typedef int Value; |
|
58 |
typedef concepts::Digraph Digraph; |
|
59 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
60 |
typedef BellmanFord<Digraph, LengthMap> BF; |
|
61 |
typedef Digraph::Node Node; |
|
62 |
typedef Digraph::Arc Arc; |
|
63 |
|
|
64 |
Digraph gr; |
|
65 |
Node s, t, n; |
|
66 |
Arc e; |
|
67 |
Value l; |
|
68 |
int k; |
|
69 |
bool b; |
|
70 |
BF::DistMap d(gr); |
|
71 |
BF::PredMap p(gr); |
|
72 |
LengthMap length; |
|
73 |
concepts::Path<Digraph> pp; |
|
74 |
|
|
75 |
{ |
|
76 |
BF bf_test(gr,length); |
|
77 |
const BF& const_bf_test = bf_test; |
|
78 |
|
|
79 |
bf_test.run(s); |
|
80 |
bf_test.run(s,k); |
|
81 |
|
|
82 |
bf_test.init(); |
|
83 |
bf_test.addSource(s); |
|
84 |
bf_test.addSource(s, 1); |
|
85 |
b = bf_test.processNextRound(); |
|
86 |
b = bf_test.processNextWeakRound(); |
|
87 |
|
|
88 |
bf_test.start(); |
|
89 |
bf_test.checkedStart(); |
|
90 |
bf_test.limitedStart(k); |
|
91 |
|
|
92 |
l = const_bf_test.dist(t); |
|
93 |
e = const_bf_test.predArc(t); |
|
94 |
s = const_bf_test.predNode(t); |
|
95 |
b = const_bf_test.reached(t); |
|
96 |
d = const_bf_test.distMap(); |
|
97 |
p = const_bf_test.predMap(); |
|
98 |
pp = const_bf_test.path(t); |
|
99 |
|
|
100 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
|
101 |
} |
|
102 |
{ |
|
103 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
|
104 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
|
105 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
|
106 |
::Create bf_test(gr,length); |
|
107 |
|
|
108 |
LengthMap length_map; |
|
109 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
|
110 |
concepts::ReadWriteMap<Node,Value> dist_map; |
|
111 |
|
|
112 |
bf_test |
|
113 |
.lengthMap(length_map) |
|
114 |
.predMap(pred_map) |
|
115 |
.distMap(dist_map); |
|
116 |
|
|
117 |
bf_test.run(s); |
|
118 |
bf_test.run(s,k); |
|
119 |
|
|
120 |
bf_test.init(); |
|
121 |
bf_test.addSource(s); |
|
122 |
bf_test.addSource(s, 1); |
|
123 |
b = bf_test.processNextRound(); |
|
124 |
b = bf_test.processNextWeakRound(); |
|
125 |
|
|
126 |
bf_test.start(); |
|
127 |
bf_test.checkedStart(); |
|
128 |
bf_test.limitedStart(k); |
|
129 |
|
|
130 |
l = bf_test.dist(t); |
|
131 |
e = bf_test.predArc(t); |
|
132 |
s = bf_test.predNode(t); |
|
133 |
b = bf_test.reached(t); |
|
134 |
pp = bf_test.path(t); |
|
135 |
} |
|
136 |
} |
|
137 |
|
|
138 |
void checkBellmanFordFunctionCompile() |
|
139 |
{ |
|
140 |
typedef int Value; |
|
141 |
typedef concepts::Digraph Digraph; |
|
142 |
typedef Digraph::Arc Arc; |
|
143 |
typedef Digraph::Node Node; |
|
144 |
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap; |
|
145 |
|
|
146 |
Digraph g; |
|
147 |
bool b; |
|
148 |
bellmanFord(g,LengthMap()).run(Node()); |
|
149 |
b = bellmanFord(g,LengthMap()).run(Node(),Node()); |
|
150 |
bellmanFord(g,LengthMap()) |
|
151 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
152 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
153 |
.run(Node()); |
|
154 |
b=bellmanFord(g,LengthMap()) |
|
155 |
.predMap(concepts::ReadWriteMap<Node,Arc>()) |
|
156 |
.distMap(concepts::ReadWriteMap<Node,Value>()) |
|
157 |
.path(concepts::Path<Digraph>()) |
|
158 |
.dist(Value()) |
|
159 |
.run(Node(),Node()); |
|
160 |
} |
|
161 |
|
|
162 |
|
|
163 |
template <typename Digraph, typename Value> |
|
164 |
void checkBellmanFord() { |
|
165 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
166 |
typedef typename Digraph::template ArcMap<Value> LengthMap; |
|
167 |
|
|
168 |
Digraph gr; |
|
169 |
Node s, t; |
|
170 |
LengthMap length(gr); |
|
171 |
|
|
172 |
std::istringstream input(test_lgf); |
|
173 |
digraphReader(gr, input). |
|
174 |
arcMap("length", length). |
|
175 |
node("source", s). |
|
176 |
node("target", t). |
|
177 |
run(); |
|
178 |
|
|
179 |
BellmanFord<Digraph, LengthMap> |
|
180 |
bf(gr, length); |
|
181 |
bf.run(s); |
|
182 |
Path<Digraph> p = bf.path(t); |
|
183 |
|
|
184 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
|
185 |
check(p.length() == 3, "path() found a wrong path."); |
|
186 |
check(checkPath(gr, p), "path() found a wrong path."); |
|
187 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
|
188 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
|
189 |
|
|
190 |
ListPath<Digraph> path; |
|
191 |
Value dist; |
|
192 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
|
193 |
|
|
194 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
|
195 |
check(path.length() == 3, "path() found a wrong path."); |
|
196 |
check(checkPath(gr, path), "path() found a wrong path."); |
|
197 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
|
198 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
|
199 |
|
|
200 |
for(ArcIt e(gr); e!=INVALID; ++e) { |
|
201 |
Node u=gr.source(e); |
|
202 |
Node v=gr.target(e); |
|
203 |
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]), |
|
204 |
"Wrong output. dist(target)-dist(source)-arc_length=" << |
|
205 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
206 |
} |
|
207 |
|
|
208 |
for(NodeIt v(gr); v!=INVALID; ++v) { |
|
209 |
if (bf.reached(v)) { |
|
210 |
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree."); |
|
211 |
if (bf.predArc(v)!=INVALID ) { |
|
212 |
Arc e=bf.predArc(v); |
|
213 |
Node u=gr.source(e); |
|
214 |
check(u==bf.predNode(v),"Wrong tree."); |
|
215 |
check(bf.dist(v) - bf.dist(u) == length[e], |
|
216 |
"Wrong distance! Difference: " << |
|
217 |
bf.dist(v) - bf.dist(u) - length[e]); |
|
218 |
} |
|
219 |
} |
|
220 |
} |
|
221 |
} |
|
222 |
|
|
223 |
void checkBellmanFordNegativeCycle() { |
|
224 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
|
225 |
|
|
226 |
SmartDigraph gr; |
|
227 |
IntArcMap length(gr); |
|
228 |
|
|
229 |
Node n1 = gr.addNode(); |
|
230 |
Node n2 = gr.addNode(); |
|
231 |
Node n3 = gr.addNode(); |
|
232 |
Node n4 = gr.addNode(); |
|
233 |
|
|
234 |
Arc a1 = gr.addArc(n1, n2); |
|
235 |
Arc a2 = gr.addArc(n2, n2); |
|
236 |
|
|
237 |
length[a1] = 2; |
|
238 |
length[a2] = -1; |
|
239 |
|
|
240 |
{ |
|
241 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
242 |
bf.run(n1); |
|
243 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
244 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
|
245 |
"Wrong negative cycle."); |
|
246 |
} |
|
247 |
|
|
248 |
length[a2] = 0; |
|
249 |
|
|
250 |
{ |
|
251 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
252 |
bf.run(n1); |
|
253 |
check(bf.negativeCycle().empty(), |
|
254 |
"Negative cycle should not be found."); |
|
255 |
} |
|
256 |
|
|
257 |
length[gr.addArc(n1, n3)] = 5; |
|
258 |
length[gr.addArc(n4, n3)] = 1; |
|
259 |
length[gr.addArc(n2, n4)] = 2; |
|
260 |
length[gr.addArc(n3, n2)] = -4; |
|
261 |
|
|
262 |
{ |
|
263 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
|
264 |
bf.init(); |
|
265 |
bf.addSource(n1); |
|
266 |
for (int i = 0; i < 4; ++i) { |
|
267 |
check(bf.negativeCycle().empty(), |
|
268 |
"Negative cycle should not be found."); |
|
269 |
bf.processNextRound(); |
|
270 |
} |
|
271 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
|
272 |
check(p.length() == 3, "Wrong negative cycle."); |
|
273 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
|
274 |
"Wrong negative cycle."); |
|
275 |
} |
|
276 |
} |
|
277 |
|
|
278 |
int main() { |
|
279 |
checkBellmanFord<ListDigraph, int>(); |
|
280 |
checkBellmanFord<SmartDigraph, double>(); |
|
281 |
checkBellmanFordNegativeCycle(); |
|
282 |
return 0; |
|
283 |
} |
0 comments (0 inline)