| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2008 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#ifndef LEMON_TOPOLOGY_H |
|
| 20 |
#define LEMON_TOPOLOGY_H |
|
| 21 |
|
|
| 22 |
#include <lemon/dfs.h> |
|
| 23 |
#include <lemon/bfs.h> |
|
| 24 |
#include <lemon/core.h> |
|
| 25 |
#include <lemon/maps.h> |
|
| 26 |
#include <lemon/adaptors.h> |
|
| 27 |
|
|
| 28 |
#include <lemon/concepts/digraph.h> |
|
| 29 |
#include <lemon/concepts/graph.h> |
|
| 30 |
#include <lemon/concept_check.h> |
|
| 31 |
|
|
| 32 |
#include <stack> |
|
| 33 |
#include <functional> |
|
| 34 |
|
|
| 35 |
/// \ingroup connectivity |
|
| 36 |
/// \file |
|
| 37 |
/// \brief Connectivity algorithms |
|
| 38 |
/// |
|
| 39 |
/// Connectivity algorithms |
|
| 40 |
|
|
| 41 |
namespace lemon {
|
|
| 42 |
|
|
| 43 |
/// \ingroup connectivity |
|
| 44 |
/// |
|
| 45 |
/// \brief Check whether the given undirected graph is connected. |
|
| 46 |
/// |
|
| 47 |
/// Check whether the given undirected graph is connected. |
|
| 48 |
/// \param graph The undirected graph. |
|
| 49 |
/// \return %True when there is path between any two nodes in the graph. |
|
| 50 |
/// \note By definition, the empty graph is connected. |
|
| 51 |
template <typename Graph> |
|
| 52 |
bool connected(const Graph& graph) {
|
|
| 53 |
checkConcept<concepts::Graph, Graph>(); |
|
| 54 |
typedef typename Graph::NodeIt NodeIt; |
|
| 55 |
if (NodeIt(graph) == INVALID) return true; |
|
| 56 |
Dfs<Graph> dfs(graph); |
|
| 57 |
dfs.run(NodeIt(graph)); |
|
| 58 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 59 |
if (!dfs.reached(it)) {
|
|
| 60 |
return false; |
|
| 61 |
} |
|
| 62 |
} |
|
| 63 |
return true; |
|
| 64 |
} |
|
| 65 |
|
|
| 66 |
/// \ingroup connectivity |
|
| 67 |
/// |
|
| 68 |
/// \brief Count the number of connected components of an undirected graph |
|
| 69 |
/// |
|
| 70 |
/// Count the number of connected components of an undirected graph |
|
| 71 |
/// |
|
| 72 |
/// \param graph The graph. It must be undirected. |
|
| 73 |
/// \return The number of components |
|
| 74 |
/// \note By definition, the empty graph consists |
|
| 75 |
/// of zero connected components. |
|
| 76 |
template <typename Graph> |
|
| 77 |
int countConnectedComponents(const Graph &graph) {
|
|
| 78 |
checkConcept<concepts::Graph, Graph>(); |
|
| 79 |
typedef typename Graph::Node Node; |
|
| 80 |
typedef typename Graph::Arc Arc; |
|
| 81 |
|
|
| 82 |
typedef NullMap<Node, Arc> PredMap; |
|
| 83 |
typedef NullMap<Node, int> DistMap; |
|
| 84 |
|
|
| 85 |
int compNum = 0; |
|
| 86 |
typename Bfs<Graph>:: |
|
| 87 |
template SetPredMap<PredMap>:: |
|
| 88 |
template SetDistMap<DistMap>:: |
|
| 89 |
Create bfs(graph); |
|
| 90 |
|
|
| 91 |
PredMap predMap; |
|
| 92 |
bfs.predMap(predMap); |
|
| 93 |
|
|
| 94 |
DistMap distMap; |
|
| 95 |
bfs.distMap(distMap); |
|
| 96 |
|
|
| 97 |
bfs.init(); |
|
| 98 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 99 |
if (!bfs.reached(n)) {
|
|
| 100 |
bfs.addSource(n); |
|
| 101 |
bfs.start(); |
|
| 102 |
++compNum; |
|
| 103 |
} |
|
| 104 |
} |
|
| 105 |
return compNum; |
|
| 106 |
} |
|
| 107 |
|
|
| 108 |
/// \ingroup connectivity |
|
| 109 |
/// |
|
| 110 |
/// \brief Find the connected components of an undirected graph |
|
| 111 |
/// |
|
| 112 |
/// Find the connected components of an undirected graph. |
|
| 113 |
/// |
|
| 114 |
/// \param graph The graph. It must be undirected. |
|
| 115 |
/// \retval compMap A writable node map. The values will be set from 0 to |
|
| 116 |
/// the number of the connected components minus one. Each values of the map |
|
| 117 |
/// will be set exactly once, the values of a certain component will be |
|
| 118 |
/// set continuously. |
|
| 119 |
/// \return The number of components |
|
| 120 |
/// |
|
| 121 |
template <class Graph, class NodeMap> |
|
| 122 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
|
| 123 |
checkConcept<concepts::Graph, Graph>(); |
|
| 124 |
typedef typename Graph::Node Node; |
|
| 125 |
typedef typename Graph::Arc Arc; |
|
| 126 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|
| 127 |
|
|
| 128 |
typedef NullMap<Node, Arc> PredMap; |
|
| 129 |
typedef NullMap<Node, int> DistMap; |
|
| 130 |
|
|
| 131 |
int compNum = 0; |
|
| 132 |
typename Bfs<Graph>:: |
|
| 133 |
template SetPredMap<PredMap>:: |
|
| 134 |
template SetDistMap<DistMap>:: |
|
| 135 |
Create bfs(graph); |
|
| 136 |
|
|
| 137 |
PredMap predMap; |
|
| 138 |
bfs.predMap(predMap); |
|
| 139 |
|
|
| 140 |
DistMap distMap; |
|
| 141 |
bfs.distMap(distMap); |
|
| 142 |
|
|
| 143 |
bfs.init(); |
|
| 144 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 145 |
if(!bfs.reached(n)) {
|
|
| 146 |
bfs.addSource(n); |
|
| 147 |
while (!bfs.emptyQueue()) {
|
|
| 148 |
compMap.set(bfs.nextNode(), compNum); |
|
| 149 |
bfs.processNextNode(); |
|
| 150 |
} |
|
| 151 |
++compNum; |
|
| 152 |
} |
|
| 153 |
} |
|
| 154 |
return compNum; |
|
| 155 |
} |
|
| 156 |
|
|
| 157 |
namespace _topology_bits {
|
|
| 158 |
|
|
| 159 |
template <typename Digraph, typename Iterator > |
|
| 160 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
|
|
| 161 |
public: |
|
| 162 |
typedef typename Digraph::Node Node; |
|
| 163 |
LeaveOrderVisitor(Iterator it) : _it(it) {}
|
|
| 164 |
|
|
| 165 |
void leave(const Node& node) {
|
|
| 166 |
*(_it++) = node; |
|
| 167 |
} |
|
| 168 |
|
|
| 169 |
private: |
|
| 170 |
Iterator _it; |
|
| 171 |
}; |
|
| 172 |
|
|
| 173 |
template <typename Digraph, typename Map> |
|
| 174 |
struct FillMapVisitor : public DfsVisitor<Digraph> {
|
|
| 175 |
public: |
|
| 176 |
typedef typename Digraph::Node Node; |
|
| 177 |
typedef typename Map::Value Value; |
|
| 178 |
|
|
| 179 |
FillMapVisitor(Map& map, Value& value) |
|
| 180 |
: _map(map), _value(value) {}
|
|
| 181 |
|
|
| 182 |
void reach(const Node& node) {
|
|
| 183 |
_map.set(node, _value); |
|
| 184 |
} |
|
| 185 |
private: |
|
| 186 |
Map& _map; |
|
| 187 |
Value& _value; |
|
| 188 |
}; |
|
| 189 |
|
|
| 190 |
template <typename Digraph, typename ArcMap> |
|
| 191 |
struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
|
|
| 192 |
public: |
|
| 193 |
typedef typename Digraph::Node Node; |
|
| 194 |
typedef typename Digraph::Arc Arc; |
|
| 195 |
|
|
| 196 |
StronglyConnectedCutEdgesVisitor(const Digraph& digraph, |
|
| 197 |
ArcMap& cutMap, |
|
| 198 |
int& cutNum) |
|
| 199 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum), |
|
| 200 |
_compMap(digraph), _num(0) {
|
|
| 201 |
} |
|
| 202 |
|
|
| 203 |
void stop(const Node&) {
|
|
| 204 |
++_num; |
|
| 205 |
} |
|
| 206 |
|
|
| 207 |
void reach(const Node& node) {
|
|
| 208 |
_compMap.set(node, _num); |
|
| 209 |
} |
|
| 210 |
|
|
| 211 |
void examine(const Arc& arc) {
|
|
| 212 |
if (_compMap[_digraph.source(arc)] != |
|
| 213 |
_compMap[_digraph.target(arc)]) {
|
|
| 214 |
_cutMap.set(arc, true); |
|
| 215 |
++_cutNum; |
|
| 216 |
} |
|
| 217 |
} |
|
| 218 |
private: |
|
| 219 |
const Digraph& _digraph; |
|
| 220 |
ArcMap& _cutMap; |
|
| 221 |
int& _cutNum; |
|
| 222 |
|
|
| 223 |
typename Digraph::template NodeMap<int> _compMap; |
|
| 224 |
int _num; |
|
| 225 |
}; |
|
| 226 |
|
|
| 227 |
} |
|
| 228 |
|
|
| 229 |
|
|
| 230 |
/// \ingroup connectivity |
|
| 231 |
/// |
|
| 232 |
/// \brief Check whether the given directed graph is strongly connected. |
|
| 233 |
/// |
|
| 234 |
/// Check whether the given directed graph is strongly connected. The |
|
| 235 |
/// graph is strongly connected when any two nodes of the graph are |
|
| 236 |
/// connected with directed paths in both direction. |
|
| 237 |
/// \return %False when the graph is not strongly connected. |
|
| 238 |
/// \see connected |
|
| 239 |
/// |
|
| 240 |
/// \note By definition, the empty graph is strongly connected. |
|
| 241 |
template <typename Digraph> |
|
| 242 |
bool stronglyConnected(const Digraph& digraph) {
|
|
| 243 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 244 |
|
|
| 245 |
typedef typename Digraph::Node Node; |
|
| 246 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 247 |
|
|
| 248 |
typename Digraph::Node source = NodeIt(digraph); |
|
| 249 |
if (source == INVALID) return true; |
|
| 250 |
|
|
| 251 |
using namespace _topology_bits; |
|
| 252 |
|
|
| 253 |
typedef DfsVisitor<Digraph> Visitor; |
|
| 254 |
Visitor visitor; |
|
| 255 |
|
|
| 256 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
| 257 |
dfs.init(); |
|
| 258 |
dfs.addSource(source); |
|
| 259 |
dfs.start(); |
|
| 260 |
|
|
| 261 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 262 |
if (!dfs.reached(it)) {
|
|
| 263 |
return false; |
|
| 264 |
} |
|
| 265 |
} |
|
| 266 |
|
|
| 267 |
typedef ReverseDigraph<const Digraph> RDigraph; |
|
| 268 |
RDigraph rdigraph(digraph); |
|
| 269 |
|
|
| 270 |
typedef DfsVisitor<Digraph> RVisitor; |
|
| 271 |
RVisitor rvisitor; |
|
| 272 |
|
|
| 273 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
| 274 |
rdfs.init(); |
|
| 275 |
rdfs.addSource(source); |
|
| 276 |
rdfs.start(); |
|
| 277 |
|
|
| 278 |
for (NodeIt it(rdigraph); it != INVALID; ++it) {
|
|
| 279 |
if (!rdfs.reached(it)) {
|
|
| 280 |
return false; |
|
| 281 |
} |
|
| 282 |
} |
|
| 283 |
|
|
| 284 |
return true; |
|
| 285 |
} |
|
| 286 |
|
|
| 287 |
/// \ingroup connectivity |
|
| 288 |
/// |
|
| 289 |
/// \brief Count the strongly connected components of a directed graph |
|
| 290 |
/// |
|
| 291 |
/// Count the strongly connected components of a directed graph. |
|
| 292 |
/// The strongly connected components are the classes of an |
|
| 293 |
/// equivalence relation on the nodes of the graph. Two nodes are in |
|
| 294 |
/// the same class if they are connected with directed paths in both |
|
| 295 |
/// direction. |
|
| 296 |
/// |
|
| 297 |
/// \param graph The graph. |
|
| 298 |
/// \return The number of components |
|
| 299 |
/// \note By definition, the empty graph has zero |
|
| 300 |
/// strongly connected components. |
|
| 301 |
template <typename Digraph> |
|
| 302 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
|
| 303 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 304 |
|
|
| 305 |
using namespace _topology_bits; |
|
| 306 |
|
|
| 307 |
typedef typename Digraph::Node Node; |
|
| 308 |
typedef typename Digraph::Arc Arc; |
|
| 309 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 310 |
typedef typename Digraph::ArcIt ArcIt; |
|
| 311 |
|
|
| 312 |
typedef std::vector<Node> Container; |
|
| 313 |
typedef typename Container::iterator Iterator; |
|
| 314 |
|
|
| 315 |
Container nodes(countNodes(digraph)); |
|
| 316 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|
| 317 |
Visitor visitor(nodes.begin()); |
|
| 318 |
|
|
| 319 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
| 320 |
dfs.init(); |
|
| 321 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 322 |
if (!dfs.reached(it)) {
|
|
| 323 |
dfs.addSource(it); |
|
| 324 |
dfs.start(); |
|
| 325 |
} |
|
| 326 |
} |
|
| 327 |
|
|
| 328 |
typedef typename Container::reverse_iterator RIterator; |
|
| 329 |
typedef ReverseDigraph<const Digraph> RDigraph; |
|
| 330 |
|
|
| 331 |
RDigraph rdigraph(digraph); |
|
| 332 |
|
|
| 333 |
typedef DfsVisitor<Digraph> RVisitor; |
|
| 334 |
RVisitor rvisitor; |
|
| 335 |
|
|
| 336 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
| 337 |
|
|
| 338 |
int compNum = 0; |
|
| 339 |
|
|
| 340 |
rdfs.init(); |
|
| 341 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
|
| 342 |
if (!rdfs.reached(*it)) {
|
|
| 343 |
rdfs.addSource(*it); |
|
| 344 |
rdfs.start(); |
|
| 345 |
++compNum; |
|
| 346 |
} |
|
| 347 |
} |
|
| 348 |
return compNum; |
|
| 349 |
} |
|
| 350 |
|
|
| 351 |
/// \ingroup connectivity |
|
| 352 |
/// |
|
| 353 |
/// \brief Find the strongly connected components of a directed graph |
|
| 354 |
/// |
|
| 355 |
/// Find the strongly connected components of a directed graph. The |
|
| 356 |
/// strongly connected components are the classes of an equivalence |
|
| 357 |
/// relation on the nodes of the graph. Two nodes are in |
|
| 358 |
/// relationship when there are directed paths between them in both |
|
| 359 |
/// direction. In addition, the numbering of components will satisfy |
|
| 360 |
/// that there is no arc going from a higher numbered component to |
|
| 361 |
/// a lower. |
|
| 362 |
/// |
|
| 363 |
/// \param digraph The digraph. |
|
| 364 |
/// \retval compMap A writable node map. The values will be set from 0 to |
|
| 365 |
/// the number of the strongly connected components minus one. Each value |
|
| 366 |
/// of the map will be set exactly once, the values of a certain component |
|
| 367 |
/// will be set continuously. |
|
| 368 |
/// \return The number of components |
|
| 369 |
/// |
|
| 370 |
template <typename Digraph, typename NodeMap> |
|
| 371 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
|
| 372 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 373 |
typedef typename Digraph::Node Node; |
|
| 374 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 375 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|
| 376 |
|
|
| 377 |
using namespace _topology_bits; |
|
| 378 |
|
|
| 379 |
typedef std::vector<Node> Container; |
|
| 380 |
typedef typename Container::iterator Iterator; |
|
| 381 |
|
|
| 382 |
Container nodes(countNodes(digraph)); |
|
| 383 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|
| 384 |
Visitor visitor(nodes.begin()); |
|
| 385 |
|
|
| 386 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor); |
|
| 387 |
dfs.init(); |
|
| 388 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
| 389 |
if (!dfs.reached(it)) {
|
|
| 390 |
dfs.addSource(it); |
|
| 391 |
dfs.start(); |
|
| 392 |
} |
|
| 393 |
} |
|
| 394 |
|
|
| 395 |
typedef typename Container::reverse_iterator RIterator; |
|
| 396 |
typedef ReverseDigraph<const Digraph> RDigraph; |
|
| 397 |
|
|
| 398 |
RDigraph rdigraph(digraph); |
|
| 399 |
|
|
| 400 |
int compNum = 0; |
|
| 401 |
|
|
| 402 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor; |
|
| 403 |
RVisitor rvisitor(compMap, compNum); |
|
| 404 |
|
|
| 405 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor); |
|
| 406 |
|
|
| 407 |
rdfs.init(); |
|
| 408 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
|
| 409 |
if (!rdfs.reached(*it)) {
|
|
| 410 |
rdfs.addSource(*it); |
|
| 411 |
rdfs.start(); |
|
| 412 |
++compNum; |
|
| 413 |
} |
|
| 414 |
} |
|
| 415 |
return compNum; |
|
| 416 |
} |
|
| 417 |
|
|
| 418 |
/// \ingroup connectivity |
|
| 419 |
/// |
|
| 420 |
/// \brief Find the cut arcs of the strongly connected components. |
|
| 421 |
/// |
|
| 422 |
/// Find the cut arcs of the strongly connected components. |
|
| 423 |
/// The strongly connected components are the classes of an equivalence |
|
| 424 |
/// relation on the nodes of the graph. Two nodes are in relationship |
|
| 425 |
/// when there are directed paths between them in both direction. |
|
| 426 |
/// The strongly connected components are separated by the cut arcs. |
|
| 427 |
/// |
|
| 428 |
/// \param graph The graph. |
|
| 429 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
| 430 |
/// arc is a cut arc. |
|
| 431 |
/// |
|
| 432 |
/// \return The number of cut arcs |
|
| 433 |
template <typename Digraph, typename ArcMap> |
|
| 434 |
int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
|
|
| 435 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 436 |
typedef typename Digraph::Node Node; |
|
| 437 |
typedef typename Digraph::Arc Arc; |
|
| 438 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 439 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>(); |
|
| 440 |
|
|
| 441 |
using namespace _topology_bits; |
|
| 442 |
|
|
| 443 |
typedef std::vector<Node> Container; |
|
| 444 |
typedef typename Container::iterator Iterator; |
|
| 445 |
|
|
| 446 |
Container nodes(countNodes(graph)); |
|
| 447 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor; |
|
| 448 |
Visitor visitor(nodes.begin()); |
|
| 449 |
|
|
| 450 |
DfsVisit<Digraph, Visitor> dfs(graph, visitor); |
|
| 451 |
dfs.init(); |
|
| 452 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 453 |
if (!dfs.reached(it)) {
|
|
| 454 |
dfs.addSource(it); |
|
| 455 |
dfs.start(); |
|
| 456 |
} |
|
| 457 |
} |
|
| 458 |
|
|
| 459 |
typedef typename Container::reverse_iterator RIterator; |
|
| 460 |
typedef ReverseDigraph<const Digraph> RDigraph; |
|
| 461 |
|
|
| 462 |
RDigraph rgraph(graph); |
|
| 463 |
|
|
| 464 |
int cutNum = 0; |
|
| 465 |
|
|
| 466 |
typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor; |
|
| 467 |
RVisitor rvisitor(rgraph, cutMap, cutNum); |
|
| 468 |
|
|
| 469 |
DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor); |
|
| 470 |
|
|
| 471 |
rdfs.init(); |
|
| 472 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
|
| 473 |
if (!rdfs.reached(*it)) {
|
|
| 474 |
rdfs.addSource(*it); |
|
| 475 |
rdfs.start(); |
|
| 476 |
} |
|
| 477 |
} |
|
| 478 |
return cutNum; |
|
| 479 |
} |
|
| 480 |
|
|
| 481 |
namespace _topology_bits {
|
|
| 482 |
|
|
| 483 |
template <typename Digraph> |
|
| 484 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
|
| 485 |
public: |
|
| 486 |
typedef typename Digraph::Node Node; |
|
| 487 |
typedef typename Digraph::Arc Arc; |
|
| 488 |
typedef typename Digraph::Edge Edge; |
|
| 489 |
|
|
| 490 |
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
|
| 491 |
: _graph(graph), _compNum(compNum), |
|
| 492 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
|
| 493 |
|
|
| 494 |
void start(const Node& node) {
|
|
| 495 |
_predMap.set(node, INVALID); |
|
| 496 |
} |
|
| 497 |
|
|
| 498 |
void reach(const Node& node) {
|
|
| 499 |
_numMap.set(node, _num); |
|
| 500 |
_retMap.set(node, _num); |
|
| 501 |
++_num; |
|
| 502 |
} |
|
| 503 |
|
|
| 504 |
void discover(const Arc& edge) {
|
|
| 505 |
_predMap.set(_graph.target(edge), _graph.source(edge)); |
|
| 506 |
} |
|
| 507 |
|
|
| 508 |
void examine(const Arc& edge) {
|
|
| 509 |
if (_graph.source(edge) == _graph.target(edge) && |
|
| 510 |
_graph.direction(edge)) {
|
|
| 511 |
++_compNum; |
|
| 512 |
return; |
|
| 513 |
} |
|
| 514 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
|
|
| 515 |
return; |
|
| 516 |
} |
|
| 517 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
|
| 518 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
|
| 519 |
} |
|
| 520 |
} |
|
| 521 |
|
|
| 522 |
void backtrack(const Arc& edge) {
|
|
| 523 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
|
| 524 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
| 525 |
} |
|
| 526 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
|
| 527 |
++_compNum; |
|
| 528 |
} |
|
| 529 |
} |
|
| 530 |
|
|
| 531 |
private: |
|
| 532 |
const Digraph& _graph; |
|
| 533 |
int& _compNum; |
|
| 534 |
|
|
| 535 |
typename Digraph::template NodeMap<int> _numMap; |
|
| 536 |
typename Digraph::template NodeMap<int> _retMap; |
|
| 537 |
typename Digraph::template NodeMap<Node> _predMap; |
|
| 538 |
int _num; |
|
| 539 |
}; |
|
| 540 |
|
|
| 541 |
template <typename Digraph, typename ArcMap> |
|
| 542 |
class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
|
| 543 |
public: |
|
| 544 |
typedef typename Digraph::Node Node; |
|
| 545 |
typedef typename Digraph::Arc Arc; |
|
| 546 |
typedef typename Digraph::Edge Edge; |
|
| 547 |
|
|
| 548 |
BiNodeConnectedComponentsVisitor(const Digraph& graph, |
|
| 549 |
ArcMap& compMap, int &compNum) |
|
| 550 |
: _graph(graph), _compMap(compMap), _compNum(compNum), |
|
| 551 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
|
| 552 |
|
|
| 553 |
void start(const Node& node) {
|
|
| 554 |
_predMap.set(node, INVALID); |
|
| 555 |
} |
|
| 556 |
|
|
| 557 |
void reach(const Node& node) {
|
|
| 558 |
_numMap.set(node, _num); |
|
| 559 |
_retMap.set(node, _num); |
|
| 560 |
++_num; |
|
| 561 |
} |
|
| 562 |
|
|
| 563 |
void discover(const Arc& edge) {
|
|
| 564 |
Node target = _graph.target(edge); |
|
| 565 |
_predMap.set(target, edge); |
|
| 566 |
_edgeStack.push(edge); |
|
| 567 |
} |
|
| 568 |
|
|
| 569 |
void examine(const Arc& edge) {
|
|
| 570 |
Node source = _graph.source(edge); |
|
| 571 |
Node target = _graph.target(edge); |
|
| 572 |
if (source == target && _graph.direction(edge)) {
|
|
| 573 |
_compMap.set(edge, _compNum); |
|
| 574 |
++_compNum; |
|
| 575 |
return; |
|
| 576 |
} |
|
| 577 |
if (_numMap[target] < _numMap[source]) {
|
|
| 578 |
if (_predMap[source] != _graph.oppositeArc(edge)) {
|
|
| 579 |
_edgeStack.push(edge); |
|
| 580 |
} |
|
| 581 |
} |
|
| 582 |
if (_predMap[source] != INVALID && |
|
| 583 |
target == _graph.source(_predMap[source])) {
|
|
| 584 |
return; |
|
| 585 |
} |
|
| 586 |
if (_retMap[source] > _numMap[target]) {
|
|
| 587 |
_retMap.set(source, _numMap[target]); |
|
| 588 |
} |
|
| 589 |
} |
|
| 590 |
|
|
| 591 |
void backtrack(const Arc& edge) {
|
|
| 592 |
Node source = _graph.source(edge); |
|
| 593 |
Node target = _graph.target(edge); |
|
| 594 |
if (_retMap[source] > _retMap[target]) {
|
|
| 595 |
_retMap.set(source, _retMap[target]); |
|
| 596 |
} |
|
| 597 |
if (_numMap[source] <= _retMap[target]) {
|
|
| 598 |
while (_edgeStack.top() != edge) {
|
|
| 599 |
_compMap.set(_edgeStack.top(), _compNum); |
|
| 600 |
_edgeStack.pop(); |
|
| 601 |
} |
|
| 602 |
_compMap.set(edge, _compNum); |
|
| 603 |
_edgeStack.pop(); |
|
| 604 |
++_compNum; |
|
| 605 |
} |
|
| 606 |
} |
|
| 607 |
|
|
| 608 |
private: |
|
| 609 |
const Digraph& _graph; |
|
| 610 |
ArcMap& _compMap; |
|
| 611 |
int& _compNum; |
|
| 612 |
|
|
| 613 |
typename Digraph::template NodeMap<int> _numMap; |
|
| 614 |
typename Digraph::template NodeMap<int> _retMap; |
|
| 615 |
typename Digraph::template NodeMap<Arc> _predMap; |
|
| 616 |
std::stack<Edge> _edgeStack; |
|
| 617 |
int _num; |
|
| 618 |
}; |
|
| 619 |
|
|
| 620 |
|
|
| 621 |
template <typename Digraph, typename NodeMap> |
|
| 622 |
class BiNodeConnectedCutNodesVisitor : public DfsVisitor<Digraph> {
|
|
| 623 |
public: |
|
| 624 |
typedef typename Digraph::Node Node; |
|
| 625 |
typedef typename Digraph::Arc Arc; |
|
| 626 |
typedef typename Digraph::Edge Edge; |
|
| 627 |
|
|
| 628 |
BiNodeConnectedCutNodesVisitor(const Digraph& graph, NodeMap& cutMap, |
|
| 629 |
int& cutNum) |
|
| 630 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
|
| 631 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
|
| 632 |
|
|
| 633 |
void start(const Node& node) {
|
|
| 634 |
_predMap.set(node, INVALID); |
|
| 635 |
rootCut = false; |
|
| 636 |
} |
|
| 637 |
|
|
| 638 |
void reach(const Node& node) {
|
|
| 639 |
_numMap.set(node, _num); |
|
| 640 |
_retMap.set(node, _num); |
|
| 641 |
++_num; |
|
| 642 |
} |
|
| 643 |
|
|
| 644 |
void discover(const Arc& edge) {
|
|
| 645 |
_predMap.set(_graph.target(edge), _graph.source(edge)); |
|
| 646 |
} |
|
| 647 |
|
|
| 648 |
void examine(const Arc& edge) {
|
|
| 649 |
if (_graph.source(edge) == _graph.target(edge) && |
|
| 650 |
_graph.direction(edge)) {
|
|
| 651 |
if (!_cutMap[_graph.source(edge)]) {
|
|
| 652 |
_cutMap.set(_graph.source(edge), true); |
|
| 653 |
++_cutNum; |
|
| 654 |
} |
|
| 655 |
return; |
|
| 656 |
} |
|
| 657 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return; |
|
| 658 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
|
| 659 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]); |
|
| 660 |
} |
|
| 661 |
} |
|
| 662 |
|
|
| 663 |
void backtrack(const Arc& edge) {
|
|
| 664 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
|
| 665 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
| 666 |
} |
|
| 667 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
|
| 668 |
if (_predMap[_graph.source(edge)] != INVALID) {
|
|
| 669 |
if (!_cutMap[_graph.source(edge)]) {
|
|
| 670 |
_cutMap.set(_graph.source(edge), true); |
|
| 671 |
++_cutNum; |
|
| 672 |
} |
|
| 673 |
} else if (rootCut) {
|
|
| 674 |
if (!_cutMap[_graph.source(edge)]) {
|
|
| 675 |
_cutMap.set(_graph.source(edge), true); |
|
| 676 |
++_cutNum; |
|
| 677 |
} |
|
| 678 |
} else {
|
|
| 679 |
rootCut = true; |
|
| 680 |
} |
|
| 681 |
} |
|
| 682 |
} |
|
| 683 |
|
|
| 684 |
private: |
|
| 685 |
const Digraph& _graph; |
|
| 686 |
NodeMap& _cutMap; |
|
| 687 |
int& _cutNum; |
|
| 688 |
|
|
| 689 |
typename Digraph::template NodeMap<int> _numMap; |
|
| 690 |
typename Digraph::template NodeMap<int> _retMap; |
|
| 691 |
typename Digraph::template NodeMap<Node> _predMap; |
|
| 692 |
std::stack<Edge> _edgeStack; |
|
| 693 |
int _num; |
|
| 694 |
bool rootCut; |
|
| 695 |
}; |
|
| 696 |
|
|
| 697 |
} |
|
| 698 |
|
|
| 699 |
template <typename Graph> |
|
| 700 |
int countBiNodeConnectedComponents(const Graph& graph); |
|
| 701 |
|
|
| 702 |
/// \ingroup connectivity |
|
| 703 |
/// |
|
| 704 |
/// \brief Checks the graph is bi-node-connected. |
|
| 705 |
/// |
|
| 706 |
/// This function checks that the undirected graph is bi-node-connected |
|
| 707 |
/// graph. The graph is bi-node-connected if any two undirected edge is |
|
| 708 |
/// on same circle. |
|
| 709 |
/// |
|
| 710 |
/// \param graph The graph. |
|
| 711 |
/// \return %True when the graph bi-node-connected. |
|
| 712 |
template <typename Graph> |
|
| 713 |
bool biNodeConnected(const Graph& graph) {
|
|
| 714 |
return countBiNodeConnectedComponents(graph) <= 1; |
|
| 715 |
} |
|
| 716 |
|
|
| 717 |
/// \ingroup connectivity |
|
| 718 |
/// |
|
| 719 |
/// \brief Count the biconnected components. |
|
| 720 |
/// |
|
| 721 |
/// This function finds the bi-node-connected components in an undirected |
|
| 722 |
/// graph. The biconnected components are the classes of an equivalence |
|
| 723 |
/// relation on the undirected edges. Two undirected edge is in relationship |
|
| 724 |
/// when they are on same circle. |
|
| 725 |
/// |
|
| 726 |
/// \param graph The graph. |
|
| 727 |
/// \return The number of components. |
|
| 728 |
template <typename Graph> |
|
| 729 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
|
| 730 |
checkConcept<concepts::Graph, Graph>(); |
|
| 731 |
typedef typename Graph::NodeIt NodeIt; |
|
| 732 |
|
|
| 733 |
using namespace _topology_bits; |
|
| 734 |
|
|
| 735 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor; |
|
| 736 |
|
|
| 737 |
int compNum = 0; |
|
| 738 |
Visitor visitor(graph, compNum); |
|
| 739 |
|
|
| 740 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
| 741 |
dfs.init(); |
|
| 742 |
|
|
| 743 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 744 |
if (!dfs.reached(it)) {
|
|
| 745 |
dfs.addSource(it); |
|
| 746 |
dfs.start(); |
|
| 747 |
} |
|
| 748 |
} |
|
| 749 |
return compNum; |
|
| 750 |
} |
|
| 751 |
|
|
| 752 |
/// \ingroup connectivity |
|
| 753 |
/// |
|
| 754 |
/// \brief Find the bi-node-connected components. |
|
| 755 |
/// |
|
| 756 |
/// This function finds the bi-node-connected components in an undirected |
|
| 757 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
| 758 |
/// relation on the undirected edges. Two undirected edge are in relationship |
|
| 759 |
/// when they are on same circle. |
|
| 760 |
/// |
|
| 761 |
/// \param graph The graph. |
|
| 762 |
/// \retval compMap A writable uedge map. The values will be set from 0 |
|
| 763 |
/// to the number of the biconnected components minus one. Each values |
|
| 764 |
/// of the map will be set exactly once, the values of a certain component |
|
| 765 |
/// will be set continuously. |
|
| 766 |
/// \return The number of components. |
|
| 767 |
/// |
|
| 768 |
template <typename Graph, typename EdgeMap> |
|
| 769 |
int biNodeConnectedComponents(const Graph& graph, |
|
| 770 |
EdgeMap& compMap) {
|
|
| 771 |
checkConcept<concepts::Graph, Graph>(); |
|
| 772 |
typedef typename Graph::NodeIt NodeIt; |
|
| 773 |
typedef typename Graph::Edge Edge; |
|
| 774 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
|
| 775 |
|
|
| 776 |
using namespace _topology_bits; |
|
| 777 |
|
|
| 778 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor; |
|
| 779 |
|
|
| 780 |
int compNum = 0; |
|
| 781 |
Visitor visitor(graph, compMap, compNum); |
|
| 782 |
|
|
| 783 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
| 784 |
dfs.init(); |
|
| 785 |
|
|
| 786 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 787 |
if (!dfs.reached(it)) {
|
|
| 788 |
dfs.addSource(it); |
|
| 789 |
dfs.start(); |
|
| 790 |
} |
|
| 791 |
} |
|
| 792 |
return compNum; |
|
| 793 |
} |
|
| 794 |
|
|
| 795 |
/// \ingroup connectivity |
|
| 796 |
/// |
|
| 797 |
/// \brief Find the bi-node-connected cut nodes. |
|
| 798 |
/// |
|
| 799 |
/// This function finds the bi-node-connected cut nodes in an undirected |
|
| 800 |
/// graph. The bi-node-connected components are the classes of an equivalence |
|
| 801 |
/// relation on the undirected edges. Two undirected edges are in |
|
| 802 |
/// relationship when they are on same circle. The biconnected components |
|
| 803 |
/// are separted by nodes which are the cut nodes of the components. |
|
| 804 |
/// |
|
| 805 |
/// \param graph The graph. |
|
| 806 |
/// \retval cutMap A writable edge map. The values will be set true when |
|
| 807 |
/// the node separate two or more components. |
|
| 808 |
/// \return The number of the cut nodes. |
|
| 809 |
template <typename Graph, typename NodeMap> |
|
| 810 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
|
| 811 |
checkConcept<concepts::Graph, Graph>(); |
|
| 812 |
typedef typename Graph::Node Node; |
|
| 813 |
typedef typename Graph::NodeIt NodeIt; |
|
| 814 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
|
| 815 |
|
|
| 816 |
using namespace _topology_bits; |
|
| 817 |
|
|
| 818 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor; |
|
| 819 |
|
|
| 820 |
int cutNum = 0; |
|
| 821 |
Visitor visitor(graph, cutMap, cutNum); |
|
| 822 |
|
|
| 823 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
| 824 |
dfs.init(); |
|
| 825 |
|
|
| 826 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 827 |
if (!dfs.reached(it)) {
|
|
| 828 |
dfs.addSource(it); |
|
| 829 |
dfs.start(); |
|
| 830 |
} |
|
| 831 |
} |
|
| 832 |
return cutNum; |
|
| 833 |
} |
|
| 834 |
|
|
| 835 |
namespace _topology_bits {
|
|
| 836 |
|
|
| 837 |
template <typename Digraph> |
|
| 838 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
|
| 839 |
public: |
|
| 840 |
typedef typename Digraph::Node Node; |
|
| 841 |
typedef typename Digraph::Arc Arc; |
|
| 842 |
typedef typename Digraph::Edge Edge; |
|
| 843 |
|
|
| 844 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum) |
|
| 845 |
: _graph(graph), _compNum(compNum), |
|
| 846 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
|
| 847 |
|
|
| 848 |
void start(const Node& node) {
|
|
| 849 |
_predMap.set(node, INVALID); |
|
| 850 |
} |
|
| 851 |
|
|
| 852 |
void reach(const Node& node) {
|
|
| 853 |
_numMap.set(node, _num); |
|
| 854 |
_retMap.set(node, _num); |
|
| 855 |
++_num; |
|
| 856 |
} |
|
| 857 |
|
|
| 858 |
void leave(const Node& node) {
|
|
| 859 |
if (_numMap[node] <= _retMap[node]) {
|
|
| 860 |
++_compNum; |
|
| 861 |
} |
|
| 862 |
} |
|
| 863 |
|
|
| 864 |
void discover(const Arc& edge) {
|
|
| 865 |
_predMap.set(_graph.target(edge), edge); |
|
| 866 |
} |
|
| 867 |
|
|
| 868 |
void examine(const Arc& edge) {
|
|
| 869 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
|
| 870 |
return; |
|
| 871 |
} |
|
| 872 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
|
| 873 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
| 874 |
} |
|
| 875 |
} |
|
| 876 |
|
|
| 877 |
void backtrack(const Arc& edge) {
|
|
| 878 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
|
| 879 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
| 880 |
} |
|
| 881 |
} |
|
| 882 |
|
|
| 883 |
private: |
|
| 884 |
const Digraph& _graph; |
|
| 885 |
int& _compNum; |
|
| 886 |
|
|
| 887 |
typename Digraph::template NodeMap<int> _numMap; |
|
| 888 |
typename Digraph::template NodeMap<int> _retMap; |
|
| 889 |
typename Digraph::template NodeMap<Arc> _predMap; |
|
| 890 |
int _num; |
|
| 891 |
}; |
|
| 892 |
|
|
| 893 |
template <typename Digraph, typename NodeMap> |
|
| 894 |
class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
|
| 895 |
public: |
|
| 896 |
typedef typename Digraph::Node Node; |
|
| 897 |
typedef typename Digraph::Arc Arc; |
|
| 898 |
typedef typename Digraph::Edge Edge; |
|
| 899 |
|
|
| 900 |
BiEdgeConnectedComponentsVisitor(const Digraph& graph, |
|
| 901 |
NodeMap& compMap, int &compNum) |
|
| 902 |
: _graph(graph), _compMap(compMap), _compNum(compNum), |
|
| 903 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
|
| 904 |
|
|
| 905 |
void start(const Node& node) {
|
|
| 906 |
_predMap.set(node, INVALID); |
|
| 907 |
} |
|
| 908 |
|
|
| 909 |
void reach(const Node& node) {
|
|
| 910 |
_numMap.set(node, _num); |
|
| 911 |
_retMap.set(node, _num); |
|
| 912 |
_nodeStack.push(node); |
|
| 913 |
++_num; |
|
| 914 |
} |
|
| 915 |
|
|
| 916 |
void leave(const Node& node) {
|
|
| 917 |
if (_numMap[node] <= _retMap[node]) {
|
|
| 918 |
while (_nodeStack.top() != node) {
|
|
| 919 |
_compMap.set(_nodeStack.top(), _compNum); |
|
| 920 |
_nodeStack.pop(); |
|
| 921 |
} |
|
| 922 |
_compMap.set(node, _compNum); |
|
| 923 |
_nodeStack.pop(); |
|
| 924 |
++_compNum; |
|
| 925 |
} |
|
| 926 |
} |
|
| 927 |
|
|
| 928 |
void discover(const Arc& edge) {
|
|
| 929 |
_predMap.set(_graph.target(edge), edge); |
|
| 930 |
} |
|
| 931 |
|
|
| 932 |
void examine(const Arc& edge) {
|
|
| 933 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
|
| 934 |
return; |
|
| 935 |
} |
|
| 936 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
|
| 937 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
| 938 |
} |
|
| 939 |
} |
|
| 940 |
|
|
| 941 |
void backtrack(const Arc& edge) {
|
|
| 942 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
|
| 943 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
| 944 |
} |
|
| 945 |
} |
|
| 946 |
|
|
| 947 |
private: |
|
| 948 |
const Digraph& _graph; |
|
| 949 |
NodeMap& _compMap; |
|
| 950 |
int& _compNum; |
|
| 951 |
|
|
| 952 |
typename Digraph::template NodeMap<int> _numMap; |
|
| 953 |
typename Digraph::template NodeMap<int> _retMap; |
|
| 954 |
typename Digraph::template NodeMap<Arc> _predMap; |
|
| 955 |
std::stack<Node> _nodeStack; |
|
| 956 |
int _num; |
|
| 957 |
}; |
|
| 958 |
|
|
| 959 |
|
|
| 960 |
template <typename Digraph, typename ArcMap> |
|
| 961 |
class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
|
|
| 962 |
public: |
|
| 963 |
typedef typename Digraph::Node Node; |
|
| 964 |
typedef typename Digraph::Arc Arc; |
|
| 965 |
typedef typename Digraph::Edge Edge; |
|
| 966 |
|
|
| 967 |
BiEdgeConnectedCutEdgesVisitor(const Digraph& graph, |
|
| 968 |
ArcMap& cutMap, int &cutNum) |
|
| 969 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), |
|
| 970 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
|
| 971 |
|
|
| 972 |
void start(const Node& node) {
|
|
| 973 |
_predMap[node] = INVALID; |
|
| 974 |
} |
|
| 975 |
|
|
| 976 |
void reach(const Node& node) {
|
|
| 977 |
_numMap.set(node, _num); |
|
| 978 |
_retMap.set(node, _num); |
|
| 979 |
++_num; |
|
| 980 |
} |
|
| 981 |
|
|
| 982 |
void leave(const Node& node) {
|
|
| 983 |
if (_numMap[node] <= _retMap[node]) {
|
|
| 984 |
if (_predMap[node] != INVALID) {
|
|
| 985 |
_cutMap.set(_predMap[node], true); |
|
| 986 |
++_cutNum; |
|
| 987 |
} |
|
| 988 |
} |
|
| 989 |
} |
|
| 990 |
|
|
| 991 |
void discover(const Arc& edge) {
|
|
| 992 |
_predMap.set(_graph.target(edge), edge); |
|
| 993 |
} |
|
| 994 |
|
|
| 995 |
void examine(const Arc& edge) {
|
|
| 996 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
|
| 997 |
return; |
|
| 998 |
} |
|
| 999 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
|
| 1000 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
| 1001 |
} |
|
| 1002 |
} |
|
| 1003 |
|
|
| 1004 |
void backtrack(const Arc& edge) {
|
|
| 1005 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
|
| 1006 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]); |
|
| 1007 |
} |
|
| 1008 |
} |
|
| 1009 |
|
|
| 1010 |
private: |
|
| 1011 |
const Digraph& _graph; |
|
| 1012 |
ArcMap& _cutMap; |
|
| 1013 |
int& _cutNum; |
|
| 1014 |
|
|
| 1015 |
typename Digraph::template NodeMap<int> _numMap; |
|
| 1016 |
typename Digraph::template NodeMap<int> _retMap; |
|
| 1017 |
typename Digraph::template NodeMap<Arc> _predMap; |
|
| 1018 |
int _num; |
|
| 1019 |
}; |
|
| 1020 |
} |
|
| 1021 |
|
|
| 1022 |
template <typename Graph> |
|
| 1023 |
int countBiEdgeConnectedComponents(const Graph& graph); |
|
| 1024 |
|
|
| 1025 |
/// \ingroup connectivity |
|
| 1026 |
/// |
|
| 1027 |
/// \brief Checks that the graph is bi-edge-connected. |
|
| 1028 |
/// |
|
| 1029 |
/// This function checks that the graph is bi-edge-connected. The undirected |
|
| 1030 |
/// graph is bi-edge-connected when any two nodes are connected with two |
|
| 1031 |
/// edge-disjoint paths. |
|
| 1032 |
/// |
|
| 1033 |
/// \param graph The undirected graph. |
|
| 1034 |
/// \return The number of components. |
|
| 1035 |
template <typename Graph> |
|
| 1036 |
bool biEdgeConnected(const Graph& graph) {
|
|
| 1037 |
return countBiEdgeConnectedComponents(graph) <= 1; |
|
| 1038 |
} |
|
| 1039 |
|
|
| 1040 |
/// \ingroup connectivity |
|
| 1041 |
/// |
|
| 1042 |
/// \brief Count the bi-edge-connected components. |
|
| 1043 |
/// |
|
| 1044 |
/// This function count the bi-edge-connected components in an undirected |
|
| 1045 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1046 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1047 |
/// connected with at least two edge-disjoint paths. |
|
| 1048 |
/// |
|
| 1049 |
/// \param graph The undirected graph. |
|
| 1050 |
/// \return The number of components. |
|
| 1051 |
template <typename Graph> |
|
| 1052 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
|
| 1053 |
checkConcept<concepts::Graph, Graph>(); |
|
| 1054 |
typedef typename Graph::NodeIt NodeIt; |
|
| 1055 |
|
|
| 1056 |
using namespace _topology_bits; |
|
| 1057 |
|
|
| 1058 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor; |
|
| 1059 |
|
|
| 1060 |
int compNum = 0; |
|
| 1061 |
Visitor visitor(graph, compNum); |
|
| 1062 |
|
|
| 1063 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
| 1064 |
dfs.init(); |
|
| 1065 |
|
|
| 1066 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1067 |
if (!dfs.reached(it)) {
|
|
| 1068 |
dfs.addSource(it); |
|
| 1069 |
dfs.start(); |
|
| 1070 |
} |
|
| 1071 |
} |
|
| 1072 |
return compNum; |
|
| 1073 |
} |
|
| 1074 |
|
|
| 1075 |
/// \ingroup connectivity |
|
| 1076 |
/// |
|
| 1077 |
/// \brief Find the bi-edge-connected components. |
|
| 1078 |
/// |
|
| 1079 |
/// This function finds the bi-edge-connected components in an undirected |
|
| 1080 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1081 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1082 |
/// connected at least two edge-disjoint paths. |
|
| 1083 |
/// |
|
| 1084 |
/// \param graph The graph. |
|
| 1085 |
/// \retval compMap A writable node map. The values will be set from 0 to |
|
| 1086 |
/// the number of the biconnected components minus one. Each values |
|
| 1087 |
/// of the map will be set exactly once, the values of a certain component |
|
| 1088 |
/// will be set continuously. |
|
| 1089 |
/// \return The number of components. |
|
| 1090 |
/// |
|
| 1091 |
template <typename Graph, typename NodeMap> |
|
| 1092 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
|
| 1093 |
checkConcept<concepts::Graph, Graph>(); |
|
| 1094 |
typedef typename Graph::NodeIt NodeIt; |
|
| 1095 |
typedef typename Graph::Node Node; |
|
| 1096 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
|
| 1097 |
|
|
| 1098 |
using namespace _topology_bits; |
|
| 1099 |
|
|
| 1100 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor; |
|
| 1101 |
|
|
| 1102 |
int compNum = 0; |
|
| 1103 |
Visitor visitor(graph, compMap, compNum); |
|
| 1104 |
|
|
| 1105 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
| 1106 |
dfs.init(); |
|
| 1107 |
|
|
| 1108 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1109 |
if (!dfs.reached(it)) {
|
|
| 1110 |
dfs.addSource(it); |
|
| 1111 |
dfs.start(); |
|
| 1112 |
} |
|
| 1113 |
} |
|
| 1114 |
return compNum; |
|
| 1115 |
} |
|
| 1116 |
|
|
| 1117 |
/// \ingroup connectivity |
|
| 1118 |
/// |
|
| 1119 |
/// \brief Find the bi-edge-connected cut edges. |
|
| 1120 |
/// |
|
| 1121 |
/// This function finds the bi-edge-connected components in an undirected |
|
| 1122 |
/// graph. The bi-edge-connected components are the classes of an equivalence |
|
| 1123 |
/// relation on the nodes. Two nodes are in relationship when they are |
|
| 1124 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected |
|
| 1125 |
/// components are separted by edges which are the cut edges of the |
|
| 1126 |
/// components. |
|
| 1127 |
/// |
|
| 1128 |
/// \param graph The graph. |
|
| 1129 |
/// \retval cutMap A writable node map. The values will be set true when the |
|
| 1130 |
/// edge is a cut edge. |
|
| 1131 |
/// \return The number of cut edges. |
|
| 1132 |
template <typename Graph, typename EdgeMap> |
|
| 1133 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
|
| 1134 |
checkConcept<concepts::Graph, Graph>(); |
|
| 1135 |
typedef typename Graph::NodeIt NodeIt; |
|
| 1136 |
typedef typename Graph::Edge Edge; |
|
| 1137 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>(); |
|
| 1138 |
|
|
| 1139 |
using namespace _topology_bits; |
|
| 1140 |
|
|
| 1141 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor; |
|
| 1142 |
|
|
| 1143 |
int cutNum = 0; |
|
| 1144 |
Visitor visitor(graph, cutMap, cutNum); |
|
| 1145 |
|
|
| 1146 |
DfsVisit<Graph, Visitor> dfs(graph, visitor); |
|
| 1147 |
dfs.init(); |
|
| 1148 |
|
|
| 1149 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1150 |
if (!dfs.reached(it)) {
|
|
| 1151 |
dfs.addSource(it); |
|
| 1152 |
dfs.start(); |
|
| 1153 |
} |
|
| 1154 |
} |
|
| 1155 |
return cutNum; |
|
| 1156 |
} |
|
| 1157 |
|
|
| 1158 |
|
|
| 1159 |
namespace _topology_bits {
|
|
| 1160 |
|
|
| 1161 |
template <typename Digraph, typename IntNodeMap> |
|
| 1162 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
|
|
| 1163 |
public: |
|
| 1164 |
typedef typename Digraph::Node Node; |
|
| 1165 |
typedef typename Digraph::Arc edge; |
|
| 1166 |
|
|
| 1167 |
TopologicalSortVisitor(IntNodeMap& order, int num) |
|
| 1168 |
: _order(order), _num(num) {}
|
|
| 1169 |
|
|
| 1170 |
void leave(const Node& node) {
|
|
| 1171 |
_order.set(node, --_num); |
|
| 1172 |
} |
|
| 1173 |
|
|
| 1174 |
private: |
|
| 1175 |
IntNodeMap& _order; |
|
| 1176 |
int _num; |
|
| 1177 |
}; |
|
| 1178 |
|
|
| 1179 |
} |
|
| 1180 |
|
|
| 1181 |
/// \ingroup connectivity |
|
| 1182 |
/// |
|
| 1183 |
/// \brief Sort the nodes of a DAG into topolgical order. |
|
| 1184 |
/// |
|
| 1185 |
/// Sort the nodes of a DAG into topolgical order. |
|
| 1186 |
/// |
|
| 1187 |
/// \param graph The graph. It must be directed and acyclic. |
|
| 1188 |
/// \retval order A writable node map. The values will be set from 0 to |
|
| 1189 |
/// the number of the nodes in the graph minus one. Each values of the map |
|
| 1190 |
/// will be set exactly once, the values will be set descending order. |
|
| 1191 |
/// |
|
| 1192 |
/// \see checkedTopologicalSort |
|
| 1193 |
/// \see dag |
|
| 1194 |
template <typename Digraph, typename NodeMap> |
|
| 1195 |
void topologicalSort(const Digraph& graph, NodeMap& order) {
|
|
| 1196 |
using namespace _topology_bits; |
|
| 1197 |
|
|
| 1198 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1199 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>(); |
|
| 1200 |
|
|
| 1201 |
typedef typename Digraph::Node Node; |
|
| 1202 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1203 |
typedef typename Digraph::Arc Arc; |
|
| 1204 |
|
|
| 1205 |
TopologicalSortVisitor<Digraph, NodeMap> |
|
| 1206 |
visitor(order, countNodes(graph)); |
|
| 1207 |
|
|
| 1208 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
|
| 1209 |
dfs(graph, visitor); |
|
| 1210 |
|
|
| 1211 |
dfs.init(); |
|
| 1212 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1213 |
if (!dfs.reached(it)) {
|
|
| 1214 |
dfs.addSource(it); |
|
| 1215 |
dfs.start(); |
|
| 1216 |
} |
|
| 1217 |
} |
|
| 1218 |
} |
|
| 1219 |
|
|
| 1220 |
/// \ingroup connectivity |
|
| 1221 |
/// |
|
| 1222 |
/// \brief Sort the nodes of a DAG into topolgical order. |
|
| 1223 |
/// |
|
| 1224 |
/// Sort the nodes of a DAG into topolgical order. It also checks |
|
| 1225 |
/// that the given graph is DAG. |
|
| 1226 |
/// |
|
| 1227 |
/// \param graph The graph. It must be directed and acyclic. |
|
| 1228 |
/// \retval order A readable - writable node map. The values will be set |
|
| 1229 |
/// from 0 to the number of the nodes in the graph minus one. Each values |
|
| 1230 |
/// of the map will be set exactly once, the values will be set descending |
|
| 1231 |
/// order. |
|
| 1232 |
/// \return %False when the graph is not DAG. |
|
| 1233 |
/// |
|
| 1234 |
/// \see topologicalSort |
|
| 1235 |
/// \see dag |
|
| 1236 |
template <typename Digraph, typename NodeMap> |
|
| 1237 |
bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) {
|
|
| 1238 |
using namespace _topology_bits; |
|
| 1239 |
|
|
| 1240 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1241 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
|
| 1242 |
NodeMap>(); |
|
| 1243 |
|
|
| 1244 |
typedef typename Digraph::Node Node; |
|
| 1245 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1246 |
typedef typename Digraph::Arc Arc; |
|
| 1247 |
|
|
| 1248 |
order = constMap<Node, int, -1>(); |
|
| 1249 |
|
|
| 1250 |
TopologicalSortVisitor<Digraph, NodeMap> |
|
| 1251 |
visitor(order, countNodes(graph)); |
|
| 1252 |
|
|
| 1253 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> > |
|
| 1254 |
dfs(graph, visitor); |
|
| 1255 |
|
|
| 1256 |
dfs.init(); |
|
| 1257 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1258 |
if (!dfs.reached(it)) {
|
|
| 1259 |
dfs.addSource(it); |
|
| 1260 |
while (!dfs.emptyQueue()) {
|
|
| 1261 |
Arc edge = dfs.nextArc(); |
|
| 1262 |
Node target = graph.target(edge); |
|
| 1263 |
if (dfs.reached(target) && order[target] == -1) {
|
|
| 1264 |
return false; |
|
| 1265 |
} |
|
| 1266 |
dfs.processNextArc(); |
|
| 1267 |
} |
|
| 1268 |
} |
|
| 1269 |
} |
|
| 1270 |
return true; |
|
| 1271 |
} |
|
| 1272 |
|
|
| 1273 |
/// \ingroup connectivity |
|
| 1274 |
/// |
|
| 1275 |
/// \brief Check that the given directed graph is a DAG. |
|
| 1276 |
/// |
|
| 1277 |
/// Check that the given directed graph is a DAG. The DAG is |
|
| 1278 |
/// an Directed Acyclic Digraph. |
|
| 1279 |
/// \return %False when the graph is not DAG. |
|
| 1280 |
/// \see acyclic |
|
| 1281 |
template <typename Digraph> |
|
| 1282 |
bool dag(const Digraph& graph) {
|
|
| 1283 |
|
|
| 1284 |
checkConcept<concepts::Digraph, Digraph>(); |
|
| 1285 |
|
|
| 1286 |
typedef typename Digraph::Node Node; |
|
| 1287 |
typedef typename Digraph::NodeIt NodeIt; |
|
| 1288 |
typedef typename Digraph::Arc Arc; |
|
| 1289 |
|
|
| 1290 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
|
| 1291 |
|
|
| 1292 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>:: |
|
| 1293 |
Create dfs(graph); |
|
| 1294 |
|
|
| 1295 |
ProcessedMap processed(graph); |
|
| 1296 |
dfs.processedMap(processed); |
|
| 1297 |
|
|
| 1298 |
dfs.init(); |
|
| 1299 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1300 |
if (!dfs.reached(it)) {
|
|
| 1301 |
dfs.addSource(it); |
|
| 1302 |
while (!dfs.emptyQueue()) {
|
|
| 1303 |
Arc edge = dfs.nextArc(); |
|
| 1304 |
Node target = graph.target(edge); |
|
| 1305 |
if (dfs.reached(target) && !processed[target]) {
|
|
| 1306 |
return false; |
|
| 1307 |
} |
|
| 1308 |
dfs.processNextArc(); |
|
| 1309 |
} |
|
| 1310 |
} |
|
| 1311 |
} |
|
| 1312 |
return true; |
|
| 1313 |
} |
|
| 1314 |
|
|
| 1315 |
/// \ingroup connectivity |
|
| 1316 |
/// |
|
| 1317 |
/// \brief Check that the given undirected graph is acyclic. |
|
| 1318 |
/// |
|
| 1319 |
/// Check that the given undirected graph acyclic. |
|
| 1320 |
/// \param graph The undirected graph. |
|
| 1321 |
/// \return %True when there is no circle in the graph. |
|
| 1322 |
/// \see dag |
|
| 1323 |
template <typename Graph> |
|
| 1324 |
bool acyclic(const Graph& graph) {
|
|
| 1325 |
checkConcept<concepts::Graph, Graph>(); |
|
| 1326 |
typedef typename Graph::Node Node; |
|
| 1327 |
typedef typename Graph::NodeIt NodeIt; |
|
| 1328 |
typedef typename Graph::Arc Arc; |
|
| 1329 |
Dfs<Graph> dfs(graph); |
|
| 1330 |
dfs.init(); |
|
| 1331 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1332 |
if (!dfs.reached(it)) {
|
|
| 1333 |
dfs.addSource(it); |
|
| 1334 |
while (!dfs.emptyQueue()) {
|
|
| 1335 |
Arc edge = dfs.nextArc(); |
|
| 1336 |
Node source = graph.source(edge); |
|
| 1337 |
Node target = graph.target(edge); |
|
| 1338 |
if (dfs.reached(target) && |
|
| 1339 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
|
| 1340 |
return false; |
|
| 1341 |
} |
|
| 1342 |
dfs.processNextArc(); |
|
| 1343 |
} |
|
| 1344 |
} |
|
| 1345 |
} |
|
| 1346 |
return true; |
|
| 1347 |
} |
|
| 1348 |
|
|
| 1349 |
/// \ingroup connectivity |
|
| 1350 |
/// |
|
| 1351 |
/// \brief Check that the given undirected graph is tree. |
|
| 1352 |
/// |
|
| 1353 |
/// Check that the given undirected graph is tree. |
|
| 1354 |
/// \param graph The undirected graph. |
|
| 1355 |
/// \return %True when the graph is acyclic and connected. |
|
| 1356 |
template <typename Graph> |
|
| 1357 |
bool tree(const Graph& graph) {
|
|
| 1358 |
checkConcept<concepts::Graph, Graph>(); |
|
| 1359 |
typedef typename Graph::Node Node; |
|
| 1360 |
typedef typename Graph::NodeIt NodeIt; |
|
| 1361 |
typedef typename Graph::Arc Arc; |
|
| 1362 |
Dfs<Graph> dfs(graph); |
|
| 1363 |
dfs.init(); |
|
| 1364 |
dfs.addSource(NodeIt(graph)); |
|
| 1365 |
while (!dfs.emptyQueue()) {
|
|
| 1366 |
Arc edge = dfs.nextArc(); |
|
| 1367 |
Node source = graph.source(edge); |
|
| 1368 |
Node target = graph.target(edge); |
|
| 1369 |
if (dfs.reached(target) && |
|
| 1370 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
|
| 1371 |
return false; |
|
| 1372 |
} |
|
| 1373 |
dfs.processNextArc(); |
|
| 1374 |
} |
|
| 1375 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1376 |
if (!dfs.reached(it)) {
|
|
| 1377 |
return false; |
|
| 1378 |
} |
|
| 1379 |
} |
|
| 1380 |
return true; |
|
| 1381 |
} |
|
| 1382 |
|
|
| 1383 |
namespace _topology_bits {
|
|
| 1384 |
|
|
| 1385 |
template <typename Digraph> |
|
| 1386 |
class BipartiteVisitor : public BfsVisitor<Digraph> {
|
|
| 1387 |
public: |
|
| 1388 |
typedef typename Digraph::Arc Arc; |
|
| 1389 |
typedef typename Digraph::Node Node; |
|
| 1390 |
|
|
| 1391 |
BipartiteVisitor(const Digraph& graph, bool& bipartite) |
|
| 1392 |
: _graph(graph), _part(graph), _bipartite(bipartite) {}
|
|
| 1393 |
|
|
| 1394 |
void start(const Node& node) {
|
|
| 1395 |
_part[node] = true; |
|
| 1396 |
} |
|
| 1397 |
void discover(const Arc& edge) {
|
|
| 1398 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
|
| 1399 |
} |
|
| 1400 |
void examine(const Arc& edge) {
|
|
| 1401 |
_bipartite = _bipartite && |
|
| 1402 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
|
| 1403 |
} |
|
| 1404 |
|
|
| 1405 |
private: |
|
| 1406 |
|
|
| 1407 |
const Digraph& _graph; |
|
| 1408 |
typename Digraph::template NodeMap<bool> _part; |
|
| 1409 |
bool& _bipartite; |
|
| 1410 |
}; |
|
| 1411 |
|
|
| 1412 |
template <typename Digraph, typename PartMap> |
|
| 1413 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
|
|
| 1414 |
public: |
|
| 1415 |
typedef typename Digraph::Arc Arc; |
|
| 1416 |
typedef typename Digraph::Node Node; |
|
| 1417 |
|
|
| 1418 |
BipartitePartitionsVisitor(const Digraph& graph, |
|
| 1419 |
PartMap& part, bool& bipartite) |
|
| 1420 |
: _graph(graph), _part(part), _bipartite(bipartite) {}
|
|
| 1421 |
|
|
| 1422 |
void start(const Node& node) {
|
|
| 1423 |
_part.set(node, true); |
|
| 1424 |
} |
|
| 1425 |
void discover(const Arc& edge) {
|
|
| 1426 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]); |
|
| 1427 |
} |
|
| 1428 |
void examine(const Arc& edge) {
|
|
| 1429 |
_bipartite = _bipartite && |
|
| 1430 |
_part[_graph.target(edge)] != _part[_graph.source(edge)]; |
|
| 1431 |
} |
|
| 1432 |
|
|
| 1433 |
private: |
|
| 1434 |
|
|
| 1435 |
const Digraph& _graph; |
|
| 1436 |
PartMap& _part; |
|
| 1437 |
bool& _bipartite; |
|
| 1438 |
}; |
|
| 1439 |
} |
|
| 1440 |
|
|
| 1441 |
/// \ingroup connectivity |
|
| 1442 |
/// |
|
| 1443 |
/// \brief Check if the given undirected graph is bipartite or not |
|
| 1444 |
/// |
|
| 1445 |
/// The function checks if the given undirected \c graph graph is bipartite |
|
| 1446 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
| 1447 |
/// \param graph The undirected graph. |
|
| 1448 |
/// \return %True if \c graph is bipartite, %false otherwise. |
|
| 1449 |
/// \sa bipartitePartitions |
|
| 1450 |
template<typename Graph> |
|
| 1451 |
inline bool bipartite(const Graph &graph){
|
|
| 1452 |
using namespace _topology_bits; |
|
| 1453 |
|
|
| 1454 |
checkConcept<concepts::Graph, Graph>(); |
|
| 1455 |
|
|
| 1456 |
typedef typename Graph::NodeIt NodeIt; |
|
| 1457 |
typedef typename Graph::ArcIt ArcIt; |
|
| 1458 |
|
|
| 1459 |
bool bipartite = true; |
|
| 1460 |
|
|
| 1461 |
BipartiteVisitor<Graph> |
|
| 1462 |
visitor(graph, bipartite); |
|
| 1463 |
BfsVisit<Graph, BipartiteVisitor<Graph> > |
|
| 1464 |
bfs(graph, visitor); |
|
| 1465 |
bfs.init(); |
|
| 1466 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1467 |
if(!bfs.reached(it)){
|
|
| 1468 |
bfs.addSource(it); |
|
| 1469 |
while (!bfs.emptyQueue()) {
|
|
| 1470 |
bfs.processNextNode(); |
|
| 1471 |
if (!bipartite) return false; |
|
| 1472 |
} |
|
| 1473 |
} |
|
| 1474 |
} |
|
| 1475 |
return true; |
|
| 1476 |
} |
|
| 1477 |
|
|
| 1478 |
/// \ingroup connectivity |
|
| 1479 |
/// |
|
| 1480 |
/// \brief Check if the given undirected graph is bipartite or not |
|
| 1481 |
/// |
|
| 1482 |
/// The function checks if the given undirected graph is bipartite |
|
| 1483 |
/// or not. The \ref Bfs algorithm is used to calculate the result. |
|
| 1484 |
/// During the execution, the \c partMap will be set as the two |
|
| 1485 |
/// partitions of the graph. |
|
| 1486 |
/// \param graph The undirected graph. |
|
| 1487 |
/// \retval partMap A writable bool map of nodes. It will be set as the |
|
| 1488 |
/// two partitions of the graph. |
|
| 1489 |
/// \return %True if \c graph is bipartite, %false otherwise. |
|
| 1490 |
template<typename Graph, typename NodeMap> |
|
| 1491 |
inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
|
| 1492 |
using namespace _topology_bits; |
|
| 1493 |
|
|
| 1494 |
checkConcept<concepts::Graph, Graph>(); |
|
| 1495 |
|
|
| 1496 |
typedef typename Graph::Node Node; |
|
| 1497 |
typedef typename Graph::NodeIt NodeIt; |
|
| 1498 |
typedef typename Graph::ArcIt ArcIt; |
|
| 1499 |
|
|
| 1500 |
bool bipartite = true; |
|
| 1501 |
|
|
| 1502 |
BipartitePartitionsVisitor<Graph, NodeMap> |
|
| 1503 |
visitor(graph, partMap, bipartite); |
|
| 1504 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> > |
|
| 1505 |
bfs(graph, visitor); |
|
| 1506 |
bfs.init(); |
|
| 1507 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
|
| 1508 |
if(!bfs.reached(it)){
|
|
| 1509 |
bfs.addSource(it); |
|
| 1510 |
while (!bfs.emptyQueue()) {
|
|
| 1511 |
bfs.processNextNode(); |
|
| 1512 |
if (!bipartite) return false; |
|
| 1513 |
} |
|
| 1514 |
} |
|
| 1515 |
} |
|
| 1516 |
return true; |
|
| 1517 |
} |
|
| 1518 |
|
|
| 1519 |
/// \brief Returns true when there are not loop edges in the graph. |
|
| 1520 |
/// |
|
| 1521 |
/// Returns true when there are not loop edges in the graph. |
|
| 1522 |
template <typename Digraph> |
|
| 1523 |
bool loopFree(const Digraph& graph) {
|
|
| 1524 |
for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) {
|
|
| 1525 |
if (graph.source(it) == graph.target(it)) return false; |
|
| 1526 |
} |
|
| 1527 |
return true; |
|
| 1528 |
} |
|
| 1529 |
|
|
| 1530 |
/// \brief Returns true when there are not parallel edges in the graph. |
|
| 1531 |
/// |
|
| 1532 |
/// Returns true when there are not parallel edges in the graph. |
|
| 1533 |
template <typename Digraph> |
|
| 1534 |
bool parallelFree(const Digraph& graph) {
|
|
| 1535 |
typename Digraph::template NodeMap<bool> reached(graph, false); |
|
| 1536 |
for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 1537 |
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 1538 |
if (reached[graph.target(e)]) return false; |
|
| 1539 |
reached.set(graph.target(e), true); |
|
| 1540 |
} |
|
| 1541 |
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 1542 |
reached.set(graph.target(e), false); |
|
| 1543 |
} |
|
| 1544 |
} |
|
| 1545 |
return true; |
|
| 1546 |
} |
|
| 1547 |
|
|
| 1548 |
/// \brief Returns true when there are not loop edges and parallel |
|
| 1549 |
/// edges in the graph. |
|
| 1550 |
/// |
|
| 1551 |
/// Returns true when there are not loop edges and parallel edges in |
|
| 1552 |
/// the graph. |
|
| 1553 |
template <typename Digraph> |
|
| 1554 |
bool simpleDigraph(const Digraph& graph) {
|
|
| 1555 |
typename Digraph::template NodeMap<bool> reached(graph, false); |
|
| 1556 |
for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
| 1557 |
reached.set(n, true); |
|
| 1558 |
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 1559 |
if (reached[graph.target(e)]) return false; |
|
| 1560 |
reached.set(graph.target(e), true); |
|
| 1561 |
} |
|
| 1562 |
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
|
| 1563 |
reached.set(graph.target(e), false); |
|
| 1564 |
} |
|
| 1565 |
reached.set(n, false); |
|
| 1566 |
} |
|
| 1567 |
return true; |
|
| 1568 |
} |
|
| 1569 |
|
|
| 1570 |
} //namespace lemon |
|
| 1571 |
|
|
| 1572 |
#endif //LEMON_TOPOLOGY_H |
0 comments (0 inline)