| ... | ... |
@@ -812,25 +812,25 @@ |
| 812 | 812 |
} |
| 813 | 813 |
} |
| 814 | 814 |
} |
| 815 | 815 |
|
| 816 | 816 |
public: |
| 817 | 817 |
|
| 818 | 818 |
/// \name Execution control |
| 819 | 819 |
/// The simplest way to execute the algorithm is to use |
| 820 | 820 |
/// one of the member functions called \c run(...). |
| 821 | 821 |
/// \n |
| 822 | 822 |
/// If you need more control on the execution, |
| 823 | 823 |
/// first you must call \ref init(), then the \ref calculateIn() or |
| 824 |
/// \ref |
|
| 824 |
/// \ref calculateOut() functions. |
|
| 825 | 825 |
|
| 826 | 826 |
/// @{
|
| 827 | 827 |
|
| 828 | 828 |
/// \brief Initializes the internal data structures. |
| 829 | 829 |
/// |
| 830 | 830 |
/// Initializes the internal data structures. It creates |
| 831 | 831 |
/// the maps, residual graph adaptors and some bucket structures |
| 832 | 832 |
/// for the algorithm. |
| 833 | 833 |
void init() {
|
| 834 | 834 |
init(NodeIt(_graph)); |
| 835 | 835 |
} |
| 836 | 836 |
|
| ... | ... |
@@ -874,36 +874,36 @@ |
| 874 | 874 |
if (!_min_cut_map) {
|
| 875 | 875 |
_min_cut_map = new MinCutMap(_graph); |
| 876 | 876 |
} |
| 877 | 877 |
|
| 878 | 878 |
_min_cut = std::numeric_limits<Value>::max(); |
| 879 | 879 |
} |
| 880 | 880 |
|
| 881 | 881 |
|
| 882 | 882 |
/// \brief Calculates a minimum cut with \f$ source \f$ on the |
| 883 | 883 |
/// source-side. |
| 884 | 884 |
/// |
| 885 | 885 |
/// Calculates a minimum cut with \f$ source \f$ on the |
| 886 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source |
|
| 887 |
/// \in X \f$ and minimal out-degree). |
|
| 886 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with |
|
| 887 |
/// \f$ source \in X \f$ and minimal out-degree). |
|
| 888 | 888 |
void calculateOut() {
|
| 889 | 889 |
findMinCutOut(); |
| 890 | 890 |
} |
| 891 | 891 |
|
| 892 | 892 |
/// \brief Calculates a minimum cut with \f$ source \f$ on the |
| 893 | 893 |
/// target-side. |
| 894 | 894 |
/// |
| 895 | 895 |
/// Calculates a minimum cut with \f$ source \f$ on the |
| 896 |
/// target-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source |
|
| 897 |
/// \in X \f$ and minimal out-degree). |
|
| 896 |
/// target-side (i.e. a set \f$ X\subsetneq V \f$ with |
|
| 897 |
/// \f$ source \in X \f$ and minimal out-degree). |
|
| 898 | 898 |
void calculateIn() {
|
| 899 | 899 |
findMinCutIn(); |
| 900 | 900 |
} |
| 901 | 901 |
|
| 902 | 902 |
|
| 903 | 903 |
/// \brief Runs the algorithm. |
| 904 | 904 |
/// |
| 905 | 905 |
/// Runs the algorithm. It finds nodes \c source and \c target |
| 906 | 906 |
/// arbitrarily and then calls \ref init(), \ref calculateOut() |
| 907 | 907 |
/// and \ref calculateIn(). |
| 908 | 908 |
void run() {
|
| 909 | 909 |
init(); |
0 comments (0 inline)