0
6
0
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BEZIER_H |
20 | 20 |
#define LEMON_BEZIER_H |
21 | 21 |
|
22 | 22 |
///\ingroup misc |
23 | 23 |
///\file |
24 | 24 |
///\brief Classes to compute with Bezier curves. |
25 | 25 |
/// |
26 | 26 |
///Up to now this file is used internally by \ref graph_to_eps.h |
27 | 27 |
|
28 | 28 |
#include<lemon/dim2.h> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
namespace dim2 { |
32 | 32 |
|
33 | 33 |
class BezierBase { |
34 | 34 |
public: |
35 |
typedef Point<double> Point; |
|
35 |
typedef lemon::dim2::Point<double> Point; |
|
36 | 36 |
protected: |
37 | 37 |
static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;} |
38 | 38 |
}; |
39 | 39 |
|
40 | 40 |
class Bezier1 : public BezierBase |
41 | 41 |
{ |
42 | 42 |
public: |
43 | 43 |
Point p1,p2; |
44 | 44 |
|
45 | 45 |
Bezier1() {} |
46 | 46 |
Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {} |
47 | 47 |
|
48 | 48 |
Point operator()(double t) const |
49 | 49 |
{ |
50 | 50 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
51 | 51 |
return conv(p1,p2,t); |
52 | 52 |
} |
53 | 53 |
Bezier1 before(double t) const |
54 | 54 |
{ |
55 | 55 |
return Bezier1(p1,conv(p1,p2,t)); |
56 | 56 |
} |
57 | 57 |
|
58 | 58 |
Bezier1 after(double t) const |
59 | 59 |
{ |
60 | 60 |
return Bezier1(conv(p1,p2,t),p2); |
61 | 61 |
} |
62 | 62 |
|
63 | 63 |
Bezier1 revert() const { return Bezier1(p2,p1);} |
64 | 64 |
Bezier1 operator()(double a,double b) const { return before(b).after(a/b); } |
65 | 65 |
Point grad() const { return p2-p1; } |
66 | 66 |
Point norm() const { return rot90(p2-p1); } |
67 | 67 |
Point grad(double) const { return grad(); } |
68 | 68 |
Point norm(double t) const { return rot90(grad(t)); } |
69 | 69 |
}; |
70 | 70 |
|
71 | 71 |
class Bezier2 : public BezierBase |
72 | 72 |
{ |
73 | 73 |
public: |
74 | 74 |
Point p1,p2,p3; |
75 | 75 |
|
76 | 76 |
Bezier2() {} |
77 | 77 |
Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {} |
78 | 78 |
Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {} |
79 | 79 |
Point operator()(double t) const |
80 | 80 |
{ |
81 | 81 |
// return conv(conv(p1,p2,t),conv(p2,p3,t),t); |
82 | 82 |
return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3; |
83 | 83 |
} |
84 | 84 |
Bezier2 before(double t) const |
85 | 85 |
{ |
86 | 86 |
Point q(conv(p1,p2,t)); |
87 | 87 |
Point r(conv(p2,p3,t)); |
88 | 88 |
return Bezier2(p1,q,conv(q,r,t)); |
89 | 89 |
} |
90 | 90 |
|
91 | 91 |
Bezier2 after(double t) const |
92 | 92 |
{ |
93 | 93 |
Point q(conv(p1,p2,t)); |
94 | 94 |
Point r(conv(p2,p3,t)); |
95 | 95 |
return Bezier2(conv(q,r,t),r,p3); |
96 | 96 |
} |
97 | 97 |
Bezier2 revert() const { return Bezier2(p3,p2,p1);} |
98 | 98 |
Bezier2 operator()(double a,double b) const { return before(b).after(a/b); } |
99 | 99 |
Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); } |
100 | 100 |
Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); } |
101 | 101 |
Point grad(double t) const { return grad()(t); } |
102 | 102 |
Point norm(double t) const { return rot90(grad(t)); } |
103 | 103 |
}; |
104 | 104 |
|
105 | 105 |
class Bezier3 : public BezierBase |
106 | 106 |
{ |
107 | 107 |
public: |
108 | 108 |
Point p1,p2,p3,p4; |
109 | 109 |
|
110 | 110 |
Bezier3() {} |
111 | 111 |
Bezier3(Point _p1, Point _p2, Point _p3, Point _p4) |
112 | 112 |
: p1(_p1), p2(_p2), p3(_p3), p4(_p4) {} |
113 | 113 |
Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)), |
114 | 114 |
p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {} |
115 | 115 |
Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)), |
116 | 116 |
p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {} |
117 | 117 |
|
118 | 118 |
Point operator()(double t) const |
119 | 119 |
{ |
120 | 120 |
// return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t); |
121 | 121 |
return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+ |
122 | 122 |
(3*t*t*(1-t))*p3+(t*t*t)*p4; |
123 | 123 |
} |
124 | 124 |
Bezier3 before(double t) const |
125 | 125 |
{ |
126 | 126 |
Point p(conv(p1,p2,t)); |
127 | 127 |
Point q(conv(p2,p3,t)); |
128 | 128 |
Point r(conv(p3,p4,t)); |
129 | 129 |
Point a(conv(p,q,t)); |
130 | 130 |
Point b(conv(q,r,t)); |
131 | 131 |
Point c(conv(a,b,t)); |
132 | 132 |
return Bezier3(p1,p,a,c); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
Bezier3 after(double t) const |
136 | 136 |
{ |
137 | 137 |
Point p(conv(p1,p2,t)); |
138 | 138 |
Point q(conv(p2,p3,t)); |
139 | 139 |
Point r(conv(p3,p4,t)); |
140 | 140 |
Point a(conv(p,q,t)); |
141 | 141 |
Point b(conv(q,r,t)); |
142 | 142 |
Point c(conv(a,b,t)); |
143 | 143 |
return Bezier3(c,b,r,p4); |
144 | 144 |
} |
145 | 145 |
Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);} |
146 | 146 |
Bezier3 operator()(double a,double b) const { return before(b).after(a/b); } |
147 | 147 |
Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); } |
148 | 148 |
Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1), |
149 | 149 |
3.0*rot90(p3-p2), |
150 | 150 |
3.0*rot90(p4-p3)); } |
151 | 151 |
Point grad(double t) const { return grad()(t); } |
152 | 152 |
Point norm(double t) const { return rot90(grad(t)); } |
153 | 153 |
|
154 | 154 |
template<class R,class F,class S,class D> |
155 | 155 |
R recSplit(F &_f,const S &_s,D _d) const |
156 | 156 |
{ |
157 | 157 |
const Point a=(p1+p2)/2; |
158 | 158 |
const Point b=(p2+p3)/2; |
159 | 159 |
const Point c=(p3+p4)/2; |
160 | 160 |
const Point d=(a+b)/2; |
161 | 161 |
const Point e=(b+c)/2; |
162 | 162 |
const Point f=(d+e)/2; |
163 | 163 |
R f1=_f(Bezier3(p1,a,d,e),_d); |
164 | 164 |
R f2=_f(Bezier3(e,d,c,p4),_d); |
165 | 165 |
return _s(f1,f2); |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
}; |
169 | 169 |
|
170 | 170 |
|
171 | 171 |
} //END OF NAMESPACE dim2 |
172 | 172 |
} //END OF NAMESPACE lemon |
173 | 173 |
|
174 | 174 |
#endif // LEMON_BEZIER_H |
1 | 1 |
|
2 | 2 |
/* -*- C++ -*- |
3 | 3 |
* |
4 | 4 |
* This file is a part of LEMON, a generic C++ optimization library |
5 | 5 |
* |
6 | 6 |
* Copyright (C) 2003-2008 |
7 | 7 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
8 | 8 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
9 | 9 |
* |
10 | 10 |
* Permission to use, modify and distribute this software is granted |
11 | 11 |
* provided that this copyright notice appears in all copies. For |
12 | 12 |
* precise terms see the accompanying LICENSE file. |
13 | 13 |
* |
14 | 14 |
* This software is provided "AS IS" with no warranty of any kind, |
15 | 15 |
* express or implied, and with no claim as to its suitability for any |
16 | 16 |
* purpose. |
17 | 17 |
* |
18 | 18 |
*/ |
19 | 19 |
|
20 | 20 |
#ifndef LEMON_BITS_TRAITS_H |
21 | 21 |
#define LEMON_BITS_TRAITS_H |
22 | 22 |
|
23 | 23 |
#include <lemon/bits/utility.h> |
24 | 24 |
|
25 | 25 |
///\file |
26 | 26 |
///\brief Traits for graphs and maps |
27 | 27 |
/// |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
template <typename _Graph, typename _Item> |
31 | 31 |
class ItemSetTraits {}; |
32 | 32 |
|
33 | 33 |
|
34 | 34 |
template <typename Graph, typename Enable = void> |
35 | 35 |
struct NodeNotifierIndicator { |
36 | 36 |
typedef InvalidType Type; |
37 | 37 |
}; |
38 | 38 |
template <typename Graph> |
39 | 39 |
struct NodeNotifierIndicator< |
40 | 40 |
Graph, |
41 | 41 |
typename enable_if<typename Graph::NodeNotifier::Notifier, void>::type |
42 | 42 |
> { |
43 | 43 |
typedef typename Graph::NodeNotifier Type; |
44 | 44 |
}; |
45 | 45 |
|
46 | 46 |
template <typename _Graph> |
47 | 47 |
class ItemSetTraits<_Graph, typename _Graph::Node> { |
48 | 48 |
public: |
49 | 49 |
|
50 | 50 |
typedef _Graph Graph; |
51 | 51 |
|
52 | 52 |
typedef typename Graph::Node Item; |
53 | 53 |
typedef typename Graph::NodeIt ItemIt; |
54 | 54 |
|
55 | 55 |
typedef typename NodeNotifierIndicator<Graph>::Type ItemNotifier; |
56 | 56 |
|
57 | 57 |
template <typename _Value> |
58 | 58 |
class Map : public Graph::template NodeMap<_Value> { |
59 | 59 |
public: |
60 | 60 |
typedef typename Graph::template NodeMap<_Value> Parent; |
61 | 61 |
typedef typename Graph::template NodeMap<_Value> Type; |
62 | 62 |
typedef typename Parent::Value Value; |
63 | 63 |
|
64 | 64 |
Map(const Graph& _digraph) : Parent(_digraph) {} |
65 | 65 |
Map(const Graph& _digraph, const Value& _value) |
66 | 66 |
: Parent(_digraph, _value) {} |
67 | 67 |
|
68 | 68 |
}; |
69 | 69 |
|
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
template <typename Graph, typename Enable = void> |
73 | 73 |
struct ArcNotifierIndicator { |
74 | 74 |
typedef InvalidType Type; |
75 | 75 |
}; |
76 | 76 |
template <typename Graph> |
77 | 77 |
struct ArcNotifierIndicator< |
78 | 78 |
Graph, |
79 | 79 |
typename enable_if<typename Graph::ArcNotifier::Notifier, void>::type |
80 | 80 |
> { |
81 | 81 |
typedef typename Graph::ArcNotifier Type; |
82 | 82 |
}; |
83 | 83 |
|
84 | 84 |
template <typename _Graph> |
85 | 85 |
class ItemSetTraits<_Graph, typename _Graph::Arc> { |
86 | 86 |
public: |
87 | 87 |
|
88 | 88 |
typedef _Graph Graph; |
89 | 89 |
|
90 | 90 |
typedef typename Graph::Arc Item; |
91 | 91 |
typedef typename Graph::ArcIt ItemIt; |
92 | 92 |
|
93 | 93 |
typedef typename ArcNotifierIndicator<Graph>::Type ItemNotifier; |
94 | 94 |
|
95 | 95 |
template <typename _Value> |
96 | 96 |
class Map : public Graph::template ArcMap<_Value> { |
97 | 97 |
public: |
98 | 98 |
typedef typename Graph::template ArcMap<_Value> Parent; |
99 | 99 |
typedef typename Graph::template ArcMap<_Value> Type; |
100 | 100 |
typedef typename Parent::Value Value; |
101 | 101 |
|
102 | 102 |
Map(const Graph& _digraph) : Parent(_digraph) {} |
103 | 103 |
Map(const Graph& _digraph, const Value& _value) |
104 | 104 |
: Parent(_digraph, _value) {} |
105 | 105 |
}; |
106 | 106 |
|
107 | 107 |
}; |
108 | 108 |
|
109 | 109 |
template <typename Graph, typename Enable = void> |
110 | 110 |
struct EdgeNotifierIndicator { |
111 | 111 |
typedef InvalidType Type; |
112 | 112 |
}; |
113 | 113 |
template <typename Graph> |
114 | 114 |
struct EdgeNotifierIndicator< |
115 | 115 |
Graph, |
116 | 116 |
typename enable_if<typename Graph::EdgeNotifier::Notifier, void>::type |
117 | 117 |
> { |
118 | 118 |
typedef typename Graph::EdgeNotifier Type; |
119 | 119 |
}; |
120 | 120 |
|
121 | 121 |
template <typename _Graph> |
122 | 122 |
class ItemSetTraits<_Graph, typename _Graph::Edge> { |
123 | 123 |
public: |
124 | 124 |
|
125 | 125 |
typedef _Graph Graph; |
126 | 126 |
|
127 | 127 |
typedef typename Graph::Edge Item; |
128 | 128 |
typedef typename Graph::EdgeIt ItemIt; |
129 | 129 |
|
130 | 130 |
typedef typename EdgeNotifierIndicator<Graph>::Type ItemNotifier; |
131 | 131 |
|
132 | 132 |
template <typename _Value> |
133 | 133 |
class Map : public Graph::template EdgeMap<_Value> { |
134 | 134 |
public: |
135 | 135 |
typedef typename Graph::template EdgeMap<_Value> Parent; |
136 | 136 |
typedef typename Graph::template EdgeMap<_Value> Type; |
137 | 137 |
typedef typename Parent::Value Value; |
138 | 138 |
|
139 | 139 |
Map(const Graph& _digraph) : Parent(_digraph) {} |
140 | 140 |
Map(const Graph& _digraph, const Value& _value) |
141 | 141 |
: Parent(_digraph, _value) {} |
142 | 142 |
}; |
143 | 143 |
|
144 | 144 |
}; |
145 | 145 |
|
146 | 146 |
template <typename Map, typename Enable = void> |
147 | 147 |
struct MapTraits { |
148 | 148 |
typedef False ReferenceMapTag; |
149 | 149 |
|
150 | 150 |
typedef typename Map::Key Key; |
151 | 151 |
typedef typename Map::Value Value; |
152 | 152 |
|
153 |
typedef const Value ConstReturnValue; |
|
154 |
typedef const Value ReturnValue; |
|
153 |
typedef Value ConstReturnValue; |
|
154 |
typedef Value ReturnValue; |
|
155 | 155 |
}; |
156 | 156 |
|
157 | 157 |
template <typename Map> |
158 | 158 |
struct MapTraits< |
159 | 159 |
Map, typename enable_if<typename Map::ReferenceMapTag, void>::type > |
160 | 160 |
{ |
161 | 161 |
typedef True ReferenceMapTag; |
162 | 162 |
|
163 | 163 |
typedef typename Map::Key Key; |
164 | 164 |
typedef typename Map::Value Value; |
165 | 165 |
|
166 | 166 |
typedef typename Map::ConstReference ConstReturnValue; |
167 | 167 |
typedef typename Map::Reference ReturnValue; |
168 | 168 |
|
169 | 169 |
typedef typename Map::ConstReference ConstReference; |
170 | 170 |
typedef typename Map::Reference Reference; |
171 | 171 |
}; |
172 | 172 |
|
173 | 173 |
template <typename MatrixMap, typename Enable = void> |
174 | 174 |
struct MatrixMapTraits { |
175 | 175 |
typedef False ReferenceMapTag; |
176 | 176 |
|
177 | 177 |
typedef typename MatrixMap::FirstKey FirstKey; |
178 | 178 |
typedef typename MatrixMap::SecondKey SecondKey; |
179 | 179 |
typedef typename MatrixMap::Value Value; |
180 | 180 |
|
181 |
typedef const Value ConstReturnValue; |
|
182 |
typedef const Value ReturnValue; |
|
181 |
typedef Value ConstReturnValue; |
|
182 |
typedef Value ReturnValue; |
|
183 | 183 |
}; |
184 | 184 |
|
185 | 185 |
template <typename MatrixMap> |
186 | 186 |
struct MatrixMapTraits< |
187 | 187 |
MatrixMap, typename enable_if<typename MatrixMap::ReferenceMapTag, |
188 | 188 |
void>::type > |
189 | 189 |
{ |
190 | 190 |
typedef True ReferenceMapTag; |
191 | 191 |
|
192 | 192 |
typedef typename MatrixMap::FirstKey FirstKey; |
193 | 193 |
typedef typename MatrixMap::SecondKey SecondKey; |
194 | 194 |
typedef typename MatrixMap::Value Value; |
195 | 195 |
|
196 | 196 |
typedef typename MatrixMap::ConstReference ConstReturnValue; |
197 | 197 |
typedef typename MatrixMap::Reference ReturnValue; |
198 | 198 |
|
199 | 199 |
typedef typename MatrixMap::ConstReference ConstReference; |
200 | 200 |
typedef typename MatrixMap::Reference Reference; |
201 | 201 |
}; |
202 | 202 |
|
203 | 203 |
// Indicators for the tags |
204 | 204 |
|
205 | 205 |
template <typename Graph, typename Enable = void> |
206 | 206 |
struct NodeNumTagIndicator { |
207 | 207 |
static const bool value = false; |
208 | 208 |
}; |
209 | 209 |
|
210 | 210 |
template <typename Graph> |
211 | 211 |
struct NodeNumTagIndicator< |
212 | 212 |
Graph, |
213 | 213 |
typename enable_if<typename Graph::NodeNumTag, void>::type |
214 | 214 |
> { |
215 | 215 |
static const bool value = true; |
216 | 216 |
}; |
217 | 217 |
|
218 | 218 |
template <typename Graph, typename Enable = void> |
219 | 219 |
struct EdgeNumTagIndicator { |
220 | 220 |
static const bool value = false; |
221 | 221 |
}; |
222 | 222 |
|
223 | 223 |
template <typename Graph> |
224 | 224 |
struct EdgeNumTagIndicator< |
225 | 225 |
Graph, |
226 | 226 |
typename enable_if<typename Graph::EdgeNumTag, void>::type |
227 | 227 |
> { |
228 | 228 |
static const bool value = true; |
229 | 229 |
}; |
230 | 230 |
|
231 | 231 |
template <typename Graph, typename Enable = void> |
232 | 232 |
struct FindEdgeTagIndicator { |
233 | 233 |
static const bool value = false; |
234 | 234 |
}; |
235 | 235 |
|
236 | 236 |
template <typename Graph> |
237 | 237 |
struct FindEdgeTagIndicator< |
238 | 238 |
Graph, |
239 | 239 |
typename enable_if<typename Graph::FindEdgeTag, void>::type |
240 | 240 |
> { |
241 | 241 |
static const bool value = true; |
242 | 242 |
}; |
243 | 243 |
|
244 | 244 |
template <typename Graph, typename Enable = void> |
245 | 245 |
struct UndirectedTagIndicator { |
246 | 246 |
static const bool value = false; |
247 | 247 |
}; |
248 | 248 |
|
249 | 249 |
template <typename Graph> |
250 | 250 |
struct UndirectedTagIndicator< |
251 | 251 |
Graph, |
252 | 252 |
typename enable_if<typename Graph::UndirectedTag, void>::type |
253 | 253 |
> { |
254 | 254 |
static const bool value = true; |
255 | 255 |
}; |
256 | 256 |
|
257 | 257 |
template <typename Graph, typename Enable = void> |
258 | 258 |
struct BuildTagIndicator { |
259 | 259 |
static const bool value = false; |
260 | 260 |
}; |
261 | 261 |
|
262 | 262 |
template <typename Graph> |
263 | 263 |
struct BuildTagIndicator< |
264 | 264 |
Graph, |
265 | 265 |
typename enable_if<typename Graph::BuildTag, void>::type |
266 | 266 |
> { |
267 | 267 |
static const bool value = true; |
268 | 268 |
}; |
269 | 269 |
|
270 | 270 |
} |
271 | 271 |
|
272 | 272 |
#endif |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 |
#include <limits> |
|
26 | 27 |
#include <lemon/list_graph.h> |
27 | 28 |
#include <lemon/bin_heap.h> |
28 | 29 |
#include <lemon/bits/path_dump.h> |
29 | 30 |
#include <lemon/bits/invalid.h> |
30 | 31 |
#include <lemon/error.h> |
31 | 32 |
#include <lemon/maps.h> |
32 | 33 |
|
33 | 34 |
namespace lemon { |
34 | 35 |
|
35 | 36 |
/// \brief Default OperationTraits for the Dijkstra algorithm class. |
36 | 37 |
/// |
37 | 38 |
/// It defines all computational operations and constants which are |
38 | 39 |
/// used in the Dijkstra algorithm. |
39 | 40 |
template <typename Value> |
40 | 41 |
struct DijkstraDefaultOperationTraits { |
41 | 42 |
/// \brief Gives back the zero value of the type. |
42 | 43 |
static Value zero() { |
43 | 44 |
return static_cast<Value>(0); |
44 | 45 |
} |
45 | 46 |
/// \brief Gives back the sum of the given two elements. |
46 | 47 |
static Value plus(const Value& left, const Value& right) { |
47 | 48 |
return left + right; |
48 | 49 |
} |
49 | 50 |
/// \brief Gives back true only if the first value less than the second. |
50 | 51 |
static bool less(const Value& left, const Value& right) { |
51 | 52 |
return left < right; |
52 | 53 |
} |
53 | 54 |
}; |
54 | 55 |
|
55 | 56 |
/// \brief Widest path OperationTraits for the Dijkstra algorithm class. |
56 | 57 |
/// |
57 | 58 |
/// It defines all computational operations and constants which are |
58 | 59 |
/// used in the Dijkstra algorithm for widest path computation. |
59 | 60 |
template <typename Value> |
60 | 61 |
struct DijkstraWidestPathOperationTraits { |
61 | 62 |
/// \brief Gives back the maximum value of the type. |
62 | 63 |
static Value zero() { |
63 | 64 |
return std::numeric_limits<Value>::max(); |
64 | 65 |
} |
65 | 66 |
/// \brief Gives back the minimum of the given two elements. |
66 | 67 |
static Value plus(const Value& left, const Value& right) { |
67 | 68 |
return std::min(left, right); |
68 | 69 |
} |
69 | 70 |
/// \brief Gives back true only if the first value less than the second. |
70 | 71 |
static bool less(const Value& left, const Value& right) { |
71 | 72 |
return left < right; |
72 | 73 |
} |
73 | 74 |
}; |
74 | 75 |
|
75 | 76 |
///Default traits class of Dijkstra class. |
76 | 77 |
|
77 | 78 |
///Default traits class of Dijkstra class. |
78 | 79 |
///\tparam GR Digraph type. |
79 | 80 |
///\tparam LM Type of length map. |
80 | 81 |
template<class GR, class LM> |
81 | 82 |
struct DijkstraDefaultTraits |
82 | 83 |
{ |
83 | 84 |
///The digraph type the algorithm runs on. |
84 | 85 |
typedef GR Digraph; |
85 | 86 |
///The type of the map that stores the arc lengths. |
86 | 87 |
|
87 | 88 |
///The type of the map that stores the arc lengths. |
88 | 89 |
///It must meet the \ref concepts::ReadMap "ReadMap" concept. |
89 | 90 |
typedef LM LengthMap; |
90 | 91 |
//The type of the length of the arcs. |
91 | 92 |
typedef typename LM::Value Value; |
92 | 93 |
/// Operation traits for Dijkstra algorithm. |
93 | 94 |
|
94 | 95 |
/// It defines the used operation by the algorithm. |
95 | 96 |
/// \see DijkstraDefaultOperationTraits |
96 | 97 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
97 | 98 |
/// The cross reference type used by heap. |
98 | 99 |
|
99 | 100 |
|
100 | 101 |
/// The cross reference type used by heap. |
101 | 102 |
/// Usually it is \c Digraph::NodeMap<int>. |
102 | 103 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
103 | 104 |
///Instantiates a HeapCrossRef. |
104 | 105 |
|
105 | 106 |
///This function instantiates a \c HeapCrossRef. |
106 | 107 |
/// \param G is the digraph, to which we would like to define the |
107 | 108 |
/// HeapCrossRef. |
108 | 109 |
static HeapCrossRef *createHeapCrossRef(const GR &G) |
109 | 110 |
{ |
110 | 111 |
return new HeapCrossRef(G); |
111 | 112 |
} |
112 | 113 |
|
113 | 114 |
///The heap type used by Dijkstra algorithm. |
114 | 115 |
|
115 | 116 |
///The heap type used by Dijkstra algorithm. |
116 | 117 |
/// |
117 | 118 |
///\sa BinHeap |
118 | 119 |
///\sa Dijkstra |
119 | 120 |
typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap; |
120 | 121 |
|
121 | 122 |
static Heap *createHeap(HeapCrossRef& R) |
122 | 123 |
{ |
123 | 124 |
return new Heap(R); |
124 | 125 |
} |
125 | 126 |
|
126 | 127 |
///\brief The type of the map that stores the last |
127 | 128 |
///arcs of the shortest paths. |
128 | 129 |
/// |
129 | 130 |
///The type of the map that stores the last |
130 | 131 |
///arcs of the shortest paths. |
131 | 132 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
132 | 133 |
/// |
133 | 134 |
typedef typename Digraph::template NodeMap<typename GR::Arc> PredMap; |
134 | 135 |
///Instantiates a PredMap. |
135 | 136 |
|
136 | 137 |
///This function instantiates a \c PredMap. |
137 | 138 |
///\param G is the digraph, to which we would like to define the PredMap. |
138 | 139 |
///\todo The digraph alone may be insufficient for the initialization |
139 | 140 |
static PredMap *createPredMap(const GR &G) |
140 | 141 |
{ |
141 | 142 |
return new PredMap(G); |
142 | 143 |
} |
143 | 144 |
|
144 | 145 |
///The type of the map that stores whether a nodes is processed. |
145 | 146 |
|
146 | 147 |
///The type of the map that stores whether a nodes is processed. |
147 | 148 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
148 | 149 |
///By default it is a NullMap. |
149 | 150 |
///\todo If it is set to a real map, |
150 | 151 |
///Dijkstra::processed() should read this. |
151 | 152 |
///\todo named parameter to set this type, function to read and write. |
152 | 153 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
153 | 154 |
///Instantiates a ProcessedMap. |
154 | 155 |
|
155 | 156 |
///This function instantiates a \c ProcessedMap. |
156 | 157 |
///\param g is the digraph, to which |
157 | 158 |
///we would like to define the \c ProcessedMap |
158 | 159 |
#ifdef DOXYGEN |
159 | 160 |
static ProcessedMap *createProcessedMap(const GR &g) |
160 | 161 |
#else |
161 | 162 |
static ProcessedMap *createProcessedMap(const GR &) |
162 | 163 |
#endif |
163 | 164 |
{ |
164 | 165 |
return new ProcessedMap(); |
165 | 166 |
} |
166 | 167 |
///The type of the map that stores the dists of the nodes. |
167 | 168 |
|
168 | 169 |
///The type of the map that stores the dists of the nodes. |
169 | 170 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
170 | 171 |
/// |
171 | 172 |
typedef typename Digraph::template NodeMap<typename LM::Value> DistMap; |
172 | 173 |
///Instantiates a DistMap. |
173 | 174 |
|
174 | 175 |
///This function instantiates a \ref DistMap. |
175 | 176 |
///\param G is the digraph, to which we would like to define the \ref DistMap |
176 | 177 |
static DistMap *createDistMap(const GR &G) |
177 | 178 |
{ |
178 | 179 |
return new DistMap(G); |
179 | 180 |
} |
180 | 181 |
}; |
181 | 182 |
|
182 | 183 |
///%Dijkstra algorithm class. |
183 | 184 |
|
184 | 185 |
/// \ingroup shortest_path |
185 | 186 |
///This class provides an efficient implementation of %Dijkstra algorithm. |
186 | 187 |
///The arc lengths are passed to the algorithm using a |
187 | 188 |
///\ref concepts::ReadMap "ReadMap", |
188 | 189 |
///so it is easy to change it to any kind of length. |
189 | 190 |
/// |
190 | 191 |
///The type of the length is determined by the |
191 | 192 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
192 | 193 |
/// |
193 | 194 |
///It is also possible to change the underlying priority heap. |
194 | 195 |
/// |
195 | 196 |
///\tparam GR The digraph type the algorithm runs on. The default value |
196 | 197 |
///is \ref ListDigraph. The value of GR is not used directly by |
197 | 198 |
///Dijkstra, it is only passed to \ref DijkstraDefaultTraits. |
198 | 199 |
///\tparam LM This read-only ArcMap determines the lengths of the |
199 | 200 |
///arcs. It is read once for each arc, so the map may involve in |
200 | 201 |
///relatively time consuming process to compute the arc length if |
201 | 202 |
///it is necessary. The default map type is \ref |
202 | 203 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". The value |
203 | 204 |
///of LM is not used directly by Dijkstra, it is only passed to \ref |
204 | 205 |
///DijkstraDefaultTraits. |
205 | 206 |
///\tparam TR Traits class to set |
206 | 207 |
///various data types used by the algorithm. The default traits |
207 | 208 |
///class is \ref DijkstraDefaultTraits |
208 | 209 |
///"DijkstraDefaultTraits<GR,LM>". See \ref |
209 | 210 |
///DijkstraDefaultTraits for the documentation of a Dijkstra traits |
210 | 211 |
///class. |
211 | 212 |
|
212 | 213 |
#ifdef DOXYGEN |
213 | 214 |
template <typename GR, typename LM, typename TR> |
214 | 215 |
#else |
215 | 216 |
template <typename GR=ListDigraph, |
216 | 217 |
typename LM=typename GR::template ArcMap<int>, |
217 | 218 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
218 | 219 |
#endif |
219 | 220 |
class Dijkstra { |
220 | 221 |
public: |
221 | 222 |
/** |
222 | 223 |
* \brief \ref Exception for uninitialized parameters. |
223 | 224 |
* |
224 | 225 |
* This error represents problems in the initialization |
225 | 226 |
* of the parameters of the algorithms. |
226 | 227 |
*/ |
227 | 228 |
class UninitializedParameter : public lemon::UninitializedParameter { |
228 | 229 |
public: |
229 | 230 |
virtual const char* what() const throw() { |
230 | 231 |
return "lemon::Dijkstra::UninitializedParameter"; |
231 | 232 |
} |
232 | 233 |
}; |
233 | 234 |
|
234 | 235 |
typedef TR Traits; |
235 | 236 |
///The type of the underlying digraph. |
236 | 237 |
typedef typename TR::Digraph Digraph; |
237 | 238 |
///\e |
238 | 239 |
typedef typename Digraph::Node Node; |
239 | 240 |
///\e |
240 | 241 |
typedef typename Digraph::NodeIt NodeIt; |
241 | 242 |
///\e |
242 | 243 |
typedef typename Digraph::Arc Arc; |
243 | 244 |
///\e |
244 | 245 |
typedef typename Digraph::OutArcIt OutArcIt; |
245 | 246 |
|
246 | 247 |
///The type of the length of the arcs. |
247 | 248 |
typedef typename TR::LengthMap::Value Value; |
248 | 249 |
///The type of the map that stores the arc lengths. |
249 | 250 |
typedef typename TR::LengthMap LengthMap; |
250 | 251 |
///\brief The type of the map that stores the last |
251 | 252 |
///arcs of the shortest paths. |
252 | 253 |
typedef typename TR::PredMap PredMap; |
253 | 254 |
///The type of the map indicating if a node is processed. |
254 | 255 |
typedef typename TR::ProcessedMap ProcessedMap; |
255 | 256 |
///The type of the map that stores the dists of the nodes. |
256 | 257 |
typedef typename TR::DistMap DistMap; |
257 | 258 |
///The cross reference type used for the current heap. |
258 | 259 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
259 | 260 |
///The heap type used by the dijkstra algorithm. |
260 | 261 |
typedef typename TR::Heap Heap; |
261 | 262 |
///The operation traits. |
262 | 263 |
typedef typename TR::OperationTraits OperationTraits; |
263 | 264 |
private: |
264 | 265 |
/// Pointer to the underlying digraph. |
265 | 266 |
const Digraph *G; |
266 | 267 |
/// Pointer to the length map |
267 | 268 |
const LengthMap *length; |
268 | 269 |
///Pointer to the map of predecessors arcs. |
269 | 270 |
PredMap *_pred; |
270 | 271 |
///Indicates if \ref _pred is locally allocated (\c true) or not. |
271 | 272 |
bool local_pred; |
272 | 273 |
///Pointer to the map of distances. |
273 | 274 |
DistMap *_dist; |
274 | 275 |
///Indicates if \ref _dist is locally allocated (\c true) or not. |
275 | 276 |
bool local_dist; |
276 | 277 |
///Pointer to the map of processed status of the nodes. |
277 | 278 |
ProcessedMap *_processed; |
278 | 279 |
///Indicates if \ref _processed is locally allocated (\c true) or not. |
279 | 280 |
bool local_processed; |
280 | 281 |
///Pointer to the heap cross references. |
281 | 282 |
HeapCrossRef *_heap_cross_ref; |
282 | 283 |
///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not. |
283 | 284 |
bool local_heap_cross_ref; |
284 | 285 |
///Pointer to the heap. |
285 | 286 |
Heap *_heap; |
286 | 287 |
///Indicates if \ref _heap is locally allocated (\c true) or not. |
287 | 288 |
bool local_heap; |
288 | 289 |
|
289 | 290 |
///Creates the maps if necessary. |
290 | 291 |
|
291 | 292 |
///\todo Better memory allocation (instead of new). |
292 | 293 |
void create_maps() |
293 | 294 |
{ |
294 | 295 |
if(!_pred) { |
295 | 296 |
local_pred = true; |
296 | 297 |
_pred = Traits::createPredMap(*G); |
297 | 298 |
} |
298 | 299 |
if(!_dist) { |
299 | 300 |
local_dist = true; |
300 | 301 |
_dist = Traits::createDistMap(*G); |
301 | 302 |
} |
302 | 303 |
if(!_processed) { |
303 | 304 |
local_processed = true; |
304 | 305 |
_processed = Traits::createProcessedMap(*G); |
305 | 306 |
} |
306 | 307 |
if (!_heap_cross_ref) { |
307 | 308 |
local_heap_cross_ref = true; |
308 | 309 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
309 | 310 |
} |
310 | 311 |
if (!_heap) { |
311 | 312 |
local_heap = true; |
312 | 313 |
_heap = Traits::createHeap(*_heap_cross_ref); |
313 | 314 |
} |
314 | 315 |
} |
315 | 316 |
|
316 | 317 |
public : |
317 | 318 |
|
318 | 319 |
typedef Dijkstra Create; |
319 | 320 |
|
320 | 321 |
///\name Named template parameters |
321 | 322 |
|
322 | 323 |
///@{ |
323 | 324 |
|
324 | 325 |
template <class T> |
325 | 326 |
struct DefPredMapTraits : public Traits { |
326 | 327 |
typedef T PredMap; |
327 | 328 |
static PredMap *createPredMap(const Digraph &) |
328 | 329 |
{ |
329 | 330 |
throw UninitializedParameter(); |
330 | 331 |
} |
331 | 332 |
}; |
332 | 333 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
333 | 334 |
|
334 | 335 |
///\ref named-templ-param "Named parameter" for setting PredMap type |
335 | 336 |
/// |
336 | 337 |
template <class T> |
337 | 338 |
struct DefPredMap |
338 | 339 |
: public Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > { |
339 | 340 |
typedef Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > Create; |
340 | 341 |
}; |
341 | 342 |
|
342 | 343 |
template <class T> |
343 | 344 |
struct DefDistMapTraits : public Traits { |
344 | 345 |
typedef T DistMap; |
345 | 346 |
static DistMap *createDistMap(const Digraph &) |
346 | 347 |
{ |
347 | 348 |
throw UninitializedParameter(); |
348 | 349 |
} |
349 | 350 |
}; |
350 | 351 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
351 | 352 |
|
352 | 353 |
///\ref named-templ-param "Named parameter" for setting DistMap type |
353 | 354 |
/// |
354 | 355 |
template <class T> |
355 | 356 |
struct DefDistMap |
356 | 357 |
: public Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > { |
357 | 358 |
typedef Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > Create; |
358 | 359 |
}; |
359 | 360 |
|
360 | 361 |
template <class T> |
361 | 362 |
struct DefProcessedMapTraits : public Traits { |
362 | 363 |
typedef T ProcessedMap; |
363 | 364 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
364 | 365 |
{ |
365 | 366 |
throw UninitializedParameter(); |
366 | 367 |
} |
367 | 368 |
}; |
368 | 369 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
369 | 370 |
|
370 | 371 |
///\ref named-templ-param "Named parameter" for setting ProcessedMap type |
371 | 372 |
/// |
372 | 373 |
template <class T> |
373 | 374 |
struct DefProcessedMap |
374 | 375 |
: public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > { |
375 | 376 |
typedef Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > Create; |
376 | 377 |
}; |
377 | 378 |
|
378 | 379 |
struct DefDigraphProcessedMapTraits : public Traits { |
379 | 380 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
380 | 381 |
static ProcessedMap *createProcessedMap(const Digraph &G) |
381 | 382 |
{ |
382 | 383 |
return new ProcessedMap(G); |
383 | 384 |
} |
384 | 385 |
}; |
385 | 386 |
///\brief \ref named-templ-param "Named parameter" |
386 | 387 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
387 | 388 |
/// |
388 | 389 |
///\ref named-templ-param "Named parameter" |
389 | 390 |
///for setting the ProcessedMap type to be Digraph::NodeMap<bool>. |
390 | 391 |
///If you don't set it explicitely, it will be automatically allocated. |
391 | 392 |
template <class T> |
392 | 393 |
struct DefProcessedMapToBeDefaultMap |
393 | 394 |
: public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> { |
394 | 395 |
typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> Create; |
395 | 396 |
}; |
396 | 397 |
|
397 | 398 |
template <class H, class CR> |
398 | 399 |
struct DefHeapTraits : public Traits { |
399 | 400 |
typedef CR HeapCrossRef; |
400 | 401 |
typedef H Heap; |
401 | 402 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
402 | 403 |
throw UninitializedParameter(); |
403 | 404 |
} |
404 | 405 |
static Heap *createHeap(HeapCrossRef &) |
405 | 406 |
{ |
406 | 407 |
throw UninitializedParameter(); |
407 | 408 |
} |
408 | 409 |
}; |
409 | 410 |
///\brief \ref named-templ-param "Named parameter" for setting |
410 | 411 |
///heap and cross reference type |
411 | 412 |
/// |
412 | 413 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
413 | 414 |
///reference type |
414 | 415 |
/// |
415 | 416 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
416 | 417 |
struct DefHeap |
417 | 418 |
: public Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > { |
418 | 419 |
typedef Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > Create; |
419 | 420 |
}; |
420 | 421 |
|
421 | 422 |
template <class H, class CR> |
422 | 423 |
struct DefStandardHeapTraits : public Traits { |
423 | 424 |
typedef CR HeapCrossRef; |
424 | 425 |
typedef H Heap; |
425 | 426 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
426 | 427 |
return new HeapCrossRef(G); |
427 | 428 |
} |
428 | 429 |
static Heap *createHeap(HeapCrossRef &R) |
429 | 430 |
{ |
430 | 431 |
return new Heap(R); |
431 | 432 |
} |
432 | 433 |
}; |
433 | 434 |
///\brief \ref named-templ-param "Named parameter" for setting |
434 | 435 |
///heap and cross reference type with automatic allocation |
435 | 436 |
/// |
436 | 437 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
437 | 438 |
///reference type. It can allocate the heap and the cross reference |
438 | 439 |
///object if the cross reference's constructor waits for the digraph as |
439 | 440 |
///parameter and the heap's constructor waits for the cross reference. |
440 | 441 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
441 | 442 |
struct DefStandardHeap |
442 | 443 |
: public Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > { |
443 | 444 |
typedef Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > |
444 | 445 |
Create; |
445 | 446 |
}; |
446 | 447 |
|
447 | 448 |
template <class T> |
448 | 449 |
struct DefOperationTraitsTraits : public Traits { |
449 | 450 |
typedef T OperationTraits; |
450 | 451 |
}; |
451 | 452 |
|
452 | 453 |
/// \brief \ref named-templ-param "Named parameter" for setting |
453 | 454 |
/// OperationTraits type |
454 | 455 |
/// |
455 | 456 |
/// \ref named-templ-param "Named parameter" for setting OperationTraits |
456 | 457 |
/// type |
457 | 458 |
template <class T> |
458 | 459 |
struct DefOperationTraits |
459 | 460 |
: public Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > { |
460 | 461 |
typedef Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > |
461 | 462 |
Create; |
462 | 463 |
}; |
463 | 464 |
|
464 | 465 |
///@} |
465 | 466 |
|
466 | 467 |
|
467 | 468 |
protected: |
468 | 469 |
|
469 | 470 |
Dijkstra() {} |
470 | 471 |
|
471 | 472 |
public: |
472 | 473 |
|
473 | 474 |
///Constructor. |
474 | 475 |
|
475 | 476 |
///\param _G the digraph the algorithm will run on. |
476 | 477 |
///\param _length the length map used by the algorithm. |
477 | 478 |
Dijkstra(const Digraph& _G, const LengthMap& _length) : |
478 | 479 |
G(&_G), length(&_length), |
479 | 480 |
_pred(NULL), local_pred(false), |
480 | 481 |
_dist(NULL), local_dist(false), |
481 | 482 |
_processed(NULL), local_processed(false), |
482 | 483 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
483 | 484 |
_heap(NULL), local_heap(false) |
484 | 485 |
{ } |
485 | 486 |
|
486 | 487 |
///Destructor. |
487 | 488 |
~Dijkstra() |
488 | 489 |
{ |
489 | 490 |
if(local_pred) delete _pred; |
490 | 491 |
if(local_dist) delete _dist; |
491 | 492 |
if(local_processed) delete _processed; |
492 | 493 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
493 | 494 |
if(local_heap) delete _heap; |
494 | 495 |
} |
495 | 496 |
|
496 | 497 |
///Sets the length map. |
497 | 498 |
|
498 | 499 |
///Sets the length map. |
499 | 500 |
///\return <tt> (*this) </tt> |
500 | 501 |
Dijkstra &lengthMap(const LengthMap &m) |
501 | 502 |
{ |
502 | 503 |
length = &m; |
503 | 504 |
return *this; |
504 | 505 |
} |
505 | 506 |
|
506 | 507 |
///Sets the map storing the predecessor arcs. |
507 | 508 |
|
508 | 509 |
///Sets the map storing the predecessor arcs. |
509 | 510 |
///If you don't use this function before calling \ref run(), |
510 | 511 |
///it will allocate one. The destuctor deallocates this |
511 | 512 |
///automatically allocated map, of course. |
512 | 513 |
///\return <tt> (*this) </tt> |
513 | 514 |
Dijkstra &predMap(PredMap &m) |
514 | 515 |
{ |
515 | 516 |
if(local_pred) { |
516 | 517 |
delete _pred; |
517 | 518 |
local_pred=false; |
518 | 519 |
} |
519 | 520 |
_pred = &m; |
520 | 521 |
return *this; |
521 | 522 |
} |
522 | 523 |
|
523 | 524 |
///Sets the map storing the distances calculated by the algorithm. |
524 | 525 |
|
525 | 526 |
///Sets the map storing the distances calculated by the algorithm. |
526 | 527 |
///If you don't use this function before calling \ref run(), |
527 | 528 |
///it will allocate one. The destuctor deallocates this |
528 | 529 |
///automatically allocated map, of course. |
529 | 530 |
///\return <tt> (*this) </tt> |
530 | 531 |
Dijkstra &distMap(DistMap &m) |
531 | 532 |
{ |
532 | 533 |
if(local_dist) { |
533 | 534 |
delete _dist; |
534 | 535 |
local_dist=false; |
535 | 536 |
} |
536 | 537 |
_dist = &m; |
537 | 538 |
return *this; |
538 | 539 |
} |
539 | 540 |
|
540 | 541 |
///Sets the heap and the cross reference used by algorithm. |
541 | 542 |
|
542 | 543 |
///Sets the heap and the cross reference used by algorithm. |
543 | 544 |
///If you don't use this function before calling \ref run(), |
544 | 545 |
///it will allocate one. The destuctor deallocates this |
545 | 546 |
///automatically allocated heap and cross reference, of course. |
546 | 547 |
///\return <tt> (*this) </tt> |
547 | 548 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
548 | 549 |
{ |
549 | 550 |
if(local_heap_cross_ref) { |
550 | 551 |
delete _heap_cross_ref; |
551 | 552 |
local_heap_cross_ref=false; |
552 | 553 |
} |
553 | 554 |
_heap_cross_ref = &cr; |
554 | 555 |
if(local_heap) { |
555 | 556 |
delete _heap; |
556 | 557 |
local_heap=false; |
557 | 558 |
} |
558 | 559 |
_heap = &hp; |
559 | 560 |
return *this; |
560 | 561 |
} |
561 | 562 |
|
562 | 563 |
private: |
563 | 564 |
void finalizeNodeData(Node v,Value dst) |
564 | 565 |
{ |
565 | 566 |
_processed->set(v,true); |
566 | 567 |
_dist->set(v, dst); |
567 | 568 |
} |
568 | 569 |
|
569 | 570 |
public: |
570 | 571 |
|
571 | 572 |
typedef PredMapPath<Digraph, PredMap> Path; |
572 | 573 |
|
573 | 574 |
///\name Execution control |
574 | 575 |
///The simplest way to execute the algorithm is to use |
575 | 576 |
///one of the member functions called \c run(...). |
576 | 577 |
///\n |
577 | 578 |
///If you need more control on the execution, |
578 | 579 |
///first you must call \ref init(), then you can add several source nodes |
579 | 580 |
///with \ref addSource(). |
580 | 581 |
///Finally \ref start() will perform the actual path |
581 | 582 |
///computation. |
582 | 583 |
|
583 | 584 |
///@{ |
584 | 585 |
|
585 | 586 |
///Initializes the internal data structures. |
586 | 587 |
|
587 | 588 |
///Initializes the internal data structures. |
588 | 589 |
/// |
589 | 590 |
void init() |
590 | 591 |
{ |
591 | 592 |
create_maps(); |
592 | 593 |
_heap->clear(); |
593 | 594 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
594 | 595 |
_pred->set(u,INVALID); |
595 | 596 |
_processed->set(u,false); |
596 | 597 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
597 | 598 |
} |
598 | 599 |
} |
599 | 600 |
|
600 | 601 |
///Adds a new source node. |
601 | 602 |
|
602 | 603 |
///Adds a new source node to the priority heap. |
603 | 604 |
/// |
604 | 605 |
///The optional second parameter is the initial distance of the node. |
605 | 606 |
/// |
606 | 607 |
///It checks if the node has already been added to the heap and |
607 | 608 |
///it is pushed to the heap only if either it was not in the heap |
608 | 609 |
///or the shortest path found till then is shorter than \c dst. |
609 | 610 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
610 | 611 |
{ |
611 | 612 |
if(_heap->state(s) != Heap::IN_HEAP) { |
612 | 613 |
_heap->push(s,dst); |
613 | 614 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
614 | 615 |
_heap->set(s,dst); |
615 | 616 |
_pred->set(s,INVALID); |
616 | 617 |
} |
617 | 618 |
} |
618 | 619 |
|
619 | 620 |
///Processes the next node in the priority heap |
620 | 621 |
|
621 | 622 |
///Processes the next node in the priority heap. |
622 | 623 |
/// |
623 | 624 |
///\return The processed node. |
624 | 625 |
/// |
625 | 626 |
///\warning The priority heap must not be empty! |
626 | 627 |
Node processNextNode() |
627 | 628 |
{ |
628 | 629 |
Node v=_heap->top(); |
629 | 630 |
Value oldvalue=_heap->prio(); |
630 | 631 |
_heap->pop(); |
631 | 632 |
finalizeNodeData(v,oldvalue); |
632 | 633 |
|
633 | 634 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
634 | 635 |
Node w=G->target(e); |
635 | 636 |
switch(_heap->state(w)) { |
636 | 637 |
case Heap::PRE_HEAP: |
637 | 638 |
_heap->push(w,OperationTraits::plus(oldvalue, (*length)[e])); |
638 | 639 |
_pred->set(w,e); |
639 | 640 |
break; |
640 | 641 |
case Heap::IN_HEAP: |
641 | 642 |
{ |
642 | 643 |
Value newvalue = OperationTraits::plus(oldvalue, (*length)[e]); |
643 | 644 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
644 | 645 |
_heap->decrease(w, newvalue); |
645 | 646 |
_pred->set(w,e); |
646 | 647 |
} |
647 | 648 |
} |
648 | 649 |
break; |
649 | 650 |
case Heap::POST_HEAP: |
650 | 651 |
break; |
651 | 652 |
} |
652 | 653 |
} |
653 | 654 |
return v; |
654 | 655 |
} |
655 | 656 |
|
656 | 657 |
///Next node to be processed. |
657 | 658 |
|
658 | 659 |
///Next node to be processed. |
659 | 660 |
/// |
660 | 661 |
///\return The next node to be processed or INVALID if the priority heap |
661 | 662 |
/// is empty. |
662 | 663 |
Node nextNode() |
663 | 664 |
{ |
664 | 665 |
return !_heap->empty()?_heap->top():INVALID; |
665 | 666 |
} |
666 | 667 |
|
667 | 668 |
///\brief Returns \c false if there are nodes |
668 | 669 |
///to be processed in the priority heap |
669 | 670 |
/// |
670 | 671 |
///Returns \c false if there are nodes |
671 | 672 |
///to be processed in the priority heap |
672 | 673 |
bool emptyQueue() { return _heap->empty(); } |
673 | 674 |
///Returns the number of the nodes to be processed in the priority heap |
674 | 675 |
|
675 | 676 |
///Returns the number of the nodes to be processed in the priority heap |
676 | 677 |
/// |
677 | 678 |
int queueSize() { return _heap->size(); } |
678 | 679 |
|
679 | 680 |
///Executes the algorithm. |
680 | 681 |
|
681 | 682 |
///Executes the algorithm. |
682 | 683 |
/// |
683 | 684 |
///\pre init() must be called and at least one node should be added |
684 | 685 |
///with addSource() before using this function. |
685 | 686 |
/// |
686 | 687 |
///This method runs the %Dijkstra algorithm from the root node(s) |
687 | 688 |
///in order to |
688 | 689 |
///compute the |
689 | 690 |
///shortest path to each node. The algorithm computes |
690 | 691 |
///- The shortest path tree. |
691 | 692 |
///- The distance of each node from the root(s). |
692 | 693 |
/// |
693 | 694 |
void start() |
694 | 695 |
{ |
695 | 696 |
while ( !_heap->empty() ) processNextNode(); |
696 | 697 |
} |
697 | 698 |
|
698 | 699 |
///Executes the algorithm until \c dest is reached. |
699 | 700 |
|
700 | 701 |
///Executes the algorithm until \c dest is reached. |
701 | 702 |
/// |
702 | 703 |
///\pre init() must be called and at least one node should be added |
703 | 704 |
///with addSource() before using this function. |
704 | 705 |
/// |
705 | 706 |
///This method runs the %Dijkstra algorithm from the root node(s) |
706 | 707 |
///in order to |
707 | 708 |
///compute the |
708 | 709 |
///shortest path to \c dest. The algorithm computes |
709 | 710 |
///- The shortest path to \c dest. |
710 | 711 |
///- The distance of \c dest from the root(s). |
711 | 712 |
/// |
712 | 713 |
void start(Node dest) |
713 | 714 |
{ |
714 | 715 |
while ( !_heap->empty() && _heap->top()!=dest ) processNextNode(); |
715 | 716 |
if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio()); |
716 | 717 |
} |
717 | 718 |
|
718 | 719 |
///Executes the algorithm until a condition is met. |
719 | 720 |
|
720 | 721 |
///Executes the algorithm until a condition is met. |
721 | 722 |
/// |
722 | 723 |
///\pre init() must be called and at least one node should be added |
723 | 724 |
///with addSource() before using this function. |
724 | 725 |
/// |
725 | 726 |
///\param nm must be a bool (or convertible) node map. The algorithm |
726 | 727 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
727 | 728 |
/// |
728 | 729 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
729 | 730 |
///\c INVALID if no such node was found. |
730 | 731 |
template<class NodeBoolMap> |
731 | 732 |
Node start(const NodeBoolMap &nm) |
732 | 733 |
{ |
733 | 734 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
734 | 735 |
if ( _heap->empty() ) return INVALID; |
735 | 736 |
finalizeNodeData(_heap->top(),_heap->prio()); |
736 | 737 |
return _heap->top(); |
737 | 738 |
} |
738 | 739 |
|
739 | 740 |
///Runs %Dijkstra algorithm from node \c s. |
740 | 741 |
|
741 | 742 |
///This method runs the %Dijkstra algorithm from a root node \c s |
742 | 743 |
///in order to |
743 | 744 |
///compute the |
744 | 745 |
///shortest path to each node. The algorithm computes |
745 | 746 |
///- The shortest path tree. |
746 | 747 |
///- The distance of each node from the root. |
747 | 748 |
/// |
748 | 749 |
///\note d.run(s) is just a shortcut of the following code. |
749 | 750 |
///\code |
750 | 751 |
/// d.init(); |
751 | 752 |
/// d.addSource(s); |
752 | 753 |
/// d.start(); |
753 | 754 |
///\endcode |
754 | 755 |
void run(Node s) { |
755 | 756 |
init(); |
756 | 757 |
addSource(s); |
757 | 758 |
start(); |
758 | 759 |
} |
759 | 760 |
|
760 | 761 |
///Finds the shortest path between \c s and \c t. |
761 | 762 |
|
762 | 763 |
///Finds the shortest path between \c s and \c t. |
763 | 764 |
/// |
764 | 765 |
///\return The length of the shortest s---t path if there exists one, |
765 | 766 |
///0 otherwise. |
766 | 767 |
///\note Apart from the return value, d.run(s) is |
767 | 768 |
///just a shortcut of the following code. |
768 | 769 |
///\code |
769 | 770 |
/// d.init(); |
770 | 771 |
/// d.addSource(s); |
771 | 772 |
/// d.start(t); |
772 | 773 |
///\endcode |
773 | 774 |
Value run(Node s,Node t) { |
774 | 775 |
init(); |
775 | 776 |
addSource(s); |
776 | 777 |
start(t); |
777 | 778 |
return (*_pred)[t]==INVALID?OperationTraits::zero():(*_dist)[t]; |
778 | 779 |
} |
779 | 780 |
|
780 | 781 |
///@} |
781 | 782 |
|
782 | 783 |
///\name Query Functions |
783 | 784 |
///The result of the %Dijkstra algorithm can be obtained using these |
784 | 785 |
///functions.\n |
785 | 786 |
///Before the use of these functions, |
786 | 787 |
///either run() or start() must be called. |
787 | 788 |
|
788 | 789 |
///@{ |
789 | 790 |
|
790 | 791 |
///Gives back the shortest path. |
791 | 792 |
|
792 | 793 |
///Gives back the shortest path. |
793 | 794 |
///\pre The \c t should be reachable from the source. |
... | ... |
@@ -250,997 +250,998 @@ |
250 | 250 |
|
251 | 251 |
static const int INTERPOL_PREC; |
252 | 252 |
static const double A4HEIGHT; |
253 | 253 |
static const double A4WIDTH; |
254 | 254 |
static const double A4BORDER; |
255 | 255 |
|
256 | 256 |
bool dontPrint; |
257 | 257 |
|
258 | 258 |
public: |
259 | 259 |
///Node shapes |
260 | 260 |
|
261 | 261 |
///Node shapes |
262 | 262 |
/// |
263 | 263 |
enum NodeShapes { |
264 | 264 |
/// = 0 |
265 | 265 |
///\image html nodeshape_0.png |
266 | 266 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
267 | 267 |
CIRCLE=0, |
268 | 268 |
/// = 1 |
269 | 269 |
///\image html nodeshape_1.png |
270 | 270 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
271 | 271 |
/// |
272 | 272 |
SQUARE=1, |
273 | 273 |
/// = 2 |
274 | 274 |
///\image html nodeshape_2.png |
275 | 275 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
276 | 276 |
/// |
277 | 277 |
DIAMOND=2, |
278 | 278 |
/// = 3 |
279 | 279 |
///\image html nodeshape_3.png |
280 | 280 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
281 | 281 |
/// |
282 | 282 |
MALE=3, |
283 | 283 |
/// = 4 |
284 | 284 |
///\image html nodeshape_4.png |
285 | 285 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
286 | 286 |
/// |
287 | 287 |
FEMALE=4 |
288 | 288 |
}; |
289 | 289 |
|
290 | 290 |
private: |
291 | 291 |
class arcLess { |
292 | 292 |
const Graph &g; |
293 | 293 |
public: |
294 | 294 |
arcLess(const Graph &_g) : g(_g) {} |
295 | 295 |
bool operator()(Arc a,Arc b) const |
296 | 296 |
{ |
297 | 297 |
Node ai=std::min(g.source(a),g.target(a)); |
298 | 298 |
Node aa=std::max(g.source(a),g.target(a)); |
299 | 299 |
Node bi=std::min(g.source(b),g.target(b)); |
300 | 300 |
Node ba=std::max(g.source(b),g.target(b)); |
301 | 301 |
return ai<bi || |
302 | 302 |
(ai==bi && (aa < ba || |
303 | 303 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
304 | 304 |
} |
305 | 305 |
}; |
306 | 306 |
bool isParallel(Arc e,Arc f) const |
307 | 307 |
{ |
308 | 308 |
return (g.source(e)==g.source(f)&& |
309 | 309 |
g.target(e)==g.target(f)) || |
310 | 310 |
(g.source(e)==g.target(f)&& |
311 | 311 |
g.target(e)==g.source(f)); |
312 | 312 |
} |
313 | 313 |
template<class TT> |
314 | 314 |
static std::string psOut(const dim2::Point<TT> &p) |
315 | 315 |
{ |
316 | 316 |
std::ostringstream os; |
317 | 317 |
os << p.x << ' ' << p.y; |
318 | 318 |
return os.str(); |
319 | 319 |
} |
320 | 320 |
static std::string psOut(const Color &c) |
321 | 321 |
{ |
322 | 322 |
std::ostringstream os; |
323 | 323 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
324 | 324 |
return os.str(); |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
public: |
328 | 328 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
329 | 329 |
|
330 | 330 |
template<class X> struct CoordsTraits : public T { |
331 | 331 |
typedef X CoordsMapType; |
332 | 332 |
const X &_coords; |
333 | 333 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
334 | 334 |
}; |
335 | 335 |
///Sets the map of the node coordinates |
336 | 336 |
|
337 | 337 |
///Sets the map of the node coordinates. |
338 | 338 |
///\param x must be a node map with dim2::Point<double> or |
339 | 339 |
///\ref dim2::Point "dim2::Point<int>" values. |
340 | 340 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
341 | 341 |
dontPrint=true; |
342 | 342 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
343 | 343 |
} |
344 | 344 |
template<class X> struct NodeSizesTraits : public T { |
345 | 345 |
const X &_nodeSizes; |
346 | 346 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
347 | 347 |
}; |
348 | 348 |
///Sets the map of the node sizes |
349 | 349 |
|
350 | 350 |
///Sets the map of the node sizes |
351 | 351 |
///\param x must be a node map with \c double (or convertible) values. |
352 | 352 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
353 | 353 |
{ |
354 | 354 |
dontPrint=true; |
355 | 355 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
356 | 356 |
} |
357 | 357 |
template<class X> struct NodeShapesTraits : public T { |
358 | 358 |
const X &_nodeShapes; |
359 | 359 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
360 | 360 |
}; |
361 | 361 |
///Sets the map of the node shapes |
362 | 362 |
|
363 | 363 |
///Sets the map of the node shapes. |
364 | 364 |
///The available shape values |
365 | 365 |
///can be found in \ref NodeShapes "enum NodeShapes". |
366 | 366 |
///\param x must be a node map with \c int (or convertible) values. |
367 | 367 |
///\sa NodeShapes |
368 | 368 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
369 | 369 |
{ |
370 | 370 |
dontPrint=true; |
371 | 371 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
372 | 372 |
} |
373 | 373 |
template<class X> struct NodeTextsTraits : public T { |
374 | 374 |
const X &_nodeTexts; |
375 | 375 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
376 | 376 |
}; |
377 | 377 |
///Sets the text printed on the nodes |
378 | 378 |
|
379 | 379 |
///Sets the text printed on the nodes |
380 | 380 |
///\param x must be a node map with type that can be pushed to a standard |
381 | 381 |
///ostream. |
382 | 382 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
383 | 383 |
{ |
384 | 384 |
dontPrint=true; |
385 | 385 |
_showNodeText=true; |
386 | 386 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
387 | 387 |
} |
388 | 388 |
template<class X> struct NodePsTextsTraits : public T { |
389 | 389 |
const X &_nodePsTexts; |
390 | 390 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
391 | 391 |
}; |
392 | 392 |
///Inserts a PostScript block to the nodes |
393 | 393 |
|
394 | 394 |
///With this command it is possible to insert a verbatim PostScript |
395 | 395 |
///block to the nodes. |
396 | 396 |
///The PS current point will be moved to the centre of the node before |
397 | 397 |
///the PostScript block inserted. |
398 | 398 |
/// |
399 | 399 |
///Before and after the block a newline character is inserted so you |
400 | 400 |
///don't have to bother with the separators. |
401 | 401 |
/// |
402 | 402 |
///\param x must be a node map with type that can be pushed to a standard |
403 | 403 |
///ostream. |
404 | 404 |
/// |
405 | 405 |
///\sa nodePsTextsPreamble() |
406 | 406 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
407 | 407 |
{ |
408 | 408 |
dontPrint=true; |
409 | 409 |
_showNodePsText=true; |
410 | 410 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
411 | 411 |
} |
412 | 412 |
template<class X> struct ArcWidthsTraits : public T { |
413 | 413 |
const X &_arcWidths; |
414 | 414 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
415 | 415 |
}; |
416 | 416 |
///Sets the map of the arc widths |
417 | 417 |
|
418 | 418 |
///Sets the map of the arc widths |
419 | 419 |
///\param x must be an arc map with \c double (or convertible) values. |
420 | 420 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
421 | 421 |
{ |
422 | 422 |
dontPrint=true; |
423 | 423 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
424 | 424 |
} |
425 | 425 |
|
426 | 426 |
template<class X> struct NodeColorsTraits : public T { |
427 | 427 |
const X &_nodeColors; |
428 | 428 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
429 | 429 |
}; |
430 | 430 |
///Sets the map of the node colors |
431 | 431 |
|
432 | 432 |
///Sets the map of the node colors |
433 | 433 |
///\param x must be a node map with \ref Color values. |
434 | 434 |
/// |
435 | 435 |
///\sa Palette |
436 | 436 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
437 | 437 |
nodeColors(const X &x) |
438 | 438 |
{ |
439 | 439 |
dontPrint=true; |
440 | 440 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
441 | 441 |
} |
442 | 442 |
template<class X> struct NodeTextColorsTraits : public T { |
443 | 443 |
const X &_nodeTextColors; |
444 | 444 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
445 | 445 |
}; |
446 | 446 |
///Sets the map of the node text colors |
447 | 447 |
|
448 | 448 |
///Sets the map of the node text colors |
449 | 449 |
///\param x must be a node map with \ref Color values. |
450 | 450 |
/// |
451 | 451 |
///\sa Palette |
452 | 452 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
453 | 453 |
nodeTextColors(const X &x) |
454 | 454 |
{ |
455 | 455 |
dontPrint=true; |
456 | 456 |
_nodeTextColorType=CUST_COL; |
457 | 457 |
return GraphToEps<NodeTextColorsTraits<X> > |
458 | 458 |
(NodeTextColorsTraits<X>(*this,x)); |
459 | 459 |
} |
460 | 460 |
template<class X> struct ArcColorsTraits : public T { |
461 | 461 |
const X &_arcColors; |
462 | 462 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
463 | 463 |
}; |
464 | 464 |
///Sets the map of the arc colors |
465 | 465 |
|
466 | 466 |
///Sets the map of the arc colors |
467 | 467 |
///\param x must be an arc map with \ref Color values. |
468 | 468 |
/// |
469 | 469 |
///\sa Palette |
470 | 470 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
471 | 471 |
arcColors(const X &x) |
472 | 472 |
{ |
473 | 473 |
dontPrint=true; |
474 | 474 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
475 | 475 |
} |
476 | 476 |
///Sets a global scale factor for node sizes |
477 | 477 |
|
478 | 478 |
///Sets a global scale factor for node sizes. |
479 | 479 |
/// |
480 | 480 |
/// If nodeSizes() is not given, this function simply sets the node |
481 | 481 |
/// sizes to \c d. If nodeSizes() is given, but |
482 | 482 |
/// autoNodeScale() is not, then the node size given by |
483 | 483 |
/// nodeSizes() will be multiplied by the value \c d. |
484 | 484 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
485 | 485 |
/// node sizes will be scaled in such a way that the greatest size will be |
486 | 486 |
/// equal to \c d. |
487 | 487 |
/// \sa nodeSizes() |
488 | 488 |
/// \sa autoNodeScale() |
489 | 489 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
490 | 490 |
///Turns on/off the automatic node width scaling. |
491 | 491 |
|
492 | 492 |
///Turns on/off the automatic node width scaling. |
493 | 493 |
/// |
494 | 494 |
///\sa nodeScale() |
495 | 495 |
/// |
496 | 496 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
497 | 497 |
_autoNodeScale=b;return *this; |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
///Turns on/off the absolutematic node width scaling. |
501 | 501 |
|
502 | 502 |
///Turns on/off the absolutematic node width scaling. |
503 | 503 |
/// |
504 | 504 |
///\sa nodeScale() |
505 | 505 |
/// |
506 | 506 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
507 | 507 |
_absoluteNodeSizes=b;return *this; |
508 | 508 |
} |
509 | 509 |
|
510 | 510 |
///Negates the Y coordinates. |
511 | 511 |
|
512 | 512 |
///Negates the Y coordinates. |
513 | 513 |
/// |
514 | 514 |
GraphToEps<T> &negateY(bool b=true) { |
515 | 515 |
_negY=b;return *this; |
516 | 516 |
} |
517 | 517 |
|
518 | 518 |
///Turn on/off pre-scaling |
519 | 519 |
|
520 | 520 |
///By default graphToEps() rescales the whole image in order to avoid |
521 | 521 |
///very big or very small bounding boxes. |
522 | 522 |
/// |
523 | 523 |
///This (p)rescaling can be turned off with this function. |
524 | 524 |
/// |
525 | 525 |
GraphToEps<T> &preScale(bool b=true) { |
526 | 526 |
_preScale=b;return *this; |
527 | 527 |
} |
528 | 528 |
|
529 | 529 |
///Sets a global scale factor for arc widths |
530 | 530 |
|
531 | 531 |
/// Sets a global scale factor for arc widths. |
532 | 532 |
/// |
533 | 533 |
/// If arcWidths() is not given, this function simply sets the arc |
534 | 534 |
/// widths to \c d. If arcWidths() is given, but |
535 | 535 |
/// autoArcWidthScale() is not, then the arc withs given by |
536 | 536 |
/// arcWidths() will be multiplied by the value \c d. |
537 | 537 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
538 | 538 |
/// arc withs will be scaled in such a way that the greatest width will be |
539 | 539 |
/// equal to \c d. |
540 | 540 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
541 | 541 |
///Turns on/off the automatic arc width scaling. |
542 | 542 |
|
543 | 543 |
///Turns on/off the automatic arc width scaling. |
544 | 544 |
/// |
545 | 545 |
///\sa arcWidthScale() |
546 | 546 |
/// |
547 | 547 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
548 | 548 |
_autoArcWidthScale=b;return *this; |
549 | 549 |
} |
550 | 550 |
///Turns on/off the absolutematic arc width scaling. |
551 | 551 |
|
552 | 552 |
///Turns on/off the absolutematic arc width scaling. |
553 | 553 |
/// |
554 | 554 |
///\sa arcWidthScale() |
555 | 555 |
/// |
556 | 556 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
557 | 557 |
_absoluteArcWidths=b;return *this; |
558 | 558 |
} |
559 | 559 |
///Sets a global scale factor for the whole picture |
560 | 560 |
|
561 | 561 |
///Sets a global scale factor for the whole picture |
562 | 562 |
/// |
563 | 563 |
|
564 | 564 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
565 | 565 |
///Sets the width of the border around the picture |
566 | 566 |
|
567 | 567 |
///Sets the width of the border around the picture |
568 | 568 |
/// |
569 | 569 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
570 | 570 |
///Sets the width of the border around the picture |
571 | 571 |
|
572 | 572 |
///Sets the width of the border around the picture |
573 | 573 |
/// |
574 | 574 |
GraphToEps<T> &border(double x, double y) { |
575 | 575 |
_xBorder=x;_yBorder=y;return *this; |
576 | 576 |
} |
577 | 577 |
///Sets whether to draw arrows |
578 | 578 |
|
579 | 579 |
///Sets whether to draw arrows |
580 | 580 |
/// |
581 | 581 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
582 | 582 |
///Sets the length of the arrowheads |
583 | 583 |
|
584 | 584 |
///Sets the length of the arrowheads |
585 | 585 |
/// |
586 | 586 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
587 | 587 |
///Sets the width of the arrowheads |
588 | 588 |
|
589 | 589 |
///Sets the width of the arrowheads |
590 | 590 |
/// |
591 | 591 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
592 | 592 |
|
593 | 593 |
///Scales the drawing to fit to A4 page |
594 | 594 |
|
595 | 595 |
///Scales the drawing to fit to A4 page |
596 | 596 |
/// |
597 | 597 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
598 | 598 |
|
599 | 599 |
///Enables parallel arcs |
600 | 600 |
|
601 | 601 |
///Enables parallel arcs |
602 | 602 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
603 | 603 |
|
604 | 604 |
///Sets the distance |
605 | 605 |
|
606 | 606 |
///Sets the distance |
607 | 607 |
/// |
608 | 608 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
609 | 609 |
|
610 | 610 |
///Hides the arcs |
611 | 611 |
|
612 | 612 |
///Hides the arcs |
613 | 613 |
/// |
614 | 614 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
615 | 615 |
///Hides the nodes |
616 | 616 |
|
617 | 617 |
///Hides the nodes |
618 | 618 |
/// |
619 | 619 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
620 | 620 |
|
621 | 621 |
///Sets the size of the node texts |
622 | 622 |
|
623 | 623 |
///Sets the size of the node texts |
624 | 624 |
/// |
625 | 625 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
626 | 626 |
|
627 | 627 |
///Sets the color of the node texts to be different from the node color |
628 | 628 |
|
629 | 629 |
///Sets the color of the node texts to be as different from the node color |
630 | 630 |
///as it is possible |
631 | 631 |
/// |
632 | 632 |
GraphToEps<T> &distantColorNodeTexts() |
633 | 633 |
{_nodeTextColorType=DIST_COL;return *this;} |
634 | 634 |
///Sets the color of the node texts to be black or white and always visible. |
635 | 635 |
|
636 | 636 |
///Sets the color of the node texts to be black or white according to |
637 | 637 |
///which is more |
638 | 638 |
///different from the node color |
639 | 639 |
/// |
640 | 640 |
GraphToEps<T> &distantBWNodeTexts() |
641 | 641 |
{_nodeTextColorType=DIST_BW;return *this;} |
642 | 642 |
|
643 | 643 |
///Gives a preamble block for node Postscript block. |
644 | 644 |
|
645 | 645 |
///Gives a preamble block for node Postscript block. |
646 | 646 |
/// |
647 | 647 |
///\sa nodePsTexts() |
648 | 648 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
649 | 649 |
_nodePsTextsPreamble=str ;return *this; |
650 | 650 |
} |
651 | 651 |
///Sets whether the the graph is undirected |
652 | 652 |
|
653 | 653 |
///Sets whether the the graph is undirected. |
654 | 654 |
/// |
655 | 655 |
///This setting is the default for undirected graphs. |
656 | 656 |
/// |
657 | 657 |
///\sa directed() |
658 | 658 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;} |
659 | 659 |
|
660 | 660 |
///Sets whether the the graph is directed |
661 | 661 |
|
662 | 662 |
///Sets whether the the graph is directed. |
663 | 663 |
///Use it to show the edges as a pair of directed ones. |
664 | 664 |
/// |
665 | 665 |
///This setting is the default for digraphs. |
666 | 666 |
/// |
667 | 667 |
///\sa undirected() |
668 | 668 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;} |
669 | 669 |
|
670 | 670 |
///Sets the title. |
671 | 671 |
|
672 | 672 |
///Sets the title of the generated image, |
673 | 673 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
674 | 674 |
///the EPS file. |
675 | 675 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;} |
676 | 676 |
///Sets the copyright statement. |
677 | 677 |
|
678 | 678 |
///Sets the copyright statement of the generated image, |
679 | 679 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
680 | 680 |
///the EPS file. |
681 | 681 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;} |
682 | 682 |
|
683 | 683 |
protected: |
684 | 684 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
685 | 685 |
{ |
686 | 686 |
switch(t) { |
687 | 687 |
case CIRCLE: |
688 | 688 |
case MALE: |
689 | 689 |
case FEMALE: |
690 | 690 |
return p.normSquare()<=r*r; |
691 | 691 |
case SQUARE: |
692 | 692 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
693 | 693 |
case DIAMOND: |
694 | 694 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
695 | 695 |
} |
696 | 696 |
return false; |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
public: |
700 | 700 |
~GraphToEps() { } |
701 | 701 |
|
702 | 702 |
///Draws the graph. |
703 | 703 |
|
704 | 704 |
///Like other functions using |
705 | 705 |
///\ref named-templ-func-param "named template parameters", |
706 | 706 |
///this function calls the algorithm itself, i.e. in this case |
707 | 707 |
///it draws the graph. |
708 | 708 |
void run() { |
709 | 709 |
//\todo better 'epsilon' would be nice here. |
710 | 710 |
const double EPSILON=1e-9; |
711 | 711 |
if(dontPrint) return; |
712 | 712 |
|
713 | 713 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
714 | 714 |
mycoords(_coords,_negY); |
715 | 715 |
|
716 | 716 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
717 | 717 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
718 | 718 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
719 | 719 |
// << "%%Copyright: XXXX\n" |
720 | 720 |
os << "%%Creator: LEMON, graphToEps()\n"; |
721 | 721 |
|
722 | 722 |
{ |
723 | 723 |
#ifndef WIN32 |
724 | 724 |
timeval tv; |
725 | 725 |
gettimeofday(&tv, 0); |
726 | 726 |
|
727 | 727 |
char cbuf[26]; |
728 | 728 |
ctime_r(&tv.tv_sec,cbuf); |
729 | 729 |
os << "%%CreationDate: " << cbuf; |
730 | 730 |
#else |
731 | 731 |
SYSTEMTIME time; |
732 | 732 |
char buf1[11], buf2[9], buf3[5]; |
733 | 733 |
|
734 | 734 |
GetSystemTime(&time); |
735 | 735 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
736 | 736 |
"ddd MMM dd", buf1, 11) && |
737 | 737 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
738 | 738 |
"HH':'mm':'ss", buf2, 9) && |
739 | 739 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
740 | 740 |
"yyyy", buf3, 5)) { |
741 | 741 |
os << "%%CreationDate: " << buf1 << ' ' |
742 | 742 |
<< buf2 << ' ' << buf3 << std::endl; |
743 | 743 |
} |
744 | 744 |
#endif |
745 | 745 |
} |
746 | 746 |
|
747 | 747 |
if (_autoArcWidthScale) { |
748 | 748 |
double max_w=0; |
749 | 749 |
for(ArcIt e(g);e!=INVALID;++e) |
750 | 750 |
max_w=std::max(double(_arcWidths[e]),max_w); |
751 | 751 |
///\todo better 'epsilon' would be nice here. |
752 | 752 |
if(max_w>EPSILON) { |
753 | 753 |
_arcWidthScale/=max_w; |
754 | 754 |
} |
755 | 755 |
} |
756 | 756 |
|
757 | 757 |
if (_autoNodeScale) { |
758 | 758 |
double max_s=0; |
759 | 759 |
for(NodeIt n(g);n!=INVALID;++n) |
760 | 760 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
761 | 761 |
///\todo better 'epsilon' would be nice here. |
762 | 762 |
if(max_s>EPSILON) { |
763 | 763 |
_nodeScale/=max_s; |
764 | 764 |
} |
765 | 765 |
} |
766 | 766 |
|
767 | 767 |
double diag_len = 1; |
768 | 768 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) { |
769 | 769 |
dim2::BoundingBox<double> bb; |
770 | 770 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
771 | 771 |
if (bb.empty()) { |
772 | 772 |
bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0)); |
773 | 773 |
} |
774 | 774 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
775 | 775 |
if(diag_len<EPSILON) diag_len = 1; |
776 | 776 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
777 | 777 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
778 | 778 |
} |
779 | 779 |
|
780 | 780 |
dim2::BoundingBox<double> bb; |
781 | 781 |
for(NodeIt n(g);n!=INVALID;++n) { |
782 | 782 |
double ns=_nodeSizes[n]*_nodeScale; |
783 | 783 |
dim2::Point<double> p(ns,ns); |
784 | 784 |
switch(_nodeShapes[n]) { |
785 | 785 |
case CIRCLE: |
786 | 786 |
case SQUARE: |
787 | 787 |
case DIAMOND: |
788 | 788 |
bb.add(p+mycoords[n]); |
789 | 789 |
bb.add(-p+mycoords[n]); |
790 | 790 |
break; |
791 | 791 |
case MALE: |
792 | 792 |
bb.add(-p+mycoords[n]); |
793 | 793 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
794 | 794 |
break; |
795 | 795 |
case FEMALE: |
796 | 796 |
bb.add(p+mycoords[n]); |
797 | 797 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
798 | 798 |
break; |
799 | 799 |
} |
800 | 800 |
} |
801 | 801 |
if (bb.empty()) { |
802 | 802 |
bb = dim2::BoundingBox<double>(dim2::Point<double>(0,0)); |
803 | 803 |
} |
804 | 804 |
|
805 | 805 |
if(_scaleToA4) |
806 | 806 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
807 | 807 |
else { |
808 | 808 |
if(_preScale) { |
809 | 809 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
810 | 810 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
811 | 811 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
812 | 812 |
} |
813 | 813 |
|
814 | 814 |
os << "%%BoundingBox: " |
815 | 815 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
816 | 816 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
817 | 817 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
818 | 818 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
819 | 819 |
} |
820 | 820 |
|
821 | 821 |
os << "%%EndComments\n"; |
822 | 822 |
|
823 | 823 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
824 | 824 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n" |
825 | 825 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
826 | 826 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke } bind def\n"; |
827 | 827 |
//x y r |
828 | 828 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath } bind def\n"; |
829 | 829 |
//x y r |
830 | 830 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" |
831 | 831 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
832 | 832 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
833 | 833 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
834 | 834 |
<< " closepath pop pop pop} bind def\n"; |
835 | 835 |
//x y r |
836 | 836 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n" |
837 | 837 |
<< " 2 index 2 index 2 index add lineto\n" |
838 | 838 |
<< " 2 index 1 index sub 2 index lineto\n" |
839 | 839 |
<< " 2 index 2 index 2 index sub lineto\n" |
840 | 840 |
<< " closepath pop pop pop} bind def\n"; |
841 | 841 |
// x y r cr cg cb |
842 | 842 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" |
843 | 843 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
844 | 844 |
<< " } bind def\n"; |
845 | 845 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" |
846 | 846 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
847 | 847 |
<< " } bind def\n"; |
848 | 848 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" |
849 | 849 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
850 | 850 |
<< " } bind def\n"; |
851 | 851 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index " |
852 | 852 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
853 | 853 |
<< " 1.5 mul mul setlinewidth\n" |
854 | 854 |
<< " newpath 5 index 5 index moveto " |
855 | 855 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
856 | 856 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub moveto\n" |
857 | 857 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto stroke\n" |
858 | 858 |
<< " 5 index 5 index 5 index c fill\n" |
859 | 859 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
860 | 860 |
<< " } bind def\n"; |
861 | 861 |
os << "/nmale {\n" |
862 | 862 |
<< " 0 0 0 setrgbcolor 3 index " |
863 | 863 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
864 | 864 |
<<" 1.5 mul mul setlinewidth\n" |
865 | 865 |
<< " newpath 5 index 5 index moveto\n" |
866 | 866 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
867 | 867 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
868 | 868 |
<< " 1 index 1 index lineto\n" |
869 | 869 |
<< " 1 index 1 index 7 index sub moveto\n" |
870 | 870 |
<< " 1 index 1 index lineto\n" |
871 | 871 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub lineto\n" |
872 | 872 |
<< " stroke\n" |
873 | 873 |
<< " 5 index 5 index 5 index c fill\n" |
874 | 874 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
875 | 875 |
<< " } bind def\n"; |
876 | 876 |
|
877 | 877 |
|
878 | 878 |
os << "/arrl " << _arrowLength << " def\n"; |
879 | 879 |
os << "/arrw " << _arrowWidth << " def\n"; |
880 | 880 |
// l dx_norm dy_norm |
881 | 881 |
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n"; |
882 | 882 |
//len w dx_norm dy_norm x1 y1 cr cg cb |
883 | 883 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx exch def\n" |
884 | 884 |
<< " /w exch def /len exch def\n" |
885 | 885 |
// << " 0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" |
886 | 886 |
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" |
887 | 887 |
<< " len w sub arrl sub dx dy lrl\n" |
888 | 888 |
<< " arrw dy dx neg lrl\n" |
889 | 889 |
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n" |
890 | 890 |
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" |
891 | 891 |
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" |
892 | 892 |
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" |
893 | 893 |
<< " arrw dy dx neg lrl\n" |
894 | 894 |
<< " len w sub arrl sub neg dx dy lrl\n" |
895 | 895 |
<< " closepath fill } bind def\n"; |
896 | 896 |
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n" |
897 | 897 |
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; |
898 | 898 |
|
899 | 899 |
os << "\ngsave\n"; |
900 | 900 |
if(_scaleToA4) |
901 | 901 |
if(bb.height()>bb.width()) { |
902 | 902 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), |
903 | 903 |
(A4WIDTH-2*A4BORDER)/bb.width()); |
904 | 904 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' |
905 | 905 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER |
906 | 906 |
<< " translate\n" |
907 | 907 |
<< sc << " dup scale\n" |
908 | 908 |
<< -bb.left() << ' ' << -bb.bottom() << " translate\n"; |
909 | 909 |
} |
910 | 910 |
else { |
911 | 911 |
//\todo Verify centering |
912 | 912 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), |
913 | 913 |
(A4WIDTH-2*A4BORDER)/bb.height()); |
914 | 914 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' |
915 | 915 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER |
916 | 916 |
<< " translate\n" |
917 | 917 |
<< sc << " dup scale\n90 rotate\n" |
918 | 918 |
<< -bb.left() << ' ' << -bb.top() << " translate\n"; |
919 | 919 |
} |
920 | 920 |
else if(_scale!=1.0) os << _scale << " dup scale\n"; |
921 | 921 |
|
922 | 922 |
if(_showArcs) { |
923 | 923 |
os << "%Arcs:\ngsave\n"; |
924 | 924 |
if(_enableParallel) { |
925 | 925 |
std::vector<Arc> el; |
926 | 926 |
for(ArcIt e(g);e!=INVALID;++e) |
927 | 927 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
928 | 928 |
&&g.source(e)!=g.target(e)) |
929 | 929 |
el.push_back(e); |
930 | 930 |
std::sort(el.begin(),el.end(),arcLess(g)); |
931 | 931 |
|
932 | 932 |
typename std::vector<Arc>::iterator j; |
933 | 933 |
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) { |
934 | 934 |
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; |
935 | 935 |
|
936 | 936 |
double sw=0; |
937 | 937 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) |
938 | 938 |
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; |
939 | 939 |
sw-=_parArcDist; |
940 | 940 |
sw/=-2.0; |
941 | 941 |
dim2::Point<double> |
942 | 942 |
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); |
943 | 943 |
double l=std::sqrt(dvec.normSquare()); |
944 | 944 |
//\todo better 'epsilon' would be nice here. |
945 | 945 |
dim2::Point<double> d(dvec/std::max(l,EPSILON)); |
946 | 946 |
dim2::Point<double> m; |
947 | 947 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+mycoords[g.source(*i)])/2.0; |
948 | 948 |
|
949 | 949 |
// m=dim2::Point<double>(mycoords[g.source(*i)])+ |
950 | 950 |
// dvec*(double(_nodeSizes[g.source(*i)])/ |
951 | 951 |
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); |
952 | 952 |
|
953 | 953 |
m=dim2::Point<double>(mycoords[g.source(*i)])+ |
954 | 954 |
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; |
955 | 955 |
|
956 | 956 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) { |
957 | 957 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0; |
958 | 958 |
dim2::Point<double> mm=m+rot90(d)*sw/.75; |
959 | 959 |
if(_drawArrows) { |
960 | 960 |
int node_shape; |
961 | 961 |
dim2::Point<double> s=mycoords[g.source(*e)]; |
962 | 962 |
dim2::Point<double> t=mycoords[g.target(*e)]; |
963 | 963 |
double rn=_nodeSizes[g.target(*e)]*_nodeScale; |
964 | 964 |
node_shape=_nodeShapes[g.target(*e)]; |
965 | 965 |
dim2::Bezier3 bez(s,mm,mm,t); |
966 | 966 |
double t1=0,t2=1; |
967 | 967 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
968 | 968 |
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2; |
969 | 969 |
else t1=(t1+t2)/2; |
970 | 970 |
dim2::Point<double> apoint=bez((t1+t2)/2); |
971 | 971 |
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; |
972 | 972 |
rn*=rn; |
973 | 973 |
t2=(t1+t2)/2;t1=0; |
974 | 974 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
975 | 975 |
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2; |
976 | 976 |
else t2=(t1+t2)/2; |
977 | 977 |
dim2::Point<double> linend=bez((t1+t2)/2); |
978 | 978 |
bez=bez.before((t1+t2)/2); |
979 | 979 |
// rn=_nodeSizes[g.source(*e)]*_nodeScale; |
980 | 980 |
// node_shape=_nodeShapes[g.source(*e)]; |
981 | 981 |
// t1=0;t2=1; |
982 | 982 |
// for(int i=0;i<INTERPOL_PREC;++i) |
983 | 983 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t1=(t1+t2)/2; |
984 | 984 |
// else t2=(t1+t2)/2; |
985 | 985 |
// bez=bez.after((t1+t2)/2); |
986 | 986 |
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth " |
987 | 987 |
<< _arcColors[*e].red() << ' ' |
988 | 988 |
<< _arcColors[*e].green() << ' ' |
989 | 989 |
<< _arcColors[*e].blue() << " setrgbcolor newpath\n" |
990 | 990 |
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n" |
991 | 991 |
<< bez.p2.x << ' ' << bez.p2.y << ' ' |
992 | 992 |
<< bez.p3.x << ' ' << bez.p3.y << ' ' |
993 | 993 |
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n"; |
994 | 994 |
dim2::Point<double> dd(rot90(linend-apoint)); |
995 | 995 |
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ |
996 | 996 |
std::sqrt(dd.normSquare()); |
997 | 997 |
os << "newpath " << psOut(apoint) << " moveto " |
998 | 998 |
<< psOut(linend+dd) << " lineto " |
999 | 999 |
<< psOut(linend-dd) << " lineto closepath fill\n"; |
1000 | 1000 |
} |
1001 | 1001 |
else { |
1002 | 1002 |
os << mycoords[g.source(*e)].x << ' ' |
1003 | 1003 |
<< mycoords[g.source(*e)].y << ' ' |
1004 | 1004 |
<< mm.x << ' ' << mm.y << ' ' |
1005 | 1005 |
<< mycoords[g.target(*e)].x << ' ' |
1006 | 1006 |
<< mycoords[g.target(*e)].y << ' ' |
1007 | 1007 |
<< _arcColors[*e].red() << ' ' |
1008 | 1008 |
<< _arcColors[*e].green() << ' ' |
1009 | 1009 |
<< _arcColors[*e].blue() << ' ' |
1010 | 1010 |
<< _arcWidths[*e]*_arcWidthScale << " lb\n"; |
1011 | 1011 |
} |
1012 | 1012 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; |
1013 | 1013 |
} |
1014 | 1014 |
} |
1015 | 1015 |
} |
1016 | 1016 |
else for(ArcIt e(g);e!=INVALID;++e) |
1017 | 1017 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
1018 |
&&g.source(e)!=g.target(e)) |
|
1018 |
&&g.source(e)!=g.target(e)) { |
|
1019 | 1019 |
if(_drawArrows) { |
1020 | 1020 |
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]); |
1021 | 1021 |
double rn=_nodeSizes[g.target(e)]*_nodeScale; |
1022 | 1022 |
int node_shape=_nodeShapes[g.target(e)]; |
1023 | 1023 |
double t1=0,t2=1; |
1024 | 1024 |
for(int i=0;i<INTERPOL_PREC;++i) |
1025 | 1025 |
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2; |
1026 | 1026 |
else t2=(t1+t2)/2; |
1027 | 1027 |
double l=std::sqrt(d.normSquare()); |
1028 | 1028 |
d/=l; |
1029 | 1029 |
|
1030 | 1030 |
os << l*(1-(t1+t2)/2) << ' ' |
1031 | 1031 |
<< _arcWidths[e]*_arcWidthScale << ' ' |
1032 | 1032 |
<< d.x << ' ' << d.y << ' ' |
1033 | 1033 |
<< mycoords[g.source(e)].x << ' ' |
1034 | 1034 |
<< mycoords[g.source(e)].y << ' ' |
1035 | 1035 |
<< _arcColors[e].red() << ' ' |
1036 | 1036 |
<< _arcColors[e].green() << ' ' |
1037 | 1037 |
<< _arcColors[e].blue() << " arr\n"; |
1038 |
} |
|
1038 |
} |
|
1039 | 1039 |
else os << mycoords[g.source(e)].x << ' ' |
1040 | 1040 |
<< mycoords[g.source(e)].y << ' ' |
1041 | 1041 |
<< mycoords[g.target(e)].x << ' ' |
1042 | 1042 |
<< mycoords[g.target(e)].y << ' ' |
1043 | 1043 |
<< _arcColors[e].red() << ' ' |
1044 | 1044 |
<< _arcColors[e].green() << ' ' |
1045 | 1045 |
<< _arcColors[e].blue() << ' ' |
1046 | 1046 |
<< _arcWidths[e]*_arcWidthScale << " l\n"; |
1047 |
} |
|
1047 | 1048 |
os << "grestore\n"; |
1048 | 1049 |
} |
1049 | 1050 |
if(_showNodes) { |
1050 | 1051 |
os << "%Nodes:\ngsave\n"; |
1051 | 1052 |
for(NodeIt n(g);n!=INVALID;++n) { |
1052 | 1053 |
os << mycoords[n].x << ' ' << mycoords[n].y << ' ' |
1053 | 1054 |
<< _nodeSizes[n]*_nodeScale << ' ' |
1054 | 1055 |
<< _nodeColors[n].red() << ' ' |
1055 | 1056 |
<< _nodeColors[n].green() << ' ' |
1056 | 1057 |
<< _nodeColors[n].blue() << ' '; |
1057 | 1058 |
switch(_nodeShapes[n]) { |
1058 | 1059 |
case CIRCLE: |
1059 | 1060 |
os<< "nc";break; |
1060 | 1061 |
case SQUARE: |
1061 | 1062 |
os<< "nsq";break; |
1062 | 1063 |
case DIAMOND: |
1063 | 1064 |
os<< "ndi";break; |
1064 | 1065 |
case MALE: |
1065 | 1066 |
os<< "nmale";break; |
1066 | 1067 |
case FEMALE: |
1067 | 1068 |
os<< "nfemale";break; |
1068 | 1069 |
} |
1069 | 1070 |
os<<'\n'; |
1070 | 1071 |
} |
1071 | 1072 |
os << "grestore\n"; |
1072 | 1073 |
} |
1073 | 1074 |
if(_showNodeText) { |
1074 | 1075 |
os << "%Node texts:\ngsave\n"; |
1075 | 1076 |
os << "/fosi " << _nodeTextSize << " def\n"; |
1076 | 1077 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
1077 | 1078 |
for(NodeIt n(g);n!=INVALID;++n) { |
1078 | 1079 |
switch(_nodeTextColorType) { |
1079 | 1080 |
case DIST_COL: |
1080 | 1081 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
1081 | 1082 |
break; |
1082 | 1083 |
case DIST_BW: |
1083 | 1084 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
1084 | 1085 |
break; |
1085 | 1086 |
case CUST_COL: |
1086 | 1087 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
1087 | 1088 |
break; |
1088 | 1089 |
default: |
1089 | 1090 |
os << "0 0 0 setrgbcolor\n"; |
1090 | 1091 |
} |
1091 | 1092 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1092 | 1093 |
<< " (" << _nodeTexts[n] << ") cshow\n"; |
1093 | 1094 |
} |
1094 | 1095 |
os << "grestore\n"; |
1095 | 1096 |
} |
1096 | 1097 |
if(_showNodePsText) { |
1097 | 1098 |
os << "%Node PS blocks:\ngsave\n"; |
1098 | 1099 |
for(NodeIt n(g);n!=INVALID;++n) |
1099 | 1100 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1100 | 1101 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
1101 | 1102 |
os << "grestore\n"; |
1102 | 1103 |
} |
1103 | 1104 |
|
1104 | 1105 |
os << "grestore\nshowpage\n"; |
1105 | 1106 |
|
1106 | 1107 |
//CleanUp: |
1107 | 1108 |
if(_pleaseRemoveOsStream) {delete &os;} |
1108 | 1109 |
} |
1109 | 1110 |
|
1110 | 1111 |
///\name Aliases |
1111 | 1112 |
///These are just some aliases to other parameter setting functions. |
1112 | 1113 |
|
1113 | 1114 |
///@{ |
1114 | 1115 |
|
1115 | 1116 |
///An alias for arcWidths() |
1116 | 1117 |
|
1117 | 1118 |
///An alias for arcWidths() |
1118 | 1119 |
/// |
1119 | 1120 |
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x) |
1120 | 1121 |
{ |
1121 | 1122 |
return arcWidths(x); |
1122 | 1123 |
} |
1123 | 1124 |
|
1124 | 1125 |
///An alias for arcColors() |
1125 | 1126 |
|
1126 | 1127 |
///An alias for arcColors() |
1127 | 1128 |
/// |
1128 | 1129 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
1129 | 1130 |
edgeColors(const X &x) |
1130 | 1131 |
{ |
1131 | 1132 |
return arcColors(x); |
1132 | 1133 |
} |
1133 | 1134 |
|
1134 | 1135 |
///An alias for arcWidthScale() |
1135 | 1136 |
|
1136 | 1137 |
///An alias for arcWidthScale() |
1137 | 1138 |
/// |
1138 | 1139 |
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);} |
1139 | 1140 |
|
1140 | 1141 |
///An alias for autoArcWidthScale() |
1141 | 1142 |
|
1142 | 1143 |
///An alias for autoArcWidthScale() |
1143 | 1144 |
/// |
1144 | 1145 |
GraphToEps<T> &autoEdgeWidthScale(bool b=true) |
1145 | 1146 |
{ |
1146 | 1147 |
return autoArcWidthScale(b); |
1147 | 1148 |
} |
1148 | 1149 |
|
1149 | 1150 |
///An alias for absoluteArcWidths() |
1150 | 1151 |
|
1151 | 1152 |
///An alias for absoluteArcWidths() |
1152 | 1153 |
/// |
1153 | 1154 |
GraphToEps<T> &absoluteEdgeWidths(bool b=true) |
1154 | 1155 |
{ |
1155 | 1156 |
return absoluteArcWidths(b); |
1156 | 1157 |
} |
1157 | 1158 |
|
1158 | 1159 |
///An alias for parArcDist() |
1159 | 1160 |
|
1160 | 1161 |
///An alias for parArcDist() |
1161 | 1162 |
/// |
1162 | 1163 |
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);} |
1163 | 1164 |
|
1164 | 1165 |
///An alias for hideArcs() |
1165 | 1166 |
|
1166 | 1167 |
///An alias for hideArcs() |
1167 | 1168 |
/// |
1168 | 1169 |
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);} |
1169 | 1170 |
|
1170 | 1171 |
///@} |
1171 | 1172 |
}; |
1172 | 1173 |
|
1173 | 1174 |
template<class T> |
1174 | 1175 |
const int GraphToEps<T>::INTERPOL_PREC = 20; |
1175 | 1176 |
template<class T> |
1176 | 1177 |
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276; |
1177 | 1178 |
template<class T> |
1178 | 1179 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
1179 | 1180 |
template<class T> |
1180 | 1181 |
const double GraphToEps<T>::A4BORDER = 15; |
1181 | 1182 |
|
1182 | 1183 |
|
1183 | 1184 |
///Generates an EPS file from a graph |
1184 | 1185 |
|
1185 | 1186 |
///\ingroup eps_io |
1186 | 1187 |
///Generates an EPS file from a graph. |
1187 | 1188 |
///\param g is a reference to the graph to be printed |
1188 | 1189 |
///\param os is a reference to the output stream. |
1189 | 1190 |
///By default it is <tt>std::cout</tt> |
1190 | 1191 |
/// |
1191 | 1192 |
///This function also has a lot of |
1192 | 1193 |
///\ref named-templ-func-param "named parameters", |
1193 | 1194 |
///they are declared as the members of class \ref GraphToEps. The following |
1194 | 1195 |
///example shows how to use these parameters. |
1195 | 1196 |
///\code |
1196 | 1197 |
/// graphToEps(g,os).scale(10).coords(coords) |
1197 | 1198 |
/// .nodeScale(2).nodeSizes(sizes) |
1198 | 1199 |
/// .arcWidthScale(.4).run(); |
1199 | 1200 |
///\endcode |
1200 | 1201 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1201 | 1202 |
///to the end of the parameter list. |
1202 | 1203 |
///\sa GraphToEps |
1203 | 1204 |
///\sa graphToEps(G &g, const char *file_name) |
1204 | 1205 |
template<class G> |
1205 | 1206 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1206 | 1207 |
graphToEps(G &g, std::ostream& os=std::cout) |
1207 | 1208 |
{ |
1208 | 1209 |
return |
1209 | 1210 |
GraphToEps<DefaultGraphToEpsTraits<G> >(DefaultGraphToEpsTraits<G>(g,os)); |
1210 | 1211 |
} |
1211 | 1212 |
|
1212 | 1213 |
///Generates an EPS file from a graph |
1213 | 1214 |
|
1214 | 1215 |
///\ingroup eps_io |
1215 | 1216 |
///This function does the same as |
1216 | 1217 |
///\ref graphToEps(G &g,std::ostream& os) |
1217 | 1218 |
///but it writes its output into the file \c file_name |
1218 | 1219 |
///instead of a stream. |
1219 | 1220 |
///\sa graphToEps(G &g, std::ostream& os) |
1220 | 1221 |
template<class G> |
1221 | 1222 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1222 | 1223 |
graphToEps(G &g,const char *file_name) |
1223 | 1224 |
{ |
1224 | 1225 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1225 | 1226 |
(DefaultGraphToEpsTraits<G>(g,*new std::ofstream(file_name),true)); |
1226 | 1227 |
} |
1227 | 1228 |
|
1228 | 1229 |
///Generates an EPS file from a graph |
1229 | 1230 |
|
1230 | 1231 |
///\ingroup eps_io |
1231 | 1232 |
///This function does the same as |
1232 | 1233 |
///\ref graphToEps(G &g,std::ostream& os) |
1233 | 1234 |
///but it writes its output into the file \c file_name |
1234 | 1235 |
///instead of a stream. |
1235 | 1236 |
///\sa graphToEps(G &g, std::ostream& os) |
1236 | 1237 |
template<class G> |
1237 | 1238 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1238 | 1239 |
graphToEps(G &g,const std::string& file_name) |
1239 | 1240 |
{ |
1240 | 1241 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1241 | 1242 |
(DefaultGraphToEpsTraits<G>(g,*new std::ofstream(file_name.c_str()),true)); |
1242 | 1243 |
} |
1243 | 1244 |
|
1244 | 1245 |
} //END OF NAMESPACE LEMON |
1245 | 1246 |
|
1246 | 1247 |
#endif // LEMON_GRAPH_TO_EPS_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
20 | 20 |
#define LEMON_LIST_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief ListDigraph, ListGraph classes. |
25 | 25 |
|
26 | 26 |
#include <lemon/bits/graph_extender.h> |
27 | 27 |
|
28 | 28 |
#include <vector> |
29 | 29 |
#include <list> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
class ListDigraphBase { |
34 | 34 |
|
35 | 35 |
protected: |
36 | 36 |
struct NodeT { |
37 | 37 |
int first_in, first_out; |
38 | 38 |
int prev, next; |
39 | 39 |
}; |
40 | 40 |
|
41 | 41 |
struct ArcT { |
42 | 42 |
int target, source; |
43 | 43 |
int prev_in, prev_out; |
44 | 44 |
int next_in, next_out; |
45 | 45 |
}; |
46 | 46 |
|
47 | 47 |
std::vector<NodeT> nodes; |
48 | 48 |
|
49 | 49 |
int first_node; |
50 | 50 |
|
51 | 51 |
int first_free_node; |
52 | 52 |
|
53 | 53 |
std::vector<ArcT> arcs; |
54 | 54 |
|
55 | 55 |
int first_free_arc; |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
|
59 | 59 |
typedef ListDigraphBase Digraph; |
60 | 60 |
|
61 | 61 |
class Node { |
62 | 62 |
friend class ListDigraphBase; |
63 | 63 |
protected: |
64 | 64 |
|
65 | 65 |
int id; |
66 | 66 |
explicit Node(int pid) { id = pid;} |
67 | 67 |
|
68 | 68 |
public: |
69 | 69 |
Node() {} |
70 | 70 |
Node (Invalid) { id = -1; } |
71 | 71 |
bool operator==(const Node& node) const {return id == node.id;} |
72 | 72 |
bool operator!=(const Node& node) const {return id != node.id;} |
73 | 73 |
bool operator<(const Node& node) const {return id < node.id;} |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
class Arc { |
77 | 77 |
friend class ListDigraphBase; |
78 | 78 |
protected: |
79 | 79 |
|
80 | 80 |
int id; |
81 | 81 |
explicit Arc(int pid) { id = pid;} |
82 | 82 |
|
83 | 83 |
public: |
84 | 84 |
Arc() {} |
85 | 85 |
Arc (Invalid) { id = -1; } |
86 | 86 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
87 | 87 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
88 | 88 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
|
92 | 92 |
|
93 | 93 |
ListDigraphBase() |
94 | 94 |
: nodes(), first_node(-1), |
95 | 95 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
96 | 96 |
|
97 | 97 |
|
98 | 98 |
int maxNodeId() const { return nodes.size()-1; } |
99 | 99 |
int maxArcId() const { return arcs.size()-1; } |
100 | 100 |
|
101 | 101 |
Node source(Arc e) const { return Node(arcs[e.id].source); } |
102 | 102 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
103 | 103 |
|
104 | 104 |
|
105 | 105 |
void first(Node& node) const { |
106 | 106 |
node.id = first_node; |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
void next(Node& node) const { |
110 | 110 |
node.id = nodes[node.id].next; |
111 | 111 |
} |
112 | 112 |
|
113 | 113 |
|
114 | 114 |
void first(Arc& arc) const { |
115 | 115 |
int n; |
116 | 116 |
for(n = first_node; |
117 | 117 |
n!=-1 && nodes[n].first_in == -1; |
118 |
n = nodes[n].next) |
|
118 |
n = nodes[n].next) {} |
|
119 | 119 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
120 | 120 |
} |
121 | 121 |
|
122 | 122 |
void next(Arc& arc) const { |
123 | 123 |
if (arcs[arc.id].next_in != -1) { |
124 | 124 |
arc.id = arcs[arc.id].next_in; |
125 | 125 |
} else { |
126 | 126 |
int n; |
127 | 127 |
for(n = nodes[arcs[arc.id].target].next; |
128 |
n!=-1 && nodes[n].first_in == -1; |
|
129 |
n = nodes[n].next); |
|
128 |
n!=-1 && nodes[n].first_in == -1; |
|
129 |
n = nodes[n].next) {} |
|
130 | 130 |
arc.id = (n == -1) ? -1 : nodes[n].first_in; |
131 | 131 |
} |
132 | 132 |
} |
133 | 133 |
|
134 | 134 |
void firstOut(Arc &e, const Node& v) const { |
135 | 135 |
e.id = nodes[v.id].first_out; |
136 | 136 |
} |
137 | 137 |
void nextOut(Arc &e) const { |
138 | 138 |
e.id=arcs[e.id].next_out; |
139 | 139 |
} |
140 | 140 |
|
141 | 141 |
void firstIn(Arc &e, const Node& v) const { |
142 | 142 |
e.id = nodes[v.id].first_in; |
143 | 143 |
} |
144 | 144 |
void nextIn(Arc &e) const { |
145 | 145 |
e.id=arcs[e.id].next_in; |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
|
149 | 149 |
static int id(Node v) { return v.id; } |
150 | 150 |
static int id(Arc e) { return e.id; } |
151 | 151 |
|
152 | 152 |
static Node nodeFromId(int id) { return Node(id);} |
153 | 153 |
static Arc arcFromId(int id) { return Arc(id);} |
154 | 154 |
|
155 | 155 |
bool valid(Node n) const { |
156 | 156 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
157 | 157 |
nodes[n.id].prev != -2; |
158 | 158 |
} |
159 | 159 |
|
160 | 160 |
bool valid(Arc a) const { |
161 | 161 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
162 | 162 |
arcs[a.id].prev_in != -2; |
163 | 163 |
} |
164 | 164 |
|
165 | 165 |
Node addNode() { |
166 | 166 |
int n; |
167 | 167 |
|
168 | 168 |
if(first_free_node==-1) { |
169 | 169 |
n = nodes.size(); |
170 | 170 |
nodes.push_back(NodeT()); |
171 | 171 |
} else { |
172 | 172 |
n = first_free_node; |
173 | 173 |
first_free_node = nodes[n].next; |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
nodes[n].next = first_node; |
177 | 177 |
if(first_node != -1) nodes[first_node].prev = n; |
178 | 178 |
first_node = n; |
179 | 179 |
nodes[n].prev = -1; |
180 | 180 |
|
181 | 181 |
nodes[n].first_in = nodes[n].first_out = -1; |
182 | 182 |
|
183 | 183 |
return Node(n); |
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
Arc addArc(Node u, Node v) { |
187 | 187 |
int n; |
188 | 188 |
|
189 | 189 |
if (first_free_arc == -1) { |
190 | 190 |
n = arcs.size(); |
191 | 191 |
arcs.push_back(ArcT()); |
192 | 192 |
} else { |
193 | 193 |
n = first_free_arc; |
194 | 194 |
first_free_arc = arcs[n].next_in; |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
arcs[n].source = u.id; |
198 | 198 |
arcs[n].target = v.id; |
199 | 199 |
|
200 | 200 |
arcs[n].next_out = nodes[u.id].first_out; |
201 | 201 |
if(nodes[u.id].first_out != -1) { |
202 | 202 |
arcs[nodes[u.id].first_out].prev_out = n; |
203 | 203 |
} |
204 | 204 |
|
205 | 205 |
arcs[n].next_in = nodes[v.id].first_in; |
206 | 206 |
if(nodes[v.id].first_in != -1) { |
207 | 207 |
arcs[nodes[v.id].first_in].prev_in = n; |
208 | 208 |
} |
209 | 209 |
|
210 | 210 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
211 | 211 |
|
212 | 212 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
213 | 213 |
|
214 | 214 |
return Arc(n); |
215 | 215 |
} |
216 | 216 |
|
217 | 217 |
void erase(const Node& node) { |
218 | 218 |
int n = node.id; |
219 | 219 |
|
220 | 220 |
if(nodes[n].next != -1) { |
221 | 221 |
nodes[nodes[n].next].prev = nodes[n].prev; |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
if(nodes[n].prev != -1) { |
225 | 225 |
nodes[nodes[n].prev].next = nodes[n].next; |
226 | 226 |
} else { |
227 | 227 |
first_node = nodes[n].next; |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
nodes[n].next = first_free_node; |
231 | 231 |
first_free_node = n; |
232 | 232 |
nodes[n].prev = -2; |
233 | 233 |
|
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
void erase(const Arc& arc) { |
237 | 237 |
int n = arc.id; |
238 | 238 |
|
239 | 239 |
if(arcs[n].next_in!=-1) { |
240 | 240 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
241 | 241 |
} |
242 | 242 |
|
243 | 243 |
if(arcs[n].prev_in!=-1) { |
244 | 244 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
245 | 245 |
} else { |
246 | 246 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
|
250 | 250 |
if(arcs[n].next_out!=-1) { |
251 | 251 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
252 | 252 |
} |
253 | 253 |
|
254 | 254 |
if(arcs[n].prev_out!=-1) { |
255 | 255 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
256 | 256 |
} else { |
257 | 257 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
arcs[n].next_in = first_free_arc; |
261 | 261 |
first_free_arc = n; |
262 | 262 |
arcs[n].prev_in = -2; |
263 | 263 |
} |
264 | 264 |
|
265 | 265 |
void clear() { |
266 | 266 |
arcs.clear(); |
267 | 267 |
nodes.clear(); |
268 | 268 |
first_node = first_free_node = first_free_arc = -1; |
269 | 269 |
} |
270 | 270 |
|
271 | 271 |
protected: |
272 | 272 |
void changeTarget(Arc e, Node n) |
273 | 273 |
{ |
274 | 274 |
if(arcs[e.id].next_in != -1) |
275 | 275 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
276 | 276 |
if(arcs[e.id].prev_in != -1) |
277 | 277 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
278 | 278 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
279 | 279 |
if (nodes[n.id].first_in != -1) { |
280 | 280 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
281 | 281 |
} |
282 | 282 |
arcs[e.id].target = n.id; |
283 | 283 |
arcs[e.id].prev_in = -1; |
284 | 284 |
arcs[e.id].next_in = nodes[n.id].first_in; |
285 | 285 |
nodes[n.id].first_in = e.id; |
286 | 286 |
} |
287 | 287 |
void changeSource(Arc e, Node n) |
288 | 288 |
{ |
289 | 289 |
if(arcs[e.id].next_out != -1) |
290 | 290 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
291 | 291 |
if(arcs[e.id].prev_out != -1) |
292 | 292 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
293 | 293 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
294 | 294 |
if (nodes[n.id].first_out != -1) { |
295 | 295 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
296 | 296 |
} |
297 | 297 |
arcs[e.id].source = n.id; |
298 | 298 |
arcs[e.id].prev_out = -1; |
299 | 299 |
arcs[e.id].next_out = nodes[n.id].first_out; |
300 | 300 |
nodes[n.id].first_out = e.id; |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
}; |
304 | 304 |
|
305 | 305 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
306 | 306 |
|
307 | 307 |
/// \addtogroup graphs |
308 | 308 |
/// @{ |
309 | 309 |
|
310 | 310 |
///A general directed graph structure. |
311 | 311 |
|
312 | 312 |
///\ref ListDigraph is a simple and fast <em>directed graph</em> |
313 | 313 |
///implementation based on static linked lists that are stored in |
314 | 314 |
///\c std::vector structures. |
315 | 315 |
/// |
316 | 316 |
///It conforms to the \ref concepts::Digraph "Digraph concept" and it |
317 | 317 |
///also provides several useful additional functionalities. |
318 | 318 |
///Most of the member functions and nested classes are documented |
319 | 319 |
///only in the concept class. |
320 | 320 |
/// |
321 | 321 |
///An important extra feature of this digraph implementation is that |
322 | 322 |
///its maps are real \ref concepts::ReferenceMap "reference map"s. |
323 | 323 |
/// |
324 | 324 |
///\sa concepts::Digraph |
325 | 325 |
|
326 | 326 |
class ListDigraph : public ExtendedListDigraphBase { |
327 | 327 |
private: |
328 | 328 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
329 | 329 |
|
330 | 330 |
///ListDigraph is \e not copy constructible. Use copyDigraph() instead. |
331 | 331 |
/// |
332 | 332 |
ListDigraph(const ListDigraph &) :ExtendedListDigraphBase() {}; |
333 | 333 |
///\brief Assignment of ListDigraph to another one is \e not allowed. |
334 | 334 |
///Use copyDigraph() instead. |
335 | 335 |
|
336 | 336 |
///Assignment of ListDigraph to another one is \e not allowed. |
337 | 337 |
///Use copyDigraph() instead. |
338 | 338 |
void operator=(const ListDigraph &) {} |
339 | 339 |
public: |
340 | 340 |
|
341 | 341 |
typedef ExtendedListDigraphBase Parent; |
342 | 342 |
|
343 | 343 |
/// Constructor |
344 | 344 |
|
345 | 345 |
/// Constructor. |
346 | 346 |
/// |
347 | 347 |
ListDigraph() {} |
348 | 348 |
|
349 | 349 |
///Add a new node to the digraph. |
350 | 350 |
|
351 | 351 |
///Add a new node to the digraph. |
352 | 352 |
///\return the new node. |
353 | 353 |
Node addNode() { return Parent::addNode(); } |
354 | 354 |
|
355 | 355 |
///Add a new arc to the digraph. |
356 | 356 |
|
357 | 357 |
///Add a new arc to the digraph with source node \c s |
358 | 358 |
///and target node \c t. |
359 | 359 |
///\return the new arc. |
360 | 360 |
Arc addArc(const Node& s, const Node& t) { |
361 | 361 |
return Parent::addArc(s, t); |
362 | 362 |
} |
363 | 363 |
|
364 | 364 |
/// Node validity check |
365 | 365 |
|
366 | 366 |
/// This function gives back true if the given node is valid, |
367 | 367 |
/// ie. it is a real node of the graph. |
368 | 368 |
/// |
369 | 369 |
/// \warning A Node pointing to a removed item |
370 | 370 |
/// could become valid again later if new nodes are |
371 | 371 |
/// added to the graph. |
372 | 372 |
bool valid(Node n) const { return Parent::valid(n); } |
373 | 373 |
|
374 | 374 |
/// Arc validity check |
375 | 375 |
|
376 | 376 |
/// This function gives back true if the given arc is valid, |
377 | 377 |
/// ie. it is a real arc of the graph. |
378 | 378 |
/// |
379 | 379 |
/// \warning An Arc pointing to a removed item |
380 | 380 |
/// could become valid again later if new nodes are |
381 | 381 |
/// added to the graph. |
382 | 382 |
bool valid(Arc a) const { return Parent::valid(a); } |
383 | 383 |
|
384 | 384 |
/// Change the target of \c e to \c n |
385 | 385 |
|
386 | 386 |
/// Change the target of \c e to \c n |
387 | 387 |
/// |
388 | 388 |
///\note The <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s referencing |
389 | 389 |
///the changed arc remain valid. However <tt>InArcIt</tt>s are |
390 | 390 |
///invalidated. |
391 | 391 |
/// |
392 | 392 |
///\warning This functionality cannot be used together with the Snapshot |
393 | 393 |
///feature. |
394 | 394 |
void changeTarget(Arc e, Node n) { |
395 | 395 |
Parent::changeTarget(e,n); |
396 | 396 |
} |
397 | 397 |
/// Change the source of \c e to \c n |
398 | 398 |
|
399 | 399 |
/// Change the source of \c e to \c n |
400 | 400 |
/// |
401 | 401 |
///\note The <tt>ArcIt</tt>s and <tt>InArcIt</tt>s referencing |
402 | 402 |
///the changed arc remain valid. However <tt>OutArcIt</tt>s are |
403 | 403 |
///invalidated. |
404 | 404 |
/// |
405 | 405 |
///\warning This functionality cannot be used together with the Snapshot |
406 | 406 |
///feature. |
407 | 407 |
void changeSource(Arc e, Node n) { |
408 | 408 |
Parent::changeSource(e,n); |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
/// Invert the direction of an arc. |
412 | 412 |
|
413 | 413 |
///\note The <tt>ArcIt</tt>s referencing the changed arc remain |
414 | 414 |
///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are |
415 | 415 |
///invalidated. |
416 | 416 |
/// |
417 | 417 |
///\warning This functionality cannot be used together with the Snapshot |
418 | 418 |
///feature. |
419 | 419 |
void reverseArc(Arc e) { |
420 | 420 |
Node t=target(e); |
421 | 421 |
changeTarget(e,source(e)); |
422 | 422 |
changeSource(e,t); |
423 | 423 |
} |
424 | 424 |
|
425 | 425 |
/// Reserve memory for nodes. |
426 | 426 |
|
427 | 427 |
/// Using this function it is possible to avoid the superfluous memory |
428 | 428 |
/// allocation: if you know that the digraph you want to build will |
429 | 429 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
430 | 430 |
/// then it is worth reserving space for this amount before starting |
431 | 431 |
/// to build the digraph. |
432 | 432 |
/// \sa reserveArc |
433 | 433 |
void reserveNode(int n) { nodes.reserve(n); }; |
434 | 434 |
|
435 | 435 |
/// Reserve memory for arcs. |
436 | 436 |
|
437 | 437 |
/// Using this function it is possible to avoid the superfluous memory |
438 | 438 |
/// allocation: if you know that the digraph you want to build will |
439 | 439 |
/// be very large (e.g. it will contain millions of nodes and/or arcs) |
440 | 440 |
/// then it is worth reserving space for this amount before starting |
441 | 441 |
/// to build the digraph. |
442 | 442 |
/// \sa reserveNode |
443 | 443 |
void reserveArc(int m) { arcs.reserve(m); }; |
444 | 444 |
|
445 | 445 |
///Contract two nodes. |
446 | 446 |
|
447 | 447 |
///This function contracts two nodes. |
448 | 448 |
///Node \p b will be removed but instead of deleting |
449 | 449 |
///incident arcs, they will be joined to \p a. |
450 | 450 |
///The last parameter \p r controls whether to remove loops. \c true |
451 | 451 |
///means that loops will be removed. |
452 | 452 |
/// |
453 | 453 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
454 | 454 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s |
455 | 455 |
///may be invalidated. |
456 | 456 |
/// |
457 | 457 |
///\warning This functionality cannot be used together with the Snapshot |
458 | 458 |
///feature. |
459 | 459 |
void contract(Node a, Node b, bool r = true) |
460 | 460 |
{ |
461 | 461 |
for(OutArcIt e(*this,b);e!=INVALID;) { |
462 | 462 |
OutArcIt f=e; |
463 | 463 |
++f; |
464 | 464 |
if(r && target(e)==a) erase(e); |
465 | 465 |
else changeSource(e,a); |
466 | 466 |
e=f; |
467 | 467 |
} |
468 | 468 |
for(InArcIt e(*this,b);e!=INVALID;) { |
469 | 469 |
InArcIt f=e; |
470 | 470 |
++f; |
471 | 471 |
if(r && source(e)==a) erase(e); |
472 | 472 |
else changeTarget(e,a); |
473 | 473 |
e=f; |
474 | 474 |
} |
475 | 475 |
erase(b); |
476 | 476 |
} |
477 | 477 |
|
478 | 478 |
///Split a node. |
479 | 479 |
|
480 | 480 |
///This function splits a node. First a new node is added to the digraph, |
481 | 481 |
///then the source of each outgoing arc of \c n is moved to this new node. |
482 | 482 |
///If \c connect is \c true (this is the default value), then a new arc |
483 | 483 |
///from \c n to the newly created node is also added. |
484 | 484 |
///\return The newly created node. |
485 | 485 |
/// |
486 | 486 |
///\note The <tt>ArcIt</tt>s referencing a moved arc remain |
487 | 487 |
///valid. However <tt>InArcIt</tt>s and <tt>OutArcIt</tt>s may |
488 | 488 |
///be invalidated. |
489 | 489 |
/// |
490 | 490 |
///\warning This functionality cannot be used together with the |
491 | 491 |
///Snapshot feature. |
492 | 492 |
/// |
493 | 493 |
///\todo It could be implemented in a bit faster way. |
494 | 494 |
Node split(Node n, bool connect = true) { |
495 | 495 |
Node b = addNode(); |
496 | 496 |
for(OutArcIt e(*this,n);e!=INVALID;) { |
497 | 497 |
OutArcIt f=e; |
498 | 498 |
++f; |
499 | 499 |
changeSource(e,b); |
500 | 500 |
e=f; |
501 | 501 |
} |
502 | 502 |
if (connect) addArc(n,b); |
503 | 503 |
return b; |
504 | 504 |
} |
505 | 505 |
|
506 | 506 |
///Split an arc. |
507 | 507 |
|
508 | 508 |
///This function splits an arc. First a new node \c b is added to |
509 | 509 |
///the digraph, then the original arc is re-targeted to \c |
510 | 510 |
///b. Finally an arc from \c b to the original target is added. |
511 | 511 |
/// |
512 | 512 |
///\return The newly created node. |
513 | 513 |
/// |
514 | 514 |
///\warning This functionality cannot be used together with the |
515 | 515 |
///Snapshot feature. |
516 | 516 |
Node split(Arc e) { |
517 | 517 |
Node b = addNode(); |
518 | 518 |
addArc(b,target(e)); |
519 | 519 |
changeTarget(e,b); |
520 | 520 |
return b; |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
/// \brief Class to make a snapshot of the digraph and restore |
524 | 524 |
/// it later. |
525 | 525 |
/// |
526 | 526 |
/// Class to make a snapshot of the digraph and restore it later. |
527 | 527 |
/// |
528 | 528 |
/// The newly added nodes and arcs can be removed using the |
529 | 529 |
/// restore() function. |
530 | 530 |
/// |
531 | 531 |
/// \warning Arc and node deletions and other modifications (e.g. |
532 | 532 |
/// contracting, splitting, reversing arcs or nodes) cannot be |
533 | 533 |
/// restored. These events invalidate the snapshot. |
534 | 534 |
class Snapshot { |
535 | 535 |
protected: |
536 | 536 |
|
537 | 537 |
typedef Parent::NodeNotifier NodeNotifier; |
538 | 538 |
|
539 | 539 |
class NodeObserverProxy : public NodeNotifier::ObserverBase { |
540 | 540 |
public: |
541 | 541 |
|
542 | 542 |
NodeObserverProxy(Snapshot& _snapshot) |
543 | 543 |
: snapshot(_snapshot) {} |
544 | 544 |
|
545 | 545 |
using NodeNotifier::ObserverBase::attach; |
546 | 546 |
using NodeNotifier::ObserverBase::detach; |
547 | 547 |
using NodeNotifier::ObserverBase::attached; |
548 | 548 |
|
549 | 549 |
protected: |
550 | 550 |
|
551 | 551 |
virtual void add(const Node& node) { |
552 | 552 |
snapshot.addNode(node); |
553 | 553 |
} |
554 | 554 |
virtual void add(const std::vector<Node>& nodes) { |
555 | 555 |
for (int i = nodes.size() - 1; i >= 0; ++i) { |
556 | 556 |
snapshot.addNode(nodes[i]); |
557 | 557 |
} |
558 | 558 |
} |
559 | 559 |
virtual void erase(const Node& node) { |
560 | 560 |
snapshot.eraseNode(node); |
561 | 561 |
} |
562 | 562 |
virtual void erase(const std::vector<Node>& nodes) { |
563 | 563 |
for (int i = 0; i < int(nodes.size()); ++i) { |
564 | 564 |
snapshot.eraseNode(nodes[i]); |
565 | 565 |
} |
566 | 566 |
} |
567 | 567 |
virtual void build() { |
568 | 568 |
Node node; |
569 | 569 |
std::vector<Node> nodes; |
570 | 570 |
for (notifier()->first(node); node != INVALID; |
571 | 571 |
notifier()->next(node)) { |
572 | 572 |
nodes.push_back(node); |
573 | 573 |
} |
574 | 574 |
for (int i = nodes.size() - 1; i >= 0; --i) { |
575 | 575 |
snapshot.addNode(nodes[i]); |
576 | 576 |
} |
577 | 577 |
} |
578 | 578 |
virtual void clear() { |
579 | 579 |
Node node; |
580 | 580 |
for (notifier()->first(node); node != INVALID; |
581 | 581 |
notifier()->next(node)) { |
582 | 582 |
snapshot.eraseNode(node); |
583 | 583 |
} |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
Snapshot& snapshot; |
587 | 587 |
}; |
588 | 588 |
|
589 | 589 |
class ArcObserverProxy : public ArcNotifier::ObserverBase { |
590 | 590 |
public: |
591 | 591 |
|
592 | 592 |
ArcObserverProxy(Snapshot& _snapshot) |
593 | 593 |
: snapshot(_snapshot) {} |
594 | 594 |
|
595 | 595 |
using ArcNotifier::ObserverBase::attach; |
596 | 596 |
using ArcNotifier::ObserverBase::detach; |
597 | 597 |
using ArcNotifier::ObserverBase::attached; |
598 | 598 |
|
599 | 599 |
protected: |
600 | 600 |
|
601 | 601 |
virtual void add(const Arc& arc) { |
602 | 602 |
snapshot.addArc(arc); |
603 | 603 |
} |
604 | 604 |
virtual void add(const std::vector<Arc>& arcs) { |
605 | 605 |
for (int i = arcs.size() - 1; i >= 0; ++i) { |
606 | 606 |
snapshot.addArc(arcs[i]); |
607 | 607 |
} |
608 | 608 |
} |
609 | 609 |
virtual void erase(const Arc& arc) { |
610 | 610 |
snapshot.eraseArc(arc); |
611 | 611 |
} |
612 | 612 |
virtual void erase(const std::vector<Arc>& arcs) { |
613 | 613 |
for (int i = 0; i < int(arcs.size()); ++i) { |
614 | 614 |
snapshot.eraseArc(arcs[i]); |
615 | 615 |
} |
616 | 616 |
} |
617 | 617 |
virtual void build() { |
618 | 618 |
Arc arc; |
619 | 619 |
std::vector<Arc> arcs; |
620 | 620 |
for (notifier()->first(arc); arc != INVALID; |
621 | 621 |
notifier()->next(arc)) { |
622 | 622 |
arcs.push_back(arc); |
623 | 623 |
} |
624 | 624 |
for (int i = arcs.size() - 1; i >= 0; --i) { |
625 | 625 |
snapshot.addArc(arcs[i]); |
626 | 626 |
} |
627 | 627 |
} |
628 | 628 |
virtual void clear() { |
629 | 629 |
Arc arc; |
630 | 630 |
for (notifier()->first(arc); arc != INVALID; |
631 | 631 |
notifier()->next(arc)) { |
632 | 632 |
snapshot.eraseArc(arc); |
633 | 633 |
} |
634 | 634 |
} |
635 | 635 |
|
636 | 636 |
Snapshot& snapshot; |
637 | 637 |
}; |
638 | 638 |
|
639 | 639 |
ListDigraph *digraph; |
640 | 640 |
|
641 | 641 |
NodeObserverProxy node_observer_proxy; |
642 | 642 |
ArcObserverProxy arc_observer_proxy; |
643 | 643 |
|
644 | 644 |
std::list<Node> added_nodes; |
645 | 645 |
std::list<Arc> added_arcs; |
646 | 646 |
|
647 | 647 |
|
648 | 648 |
void addNode(const Node& node) { |
649 | 649 |
added_nodes.push_front(node); |
650 | 650 |
} |
651 | 651 |
void eraseNode(const Node& node) { |
652 | 652 |
std::list<Node>::iterator it = |
653 | 653 |
std::find(added_nodes.begin(), added_nodes.end(), node); |
654 | 654 |
if (it == added_nodes.end()) { |
655 | 655 |
clear(); |
656 | 656 |
arc_observer_proxy.detach(); |
657 | 657 |
throw NodeNotifier::ImmediateDetach(); |
658 | 658 |
} else { |
659 | 659 |
added_nodes.erase(it); |
660 | 660 |
} |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
void addArc(const Arc& arc) { |
664 | 664 |
added_arcs.push_front(arc); |
665 | 665 |
} |
666 | 666 |
void eraseArc(const Arc& arc) { |
667 | 667 |
std::list<Arc>::iterator it = |
668 | 668 |
std::find(added_arcs.begin(), added_arcs.end(), arc); |
669 | 669 |
if (it == added_arcs.end()) { |
670 | 670 |
clear(); |
671 | 671 |
node_observer_proxy.detach(); |
672 | 672 |
throw ArcNotifier::ImmediateDetach(); |
673 | 673 |
} else { |
674 | 674 |
added_arcs.erase(it); |
675 | 675 |
} |
676 | 676 |
} |
677 | 677 |
|
678 | 678 |
void attach(ListDigraph &_digraph) { |
679 | 679 |
digraph = &_digraph; |
680 | 680 |
node_observer_proxy.attach(digraph->notifier(Node())); |
681 | 681 |
arc_observer_proxy.attach(digraph->notifier(Arc())); |
682 | 682 |
} |
683 | 683 |
|
684 | 684 |
void detach() { |
685 | 685 |
node_observer_proxy.detach(); |
686 | 686 |
arc_observer_proxy.detach(); |
687 | 687 |
} |
688 | 688 |
|
689 | 689 |
bool attached() const { |
690 | 690 |
return node_observer_proxy.attached(); |
691 | 691 |
} |
692 | 692 |
|
693 | 693 |
void clear() { |
694 | 694 |
added_nodes.clear(); |
695 | 695 |
added_arcs.clear(); |
696 | 696 |
} |
697 | 697 |
|
698 | 698 |
public: |
699 | 699 |
|
700 | 700 |
/// \brief Default constructor. |
701 | 701 |
/// |
702 | 702 |
/// Default constructor. |
703 | 703 |
/// To actually make a snapshot you must call save(). |
704 | 704 |
Snapshot() |
705 | 705 |
: digraph(0), node_observer_proxy(*this), |
706 | 706 |
arc_observer_proxy(*this) {} |
707 | 707 |
|
708 | 708 |
/// \brief Constructor that immediately makes a snapshot. |
709 | 709 |
/// |
710 | 710 |
/// This constructor immediately makes a snapshot of the digraph. |
711 | 711 |
/// \param _digraph The digraph we make a snapshot of. |
712 | 712 |
Snapshot(ListDigraph &_digraph) |
713 | 713 |
: node_observer_proxy(*this), |
714 | 714 |
arc_observer_proxy(*this) { |
715 | 715 |
attach(_digraph); |
716 | 716 |
} |
717 | 717 |
|
718 | 718 |
/// \brief Make a snapshot. |
719 | 719 |
/// |
720 | 720 |
/// Make a snapshot of the digraph. |
721 | 721 |
/// |
722 | 722 |
/// This function can be called more than once. In case of a repeated |
723 | 723 |
/// call, the previous snapshot gets lost. |
724 | 724 |
/// \param _digraph The digraph we make the snapshot of. |
725 | 725 |
void save(ListDigraph &_digraph) { |
726 | 726 |
if (attached()) { |
727 | 727 |
detach(); |
728 | 728 |
clear(); |
729 | 729 |
} |
730 | 730 |
attach(_digraph); |
731 | 731 |
} |
732 | 732 |
|
733 | 733 |
/// \brief Undo the changes until the last snapshot. |
734 | 734 |
// |
735 | 735 |
/// Undo the changes until the last snapshot created by save(). |
736 | 736 |
void restore() { |
737 | 737 |
detach(); |
738 | 738 |
for(std::list<Arc>::iterator it = added_arcs.begin(); |
739 | 739 |
it != added_arcs.end(); ++it) { |
740 | 740 |
digraph->erase(*it); |
741 | 741 |
} |
742 | 742 |
for(std::list<Node>::iterator it = added_nodes.begin(); |
743 | 743 |
it != added_nodes.end(); ++it) { |
744 | 744 |
digraph->erase(*it); |
745 | 745 |
} |
746 | 746 |
clear(); |
747 | 747 |
} |
748 | 748 |
|
749 | 749 |
/// \brief Gives back true when the snapshot is valid. |
750 | 750 |
/// |
751 | 751 |
/// Gives back true when the snapshot is valid. |
752 | 752 |
bool valid() const { |
753 | 753 |
return attached(); |
754 | 754 |
} |
755 | 755 |
}; |
756 | 756 |
|
757 | 757 |
}; |
758 | 758 |
|
759 | 759 |
///@} |
760 | 760 |
|
761 | 761 |
class ListGraphBase { |
762 | 762 |
|
763 | 763 |
protected: |
764 | 764 |
|
765 | 765 |
struct NodeT { |
766 | 766 |
int first_out; |
767 | 767 |
int prev, next; |
768 | 768 |
}; |
769 | 769 |
|
770 | 770 |
struct ArcT { |
771 | 771 |
int target; |
772 | 772 |
int prev_out, next_out; |
773 | 773 |
}; |
774 | 774 |
|
775 | 775 |
std::vector<NodeT> nodes; |
776 | 776 |
|
777 | 777 |
int first_node; |
778 | 778 |
|
779 | 779 |
int first_free_node; |
780 | 780 |
|
781 | 781 |
std::vector<ArcT> arcs; |
782 | 782 |
|
783 | 783 |
int first_free_arc; |
784 | 784 |
|
785 | 785 |
public: |
786 | 786 |
|
787 | 787 |
typedef ListGraphBase Digraph; |
788 | 788 |
|
789 | 789 |
class Node; |
790 | 790 |
class Arc; |
791 | 791 |
class Edge; |
792 | 792 |
|
793 | 793 |
class Node { |
794 | 794 |
friend class ListGraphBase; |
795 | 795 |
protected: |
796 | 796 |
|
797 | 797 |
int id; |
798 | 798 |
explicit Node(int pid) { id = pid;} |
799 | 799 |
|
800 | 800 |
public: |
801 | 801 |
Node() {} |
802 | 802 |
Node (Invalid) { id = -1; } |
803 | 803 |
bool operator==(const Node& node) const {return id == node.id;} |
804 | 804 |
bool operator!=(const Node& node) const {return id != node.id;} |
805 | 805 |
bool operator<(const Node& node) const {return id < node.id;} |
806 | 806 |
}; |
807 | 807 |
|
808 | 808 |
class Edge { |
809 | 809 |
friend class ListGraphBase; |
810 | 810 |
protected: |
811 | 811 |
|
812 | 812 |
int id; |
813 | 813 |
explicit Edge(int pid) { id = pid;} |
814 | 814 |
|
815 | 815 |
public: |
816 | 816 |
Edge() {} |
817 | 817 |
Edge (Invalid) { id = -1; } |
818 | 818 |
bool operator==(const Edge& edge) const {return id == edge.id;} |
819 | 819 |
bool operator!=(const Edge& edge) const {return id != edge.id;} |
820 | 820 |
bool operator<(const Edge& edge) const {return id < edge.id;} |
821 | 821 |
}; |
822 | 822 |
|
823 | 823 |
class Arc { |
824 | 824 |
friend class ListGraphBase; |
825 | 825 |
protected: |
826 | 826 |
|
827 | 827 |
int id; |
828 | 828 |
explicit Arc(int pid) { id = pid;} |
829 | 829 |
|
830 | 830 |
public: |
831 | 831 |
operator Edge() const { return edgeFromId(id / 2); } |
832 | 832 |
|
833 | 833 |
Arc() {} |
834 | 834 |
Arc (Invalid) { id = -1; } |
835 | 835 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
836 | 836 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
837 | 837 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
838 | 838 |
}; |
839 | 839 |
|
840 | 840 |
|
841 | 841 |
|
842 | 842 |
ListGraphBase() |
843 | 843 |
: nodes(), first_node(-1), |
844 | 844 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
845 | 845 |
|
846 | 846 |
|
847 | 847 |
int maxNodeId() const { return nodes.size()-1; } |
848 | 848 |
int maxEdgeId() const { return arcs.size() / 2 - 1; } |
849 | 849 |
int maxArcId() const { return arcs.size()-1; } |
850 | 850 |
|
851 | 851 |
Node source(Arc e) const { return Node(arcs[e.id ^ 1].target); } |
852 | 852 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
853 | 853 |
|
854 | 854 |
Node u(Edge e) const { return Node(arcs[2 * e.id].target); } |
855 | 855 |
Node v(Edge e) const { return Node(arcs[2 * e.id + 1].target); } |
856 | 856 |
|
857 | 857 |
static bool direction(Arc e) { |
858 | 858 |
return (e.id & 1) == 1; |
859 | 859 |
} |
860 | 860 |
|
861 | 861 |
static Arc direct(Edge e, bool d) { |
862 | 862 |
return Arc(e.id * 2 + (d ? 1 : 0)); |
863 | 863 |
} |
864 | 864 |
|
865 | 865 |
void first(Node& node) const { |
866 | 866 |
node.id = first_node; |
867 | 867 |
} |
868 | 868 |
|
869 | 869 |
void next(Node& node) const { |
870 | 870 |
node.id = nodes[node.id].next; |
871 | 871 |
} |
872 | 872 |
|
873 | 873 |
void first(Arc& e) const { |
874 | 874 |
int n = first_node; |
875 | 875 |
while (n != -1 && nodes[n].first_out == -1) { |
876 | 876 |
n = nodes[n].next; |
877 | 877 |
} |
878 | 878 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
879 | 879 |
} |
880 | 880 |
|
881 | 881 |
void next(Arc& e) const { |
882 | 882 |
if (arcs[e.id].next_out != -1) { |
883 | 883 |
e.id = arcs[e.id].next_out; |
884 | 884 |
} else { |
885 | 885 |
int n = nodes[arcs[e.id ^ 1].target].next; |
886 | 886 |
while(n != -1 && nodes[n].first_out == -1) { |
887 | 887 |
n = nodes[n].next; |
888 | 888 |
} |
889 | 889 |
e.id = (n == -1) ? -1 : nodes[n].first_out; |
890 | 890 |
} |
891 | 891 |
} |
892 | 892 |
|
893 | 893 |
void first(Edge& e) const { |
894 | 894 |
int n = first_node; |
895 | 895 |
while (n != -1) { |
896 | 896 |
e.id = nodes[n].first_out; |
897 | 897 |
while ((e.id & 1) != 1) { |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TEST_TEST_TOOLS_H |
20 | 20 |
#define LEMON_TEST_TEST_TOOLS_H |
21 | 21 |
|
22 | 22 |
///\ingroup misc |
23 | 23 |
///\file |
24 | 24 |
///\brief Some utilities to write test programs. |
25 | 25 |
|
26 | 26 |
#include <iostream> |
27 |
#include <stdlib.h> |
|
27 | 28 |
|
28 | 29 |
///If \c rc is fail, writes an error message and exits. |
29 | 30 |
|
30 | 31 |
///If \c rc is fail, writes an error message and exits. |
31 | 32 |
///The error message contains the file name and the line number of the |
32 | 33 |
///source code in a standard from, which makes it possible to go there |
33 | 34 |
///using good source browsers like e.g. \c emacs. |
34 | 35 |
/// |
35 | 36 |
///For example |
36 | 37 |
///\code check(0==1,"This is obviously false.");\endcode will |
37 | 38 |
///print something like this (and then exits). |
38 | 39 |
///\verbatim file_name.cc:123: error: This is obviously false. \endverbatim |
39 |
/// |
|
40 |
///\todo It should be in \c assert.h |
|
41 | 40 |
#define check(rc, msg) \ |
42 | 41 |
if(!(rc)) { \ |
43 | 42 |
std::cerr << __FILE__ ":" << __LINE__ << ": error: " << msg << std::endl; \ |
44 | 43 |
abort(); \ |
45 | 44 |
} else { } \ |
46 | 45 |
|
47 | 46 |
#endif |
0 comments (0 inline)