gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Doc improvements for kruskal()
0 1 0
default
1 file changed with 23 insertions and 19 deletions:
↑ Collapse diff ↑
Ignore white space 64 line context
... ...
@@ -3,67 +3,67 @@
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_KRUSKAL_H
20 20
#define LEMON_KRUSKAL_H
21 21

	
22 22
#include <algorithm>
23 23
#include <vector>
24 24
#include <lemon/unionfind.h>
25 25
// #include <lemon/graph_utils.h>
26 26
#include <lemon/maps.h>
27 27

	
28 28
// #include <lemon/radix_sort.h>
29 29

	
30 30
#include <lemon/bits/utility.h>
31 31
#include <lemon/bits/traits.h>
32 32

	
33 33
///\ingroup spantree
34 34
///\file
35
///\brief Kruskal's algorithm to compute a minimum cost tree
35
///\brief Kruskal's algorithm to compute a minimum cost spanning tree
36 36
///
37
///Kruskal's algorithm to compute a minimum cost tree.
37
///Kruskal's algorithm to compute a minimum cost spanning tree.
38 38
///
39 39

	
40 40
namespace lemon {
41 41

	
42 42
  namespace _kruskal_bits {
43 43

	
44 44
    // Kruskal for directed graphs.
45 45

	
46 46
    template <typename Digraph, typename In, typename Out>
47 47
    typename disable_if<lemon::UndirectedTagIndicator<Digraph>,
48 48
		       typename In::value_type::second_type >::type
49 49
    kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) {
50 50
      typedef typename In::value_type::second_type Value;
51 51
      typedef typename Digraph::template NodeMap<int> IndexMap;
52 52
      typedef typename Digraph::Node Node;
53 53
      
54 54
      IndexMap index(digraph);
55 55
      UnionFind<IndexMap> uf(index);
56 56
      for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) {
57 57
        uf.insert(it);
58 58
      }
59 59
      
60 60
      Value tree_value = 0;
61 61
      for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) {
62 62
        if (uf.join(digraph.target(it->first),digraph.source(it->first))) {
63 63
          out.set(it->first, true);
64 64
          tree_value += it->second;
65 65
        }
66 66
        else {
67 67
          out.set(it->first, false);
68 68
        }
69 69
      }
... ...
@@ -222,108 +222,112 @@
222 222
      typedef T type;
223 223
    };
224 224

	
225 225
    template <typename Graph, typename In, typename Out>
226 226
    struct KruskalOutputSelector<Graph, In, Out,
227 227
      typename enable_if<SequenceOutputIndicator<Out>, void>::type > 
228 228
    {
229 229
      typedef typename In::value_type::second_type Value;
230 230

	
231 231
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
232 232
        typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map;
233 233
        Map map(out);
234 234
        return _kruskal_bits::kruskal(graph, in, map);
235 235
      }
236 236

	
237 237
    };
238 238

	
239 239
    template <typename Graph, typename In, typename Out>
240 240
    struct KruskalOutputSelector<Graph, In, Out,
241 241
      typename enable_if<MapOutputIndicator<Out>, void>::type > 
242 242
    {
243 243
      typedef typename In::value_type::second_type Value;
244 244

	
245 245
      static Value kruskal(const Graph& graph, const In& in, Out& out) {
246 246
        return _kruskal_bits::kruskal(graph, in, out);
247 247
      }
248 248
    };
249 249

	
250 250
  }
251 251

	
252 252
  /// \ingroup spantree
253 253
  ///
254
  /// \brief Kruskal's algorithm to find a minimum cost tree of a graph.
254
  /// \brief Kruskal algorithm to find a minimum cost spanning tree of
255
  /// a graph.
255 256
  ///
256
  /// This function runs Kruskal's algorithm to find a minimum cost tree.
257
  /// This function runs Kruskal's algorithm to find a minimum cost 
258
  /// spanning tree.
257 259
  /// Due to some C++ hacking, it accepts various input and output types.
258 260
  ///
259 261
  /// \param g The graph the algorithm runs on.
260 262
  /// It can be either \ref concepts::Digraph "directed" or 
261 263
  /// \ref concepts::Graph "undirected".
262 264
  /// If the graph is directed, the algorithm consider it to be 
263 265
  /// undirected by disregarding the direction of the arcs.
264 266
  ///
265
  /// \param in This object is used to describe the arc costs. It can be one
266
  /// of the following choices.
267
  /// \param in This object is used to describe the arc/edge costs. 
268
  /// It can be one of the following choices.
267 269
  /// - An STL compatible 'Forward Container' with
268
  /// <tt>std::pair<GR::Edge,X></tt> or
269
  /// <tt>std::pair<GR::Arc,X></tt> as its <tt>value_type</tt>, where
270
  /// \c X is the type of the costs. The pairs indicates the arcs
270
  /// <tt>std::pair<GR::Arc,X></tt> or
271
  /// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where
272
  /// \c X is the type of the costs. The pairs indicates the arcs/edges
271 273
  /// along with the assigned cost. <em>They must be in a
272 274
  /// cost-ascending order.</em>
273
  /// - Any readable Arc map. The values of the map indicate the arc costs.
275
  /// - Any readable arc/edge map. The values of the map indicate the 
276
  /// arc/edge costs.
274 277
  ///
275
  /// \retval out Here we also have a choise.
276
  /// - It can be a writable \c bool arc map.  After running the
277
  /// algorithm this will contain the found minimum cost spanning
278
  /// tree: the value of an arc will be set to \c true if it belongs
278
  /// \retval out Here we also have a choice.
279
  /// - It can be a writable \c bool arc/edge map. After running the
280
  /// algorithm it will contain the found minimum cost spanning
281
  /// tree: the value of an arc/edge will be set to \c true if it belongs
279 282
  /// to the tree, otherwise it will be set to \c false. The value of
280
  /// each arc will be set exactly once.
283
  /// each arc/edge will be set exactly once.
281 284
  /// - It can also be an iteraror of an STL Container with
282
  /// <tt>GR::Edge</tt> or <tt>GR::Arc</tt> as its
285
  /// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its
283 286
  /// <tt>value_type</tt>.  The algorithm copies the elements of the
284 287
  /// found tree into this sequence.  For example, if we know that the
285 288
  /// spanning tree of the graph \c g has say 53 arcs, then we can
286 289
  /// put its arcs into an STL vector \c tree with a code like this.
287 290
  ///\code
288 291
  /// std::vector<Arc> tree(53);
289 292
  /// kruskal(g,cost,tree.begin());
290 293
  ///\endcode
291 294
  /// Or if we don't know in advance the size of the tree, we can
292 295
  /// write this.  
293
  ///\code std::vector<Arc> tree;
296
  ///\code
297
  /// std::vector<Arc> tree;
294 298
  /// kruskal(g,cost,std::back_inserter(tree)); 
295 299
  ///\endcode
296 300
  ///
297
  /// \return The total cost of the found tree.
301
  /// \return The total cost of the found spanning tree.
298 302
  ///
299
  /// \warning If kruskal runs on an be consistent of using the same
303
  /// \warning If Kruskal runs on an be consistent of using the same
300 304
  /// Arc type for input and output.
301 305
  ///
302 306

	
303 307
#ifdef DOXYGEN
304 308
  template <class Graph, class In, class Out>
305 309
  Value kruskal(GR const& g, const In& in, Out& out)
306 310
#else 
307 311
  template <class Graph, class In, class Out>
308 312
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value 
309 313
  kruskal(const Graph& graph, const In& in, Out& out) 
310 314
#endif
311 315
  {
312 316
    return _kruskal_bits::KruskalInputSelector<Graph, In, Out>::
313 317
      kruskal(graph, in, out);
314 318
  }
315 319

	
316 320
 
317 321
  
318 322

	
319 323
  template <class Graph, class In, class Out>
320 324
  inline typename _kruskal_bits::KruskalValueSelector<In>::Value
321 325
  kruskal(const Graph& graph, const In& in, const Out& out)
322 326
  {
323 327
    return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>::
324 328
      kruskal(graph, in, out);
325 329
  }  
326 330

	
327 331
} //namespace lemon
328 332

	
329 333
#endif //LEMON_KRUSKAL_H
0 comments (0 inline)