... | ... |
@@ -3,67 +3,67 @@ |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_KRUSKAL_H |
20 | 20 |
#define LEMON_KRUSKAL_H |
21 | 21 |
|
22 | 22 |
#include <algorithm> |
23 | 23 |
#include <vector> |
24 | 24 |
#include <lemon/unionfind.h> |
25 | 25 |
// #include <lemon/graph_utils.h> |
26 | 26 |
#include <lemon/maps.h> |
27 | 27 |
|
28 | 28 |
// #include <lemon/radix_sort.h> |
29 | 29 |
|
30 | 30 |
#include <lemon/bits/utility.h> |
31 | 31 |
#include <lemon/bits/traits.h> |
32 | 32 |
|
33 | 33 |
///\ingroup spantree |
34 | 34 |
///\file |
35 |
///\brief Kruskal's algorithm to compute a minimum cost tree |
|
35 |
///\brief Kruskal's algorithm to compute a minimum cost spanning tree |
|
36 | 36 |
/// |
37 |
///Kruskal's algorithm to compute a minimum cost tree. |
|
37 |
///Kruskal's algorithm to compute a minimum cost spanning tree. |
|
38 | 38 |
/// |
39 | 39 |
|
40 | 40 |
namespace lemon { |
41 | 41 |
|
42 | 42 |
namespace _kruskal_bits { |
43 | 43 |
|
44 | 44 |
// Kruskal for directed graphs. |
45 | 45 |
|
46 | 46 |
template <typename Digraph, typename In, typename Out> |
47 | 47 |
typename disable_if<lemon::UndirectedTagIndicator<Digraph>, |
48 | 48 |
typename In::value_type::second_type >::type |
49 | 49 |
kruskal(const Digraph& digraph, const In& in, Out& out,dummy<0> = 0) { |
50 | 50 |
typedef typename In::value_type::second_type Value; |
51 | 51 |
typedef typename Digraph::template NodeMap<int> IndexMap; |
52 | 52 |
typedef typename Digraph::Node Node; |
53 | 53 |
|
54 | 54 |
IndexMap index(digraph); |
55 | 55 |
UnionFind<IndexMap> uf(index); |
56 | 56 |
for (typename Digraph::NodeIt it(digraph); it != INVALID; ++it) { |
57 | 57 |
uf.insert(it); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
Value tree_value = 0; |
61 | 61 |
for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { |
62 | 62 |
if (uf.join(digraph.target(it->first),digraph.source(it->first))) { |
63 | 63 |
out.set(it->first, true); |
64 | 64 |
tree_value += it->second; |
65 | 65 |
} |
66 | 66 |
else { |
67 | 67 |
out.set(it->first, false); |
68 | 68 |
} |
69 | 69 |
} |
... | ... |
@@ -222,108 +222,112 @@ |
222 | 222 |
typedef T type; |
223 | 223 |
}; |
224 | 224 |
|
225 | 225 |
template <typename Graph, typename In, typename Out> |
226 | 226 |
struct KruskalOutputSelector<Graph, In, Out, |
227 | 227 |
typename enable_if<SequenceOutputIndicator<Out>, void>::type > |
228 | 228 |
{ |
229 | 229 |
typedef typename In::value_type::second_type Value; |
230 | 230 |
|
231 | 231 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
232 | 232 |
typedef LoggerBoolMap<typename RemoveConst<Out>::type> Map; |
233 | 233 |
Map map(out); |
234 | 234 |
return _kruskal_bits::kruskal(graph, in, map); |
235 | 235 |
} |
236 | 236 |
|
237 | 237 |
}; |
238 | 238 |
|
239 | 239 |
template <typename Graph, typename In, typename Out> |
240 | 240 |
struct KruskalOutputSelector<Graph, In, Out, |
241 | 241 |
typename enable_if<MapOutputIndicator<Out>, void>::type > |
242 | 242 |
{ |
243 | 243 |
typedef typename In::value_type::second_type Value; |
244 | 244 |
|
245 | 245 |
static Value kruskal(const Graph& graph, const In& in, Out& out) { |
246 | 246 |
return _kruskal_bits::kruskal(graph, in, out); |
247 | 247 |
} |
248 | 248 |
}; |
249 | 249 |
|
250 | 250 |
} |
251 | 251 |
|
252 | 252 |
/// \ingroup spantree |
253 | 253 |
/// |
254 |
/// \brief Kruskal |
|
254 |
/// \brief Kruskal algorithm to find a minimum cost spanning tree of |
|
255 |
/// a graph. |
|
255 | 256 |
/// |
256 |
/// This function runs Kruskal's algorithm to find a minimum cost |
|
257 |
/// This function runs Kruskal's algorithm to find a minimum cost |
|
258 |
/// spanning tree. |
|
257 | 259 |
/// Due to some C++ hacking, it accepts various input and output types. |
258 | 260 |
/// |
259 | 261 |
/// \param g The graph the algorithm runs on. |
260 | 262 |
/// It can be either \ref concepts::Digraph "directed" or |
261 | 263 |
/// \ref concepts::Graph "undirected". |
262 | 264 |
/// If the graph is directed, the algorithm consider it to be |
263 | 265 |
/// undirected by disregarding the direction of the arcs. |
264 | 266 |
/// |
265 |
/// \param in This object is used to describe the arc costs. It can be one |
|
266 |
/// of the following choices. |
|
267 |
/// \param in This object is used to describe the arc/edge costs. |
|
268 |
/// It can be one of the following choices. |
|
267 | 269 |
/// - An STL compatible 'Forward Container' with |
268 |
/// <tt>std::pair<GR::Edge,X></tt> or |
|
269 |
/// <tt>std::pair<GR::Arc,X></tt> as its <tt>value_type</tt>, where |
|
270 |
/// |
|
270 |
/// <tt>std::pair<GR::Arc,X></tt> or |
|
271 |
/// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where |
|
272 |
/// \c X is the type of the costs. The pairs indicates the arcs/edges |
|
271 | 273 |
/// along with the assigned cost. <em>They must be in a |
272 | 274 |
/// cost-ascending order.</em> |
273 |
/// - Any readable |
|
275 |
/// - Any readable arc/edge map. The values of the map indicate the |
|
276 |
/// arc/edge costs. |
|
274 | 277 |
/// |
275 |
/// \retval out Here we also have a choise. |
|
276 |
/// - It can be a writable \c bool arc map. After running the |
|
277 |
/// algorithm this will contain the found minimum cost spanning |
|
278 |
/// tree: the value of an arc will be set to \c true if it belongs |
|
278 |
/// \retval out Here we also have a choice. |
|
279 |
/// - It can be a writable \c bool arc/edge map. After running the |
|
280 |
/// algorithm it will contain the found minimum cost spanning |
|
281 |
/// tree: the value of an arc/edge will be set to \c true if it belongs |
|
279 | 282 |
/// to the tree, otherwise it will be set to \c false. The value of |
280 |
/// each arc will be set exactly once. |
|
283 |
/// each arc/edge will be set exactly once. |
|
281 | 284 |
/// - It can also be an iteraror of an STL Container with |
282 |
/// <tt>GR:: |
|
285 |
/// <tt>GR::Arc</tt> or <tt>GR::Edge</tt> as its |
|
283 | 286 |
/// <tt>value_type</tt>. The algorithm copies the elements of the |
284 | 287 |
/// found tree into this sequence. For example, if we know that the |
285 | 288 |
/// spanning tree of the graph \c g has say 53 arcs, then we can |
286 | 289 |
/// put its arcs into an STL vector \c tree with a code like this. |
287 | 290 |
///\code |
288 | 291 |
/// std::vector<Arc> tree(53); |
289 | 292 |
/// kruskal(g,cost,tree.begin()); |
290 | 293 |
///\endcode |
291 | 294 |
/// Or if we don't know in advance the size of the tree, we can |
292 | 295 |
/// write this. |
293 |
///\code |
|
296 |
///\code |
|
297 |
/// std::vector<Arc> tree; |
|
294 | 298 |
/// kruskal(g,cost,std::back_inserter(tree)); |
295 | 299 |
///\endcode |
296 | 300 |
/// |
297 |
/// \return The total cost of the found tree. |
|
301 |
/// \return The total cost of the found spanning tree. |
|
298 | 302 |
/// |
299 |
/// \warning If |
|
303 |
/// \warning If Kruskal runs on an be consistent of using the same |
|
300 | 304 |
/// Arc type for input and output. |
301 | 305 |
/// |
302 | 306 |
|
303 | 307 |
#ifdef DOXYGEN |
304 | 308 |
template <class Graph, class In, class Out> |
305 | 309 |
Value kruskal(GR const& g, const In& in, Out& out) |
306 | 310 |
#else |
307 | 311 |
template <class Graph, class In, class Out> |
308 | 312 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
309 | 313 |
kruskal(const Graph& graph, const In& in, Out& out) |
310 | 314 |
#endif |
311 | 315 |
{ |
312 | 316 |
return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
313 | 317 |
kruskal(graph, in, out); |
314 | 318 |
} |
315 | 319 |
|
316 | 320 |
|
317 | 321 |
|
318 | 322 |
|
319 | 323 |
template <class Graph, class In, class Out> |
320 | 324 |
inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
321 | 325 |
kruskal(const Graph& graph, const In& in, const Out& out) |
322 | 326 |
{ |
323 | 327 |
return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>:: |
324 | 328 |
kruskal(graph, in, out); |
325 | 329 |
} |
326 | 330 |
|
327 | 331 |
} //namespace lemon |
328 | 332 |
|
329 | 333 |
#endif //LEMON_KRUSKAL_H |
0 comments (0 inline)