gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Rename Flow to Value in the flow algorithms (#266) We agreed that using Flow for the value type is misleading, since a flow should be rather a function on the arcs, not a single value. This patch reverts the changes of [dacc2cee2b4c] for Preflow and Circulation.
0 3 0
default
3 files changed with 73 insertions and 73 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
... ...
@@ -61,21 +61,21 @@
61 61
    ///
62 62
    /// The type of the map that stores the signed supply values of the 
63 63
    /// nodes. 
64 64
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
65 65
    typedef SM SupplyMap;
66 66

	
67
    /// \brief The type of the flow values.
68
    typedef typename SupplyMap::Value Flow;
67
    /// \brief The type of the flow and supply values.
68
    typedef typename SupplyMap::Value Value;
69 69

	
70 70
    /// \brief The type of the map that stores the flow values.
71 71
    ///
72 72
    /// The type of the map that stores the flow values.
73 73
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
74 74
    /// concept.
75
    typedef typename Digraph::template ArcMap<Flow> FlowMap;
75
    typedef typename Digraph::template ArcMap<Value> FlowMap;
76 76

	
77 77
    /// \brief Instantiates a FlowMap.
78 78
    ///
79 79
    /// This function instantiates a \ref FlowMap.
80 80
    /// \param digraph The digraph for which we would like to define
81 81
    /// the flow map.
... ...
@@ -101,13 +101,13 @@
101 101
      return new Elevator(digraph, max_level);
102 102
    }
103 103

	
104 104
    /// \brief The tolerance used by the algorithm
105 105
    ///
106 106
    /// The tolerance used by the algorithm to handle inexact computation.
107
    typedef lemon::Tolerance<Flow> Tolerance;
107
    typedef lemon::Tolerance<Value> Tolerance;
108 108

	
109 109
  };
110 110

	
111 111
  /**
112 112
     \brief Push-relabel algorithm for the network circulation problem.
113 113

	
... ...
@@ -184,14 +184,14 @@
184 184
  public:
185 185

	
186 186
    ///The \ref CirculationDefaultTraits "traits class" of the algorithm.
187 187
    typedef TR Traits;
188 188
    ///The type of the digraph the algorithm runs on.
189 189
    typedef typename Traits::Digraph Digraph;
190
    ///The type of the flow values.
191
    typedef typename Traits::Flow Flow;
190
    ///The type of the flow and supply values.
191
    typedef typename Traits::Value Value;
192 192

	
193 193
    ///The type of the lower bound map.
194 194
    typedef typename Traits::LowerMap LowerMap;
195 195
    ///The type of the upper bound (capacity) map.
196 196
    typedef typename Traits::UpperMap UpperMap;
197 197
    ///The type of the supply map.
... ...
@@ -218,13 +218,13 @@
218 218
    FlowMap *_flow;
219 219
    bool _local_flow;
220 220

	
221 221
    Elevator* _level;
222 222
    bool _local_level;
223 223

	
224
    typedef typename Digraph::template NodeMap<Flow> ExcessMap;
224
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
225 225
    ExcessMap* _excess;
226 226

	
227 227
    Tolerance _tol;
228 228
    int _el;
229 229

	
230 230
  public:
... ...
@@ -527,13 +527,13 @@
527 527
          (*_excess)[_g.source(e)] -= (*_up)[e];
528 528
        } else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) {
529 529
          _flow->set(e, (*_lo)[e]);
530 530
          (*_excess)[_g.target(e)] += (*_lo)[e];
531 531
          (*_excess)[_g.source(e)] -= (*_lo)[e];
532 532
        } else {
533
          Flow fc = -(*_excess)[_g.target(e)];
533
          Value fc = -(*_excess)[_g.target(e)];
534 534
          _flow->set(e, fc);
535 535
          (*_excess)[_g.target(e)] = 0;
536 536
          (*_excess)[_g.source(e)] -= fc;
537 537
        }
538 538
      }
539 539

	
... ...
@@ -560,17 +560,17 @@
560 560
      Node act;
561 561
      Node bact=INVALID;
562 562
      Node last_activated=INVALID;
563 563
      while((act=_level->highestActive())!=INVALID) {
564 564
        int actlevel=(*_level)[act];
565 565
        int mlevel=_node_num;
566
        Flow exc=(*_excess)[act];
566
        Value exc=(*_excess)[act];
567 567

	
568 568
        for(OutArcIt e(_g,act);e!=INVALID; ++e) {
569 569
          Node v = _g.target(e);
570
          Flow fc=(*_up)[e]-(*_flow)[e];
570
          Value fc=(*_up)[e]-(*_flow)[e];
571 571
          if(!_tol.positive(fc)) continue;
572 572
          if((*_level)[v]<actlevel) {
573 573
            if(!_tol.less(fc, exc)) {
574 574
              _flow->set(e, (*_flow)[e] + exc);
575 575
              (*_excess)[v] += exc;
576 576
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
... ...
@@ -588,13 +588,13 @@
588 588
            }
589 589
          }
590 590
          else if((*_level)[v]<mlevel) mlevel=(*_level)[v];
591 591
        }
592 592
        for(InArcIt e(_g,act);e!=INVALID; ++e) {
593 593
          Node v = _g.source(e);
594
          Flow fc=(*_flow)[e]-(*_lo)[e];
594
          Value fc=(*_flow)[e]-(*_lo)[e];
595 595
          if(!_tol.positive(fc)) continue;
596 596
          if((*_level)[v]<actlevel) {
597 597
            if(!_tol.less(fc, exc)) {
598 598
              _flow->set(e, (*_flow)[e] - exc);
599 599
              (*_excess)[v] += exc;
600 600
              if(!_level->active(v) && _tol.positive((*_excess)[v]))
... ...
@@ -658,19 +658,19 @@
658 658
    /// these functions.\n
659 659
    /// Either \ref run() or \ref start() should be called before
660 660
    /// using them.
661 661

	
662 662
    ///@{
663 663

	
664
    /// \brief Returns the flow on the given arc.
664
    /// \brief Returns the flow value on the given arc.
665 665
    ///
666
    /// Returns the flow on the given arc.
666
    /// Returns the flow value on the given arc.
667 667
    ///
668 668
    /// \pre Either \ref run() or \ref init() must be called before
669 669
    /// using this function.
670
    Flow flow(const Arc& arc) const {
670
    Value flow(const Arc& arc) const {
671 671
      return (*_flow)[arc];
672 672
    }
673 673

	
674 674
    /// \brief Returns a const reference to the flow map.
675 675
    ///
676 676
    /// Returns a const reference to the arc map storing the found flow.
... ...
@@ -747,13 +747,13 @@
747 747
    ///
748 748
    bool checkFlow() const {
749 749
      for(ArcIt e(_g);e!=INVALID;++e)
750 750
        if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false;
751 751
      for(NodeIt n(_g);n!=INVALID;++n)
752 752
        {
753
          Flow dif=-(*_supply)[n];
753
          Value dif=-(*_supply)[n];
754 754
          for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e];
755 755
          for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e];
756 756
          if(_tol.negative(dif)) return false;
757 757
        }
758 758
      return true;
759 759
    }
... ...
@@ -762,16 +762,16 @@
762 762

	
763 763
    ///Check whether or not the last execution provides a barrier.
764 764
    ///\sa barrier()
765 765
    ///\sa barrierMap()
766 766
    bool checkBarrier() const
767 767
    {
768
      Flow delta=0;
769
      Flow inf_cap = std::numeric_limits<Flow>::has_infinity ?
770
        std::numeric_limits<Flow>::infinity() :
771
        std::numeric_limits<Flow>::max();
768
      Value delta=0;
769
      Value inf_cap = std::numeric_limits<Value>::has_infinity ?
770
        std::numeric_limits<Value>::infinity() :
771
        std::numeric_limits<Value>::max();
772 772
      for(NodeIt n(_g);n!=INVALID;++n)
773 773
        if(barrier(n))
774 774
          delta-=(*_supply)[n];
775 775
      for(ArcIt e(_g);e!=INVALID;++e)
776 776
        {
777 777
          Node s=_g.source(e);
Ignore white space 6 line context
... ...
@@ -53,40 +53,40 @@
53 53
  /// Most of the parameters of the problem (except for the digraph)
54 54
  /// can be given using separate functions, and the algorithm can be
55 55
  /// executed using the \ref run() function. If some parameters are not
56 56
  /// specified, then default values will be used.
57 57
  ///
58 58
  /// \tparam GR The digraph type the algorithm runs on.
59
  /// \tparam F The value type used for flow amounts, capacity bounds
59
  /// \tparam V The value type used for flow amounts, capacity bounds
60 60
  /// and supply values in the algorithm. By default it is \c int.
61 61
  /// \tparam C The value type used for costs and potentials in the
62
  /// algorithm. By default it is the same as \c F.
62
  /// algorithm. By default it is the same as \c V.
63 63
  ///
64 64
  /// \warning Both value types must be signed and all input data must
65 65
  /// be integer.
66 66
  ///
67 67
  /// \note %NetworkSimplex provides five different pivot rule
68 68
  /// implementations, from which the most efficient one is used
69 69
  /// by default. For more information see \ref PivotRule.
70
  template <typename GR, typename F = int, typename C = F>
70
  template <typename GR, typename V = int, typename C = V>
71 71
  class NetworkSimplex
72 72
  {
73 73
  public:
74 74

	
75 75
    /// The flow type of the algorithm
76
    typedef F Flow;
76
    typedef V Value;
77 77
    /// The cost type of the algorithm
78 78
    typedef C Cost;
79 79
#ifdef DOXYGEN
80 80
    /// The type of the flow map
81
    typedef GR::ArcMap<Flow> FlowMap;
81
    typedef GR::ArcMap<Value> FlowMap;
82 82
    /// The type of the potential map
83 83
    typedef GR::NodeMap<Cost> PotentialMap;
84 84
#else
85 85
    /// The type of the flow map
86
    typedef typename GR::template ArcMap<Flow> FlowMap;
86
    typedef typename GR::template ArcMap<Value> FlowMap;
87 87
    /// The type of the potential map
88 88
    typedef typename GR::template NodeMap<Cost> PotentialMap;
89 89
#endif
90 90

	
91 91
  public:
92 92

	
... ...
@@ -203,21 +203,21 @@
203 203
    };
204 204
    
205 205
  private:
206 206

	
207 207
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
208 208

	
209
    typedef typename GR::template ArcMap<Flow> FlowArcMap;
209
    typedef typename GR::template ArcMap<Value> ValueArcMap;
210 210
    typedef typename GR::template ArcMap<Cost> CostArcMap;
211
    typedef typename GR::template NodeMap<Flow> FlowNodeMap;
211
    typedef typename GR::template NodeMap<Value> ValueNodeMap;
212 212

	
213 213
    typedef std::vector<Arc> ArcVector;
214 214
    typedef std::vector<Node> NodeVector;
215 215
    typedef std::vector<int> IntVector;
216 216
    typedef std::vector<bool> BoolVector;
217
    typedef std::vector<Flow> FlowVector;
217
    typedef std::vector<Value> FlowVector;
218 218
    typedef std::vector<Cost> CostVector;
219 219

	
220 220
    // State constants for arcs
221 221
    enum ArcStateEnum {
222 222
      STATE_UPPER = -1,
223 223
      STATE_TREE  =  0,
... ...
@@ -229,22 +229,22 @@
229 229
    // Data related to the underlying digraph
230 230
    const GR &_graph;
231 231
    int _node_num;
232 232
    int _arc_num;
233 233

	
234 234
    // Parameters of the problem
235
    FlowArcMap *_plower;
236
    FlowArcMap *_pupper;
235
    ValueArcMap *_plower;
236
    ValueArcMap *_pupper;
237 237
    CostArcMap *_pcost;
238
    FlowNodeMap *_psupply;
238
    ValueNodeMap *_psupply;
239 239
    bool _pstsup;
240 240
    Node _psource, _ptarget;
241
    Flow _pstflow;
241
    Value _pstflow;
242 242
    SupplyType _stype;
243 243
    
244
    Flow _sum_supply;
244
    Value _sum_supply;
245 245

	
246 246
    // Result maps
247 247
    FlowMap *_flow_map;
248 248
    PotentialMap *_potential_map;
249 249
    bool _local_flow;
250 250
    bool _local_potential;
... ...
@@ -275,22 +275,22 @@
275 275
    int _root;
276 276

	
277 277
    // Temporary data used in the current pivot iteration
278 278
    int in_arc, join, u_in, v_in, u_out, v_out;
279 279
    int first, second, right, last;
280 280
    int stem, par_stem, new_stem;
281
    Flow delta;
281
    Value delta;
282 282

	
283 283
  public:
284 284
  
285 285
    /// \brief Constant for infinite upper bounds (capacities).
286 286
    ///
287 287
    /// Constant for infinite upper bounds (capacities).
288
    /// It is \c std::numeric_limits<Flow>::infinity() if available,
289
    /// \c std::numeric_limits<Flow>::max() otherwise.
290
    const Flow INF;
288
    /// It is \c std::numeric_limits<Value>::infinity() if available,
289
    /// \c std::numeric_limits<Value>::max() otherwise.
290
    const Value INF;
291 291

	
292 292
  private:
293 293

	
294 294
    // Implementation of the First Eligible pivot rule
295 295
    class FirstEligiblePivotRule
296 296
    {
... ...
@@ -692,18 +692,18 @@
692 692
      _graph(graph),
693 693
      _plower(NULL), _pupper(NULL), _pcost(NULL),
694 694
      _psupply(NULL), _pstsup(false), _stype(GEQ),
695 695
      _flow_map(NULL), _potential_map(NULL),
696 696
      _local_flow(false), _local_potential(false),
697 697
      _node_id(graph),
698
      INF(std::numeric_limits<Flow>::has_infinity ?
699
          std::numeric_limits<Flow>::infinity() :
700
          std::numeric_limits<Flow>::max())
698
      INF(std::numeric_limits<Value>::has_infinity ?
699
          std::numeric_limits<Value>::infinity() :
700
          std::numeric_limits<Value>::max())
701 701
    {
702 702
      // Check the value types
703
      LEMON_ASSERT(std::numeric_limits<Flow>::is_signed,
703
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
704 704
        "The flow type of NetworkSimplex must be signed");
705 705
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
706 706
        "The cost type of NetworkSimplex must be signed");
707 707
    }
708 708

	
709 709
    /// Destructor.
... ...
@@ -722,20 +722,20 @@
722 722
    ///
723 723
    /// This function sets the lower bounds on the arcs.
724 724
    /// If it is not used before calling \ref run(), the lower bounds
725 725
    /// will be set to zero on all arcs.
726 726
    ///
727 727
    /// \param map An arc map storing the lower bounds.
728
    /// Its \c Value type must be convertible to the \c Flow type
728
    /// Its \c Value type must be convertible to the \c Value type
729 729
    /// of the algorithm.
730 730
    ///
731 731
    /// \return <tt>(*this)</tt>
732 732
    template <typename LowerMap>
733 733
    NetworkSimplex& lowerMap(const LowerMap& map) {
734 734
      delete _plower;
735
      _plower = new FlowArcMap(_graph);
735
      _plower = new ValueArcMap(_graph);
736 736
      for (ArcIt a(_graph); a != INVALID; ++a) {
737 737
        (*_plower)[a] = map[a];
738 738
      }
739 739
      return *this;
740 740
    }
741 741

	
... ...
@@ -744,20 +744,20 @@
744 744
    /// This function sets the upper bounds (capacities) on the arcs.
745 745
    /// If it is not used before calling \ref run(), the upper bounds
746 746
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
747 747
    /// unbounded from above on each arc).
748 748
    ///
749 749
    /// \param map An arc map storing the upper bounds.
750
    /// Its \c Value type must be convertible to the \c Flow type
750
    /// Its \c Value type must be convertible to the \c Value type
751 751
    /// of the algorithm.
752 752
    ///
753 753
    /// \return <tt>(*this)</tt>
754 754
    template<typename UpperMap>
755 755
    NetworkSimplex& upperMap(const UpperMap& map) {
756 756
      delete _pupper;
757
      _pupper = new FlowArcMap(_graph);
757
      _pupper = new ValueArcMap(_graph);
758 758
      for (ArcIt a(_graph); a != INVALID; ++a) {
759 759
        (*_pupper)[a] = map[a];
760 760
      }
761 761
      return *this;
762 762
    }
763 763

	
... ...
@@ -787,21 +787,21 @@
787 787
    /// This function sets the supply values of the nodes.
788 788
    /// If neither this function nor \ref stSupply() is used before
789 789
    /// calling \ref run(), the supply of each node will be set to zero.
790 790
    /// (It makes sense only if non-zero lower bounds are given.)
791 791
    ///
792 792
    /// \param map A node map storing the supply values.
793
    /// Its \c Value type must be convertible to the \c Flow type
793
    /// Its \c Value type must be convertible to the \c Value type
794 794
    /// of the algorithm.
795 795
    ///
796 796
    /// \return <tt>(*this)</tt>
797 797
    template<typename SupplyMap>
798 798
    NetworkSimplex& supplyMap(const SupplyMap& map) {
799 799
      delete _psupply;
800 800
      _pstsup = false;
801
      _psupply = new FlowNodeMap(_graph);
801
      _psupply = new ValueNodeMap(_graph);
802 802
      for (NodeIt n(_graph); n != INVALID; ++n) {
803 803
        (*_psupply)[n] = map[n];
804 804
      }
805 805
      return *this;
806 806
    }
807 807

	
... ...
@@ -820,13 +820,13 @@
820 820
    /// \param s The source node.
821 821
    /// \param t The target node.
822 822
    /// \param k The required amount of flow from node \c s to node \c t
823 823
    /// (i.e. the supply of \c s and the demand of \c t).
824 824
    ///
825 825
    /// \return <tt>(*this)</tt>
826
    NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) {
826
    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
827 827
      delete _psupply;
828 828
      _psupply = NULL;
829 829
      _pstsup = true;
830 830
      _psource = s;
831 831
      _ptarget = t;
832 832
      _pstflow = k;
... ...
@@ -1022,13 +1022,13 @@
1022 1022

	
1023 1023
    /// \brief Return the flow on the given arc.
1024 1024
    ///
1025 1025
    /// This function returns the flow on the given arc.
1026 1026
    ///
1027 1027
    /// \pre \ref run() must be called before using this function.
1028
    Flow flow(const Arc& a) const {
1028
    Value flow(const Arc& a) const {
1029 1029
      return (*_flow_map)[a];
1030 1030
    }
1031 1031

	
1032 1032
    /// \brief Return a const reference to the flow map.
1033 1033
    ///
1034 1034
    /// This function returns a const reference to an arc map storing
... ...
@@ -1201,13 +1201,13 @@
1201 1201
        }
1202 1202
      }
1203 1203
      
1204 1204
      // Remove non-zero lower bounds
1205 1205
      if (_plower) {
1206 1206
        for (int i = 0; i != _arc_num; ++i) {
1207
          Flow c = (*_plower)[_arc_ref[i]];
1207
          Value c = (*_plower)[_arc_ref[i]];
1208 1208
          if (c > 0) {
1209 1209
            if (_cap[i] < INF) _cap[i] -= c;
1210 1210
            _supply[_source[i]] -= c;
1211 1211
            _supply[_target[i]] += c;
1212 1212
          }
1213 1213
          else if (c < 0) {
... ...
@@ -1272,13 +1272,13 @@
1272 1272
      } else {
1273 1273
        first  = _target[in_arc];
1274 1274
        second = _source[in_arc];
1275 1275
      }
1276 1276
      delta = _cap[in_arc];
1277 1277
      int result = 0;
1278
      Flow d;
1278
      Value d;
1279 1279
      int e;
1280 1280

	
1281 1281
      // Search the cycle along the path form the first node to the root
1282 1282
      for (int u = first; u != join; u = _parent[u]) {
1283 1283
        e = _pred[u];
1284 1284
        d = _forward[u] ?
... ...
@@ -1312,13 +1312,13 @@
1312 1312
    }
1313 1313

	
1314 1314
    // Change _flow and _state vectors
1315 1315
    void changeFlow(bool change) {
1316 1316
      // Augment along the cycle
1317 1317
      if (delta > 0) {
1318
        Flow val = _state[in_arc] * delta;
1318
        Value val = _state[in_arc] * delta;
1319 1319
        _flow[in_arc] += val;
1320 1320
        for (int u = _source[in_arc]; u != join; u = _parent[u]) {
1321 1321
          _flow[_pred[u]] += _forward[u] ? -val : val;
1322 1322
        }
1323 1323
        for (int u = _target[in_arc]; u != join; u = _parent[u]) {
1324 1324
          _flow[_pred[u]] += _forward[u] ? val : -val;
Ignore white space 12 line context
... ...
@@ -43,19 +43,19 @@
43 43
    ///
44 44
    /// The type of the map that stores the arc capacities.
45 45
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
46 46
    typedef CAP CapacityMap;
47 47

	
48 48
    /// \brief The type of the flow values.
49
    typedef typename CapacityMap::Value Flow;
49
    typedef typename CapacityMap::Value Value;
50 50

	
51 51
    /// \brief The type of the map that stores the flow values.
52 52
    ///
53 53
    /// The type of the map that stores the flow values.
54 54
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
55
    typedef typename Digraph::template ArcMap<Flow> FlowMap;
55
    typedef typename Digraph::template ArcMap<Value> FlowMap;
56 56

	
57 57
    /// \brief Instantiates a FlowMap.
58 58
    ///
59 59
    /// This function instantiates a \ref FlowMap.
60 60
    /// \param digraph The digraph for which we would like to define
61 61
    /// the flow map.
... ...
@@ -81,13 +81,13 @@
81 81
      return new Elevator(digraph, max_level);
82 82
    }
83 83

	
84 84
    /// \brief The tolerance used by the algorithm
85 85
    ///
86 86
    /// The tolerance used by the algorithm to handle inexact computation.
87
    typedef lemon::Tolerance<Flow> Tolerance;
87
    typedef lemon::Tolerance<Value> Tolerance;
88 88

	
89 89
  };
90 90

	
91 91

	
92 92
  /// \ingroup max_flow
93 93
  ///
... ...
@@ -122,13 +122,13 @@
122 122
    typedef TR Traits;
123 123
    ///The type of the digraph the algorithm runs on.
124 124
    typedef typename Traits::Digraph Digraph;
125 125
    ///The type of the capacity map.
126 126
    typedef typename Traits::CapacityMap CapacityMap;
127 127
    ///The type of the flow values.
128
    typedef typename Traits::Flow Flow;
128
    typedef typename Traits::Value Value;
129 129

	
130 130
    ///The type of the flow map.
131 131
    typedef typename Traits::FlowMap FlowMap;
132 132
    ///The type of the elevator.
133 133
    typedef typename Traits::Elevator Elevator;
134 134
    ///The type of the tolerance.
... ...
@@ -148,13 +148,13 @@
148 148
    FlowMap* _flow;
149 149
    bool _local_flow;
150 150

	
151 151
    Elevator* _level;
152 152
    bool _local_level;
153 153

	
154
    typedef typename Digraph::template NodeMap<Flow> ExcessMap;
154
    typedef typename Digraph::template NodeMap<Value> ExcessMap;
155 155
    ExcessMap* _excess;
156 156

	
157 157
    Tolerance _tolerance;
158 158

	
159 159
    bool _phase;
160 160

	
... ...
@@ -467,13 +467,13 @@
467 467

	
468 468
      for (ArcIt e(_graph); e != INVALID; ++e) {
469 469
        _flow->set(e, flowMap[e]);
470 470
      }
471 471

	
472 472
      for (NodeIt n(_graph); n != INVALID; ++n) {
473
        Flow excess = 0;
473
        Value excess = 0;
474 474
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
475 475
          excess += (*_flow)[e];
476 476
        }
477 477
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
478 478
          excess -= (*_flow)[e];
479 479
        }
... ...
@@ -516,25 +516,25 @@
516 516
        }
517 517
        queue.swap(nqueue);
518 518
      }
519 519
      _level->initFinish();
520 520

	
521 521
      for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
522
        Flow rem = (*_capacity)[e] - (*_flow)[e];
522
        Value rem = (*_capacity)[e] - (*_flow)[e];
523 523
        if (_tolerance.positive(rem)) {
524 524
          Node u = _graph.target(e);
525 525
          if ((*_level)[u] == _level->maxLevel()) continue;
526 526
          _flow->set(e, (*_capacity)[e]);
527 527
          (*_excess)[u] += rem;
528 528
          if (u != _target && !_level->active(u)) {
529 529
            _level->activate(u);
530 530
          }
531 531
        }
532 532
      }
533 533
      for (InArcIt e(_graph, _source); e != INVALID; ++e) {
534
        Flow rem = (*_flow)[e];
534
        Value rem = (*_flow)[e];
535 535
        if (_tolerance.positive(rem)) {
536 536
          Node v = _graph.source(e);
537 537
          if ((*_level)[v] == _level->maxLevel()) continue;
538 538
          _flow->set(e, 0);
539 539
          (*_excess)[v] += rem;
540 540
          if (v != _target && !_level->active(v)) {
... ...
@@ -561,17 +561,17 @@
561 561
      Node n = _level->highestActive();
562 562
      int level = _level->highestActiveLevel();
563 563
      while (n != INVALID) {
564 564
        int num = _node_num;
565 565

	
566 566
        while (num > 0 && n != INVALID) {
567
          Flow excess = (*_excess)[n];
567
          Value excess = (*_excess)[n];
568 568
          int new_level = _level->maxLevel();
569 569

	
570 570
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
571
            Flow rem = (*_capacity)[e] - (*_flow)[e];
571
            Value rem = (*_capacity)[e] - (*_flow)[e];
572 572
            if (!_tolerance.positive(rem)) continue;
573 573
            Node v = _graph.target(e);
574 574
            if ((*_level)[v] < level) {
575 575
              if (!_level->active(v) && v != _target) {
576 576
                _level->activate(v);
577 577
              }
... ...
@@ -588,13 +588,13 @@
588 588
            } else if (new_level > (*_level)[v]) {
589 589
              new_level = (*_level)[v];
590 590
            }
591 591
          }
592 592

	
593 593
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
594
            Flow rem = (*_flow)[e];
594
            Value rem = (*_flow)[e];
595 595
            if (!_tolerance.positive(rem)) continue;
596 596
            Node v = _graph.source(e);
597 597
            if ((*_level)[v] < level) {
598 598
              if (!_level->active(v) && v != _target) {
599 599
                _level->activate(v);
600 600
              }
... ...
@@ -634,17 +634,17 @@
634 634
          level = _level->highestActiveLevel();
635 635
          --num;
636 636
        }
637 637

	
638 638
        num = _node_num * 20;
639 639
        while (num > 0 && n != INVALID) {
640
          Flow excess = (*_excess)[n];
640
          Value excess = (*_excess)[n];
641 641
          int new_level = _level->maxLevel();
642 642

	
643 643
          for (OutArcIt e(_graph, n); e != INVALID; ++e) {
644
            Flow rem = (*_capacity)[e] - (*_flow)[e];
644
            Value rem = (*_capacity)[e] - (*_flow)[e];
645 645
            if (!_tolerance.positive(rem)) continue;
646 646
            Node v = _graph.target(e);
647 647
            if ((*_level)[v] < level) {
648 648
              if (!_level->active(v) && v != _target) {
649 649
                _level->activate(v);
650 650
              }
... ...
@@ -661,13 +661,13 @@
661 661
            } else if (new_level > (*_level)[v]) {
662 662
              new_level = (*_level)[v];
663 663
            }
664 664
          }
665 665

	
666 666
          for (InArcIt e(_graph, n); e != INVALID; ++e) {
667
            Flow rem = (*_flow)[e];
667
            Value rem = (*_flow)[e];
668 668
            if (!_tolerance.positive(rem)) continue;
669 669
            Node v = _graph.source(e);
670 670
            if ((*_level)[v] < level) {
671 671
              if (!_level->active(v) && v != _target) {
672 672
                _level->activate(v);
673 673
              }
... ...
@@ -775,18 +775,18 @@
775 775
          _level->activate(n);
776 776
        }
777 777
      }
778 778

	
779 779
      Node n;
780 780
      while ((n = _level->highestActive()) != INVALID) {
781
        Flow excess = (*_excess)[n];
781
        Value excess = (*_excess)[n];
782 782
        int level = _level->highestActiveLevel();
783 783
        int new_level = _level->maxLevel();
784 784

	
785 785
        for (OutArcIt e(_graph, n); e != INVALID; ++e) {
786
          Flow rem = (*_capacity)[e] - (*_flow)[e];
786
          Value rem = (*_capacity)[e] - (*_flow)[e];
787 787
          if (!_tolerance.positive(rem)) continue;
788 788
          Node v = _graph.target(e);
789 789
          if ((*_level)[v] < level) {
790 790
            if (!_level->active(v) && v != _source) {
791 791
              _level->activate(v);
792 792
            }
... ...
@@ -803,13 +803,13 @@
803 803
          } else if (new_level > (*_level)[v]) {
804 804
            new_level = (*_level)[v];
805 805
          }
806 806
        }
807 807

	
808 808
        for (InArcIt e(_graph, n); e != INVALID; ++e) {
809
          Flow rem = (*_flow)[e];
809
          Value rem = (*_flow)[e];
810 810
          if (!_tolerance.positive(rem)) continue;
811 811
          Node v = _graph.source(e);
812 812
          if ((*_level)[v] < level) {
813 813
            if (!_level->active(v) && v != _source) {
814 814
              _level->activate(v);
815 815
            }
... ...
@@ -894,24 +894,24 @@
894 894
    /// Returns the value of the maximum flow by returning the excess
895 895
    /// of the target node. This value equals to the value of
896 896
    /// the maximum flow already after the first phase of the algorithm.
897 897
    ///
898 898
    /// \pre Either \ref run() or \ref init() must be called before
899 899
    /// using this function.
900
    Flow flowValue() const {
900
    Value flowValue() const {
901 901
      return (*_excess)[_target];
902 902
    }
903 903

	
904
    /// \brief Returns the flow on the given arc.
904
    /// \brief Returns the flow value on the given arc.
905 905
    ///
906
    /// Returns the flow on the given arc. This method can
906
    /// Returns the flow value on the given arc. This method can
907 907
    /// be called after the second phase of the algorithm.
908 908
    ///
909 909
    /// \pre Either \ref run() or \ref init() must be called before
910 910
    /// using this function.
911
    Flow flow(const Arc& arc) const {
911
    Value flow(const Arc& arc) const {
912 912
      return (*_flow)[arc];
913 913
    }
914 914

	
915 915
    /// \brief Returns a const reference to the flow map.
916 916
    ///
917 917
    /// Returns a const reference to the arc map storing the found flow.
0 comments (0 inline)