0
3
0
... | ... |
@@ -61,21 +61,21 @@ |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 |
/// \brief The type of the flow values. |
|
68 |
typedef typename SupplyMap::Value Flow; |
|
67 |
/// \brief The type of the flow and supply values. |
|
68 |
typedef typename SupplyMap::Value Value; |
|
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
typedef typename Digraph::template ArcMap< |
|
75 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
76 | 76 |
|
77 | 77 |
/// \brief Instantiates a FlowMap. |
78 | 78 |
/// |
79 | 79 |
/// This function instantiates a \ref FlowMap. |
80 | 80 |
/// \param digraph The digraph for which we would like to define |
81 | 81 |
/// the flow map. |
... | ... |
@@ -101,13 +101,13 @@ |
101 | 101 |
return new Elevator(digraph, max_level); |
102 | 102 |
} |
103 | 103 |
|
104 | 104 |
/// \brief The tolerance used by the algorithm |
105 | 105 |
/// |
106 | 106 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 |
typedef lemon::Tolerance< |
|
107 |
typedef lemon::Tolerance<Value> Tolerance; |
|
108 | 108 |
|
109 | 109 |
}; |
110 | 110 |
|
111 | 111 |
/** |
112 | 112 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 113 |
|
... | ... |
@@ -184,14 +184,14 @@ |
184 | 184 |
public: |
185 | 185 |
|
186 | 186 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
187 | 187 |
typedef TR Traits; |
188 | 188 |
///The type of the digraph the algorithm runs on. |
189 | 189 |
typedef typename Traits::Digraph Digraph; |
190 |
///The type of the flow values. |
|
191 |
typedef typename Traits::Flow Flow; |
|
190 |
///The type of the flow and supply values. |
|
191 |
typedef typename Traits::Value Value; |
|
192 | 192 |
|
193 | 193 |
///The type of the lower bound map. |
194 | 194 |
typedef typename Traits::LowerMap LowerMap; |
195 | 195 |
///The type of the upper bound (capacity) map. |
196 | 196 |
typedef typename Traits::UpperMap UpperMap; |
197 | 197 |
///The type of the supply map. |
... | ... |
@@ -218,13 +218,13 @@ |
218 | 218 |
FlowMap *_flow; |
219 | 219 |
bool _local_flow; |
220 | 220 |
|
221 | 221 |
Elevator* _level; |
222 | 222 |
bool _local_level; |
223 | 223 |
|
224 |
typedef typename Digraph::template NodeMap< |
|
224 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
225 | 225 |
ExcessMap* _excess; |
226 | 226 |
|
227 | 227 |
Tolerance _tol; |
228 | 228 |
int _el; |
229 | 229 |
|
230 | 230 |
public: |
... | ... |
@@ -527,13 +527,13 @@ |
527 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
528 | 528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { |
529 | 529 |
_flow->set(e, (*_lo)[e]); |
530 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
531 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
532 | 532 |
} else { |
533 |
|
|
533 |
Value fc = -(*_excess)[_g.target(e)]; |
|
534 | 534 |
_flow->set(e, fc); |
535 | 535 |
(*_excess)[_g.target(e)] = 0; |
536 | 536 |
(*_excess)[_g.source(e)] -= fc; |
537 | 537 |
} |
538 | 538 |
} |
539 | 539 |
|
... | ... |
@@ -560,17 +560,17 @@ |
560 | 560 |
Node act; |
561 | 561 |
Node bact=INVALID; |
562 | 562 |
Node last_activated=INVALID; |
563 | 563 |
while((act=_level->highestActive())!=INVALID) { |
564 | 564 |
int actlevel=(*_level)[act]; |
565 | 565 |
int mlevel=_node_num; |
566 |
|
|
566 |
Value exc=(*_excess)[act]; |
|
567 | 567 |
|
568 | 568 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
569 | 569 |
Node v = _g.target(e); |
570 |
|
|
570 |
Value fc=(*_up)[e]-(*_flow)[e]; |
|
571 | 571 |
if(!_tol.positive(fc)) continue; |
572 | 572 |
if((*_level)[v]<actlevel) { |
573 | 573 |
if(!_tol.less(fc, exc)) { |
574 | 574 |
_flow->set(e, (*_flow)[e] + exc); |
575 | 575 |
(*_excess)[v] += exc; |
576 | 576 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
... | ... |
@@ -588,13 +588,13 @@ |
588 | 588 |
} |
589 | 589 |
} |
590 | 590 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
591 | 591 |
} |
592 | 592 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
593 | 593 |
Node v = _g.source(e); |
594 |
|
|
594 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
|
595 | 595 |
if(!_tol.positive(fc)) continue; |
596 | 596 |
if((*_level)[v]<actlevel) { |
597 | 597 |
if(!_tol.less(fc, exc)) { |
598 | 598 |
_flow->set(e, (*_flow)[e] - exc); |
599 | 599 |
(*_excess)[v] += exc; |
600 | 600 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
... | ... |
@@ -658,19 +658,19 @@ |
658 | 658 |
/// these functions.\n |
659 | 659 |
/// Either \ref run() or \ref start() should be called before |
660 | 660 |
/// using them. |
661 | 661 |
|
662 | 662 |
///@{ |
663 | 663 |
|
664 |
/// \brief Returns the flow on the given arc. |
|
664 |
/// \brief Returns the flow value on the given arc. |
|
665 | 665 |
/// |
666 |
/// Returns the flow on the given arc. |
|
666 |
/// Returns the flow value on the given arc. |
|
667 | 667 |
/// |
668 | 668 |
/// \pre Either \ref run() or \ref init() must be called before |
669 | 669 |
/// using this function. |
670 |
|
|
670 |
Value flow(const Arc& arc) const { |
|
671 | 671 |
return (*_flow)[arc]; |
672 | 672 |
} |
673 | 673 |
|
674 | 674 |
/// \brief Returns a const reference to the flow map. |
675 | 675 |
/// |
676 | 676 |
/// Returns a const reference to the arc map storing the found flow. |
... | ... |
@@ -747,13 +747,13 @@ |
747 | 747 |
/// |
748 | 748 |
bool checkFlow() const { |
749 | 749 |
for(ArcIt e(_g);e!=INVALID;++e) |
750 | 750 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
751 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
752 | 752 |
{ |
753 |
|
|
753 |
Value dif=-(*_supply)[n]; |
|
754 | 754 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
755 | 755 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
756 | 756 |
if(_tol.negative(dif)) return false; |
757 | 757 |
} |
758 | 758 |
return true; |
759 | 759 |
} |
... | ... |
@@ -762,16 +762,16 @@ |
762 | 762 |
|
763 | 763 |
///Check whether or not the last execution provides a barrier. |
764 | 764 |
///\sa barrier() |
765 | 765 |
///\sa barrierMap() |
766 | 766 |
bool checkBarrier() const |
767 | 767 |
{ |
768 |
Flow delta=0; |
|
769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
770 |
std::numeric_limits<Flow>::infinity() : |
|
771 |
std::numeric_limits<Flow>::max(); |
|
768 |
Value delta=0; |
|
769 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
|
770 |
std::numeric_limits<Value>::infinity() : |
|
771 |
std::numeric_limits<Value>::max(); |
|
772 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
773 | 773 |
if(barrier(n)) |
774 | 774 |
delta-=(*_supply)[n]; |
775 | 775 |
for(ArcIt e(_g);e!=INVALID;++e) |
776 | 776 |
{ |
777 | 777 |
Node s=_g.source(e); |
... | ... |
@@ -53,40 +53,40 @@ |
53 | 53 |
/// Most of the parameters of the problem (except for the digraph) |
54 | 54 |
/// can be given using separate functions, and the algorithm can be |
55 | 55 |
/// executed using the \ref run() function. If some parameters are not |
56 | 56 |
/// specified, then default values will be used. |
57 | 57 |
/// |
58 | 58 |
/// \tparam GR The digraph type the algorithm runs on. |
59 |
/// \tparam |
|
59 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
60 | 60 |
/// and supply values in the algorithm. By default it is \c int. |
61 | 61 |
/// \tparam C The value type used for costs and potentials in the |
62 |
/// algorithm. By default it is the same as \c |
|
62 |
/// algorithm. By default it is the same as \c V. |
|
63 | 63 |
/// |
64 | 64 |
/// \warning Both value types must be signed and all input data must |
65 | 65 |
/// be integer. |
66 | 66 |
/// |
67 | 67 |
/// \note %NetworkSimplex provides five different pivot rule |
68 | 68 |
/// implementations, from which the most efficient one is used |
69 | 69 |
/// by default. For more information see \ref PivotRule. |
70 |
template <typename GR, typename |
|
70 |
template <typename GR, typename V = int, typename C = V> |
|
71 | 71 |
class NetworkSimplex |
72 | 72 |
{ |
73 | 73 |
public: |
74 | 74 |
|
75 | 75 |
/// The flow type of the algorithm |
76 |
typedef |
|
76 |
typedef V Value; |
|
77 | 77 |
/// The cost type of the algorithm |
78 | 78 |
typedef C Cost; |
79 | 79 |
#ifdef DOXYGEN |
80 | 80 |
/// The type of the flow map |
81 |
typedef GR::ArcMap< |
|
81 |
typedef GR::ArcMap<Value> FlowMap; |
|
82 | 82 |
/// The type of the potential map |
83 | 83 |
typedef GR::NodeMap<Cost> PotentialMap; |
84 | 84 |
#else |
85 | 85 |
/// The type of the flow map |
86 |
typedef typename GR::template ArcMap< |
|
86 |
typedef typename GR::template ArcMap<Value> FlowMap; |
|
87 | 87 |
/// The type of the potential map |
88 | 88 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
89 | 89 |
#endif |
90 | 90 |
|
91 | 91 |
public: |
92 | 92 |
|
... | ... |
@@ -203,21 +203,21 @@ |
203 | 203 |
}; |
204 | 204 |
|
205 | 205 |
private: |
206 | 206 |
|
207 | 207 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
208 | 208 |
|
209 |
typedef typename GR::template ArcMap< |
|
209 |
typedef typename GR::template ArcMap<Value> ValueArcMap; |
|
210 | 210 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
211 |
typedef typename GR::template NodeMap< |
|
211 |
typedef typename GR::template NodeMap<Value> ValueNodeMap; |
|
212 | 212 |
|
213 | 213 |
typedef std::vector<Arc> ArcVector; |
214 | 214 |
typedef std::vector<Node> NodeVector; |
215 | 215 |
typedef std::vector<int> IntVector; |
216 | 216 |
typedef std::vector<bool> BoolVector; |
217 |
typedef std::vector< |
|
217 |
typedef std::vector<Value> FlowVector; |
|
218 | 218 |
typedef std::vector<Cost> CostVector; |
219 | 219 |
|
220 | 220 |
// State constants for arcs |
221 | 221 |
enum ArcStateEnum { |
222 | 222 |
STATE_UPPER = -1, |
223 | 223 |
STATE_TREE = 0, |
... | ... |
@@ -229,22 +229,22 @@ |
229 | 229 |
// Data related to the underlying digraph |
230 | 230 |
const GR &_graph; |
231 | 231 |
int _node_num; |
232 | 232 |
int _arc_num; |
233 | 233 |
|
234 | 234 |
// Parameters of the problem |
235 |
FlowArcMap *_plower; |
|
236 |
FlowArcMap *_pupper; |
|
235 |
ValueArcMap *_plower; |
|
236 |
ValueArcMap *_pupper; |
|
237 | 237 |
CostArcMap *_pcost; |
238 |
|
|
238 |
ValueNodeMap *_psupply; |
|
239 | 239 |
bool _pstsup; |
240 | 240 |
Node _psource, _ptarget; |
241 |
|
|
241 |
Value _pstflow; |
|
242 | 242 |
SupplyType _stype; |
243 | 243 |
|
244 |
|
|
244 |
Value _sum_supply; |
|
245 | 245 |
|
246 | 246 |
// Result maps |
247 | 247 |
FlowMap *_flow_map; |
248 | 248 |
PotentialMap *_potential_map; |
249 | 249 |
bool _local_flow; |
250 | 250 |
bool _local_potential; |
... | ... |
@@ -275,22 +275,22 @@ |
275 | 275 |
int _root; |
276 | 276 |
|
277 | 277 |
// Temporary data used in the current pivot iteration |
278 | 278 |
int in_arc, join, u_in, v_in, u_out, v_out; |
279 | 279 |
int first, second, right, last; |
280 | 280 |
int stem, par_stem, new_stem; |
281 |
|
|
281 |
Value delta; |
|
282 | 282 |
|
283 | 283 |
public: |
284 | 284 |
|
285 | 285 |
/// \brief Constant for infinite upper bounds (capacities). |
286 | 286 |
/// |
287 | 287 |
/// Constant for infinite upper bounds (capacities). |
288 |
/// It is \c std::numeric_limits<Flow>::infinity() if available, |
|
289 |
/// \c std::numeric_limits<Flow>::max() otherwise. |
|
290 |
|
|
288 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
|
289 |
/// \c std::numeric_limits<Value>::max() otherwise. |
|
290 |
const Value INF; |
|
291 | 291 |
|
292 | 292 |
private: |
293 | 293 |
|
294 | 294 |
// Implementation of the First Eligible pivot rule |
295 | 295 |
class FirstEligiblePivotRule |
296 | 296 |
{ |
... | ... |
@@ -692,18 +692,18 @@ |
692 | 692 |
_graph(graph), |
693 | 693 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
694 | 694 |
_psupply(NULL), _pstsup(false), _stype(GEQ), |
695 | 695 |
_flow_map(NULL), _potential_map(NULL), |
696 | 696 |
_local_flow(false), _local_potential(false), |
697 | 697 |
_node_id(graph), |
698 |
INF(std::numeric_limits<Flow>::has_infinity ? |
|
699 |
std::numeric_limits<Flow>::infinity() : |
|
700 |
|
|
698 |
INF(std::numeric_limits<Value>::has_infinity ? |
|
699 |
std::numeric_limits<Value>::infinity() : |
|
700 |
std::numeric_limits<Value>::max()) |
|
701 | 701 |
{ |
702 | 702 |
// Check the value types |
703 |
LEMON_ASSERT(std::numeric_limits< |
|
703 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
|
704 | 704 |
"The flow type of NetworkSimplex must be signed"); |
705 | 705 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
706 | 706 |
"The cost type of NetworkSimplex must be signed"); |
707 | 707 |
} |
708 | 708 |
|
709 | 709 |
/// Destructor. |
... | ... |
@@ -722,20 +722,20 @@ |
722 | 722 |
/// |
723 | 723 |
/// This function sets the lower bounds on the arcs. |
724 | 724 |
/// If it is not used before calling \ref run(), the lower bounds |
725 | 725 |
/// will be set to zero on all arcs. |
726 | 726 |
/// |
727 | 727 |
/// \param map An arc map storing the lower bounds. |
728 |
/// Its \c Value type must be convertible to the \c |
|
728 |
/// Its \c Value type must be convertible to the \c Value type |
|
729 | 729 |
/// of the algorithm. |
730 | 730 |
/// |
731 | 731 |
/// \return <tt>(*this)</tt> |
732 | 732 |
template <typename LowerMap> |
733 | 733 |
NetworkSimplex& lowerMap(const LowerMap& map) { |
734 | 734 |
delete _plower; |
735 |
_plower = new |
|
735 |
_plower = new ValueArcMap(_graph); |
|
736 | 736 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
737 | 737 |
(*_plower)[a] = map[a]; |
738 | 738 |
} |
739 | 739 |
return *this; |
740 | 740 |
} |
741 | 741 |
|
... | ... |
@@ -744,20 +744,20 @@ |
744 | 744 |
/// This function sets the upper bounds (capacities) on the arcs. |
745 | 745 |
/// If it is not used before calling \ref run(), the upper bounds |
746 | 746 |
/// will be set to \ref INF on all arcs (i.e. the flow value will be |
747 | 747 |
/// unbounded from above on each arc). |
748 | 748 |
/// |
749 | 749 |
/// \param map An arc map storing the upper bounds. |
750 |
/// Its \c Value type must be convertible to the \c |
|
750 |
/// Its \c Value type must be convertible to the \c Value type |
|
751 | 751 |
/// of the algorithm. |
752 | 752 |
/// |
753 | 753 |
/// \return <tt>(*this)</tt> |
754 | 754 |
template<typename UpperMap> |
755 | 755 |
NetworkSimplex& upperMap(const UpperMap& map) { |
756 | 756 |
delete _pupper; |
757 |
_pupper = new |
|
757 |
_pupper = new ValueArcMap(_graph); |
|
758 | 758 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
759 | 759 |
(*_pupper)[a] = map[a]; |
760 | 760 |
} |
761 | 761 |
return *this; |
762 | 762 |
} |
763 | 763 |
|
... | ... |
@@ -787,21 +787,21 @@ |
787 | 787 |
/// This function sets the supply values of the nodes. |
788 | 788 |
/// If neither this function nor \ref stSupply() is used before |
789 | 789 |
/// calling \ref run(), the supply of each node will be set to zero. |
790 | 790 |
/// (It makes sense only if non-zero lower bounds are given.) |
791 | 791 |
/// |
792 | 792 |
/// \param map A node map storing the supply values. |
793 |
/// Its \c Value type must be convertible to the \c |
|
793 |
/// Its \c Value type must be convertible to the \c Value type |
|
794 | 794 |
/// of the algorithm. |
795 | 795 |
/// |
796 | 796 |
/// \return <tt>(*this)</tt> |
797 | 797 |
template<typename SupplyMap> |
798 | 798 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
799 | 799 |
delete _psupply; |
800 | 800 |
_pstsup = false; |
801 |
_psupply = new |
|
801 |
_psupply = new ValueNodeMap(_graph); |
|
802 | 802 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
803 | 803 |
(*_psupply)[n] = map[n]; |
804 | 804 |
} |
805 | 805 |
return *this; |
806 | 806 |
} |
807 | 807 |
|
... | ... |
@@ -820,13 +820,13 @@ |
820 | 820 |
/// \param s The source node. |
821 | 821 |
/// \param t The target node. |
822 | 822 |
/// \param k The required amount of flow from node \c s to node \c t |
823 | 823 |
/// (i.e. the supply of \c s and the demand of \c t). |
824 | 824 |
/// |
825 | 825 |
/// \return <tt>(*this)</tt> |
826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, |
|
826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
|
827 | 827 |
delete _psupply; |
828 | 828 |
_psupply = NULL; |
829 | 829 |
_pstsup = true; |
830 | 830 |
_psource = s; |
831 | 831 |
_ptarget = t; |
832 | 832 |
_pstflow = k; |
... | ... |
@@ -1022,13 +1022,13 @@ |
1022 | 1022 |
|
1023 | 1023 |
/// \brief Return the flow on the given arc. |
1024 | 1024 |
/// |
1025 | 1025 |
/// This function returns the flow on the given arc. |
1026 | 1026 |
/// |
1027 | 1027 |
/// \pre \ref run() must be called before using this function. |
1028 |
|
|
1028 |
Value flow(const Arc& a) const { |
|
1029 | 1029 |
return (*_flow_map)[a]; |
1030 | 1030 |
} |
1031 | 1031 |
|
1032 | 1032 |
/// \brief Return a const reference to the flow map. |
1033 | 1033 |
/// |
1034 | 1034 |
/// This function returns a const reference to an arc map storing |
... | ... |
@@ -1201,13 +1201,13 @@ |
1201 | 1201 |
} |
1202 | 1202 |
} |
1203 | 1203 |
|
1204 | 1204 |
// Remove non-zero lower bounds |
1205 | 1205 |
if (_plower) { |
1206 | 1206 |
for (int i = 0; i != _arc_num; ++i) { |
1207 |
|
|
1207 |
Value c = (*_plower)[_arc_ref[i]]; |
|
1208 | 1208 |
if (c > 0) { |
1209 | 1209 |
if (_cap[i] < INF) _cap[i] -= c; |
1210 | 1210 |
_supply[_source[i]] -= c; |
1211 | 1211 |
_supply[_target[i]] += c; |
1212 | 1212 |
} |
1213 | 1213 |
else if (c < 0) { |
... | ... |
@@ -1272,13 +1272,13 @@ |
1272 | 1272 |
} else { |
1273 | 1273 |
first = _target[in_arc]; |
1274 | 1274 |
second = _source[in_arc]; |
1275 | 1275 |
} |
1276 | 1276 |
delta = _cap[in_arc]; |
1277 | 1277 |
int result = 0; |
1278 |
|
|
1278 |
Value d; |
|
1279 | 1279 |
int e; |
1280 | 1280 |
|
1281 | 1281 |
// Search the cycle along the path form the first node to the root |
1282 | 1282 |
for (int u = first; u != join; u = _parent[u]) { |
1283 | 1283 |
e = _pred[u]; |
1284 | 1284 |
d = _forward[u] ? |
... | ... |
@@ -1312,13 +1312,13 @@ |
1312 | 1312 |
} |
1313 | 1313 |
|
1314 | 1314 |
// Change _flow and _state vectors |
1315 | 1315 |
void changeFlow(bool change) { |
1316 | 1316 |
// Augment along the cycle |
1317 | 1317 |
if (delta > 0) { |
1318 |
|
|
1318 |
Value val = _state[in_arc] * delta; |
|
1319 | 1319 |
_flow[in_arc] += val; |
1320 | 1320 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
1321 | 1321 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
1322 | 1322 |
} |
1323 | 1323 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
1324 | 1324 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
... | ... |
@@ -43,19 +43,19 @@ |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 |
typedef typename CapacityMap::Value |
|
49 |
typedef typename CapacityMap::Value Value; |
|
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
typedef typename Digraph::template ArcMap< |
|
55 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
56 | 56 |
|
57 | 57 |
/// \brief Instantiates a FlowMap. |
58 | 58 |
/// |
59 | 59 |
/// This function instantiates a \ref FlowMap. |
60 | 60 |
/// \param digraph The digraph for which we would like to define |
61 | 61 |
/// the flow map. |
... | ... |
@@ -81,13 +81,13 @@ |
81 | 81 |
return new Elevator(digraph, max_level); |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
/// \brief The tolerance used by the algorithm |
85 | 85 |
/// |
86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 |
typedef lemon::Tolerance< |
|
87 |
typedef lemon::Tolerance<Value> Tolerance; |
|
88 | 88 |
|
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
|
92 | 92 |
/// \ingroup max_flow |
93 | 93 |
/// |
... | ... |
@@ -122,13 +122,13 @@ |
122 | 122 |
typedef TR Traits; |
123 | 123 |
///The type of the digraph the algorithm runs on. |
124 | 124 |
typedef typename Traits::Digraph Digraph; |
125 | 125 |
///The type of the capacity map. |
126 | 126 |
typedef typename Traits::CapacityMap CapacityMap; |
127 | 127 |
///The type of the flow values. |
128 |
typedef typename Traits:: |
|
128 |
typedef typename Traits::Value Value; |
|
129 | 129 |
|
130 | 130 |
///The type of the flow map. |
131 | 131 |
typedef typename Traits::FlowMap FlowMap; |
132 | 132 |
///The type of the elevator. |
133 | 133 |
typedef typename Traits::Elevator Elevator; |
134 | 134 |
///The type of the tolerance. |
... | ... |
@@ -148,13 +148,13 @@ |
148 | 148 |
FlowMap* _flow; |
149 | 149 |
bool _local_flow; |
150 | 150 |
|
151 | 151 |
Elevator* _level; |
152 | 152 |
bool _local_level; |
153 | 153 |
|
154 |
typedef typename Digraph::template NodeMap< |
|
154 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
|
155 | 155 |
ExcessMap* _excess; |
156 | 156 |
|
157 | 157 |
Tolerance _tolerance; |
158 | 158 |
|
159 | 159 |
bool _phase; |
160 | 160 |
|
... | ... |
@@ -467,13 +467,13 @@ |
467 | 467 |
|
468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
469 | 469 |
_flow->set(e, flowMap[e]); |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 |
|
|
473 |
Value excess = 0; |
|
474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
475 | 475 |
excess += (*_flow)[e]; |
476 | 476 |
} |
477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
478 | 478 |
excess -= (*_flow)[e]; |
479 | 479 |
} |
... | ... |
@@ -516,25 +516,25 @@ |
516 | 516 |
} |
517 | 517 |
queue.swap(nqueue); |
518 | 518 |
} |
519 | 519 |
_level->initFinish(); |
520 | 520 |
|
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 |
|
|
522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
523 | 523 |
if (_tolerance.positive(rem)) { |
524 | 524 |
Node u = _graph.target(e); |
525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
526 | 526 |
_flow->set(e, (*_capacity)[e]); |
527 | 527 |
(*_excess)[u] += rem; |
528 | 528 |
if (u != _target && !_level->active(u)) { |
529 | 529 |
_level->activate(u); |
530 | 530 |
} |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 |
|
|
534 |
Value rem = (*_flow)[e]; |
|
535 | 535 |
if (_tolerance.positive(rem)) { |
536 | 536 |
Node v = _graph.source(e); |
537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
538 | 538 |
_flow->set(e, 0); |
539 | 539 |
(*_excess)[v] += rem; |
540 | 540 |
if (v != _target && !_level->active(v)) { |
... | ... |
@@ -561,17 +561,17 @@ |
561 | 561 |
Node n = _level->highestActive(); |
562 | 562 |
int level = _level->highestActiveLevel(); |
563 | 563 |
while (n != INVALID) { |
564 | 564 |
int num = _node_num; |
565 | 565 |
|
566 | 566 |
while (num > 0 && n != INVALID) { |
567 |
|
|
567 |
Value excess = (*_excess)[n]; |
|
568 | 568 |
int new_level = _level->maxLevel(); |
569 | 569 |
|
570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 |
|
|
571 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
572 | 572 |
if (!_tolerance.positive(rem)) continue; |
573 | 573 |
Node v = _graph.target(e); |
574 | 574 |
if ((*_level)[v] < level) { |
575 | 575 |
if (!_level->active(v) && v != _target) { |
576 | 576 |
_level->activate(v); |
577 | 577 |
} |
... | ... |
@@ -588,13 +588,13 @@ |
588 | 588 |
} else if (new_level > (*_level)[v]) { |
589 | 589 |
new_level = (*_level)[v]; |
590 | 590 |
} |
591 | 591 |
} |
592 | 592 |
|
593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
594 |
|
|
594 |
Value rem = (*_flow)[e]; |
|
595 | 595 |
if (!_tolerance.positive(rem)) continue; |
596 | 596 |
Node v = _graph.source(e); |
597 | 597 |
if ((*_level)[v] < level) { |
598 | 598 |
if (!_level->active(v) && v != _target) { |
599 | 599 |
_level->activate(v); |
600 | 600 |
} |
... | ... |
@@ -634,17 +634,17 @@ |
634 | 634 |
level = _level->highestActiveLevel(); |
635 | 635 |
--num; |
636 | 636 |
} |
637 | 637 |
|
638 | 638 |
num = _node_num * 20; |
639 | 639 |
while (num > 0 && n != INVALID) { |
640 |
|
|
640 |
Value excess = (*_excess)[n]; |
|
641 | 641 |
int new_level = _level->maxLevel(); |
642 | 642 |
|
643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 |
|
|
644 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
645 | 645 |
if (!_tolerance.positive(rem)) continue; |
646 | 646 |
Node v = _graph.target(e); |
647 | 647 |
if ((*_level)[v] < level) { |
648 | 648 |
if (!_level->active(v) && v != _target) { |
649 | 649 |
_level->activate(v); |
650 | 650 |
} |
... | ... |
@@ -661,13 +661,13 @@ |
661 | 661 |
} else if (new_level > (*_level)[v]) { |
662 | 662 |
new_level = (*_level)[v]; |
663 | 663 |
} |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
667 |
|
|
667 |
Value rem = (*_flow)[e]; |
|
668 | 668 |
if (!_tolerance.positive(rem)) continue; |
669 | 669 |
Node v = _graph.source(e); |
670 | 670 |
if ((*_level)[v] < level) { |
671 | 671 |
if (!_level->active(v) && v != _target) { |
672 | 672 |
_level->activate(v); |
673 | 673 |
} |
... | ... |
@@ -775,18 +775,18 @@ |
775 | 775 |
_level->activate(n); |
776 | 776 |
} |
777 | 777 |
} |
778 | 778 |
|
779 | 779 |
Node n; |
780 | 780 |
while ((n = _level->highestActive()) != INVALID) { |
781 |
|
|
781 |
Value excess = (*_excess)[n]; |
|
782 | 782 |
int level = _level->highestActiveLevel(); |
783 | 783 |
int new_level = _level->maxLevel(); |
784 | 784 |
|
785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
786 |
|
|
786 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
|
787 | 787 |
if (!_tolerance.positive(rem)) continue; |
788 | 788 |
Node v = _graph.target(e); |
789 | 789 |
if ((*_level)[v] < level) { |
790 | 790 |
if (!_level->active(v) && v != _source) { |
791 | 791 |
_level->activate(v); |
792 | 792 |
} |
... | ... |
@@ -803,13 +803,13 @@ |
803 | 803 |
} else if (new_level > (*_level)[v]) { |
804 | 804 |
new_level = (*_level)[v]; |
805 | 805 |
} |
806 | 806 |
} |
807 | 807 |
|
808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
809 |
|
|
809 |
Value rem = (*_flow)[e]; |
|
810 | 810 |
if (!_tolerance.positive(rem)) continue; |
811 | 811 |
Node v = _graph.source(e); |
812 | 812 |
if ((*_level)[v] < level) { |
813 | 813 |
if (!_level->active(v) && v != _source) { |
814 | 814 |
_level->activate(v); |
815 | 815 |
} |
... | ... |
@@ -894,24 +894,24 @@ |
894 | 894 |
/// Returns the value of the maximum flow by returning the excess |
895 | 895 |
/// of the target node. This value equals to the value of |
896 | 896 |
/// the maximum flow already after the first phase of the algorithm. |
897 | 897 |
/// |
898 | 898 |
/// \pre Either \ref run() or \ref init() must be called before |
899 | 899 |
/// using this function. |
900 |
|
|
900 |
Value flowValue() const { |
|
901 | 901 |
return (*_excess)[_target]; |
902 | 902 |
} |
903 | 903 |
|
904 |
/// \brief Returns the flow on the given arc. |
|
904 |
/// \brief Returns the flow value on the given arc. |
|
905 | 905 |
/// |
906 |
/// Returns the flow on the given arc. This method can |
|
906 |
/// Returns the flow value on the given arc. This method can |
|
907 | 907 |
/// be called after the second phase of the algorithm. |
908 | 908 |
/// |
909 | 909 |
/// \pre Either \ref run() or \ref init() must be called before |
910 | 910 |
/// using this function. |
911 |
|
|
911 |
Value flow(const Arc& arc) const { |
|
912 | 912 |
return (*_flow)[arc]; |
913 | 913 |
} |
914 | 914 |
|
915 | 915 |
/// \brief Returns a const reference to the flow map. |
916 | 916 |
/// |
917 | 917 |
/// Returns a const reference to the arc map storing the found flow. |
0 comments (0 inline)