0
5
0
107
78
104
82
109
80
... | ... |
@@ -311,75 +311,13 @@ |
311 | 311 |
// Check the number types |
312 | 312 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
313 | 313 |
"The flow type of CapacityScaling must be signed"); |
314 | 314 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
315 | 315 |
"The cost type of CapacityScaling must be signed"); |
316 | 316 |
|
317 |
// Resize vectors |
|
318 |
_node_num = countNodes(_graph); |
|
319 |
_arc_num = countArcs(_graph); |
|
320 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
321 |
_root = _node_num; |
|
322 |
++_node_num; |
|
323 |
|
|
324 |
_first_out.resize(_node_num + 1); |
|
325 |
_forward.resize(_res_arc_num); |
|
326 |
_source.resize(_res_arc_num); |
|
327 |
_target.resize(_res_arc_num); |
|
328 |
_reverse.resize(_res_arc_num); |
|
329 |
|
|
330 |
_lower.resize(_res_arc_num); |
|
331 |
_upper.resize(_res_arc_num); |
|
332 |
_cost.resize(_res_arc_num); |
|
333 |
_supply.resize(_node_num); |
|
334 |
|
|
335 |
_res_cap.resize(_res_arc_num); |
|
336 |
_pi.resize(_node_num); |
|
337 |
_excess.resize(_node_num); |
|
338 |
_pred.resize(_node_num); |
|
339 |
|
|
340 |
// Copy the graph |
|
341 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
|
342 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
343 |
_node_id[n] = i; |
|
344 |
} |
|
345 |
i = 0; |
|
346 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
347 |
_first_out[i] = j; |
|
348 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
349 |
_arc_idf[a] = j; |
|
350 |
_forward[j] = true; |
|
351 |
_source[j] = i; |
|
352 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
353 |
} |
|
354 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
355 |
_arc_idb[a] = j; |
|
356 |
_forward[j] = false; |
|
357 |
_source[j] = i; |
|
358 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
359 |
} |
|
360 |
_forward[j] = false; |
|
361 |
_source[j] = i; |
|
362 |
_target[j] = _root; |
|
363 |
_reverse[j] = k; |
|
364 |
_forward[k] = true; |
|
365 |
_source[k] = _root; |
|
366 |
_target[k] = i; |
|
367 |
_reverse[k] = j; |
|
368 |
++j; ++k; |
|
369 |
} |
|
370 |
_first_out[i] = j; |
|
371 |
_first_out[_node_num] = k; |
|
372 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
373 |
int fi = _arc_idf[a]; |
|
374 |
int bi = _arc_idb[a]; |
|
375 |
_reverse[fi] = bi; |
|
376 |
_reverse[bi] = fi; |
|
377 |
} |
|
378 |
|
|
379 |
// Reset |
|
317 |
// Reset data structures |
|
380 | 318 |
reset(); |
381 | 319 |
} |
382 | 320 |
|
383 | 321 |
/// \name Parameters |
384 | 322 |
/// The parameters of the algorithm can be specified using these |
385 | 323 |
/// functions. |
... | ... |
@@ -508,18 +446,18 @@ |
508 | 446 |
/// \code |
509 | 447 |
/// CapacityScaling<ListDigraph> cs(graph); |
510 | 448 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
511 | 449 |
/// .supplyMap(sup).run(); |
512 | 450 |
/// \endcode |
513 | 451 |
/// |
514 |
/// This function can be called more than once. All the parameters |
|
515 |
/// that have been given are kept for the next call, unless |
|
516 |
/// \ref reset() is called, thus only the modified parameters |
|
517 |
/// have to be set again. See \ref reset() for examples. |
|
518 |
/// However, the underlying digraph must not be modified after this |
|
519 |
/// class have been constructed, since it copies and extends the graph. |
|
452 |
/// This function can be called more than once. All the given parameters |
|
453 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
|
454 |
/// is used, thus only the modified parameters have to be set again. |
|
455 |
/// If the underlying digraph was also modified after the construction |
|
456 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
|
457 |
/// function must be called. |
|
520 | 458 |
/// |
521 | 459 |
/// \param factor The capacity scaling factor. It must be larger than |
522 | 460 |
/// one to use scaling. If it is less or equal to one, then scaling |
523 | 461 |
/// will be disabled. |
524 | 462 |
/// |
525 | 463 |
/// \return \c INFEASIBLE if no feasible flow exists, |
... | ... |
@@ -530,12 +468,13 @@ |
530 | 468 |
/// and infinite upper bound. It means that the objective function |
531 | 469 |
/// is unbounded on that arc, however, note that it could actually be |
532 | 470 |
/// bounded over the feasible flows, but this algroithm cannot handle |
533 | 471 |
/// these cases. |
534 | 472 |
/// |
535 | 473 |
/// \see ProblemType |
474 |
/// \see resetParams(), reset() |
|
536 | 475 |
ProblemType run(int factor = 4) { |
537 | 476 |
_factor = factor; |
538 | 477 |
ProblemType pt = init(); |
539 | 478 |
if (pt != OPTIMAL) return pt; |
540 | 479 |
return start(); |
541 | 480 |
} |
... | ... |
@@ -543,52 +482,142 @@ |
543 | 482 |
/// \brief Reset all the parameters that have been given before. |
544 | 483 |
/// |
545 | 484 |
/// This function resets all the paramaters that have been given |
546 | 485 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
547 | 486 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
548 | 487 |
/// |
549 |
/// It is useful for multiple run() calls. If this function is not |
|
550 |
/// used, all the parameters given before are kept for the next |
|
551 |
/// \ref run() call. |
|
552 |
/// However, the underlying digraph must not be modified after this |
|
553 |
/// |
|
488 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
489 |
/// parameters are kept for the next \ref run() call, unless |
|
490 |
/// \ref resetParams() or \ref reset() is used. |
|
491 |
/// If the underlying digraph was also modified after the construction |
|
492 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
493 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
554 | 494 |
/// |
555 | 495 |
/// For example, |
556 | 496 |
/// \code |
557 | 497 |
/// CapacityScaling<ListDigraph> cs(graph); |
558 | 498 |
/// |
559 | 499 |
/// // First run |
560 | 500 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
561 | 501 |
/// .supplyMap(sup).run(); |
562 | 502 |
/// |
563 |
/// // Run again with modified cost map ( |
|
503 |
/// // Run again with modified cost map (resetParams() is not called, |
|
564 | 504 |
/// // so only the cost map have to be set again) |
565 | 505 |
/// cost[e] += 100; |
566 | 506 |
/// cs.costMap(cost).run(); |
567 | 507 |
/// |
568 |
/// // Run again from scratch using |
|
508 |
/// // Run again from scratch using resetParams() |
|
569 | 509 |
/// // (the lower bounds will be set to zero on all arcs) |
570 |
/// cs. |
|
510 |
/// cs.resetParams(); |
|
571 | 511 |
/// cs.upperMap(capacity).costMap(cost) |
572 | 512 |
/// .supplyMap(sup).run(); |
573 | 513 |
/// \endcode |
574 | 514 |
/// |
575 | 515 |
/// \return <tt>(*this)</tt> |
576 |
|
|
516 |
/// |
|
517 |
/// \see reset(), run() |
|
518 |
CapacityScaling& resetParams() { |
|
577 | 519 |
for (int i = 0; i != _node_num; ++i) { |
578 | 520 |
_supply[i] = 0; |
579 | 521 |
} |
580 | 522 |
for (int j = 0; j != _res_arc_num; ++j) { |
581 | 523 |
_lower[j] = 0; |
582 | 524 |
_upper[j] = INF; |
583 | 525 |
_cost[j] = _forward[j] ? 1 : -1; |
584 | 526 |
} |
585 | 527 |
_have_lower = false; |
586 | 528 |
return *this; |
587 | 529 |
} |
588 | 530 |
|
531 |
/// \brief Reset the internal data structures and all the parameters |
|
532 |
/// that have been given before. |
|
533 |
/// |
|
534 |
/// This function resets the internal data structures and all the |
|
535 |
/// paramaters that have been given before using functions \ref lowerMap(), |
|
536 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
537 |
/// |
|
538 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
539 |
/// parameters are kept for the next \ref run() call, unless |
|
540 |
/// \ref resetParams() or \ref reset() is used. |
|
541 |
/// If the underlying digraph was also modified after the construction |
|
542 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
543 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
544 |
/// |
|
545 |
/// See \ref resetParams() for examples. |
|
546 |
/// |
|
547 |
/// \return <tt>(*this)</tt> |
|
548 |
/// |
|
549 |
/// \see resetParams(), run() |
|
550 |
CapacityScaling& reset() { |
|
551 |
// Resize vectors |
|
552 |
_node_num = countNodes(_graph); |
|
553 |
_arc_num = countArcs(_graph); |
|
554 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
555 |
_root = _node_num; |
|
556 |
++_node_num; |
|
557 |
|
|
558 |
_first_out.resize(_node_num + 1); |
|
559 |
_forward.resize(_res_arc_num); |
|
560 |
_source.resize(_res_arc_num); |
|
561 |
_target.resize(_res_arc_num); |
|
562 |
_reverse.resize(_res_arc_num); |
|
563 |
|
|
564 |
_lower.resize(_res_arc_num); |
|
565 |
_upper.resize(_res_arc_num); |
|
566 |
_cost.resize(_res_arc_num); |
|
567 |
_supply.resize(_node_num); |
|
568 |
|
|
569 |
_res_cap.resize(_res_arc_num); |
|
570 |
_pi.resize(_node_num); |
|
571 |
_excess.resize(_node_num); |
|
572 |
_pred.resize(_node_num); |
|
573 |
|
|
574 |
// Copy the graph |
|
575 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
|
576 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
577 |
_node_id[n] = i; |
|
578 |
} |
|
579 |
i = 0; |
|
580 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
581 |
_first_out[i] = j; |
|
582 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
583 |
_arc_idf[a] = j; |
|
584 |
_forward[j] = true; |
|
585 |
_source[j] = i; |
|
586 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
587 |
} |
|
588 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
589 |
_arc_idb[a] = j; |
|
590 |
_forward[j] = false; |
|
591 |
_source[j] = i; |
|
592 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
593 |
} |
|
594 |
_forward[j] = false; |
|
595 |
_source[j] = i; |
|
596 |
_target[j] = _root; |
|
597 |
_reverse[j] = k; |
|
598 |
_forward[k] = true; |
|
599 |
_source[k] = _root; |
|
600 |
_target[k] = i; |
|
601 |
_reverse[k] = j; |
|
602 |
++j; ++k; |
|
603 |
} |
|
604 |
_first_out[i] = j; |
|
605 |
_first_out[_node_num] = k; |
|
606 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
607 |
int fi = _arc_idf[a]; |
|
608 |
int bi = _arc_idb[a]; |
|
609 |
_reverse[fi] = bi; |
|
610 |
_reverse[bi] = fi; |
|
611 |
} |
|
612 |
|
|
613 |
// Reset parameters |
|
614 |
resetParams(); |
|
615 |
return *this; |
|
616 |
} |
|
617 |
|
|
589 | 618 |
/// @} |
590 | 619 |
|
591 | 620 |
/// \name Query Functions |
592 | 621 |
/// The results of the algorithm can be obtained using these |
593 | 622 |
/// functions.\n |
594 | 623 |
/// The \ref run() function must be called before using them. |
... | ... |
@@ -329,80 +329,14 @@ |
329 | 329 |
{ |
330 | 330 |
// Check the number types |
331 | 331 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
332 | 332 |
"The flow type of CostScaling must be signed"); |
333 | 333 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
334 | 334 |
"The cost type of CostScaling must be signed"); |
335 |
|
|
336 |
// Resize vectors |
|
337 |
_node_num = countNodes(_graph); |
|
338 |
_arc_num = countArcs(_graph); |
|
339 |
_res_node_num = _node_num + 1; |
|
340 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
341 |
_root = _node_num; |
|
342 |
|
|
343 |
_first_out.resize(_res_node_num + 1); |
|
344 |
_forward.resize(_res_arc_num); |
|
345 |
_source.resize(_res_arc_num); |
|
346 |
_target.resize(_res_arc_num); |
|
347 |
_reverse.resize(_res_arc_num); |
|
348 |
|
|
349 |
_lower.resize(_res_arc_num); |
|
350 |
_upper.resize(_res_arc_num); |
|
351 |
_scost.resize(_res_arc_num); |
|
352 |
_supply.resize(_res_node_num); |
|
353 | 335 |
|
354 |
_res_cap.resize(_res_arc_num); |
|
355 |
_cost.resize(_res_arc_num); |
|
356 |
_pi.resize(_res_node_num); |
|
357 |
_excess.resize(_res_node_num); |
|
358 |
_next_out.resize(_res_node_num); |
|
359 |
|
|
360 |
_arc_vec.reserve(_res_arc_num); |
|
361 |
_cost_vec.reserve(_res_arc_num); |
|
362 |
|
|
363 |
// Copy the graph |
|
364 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
|
365 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
366 |
_node_id[n] = i; |
|
367 |
} |
|
368 |
i = 0; |
|
369 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
370 |
_first_out[i] = j; |
|
371 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
372 |
_arc_idf[a] = j; |
|
373 |
_forward[j] = true; |
|
374 |
_source[j] = i; |
|
375 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
376 |
} |
|
377 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
378 |
_arc_idb[a] = j; |
|
379 |
_forward[j] = false; |
|
380 |
_source[j] = i; |
|
381 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
382 |
} |
|
383 |
_forward[j] = false; |
|
384 |
_source[j] = i; |
|
385 |
_target[j] = _root; |
|
386 |
_reverse[j] = k; |
|
387 |
_forward[k] = true; |
|
388 |
_source[k] = _root; |
|
389 |
_target[k] = i; |
|
390 |
_reverse[k] = j; |
|
391 |
++j; ++k; |
|
392 |
} |
|
393 |
_first_out[i] = j; |
|
394 |
_first_out[_res_node_num] = k; |
|
395 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
396 |
int fi = _arc_idf[a]; |
|
397 |
int bi = _arc_idb[a]; |
|
398 |
_reverse[fi] = bi; |
|
399 |
_reverse[bi] = fi; |
|
400 |
} |
|
401 |
|
|
402 |
// Reset |
|
336 |
// Reset data structures |
|
403 | 337 |
reset(); |
404 | 338 |
} |
405 | 339 |
|
406 | 340 |
/// \name Parameters |
407 | 341 |
/// The parameters of the algorithm can be specified using these |
408 | 342 |
/// functions. |
... | ... |
@@ -531,18 +465,18 @@ |
531 | 465 |
/// \code |
532 | 466 |
/// CostScaling<ListDigraph> cs(graph); |
533 | 467 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
534 | 468 |
/// .supplyMap(sup).run(); |
535 | 469 |
/// \endcode |
536 | 470 |
/// |
537 |
/// This function can be called more than once. All the parameters |
|
538 |
/// that have been given are kept for the next call, unless |
|
539 |
/// \ref reset() is called, thus only the modified parameters |
|
540 |
/// have to be set again. See \ref reset() for examples. |
|
541 |
/// However, the underlying digraph must not be modified after this |
|
542 |
/// class have been constructed, since it copies and extends the graph. |
|
471 |
/// This function can be called more than once. All the given parameters |
|
472 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
|
473 |
/// is used, thus only the modified parameters have to be set again. |
|
474 |
/// If the underlying digraph was also modified after the construction |
|
475 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
|
476 |
/// function must be called. |
|
543 | 477 |
/// |
544 | 478 |
/// \param method The internal method that will be used in the |
545 | 479 |
/// algorithm. For more information, see \ref Method. |
546 | 480 |
/// \param factor The cost scaling factor. It must be larger than one. |
547 | 481 |
/// |
548 | 482 |
/// \return \c INFEASIBLE if no feasible flow exists, |
... | ... |
@@ -553,12 +487,13 @@ |
553 | 487 |
/// and infinite upper bound. It means that the objective function |
554 | 488 |
/// is unbounded on that arc, however, note that it could actually be |
555 | 489 |
/// bounded over the feasible flows, but this algroithm cannot handle |
556 | 490 |
/// these cases. |
557 | 491 |
/// |
558 | 492 |
/// \see ProblemType, Method |
493 |
/// \see resetParams(), reset() |
|
559 | 494 |
ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) { |
560 | 495 |
_alpha = factor; |
561 | 496 |
ProblemType pt = init(); |
562 | 497 |
if (pt != OPTIMAL) return pt; |
563 | 498 |
start(method); |
564 | 499 |
return OPTIMAL; |
... | ... |
@@ -567,40 +502,43 @@ |
567 | 502 |
/// \brief Reset all the parameters that have been given before. |
568 | 503 |
/// |
569 | 504 |
/// This function resets all the paramaters that have been given |
570 | 505 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
571 | 506 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
572 | 507 |
/// |
573 |
/// It is useful for multiple run() calls. If this function is not |
|
574 |
/// used, all the parameters given before are kept for the next |
|
575 |
/// \ref run() call. |
|
576 |
/// However, the underlying digraph must not be modified after this |
|
577 |
/// |
|
508 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
509 |
/// parameters are kept for the next \ref run() call, unless |
|
510 |
/// \ref resetParams() or \ref reset() is used. |
|
511 |
/// If the underlying digraph was also modified after the construction |
|
512 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
513 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
578 | 514 |
/// |
579 | 515 |
/// For example, |
580 | 516 |
/// \code |
581 | 517 |
/// CostScaling<ListDigraph> cs(graph); |
582 | 518 |
/// |
583 | 519 |
/// // First run |
584 | 520 |
/// cs.lowerMap(lower).upperMap(upper).costMap(cost) |
585 | 521 |
/// .supplyMap(sup).run(); |
586 | 522 |
/// |
587 |
/// // Run again with modified cost map ( |
|
523 |
/// // Run again with modified cost map (resetParams() is not called, |
|
588 | 524 |
/// // so only the cost map have to be set again) |
589 | 525 |
/// cost[e] += 100; |
590 | 526 |
/// cs.costMap(cost).run(); |
591 | 527 |
/// |
592 |
/// // Run again from scratch using |
|
528 |
/// // Run again from scratch using resetParams() |
|
593 | 529 |
/// // (the lower bounds will be set to zero on all arcs) |
594 |
/// cs. |
|
530 |
/// cs.resetParams(); |
|
595 | 531 |
/// cs.upperMap(capacity).costMap(cost) |
596 | 532 |
/// .supplyMap(sup).run(); |
597 | 533 |
/// \endcode |
598 | 534 |
/// |
599 | 535 |
/// \return <tt>(*this)</tt> |
600 |
|
|
536 |
/// |
|
537 |
/// \see reset(), run() |
|
538 |
CostScaling& resetParams() { |
|
601 | 539 |
for (int i = 0; i != _res_node_num; ++i) { |
602 | 540 |
_supply[i] = 0; |
603 | 541 |
} |
604 | 542 |
int limit = _first_out[_root]; |
605 | 543 |
for (int j = 0; j != limit; ++j) { |
606 | 544 |
_lower[j] = 0; |
... | ... |
@@ -614,12 +552,96 @@ |
614 | 552 |
_scost[_reverse[j]] = 0; |
615 | 553 |
} |
616 | 554 |
_have_lower = false; |
617 | 555 |
return *this; |
618 | 556 |
} |
619 | 557 |
|
558 |
/// \brief Reset all the parameters that have been given before. |
|
559 |
/// |
|
560 |
/// This function resets all the paramaters that have been given |
|
561 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
562 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
563 |
/// |
|
564 |
/// It is useful for multiple run() calls. If this function is not |
|
565 |
/// used, all the parameters given before are kept for the next |
|
566 |
/// \ref run() call. |
|
567 |
/// However, the underlying digraph must not be modified after this |
|
568 |
/// class have been constructed, since it copies and extends the graph. |
|
569 |
/// \return <tt>(*this)</tt> |
|
570 |
CostScaling& reset() { |
|
571 |
// Resize vectors |
|
572 |
_node_num = countNodes(_graph); |
|
573 |
_arc_num = countArcs(_graph); |
|
574 |
_res_node_num = _node_num + 1; |
|
575 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
576 |
_root = _node_num; |
|
577 |
|
|
578 |
_first_out.resize(_res_node_num + 1); |
|
579 |
_forward.resize(_res_arc_num); |
|
580 |
_source.resize(_res_arc_num); |
|
581 |
_target.resize(_res_arc_num); |
|
582 |
_reverse.resize(_res_arc_num); |
|
583 |
|
|
584 |
_lower.resize(_res_arc_num); |
|
585 |
_upper.resize(_res_arc_num); |
|
586 |
_scost.resize(_res_arc_num); |
|
587 |
_supply.resize(_res_node_num); |
|
588 |
|
|
589 |
_res_cap.resize(_res_arc_num); |
|
590 |
_cost.resize(_res_arc_num); |
|
591 |
_pi.resize(_res_node_num); |
|
592 |
_excess.resize(_res_node_num); |
|
593 |
_next_out.resize(_res_node_num); |
|
594 |
|
|
595 |
_arc_vec.reserve(_res_arc_num); |
|
596 |
_cost_vec.reserve(_res_arc_num); |
|
597 |
|
|
598 |
// Copy the graph |
|
599 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
|
600 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
601 |
_node_id[n] = i; |
|
602 |
} |
|
603 |
i = 0; |
|
604 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
605 |
_first_out[i] = j; |
|
606 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
607 |
_arc_idf[a] = j; |
|
608 |
_forward[j] = true; |
|
609 |
_source[j] = i; |
|
610 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
611 |
} |
|
612 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
613 |
_arc_idb[a] = j; |
|
614 |
_forward[j] = false; |
|
615 |
_source[j] = i; |
|
616 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
617 |
} |
|
618 |
_forward[j] = false; |
|
619 |
_source[j] = i; |
|
620 |
_target[j] = _root; |
|
621 |
_reverse[j] = k; |
|
622 |
_forward[k] = true; |
|
623 |
_source[k] = _root; |
|
624 |
_target[k] = i; |
|
625 |
_reverse[k] = j; |
|
626 |
++j; ++k; |
|
627 |
} |
|
628 |
_first_out[i] = j; |
|
629 |
_first_out[_res_node_num] = k; |
|
630 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
631 |
int fi = _arc_idf[a]; |
|
632 |
int bi = _arc_idb[a]; |
|
633 |
_reverse[fi] = bi; |
|
634 |
_reverse[bi] = fi; |
|
635 |
} |
|
636 |
|
|
637 |
// Reset parameters |
|
638 |
resetParams(); |
|
639 |
return *this; |
|
640 |
} |
|
641 |
|
|
620 | 642 |
/// @} |
621 | 643 |
|
622 | 644 |
/// \name Query Functions |
623 | 645 |
/// The results of the algorithm can be obtained using these |
624 | 646 |
/// functions.\n |
625 | 647 |
/// The \ref run() function must be called before using them. |
... | ... |
@@ -247,77 +247,13 @@ |
247 | 247 |
// Check the number types |
248 | 248 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
249 | 249 |
"The flow type of CycleCanceling must be signed"); |
250 | 250 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
251 | 251 |
"The cost type of CycleCanceling must be signed"); |
252 | 252 |
|
253 |
// Resize vectors |
|
254 |
_node_num = countNodes(_graph); |
|
255 |
_arc_num = countArcs(_graph); |
|
256 |
_res_node_num = _node_num + 1; |
|
257 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
258 |
_root = _node_num; |
|
259 |
|
|
260 |
_first_out.resize(_res_node_num + 1); |
|
261 |
_forward.resize(_res_arc_num); |
|
262 |
_source.resize(_res_arc_num); |
|
263 |
_target.resize(_res_arc_num); |
|
264 |
_reverse.resize(_res_arc_num); |
|
265 |
|
|
266 |
_lower.resize(_res_arc_num); |
|
267 |
_upper.resize(_res_arc_num); |
|
268 |
_cost.resize(_res_arc_num); |
|
269 |
_supply.resize(_res_node_num); |
|
270 |
|
|
271 |
_res_cap.resize(_res_arc_num); |
|
272 |
_pi.resize(_res_node_num); |
|
273 |
|
|
274 |
_arc_vec.reserve(_res_arc_num); |
|
275 |
_cost_vec.reserve(_res_arc_num); |
|
276 |
_id_vec.reserve(_res_arc_num); |
|
277 |
|
|
278 |
// Copy the graph |
|
279 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
|
280 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
281 |
_node_id[n] = i; |
|
282 |
} |
|
283 |
i = 0; |
|
284 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
285 |
_first_out[i] = j; |
|
286 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
287 |
_arc_idf[a] = j; |
|
288 |
_forward[j] = true; |
|
289 |
_source[j] = i; |
|
290 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
291 |
} |
|
292 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
293 |
_arc_idb[a] = j; |
|
294 |
_forward[j] = false; |
|
295 |
_source[j] = i; |
|
296 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
297 |
} |
|
298 |
_forward[j] = false; |
|
299 |
_source[j] = i; |
|
300 |
_target[j] = _root; |
|
301 |
_reverse[j] = k; |
|
302 |
_forward[k] = true; |
|
303 |
_source[k] = _root; |
|
304 |
_target[k] = i; |
|
305 |
_reverse[k] = j; |
|
306 |
++j; ++k; |
|
307 |
} |
|
308 |
_first_out[i] = j; |
|
309 |
_first_out[_res_node_num] = k; |
|
310 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
311 |
int fi = _arc_idf[a]; |
|
312 |
int bi = _arc_idb[a]; |
|
313 |
_reverse[fi] = bi; |
|
314 |
_reverse[bi] = fi; |
|
315 |
} |
|
316 |
|
|
317 |
// Reset |
|
253 |
// Reset data structures |
|
318 | 254 |
reset(); |
319 | 255 |
} |
320 | 256 |
|
321 | 257 |
/// \name Parameters |
322 | 258 |
/// The parameters of the algorithm can be specified using these |
323 | 259 |
/// functions. |
... | ... |
@@ -446,18 +382,18 @@ |
446 | 382 |
/// \code |
447 | 383 |
/// CycleCanceling<ListDigraph> cc(graph); |
448 | 384 |
/// cc.lowerMap(lower).upperMap(upper).costMap(cost) |
449 | 385 |
/// .supplyMap(sup).run(); |
450 | 386 |
/// \endcode |
451 | 387 |
/// |
452 |
/// This function can be called more than once. All the parameters |
|
453 |
/// that have been given are kept for the next call, unless |
|
454 |
/// \ref reset() is called, thus only the modified parameters |
|
455 |
/// have to be set again. See \ref reset() for examples. |
|
456 |
/// However, the underlying digraph must not be modified after this |
|
457 |
/// class have been constructed, since it copies and extends the graph. |
|
388 |
/// This function can be called more than once. All the given parameters |
|
389 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
|
390 |
/// is used, thus only the modified parameters have to be set again. |
|
391 |
/// If the underlying digraph was also modified after the construction |
|
392 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
|
393 |
/// function must be called. |
|
458 | 394 |
/// |
459 | 395 |
/// \param method The cycle-canceling method that will be used. |
460 | 396 |
/// For more information, see \ref Method. |
461 | 397 |
/// |
462 | 398 |
/// \return \c INFEASIBLE if no feasible flow exists, |
463 | 399 |
/// \n \c OPTIMAL if the problem has optimal solution |
... | ... |
@@ -467,12 +403,13 @@ |
467 | 403 |
/// and infinite upper bound. It means that the objective function |
468 | 404 |
/// is unbounded on that arc, however, note that it could actually be |
469 | 405 |
/// bounded over the feasible flows, but this algroithm cannot handle |
470 | 406 |
/// these cases. |
471 | 407 |
/// |
472 | 408 |
/// \see ProblemType, Method |
409 |
/// \see resetParams(), reset() |
|
473 | 410 |
ProblemType run(Method method = CANCEL_AND_TIGHTEN) { |
474 | 411 |
ProblemType pt = init(); |
475 | 412 |
if (pt != OPTIMAL) return pt; |
476 | 413 |
start(method); |
477 | 414 |
return OPTIMAL; |
478 | 415 |
} |
... | ... |
@@ -480,40 +417,43 @@ |
480 | 417 |
/// \brief Reset all the parameters that have been given before. |
481 | 418 |
/// |
482 | 419 |
/// This function resets all the paramaters that have been given |
483 | 420 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
484 | 421 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
485 | 422 |
/// |
486 |
/// It is useful for multiple run() calls. If this function is not |
|
487 |
/// used, all the parameters given before are kept for the next |
|
488 |
/// \ref run() call. |
|
489 |
/// However, the underlying digraph must not be modified after this |
|
490 |
/// |
|
423 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
424 |
/// parameters are kept for the next \ref run() call, unless |
|
425 |
/// \ref resetParams() or \ref reset() is used. |
|
426 |
/// If the underlying digraph was also modified after the construction |
|
427 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
428 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
491 | 429 |
/// |
492 | 430 |
/// For example, |
493 | 431 |
/// \code |
494 | 432 |
/// CycleCanceling<ListDigraph> cs(graph); |
495 | 433 |
/// |
496 | 434 |
/// // First run |
497 | 435 |
/// cc.lowerMap(lower).upperMap(upper).costMap(cost) |
498 | 436 |
/// .supplyMap(sup).run(); |
499 | 437 |
/// |
500 |
/// // Run again with modified cost map ( |
|
438 |
/// // Run again with modified cost map (resetParams() is not called, |
|
501 | 439 |
/// // so only the cost map have to be set again) |
502 | 440 |
/// cost[e] += 100; |
503 | 441 |
/// cc.costMap(cost).run(); |
504 | 442 |
/// |
505 |
/// // Run again from scratch using |
|
443 |
/// // Run again from scratch using resetParams() |
|
506 | 444 |
/// // (the lower bounds will be set to zero on all arcs) |
507 |
/// cc. |
|
445 |
/// cc.resetParams(); |
|
508 | 446 |
/// cc.upperMap(capacity).costMap(cost) |
509 | 447 |
/// .supplyMap(sup).run(); |
510 | 448 |
/// \endcode |
511 | 449 |
/// |
512 | 450 |
/// \return <tt>(*this)</tt> |
513 |
|
|
451 |
/// |
|
452 |
/// \see reset(), run() |
|
453 |
CycleCanceling& resetParams() { |
|
514 | 454 |
for (int i = 0; i != _res_node_num; ++i) { |
515 | 455 |
_supply[i] = 0; |
516 | 456 |
} |
517 | 457 |
int limit = _first_out[_root]; |
518 | 458 |
for (int j = 0; j != limit; ++j) { |
519 | 459 |
_lower[j] = 0; |
... | ... |
@@ -527,12 +467,101 @@ |
527 | 467 |
_cost[_reverse[j]] = 0; |
528 | 468 |
} |
529 | 469 |
_have_lower = false; |
530 | 470 |
return *this; |
531 | 471 |
} |
532 | 472 |
|
473 |
/// \brief Reset the internal data structures and all the parameters |
|
474 |
/// that have been given before. |
|
475 |
/// |
|
476 |
/// This function resets the internal data structures and all the |
|
477 |
/// paramaters that have been given before using functions \ref lowerMap(), |
|
478 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
|
479 |
/// |
|
480 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
481 |
/// parameters are kept for the next \ref run() call, unless |
|
482 |
/// \ref resetParams() or \ref reset() is used. |
|
483 |
/// If the underlying digraph was also modified after the construction |
|
484 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
485 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
486 |
/// |
|
487 |
/// See \ref resetParams() for examples. |
|
488 |
/// |
|
489 |
/// \return <tt>(*this)</tt> |
|
490 |
/// |
|
491 |
/// \see resetParams(), run() |
|
492 |
CycleCanceling& reset() { |
|
493 |
// Resize vectors |
|
494 |
_node_num = countNodes(_graph); |
|
495 |
_arc_num = countArcs(_graph); |
|
496 |
_res_node_num = _node_num + 1; |
|
497 |
_res_arc_num = 2 * (_arc_num + _node_num); |
|
498 |
_root = _node_num; |
|
499 |
|
|
500 |
_first_out.resize(_res_node_num + 1); |
|
501 |
_forward.resize(_res_arc_num); |
|
502 |
_source.resize(_res_arc_num); |
|
503 |
_target.resize(_res_arc_num); |
|
504 |
_reverse.resize(_res_arc_num); |
|
505 |
|
|
506 |
_lower.resize(_res_arc_num); |
|
507 |
_upper.resize(_res_arc_num); |
|
508 |
_cost.resize(_res_arc_num); |
|
509 |
_supply.resize(_res_node_num); |
|
510 |
|
|
511 |
_res_cap.resize(_res_arc_num); |
|
512 |
_pi.resize(_res_node_num); |
|
513 |
|
|
514 |
_arc_vec.reserve(_res_arc_num); |
|
515 |
_cost_vec.reserve(_res_arc_num); |
|
516 |
_id_vec.reserve(_res_arc_num); |
|
517 |
|
|
518 |
// Copy the graph |
|
519 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
|
520 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
521 |
_node_id[n] = i; |
|
522 |
} |
|
523 |
i = 0; |
|
524 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
525 |
_first_out[i] = j; |
|
526 |
for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
527 |
_arc_idf[a] = j; |
|
528 |
_forward[j] = true; |
|
529 |
_source[j] = i; |
|
530 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
531 |
} |
|
532 |
for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { |
|
533 |
_arc_idb[a] = j; |
|
534 |
_forward[j] = false; |
|
535 |
_source[j] = i; |
|
536 |
_target[j] = _node_id[_graph.runningNode(a)]; |
|
537 |
} |
|
538 |
_forward[j] = false; |
|
539 |
_source[j] = i; |
|
540 |
_target[j] = _root; |
|
541 |
_reverse[j] = k; |
|
542 |
_forward[k] = true; |
|
543 |
_source[k] = _root; |
|
544 |
_target[k] = i; |
|
545 |
_reverse[k] = j; |
|
546 |
++j; ++k; |
|
547 |
} |
|
548 |
_first_out[i] = j; |
|
549 |
_first_out[_res_node_num] = k; |
|
550 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
551 |
int fi = _arc_idf[a]; |
|
552 |
int bi = _arc_idb[a]; |
|
553 |
_reverse[fi] = bi; |
|
554 |
_reverse[bi] = fi; |
|
555 |
} |
|
556 |
|
|
557 |
// Reset parameters |
|
558 |
resetParams(); |
|
559 |
return *this; |
|
560 |
} |
|
561 |
|
|
533 | 562 |
/// @} |
534 | 563 |
|
535 | 564 |
/// \name Query Functions |
536 | 565 |
/// The results of the algorithm can be obtained using these |
537 | 566 |
/// functions.\n |
538 | 567 |
/// The \ref run() function must be called before using them. |
... | ... |
@@ -191,12 +191,13 @@ |
191 | 191 |
|
192 | 192 |
// Data structures for storing the digraph |
193 | 193 |
IntNodeMap _node_id; |
194 | 194 |
IntArcMap _arc_id; |
195 | 195 |
IntVector _source; |
196 | 196 |
IntVector _target; |
197 |
bool _arc_mixing; |
|
197 | 198 |
|
198 | 199 |
// Node and arc data |
199 | 200 |
ValueVector _lower; |
200 | 201 |
ValueVector _upper; |
201 | 202 |
ValueVector _cap; |
202 | 203 |
CostVector _cost; |
... | ... |
@@ -630,74 +631,24 @@ |
630 | 631 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
631 | 632 |
/// mixed order in the internal data structure. |
632 | 633 |
/// In special cases, it could lead to better overall performance, |
633 | 634 |
/// but it is usually slower. Therefore it is disabled by default. |
634 | 635 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
635 | 636 |
_graph(graph), _node_id(graph), _arc_id(graph), |
637 |
_arc_mixing(arc_mixing), |
|
636 | 638 |
MAX(std::numeric_limits<Value>::max()), |
637 | 639 |
INF(std::numeric_limits<Value>::has_infinity ? |
638 | 640 |
std::numeric_limits<Value>::infinity() : MAX) |
639 | 641 |
{ |
640 | 642 |
// Check the number types |
641 | 643 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
642 | 644 |
"The flow type of NetworkSimplex must be signed"); |
643 | 645 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
644 | 646 |
"The cost type of NetworkSimplex must be signed"); |
645 | 647 |
|
646 |
// Resize vectors |
|
647 |
_node_num = countNodes(_graph); |
|
648 |
_arc_num = countArcs(_graph); |
|
649 |
int all_node_num = _node_num + 1; |
|
650 |
int max_arc_num = _arc_num + 2 * _node_num; |
|
651 |
|
|
652 |
_source.resize(max_arc_num); |
|
653 |
_target.resize(max_arc_num); |
|
654 |
|
|
655 |
_lower.resize(_arc_num); |
|
656 |
_upper.resize(_arc_num); |
|
657 |
_cap.resize(max_arc_num); |
|
658 |
_cost.resize(max_arc_num); |
|
659 |
_supply.resize(all_node_num); |
|
660 |
_flow.resize(max_arc_num); |
|
661 |
_pi.resize(all_node_num); |
|
662 |
|
|
663 |
_parent.resize(all_node_num); |
|
664 |
_pred.resize(all_node_num); |
|
665 |
_forward.resize(all_node_num); |
|
666 |
_thread.resize(all_node_num); |
|
667 |
_rev_thread.resize(all_node_num); |
|
668 |
_succ_num.resize(all_node_num); |
|
669 |
_last_succ.resize(all_node_num); |
|
670 |
_state.resize(max_arc_num); |
|
671 |
|
|
672 |
// Copy the graph |
|
673 |
int i = 0; |
|
674 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
675 |
_node_id[n] = i; |
|
676 |
} |
|
677 |
if (arc_mixing) { |
|
678 |
// Store the arcs in a mixed order |
|
679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
680 |
int i = 0, j = 0; |
|
681 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
682 |
_arc_id[a] = i; |
|
683 |
_source[i] = _node_id[_graph.source(a)]; |
|
684 |
_target[i] = _node_id[_graph.target(a)]; |
|
685 |
if ((i += k) >= _arc_num) i = ++j; |
|
686 |
} |
|
687 |
} else { |
|
688 |
// Store the arcs in the original order |
|
689 |
int i = 0; |
|
690 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
|
691 |
_arc_id[a] = i; |
|
692 |
_source[i] = _node_id[_graph.source(a)]; |
|
693 |
_target[i] = _node_id[_graph.target(a)]; |
|
694 |
} |
|
695 |
} |
|
696 |
|
|
697 |
// Reset parameters |
|
648 |
// Reset data structures |
|
698 | 649 |
reset(); |
699 | 650 |
} |
700 | 651 |
|
701 | 652 |
/// \name Parameters |
702 | 653 |
/// The parameters of the algorithm can be specified using these |
703 | 654 |
/// functions. |
... | ... |
@@ -839,18 +790,18 @@ |
839 | 790 |
/// \code |
840 | 791 |
/// NetworkSimplex<ListDigraph> ns(graph); |
841 | 792 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
842 | 793 |
/// .supplyMap(sup).run(); |
843 | 794 |
/// \endcode |
844 | 795 |
/// |
845 |
/// This function can be called more than once. All the parameters |
|
846 |
/// that have been given are kept for the next call, unless |
|
847 |
/// \ref reset() is called, thus only the modified parameters |
|
848 |
/// have to be set again. See \ref reset() for examples. |
|
849 |
/// However, the underlying digraph must not be modified after this |
|
850 |
/// class have been constructed, since it copies and extends the graph. |
|
796 |
/// This function can be called more than once. All the given parameters |
|
797 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
|
798 |
/// is used, thus only the modified parameters have to be set again. |
|
799 |
/// If the underlying digraph was also modified after the construction |
|
800 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
|
801 |
/// function must be called. |
|
851 | 802 |
/// |
852 | 803 |
/// \param pivot_rule The pivot rule that will be used during the |
853 | 804 |
/// algorithm. For more information, see \ref PivotRule. |
854 | 805 |
/// |
855 | 806 |
/// \return \c INFEASIBLE if no feasible flow exists, |
856 | 807 |
/// \n \c OPTIMAL if the problem has optimal solution |
... | ... |
@@ -858,51 +809,55 @@ |
858 | 809 |
/// optimal flow and node potentials (primal and dual solutions), |
859 | 810 |
/// \n \c UNBOUNDED if the objective function of the problem is |
860 | 811 |
/// unbounded, i.e. there is a directed cycle having negative total |
861 | 812 |
/// cost and infinite upper bound. |
862 | 813 |
/// |
863 | 814 |
/// \see ProblemType, PivotRule |
815 |
/// \see resetParams(), reset() |
|
864 | 816 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) { |
865 | 817 |
if (!init()) return INFEASIBLE; |
866 | 818 |
return start(pivot_rule); |
867 | 819 |
} |
868 | 820 |
|
869 | 821 |
/// \brief Reset all the parameters that have been given before. |
870 | 822 |
/// |
871 | 823 |
/// This function resets all the paramaters that have been given |
872 | 824 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
873 | 825 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
874 | 826 |
/// |
875 |
/// It is useful for multiple run() calls. If this function is not |
|
876 |
/// used, all the parameters given before are kept for the next |
|
877 |
/// \ref run() call. |
|
878 |
/// However, the underlying digraph must not be modified after this |
|
879 |
/// |
|
827 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
828 |
/// parameters are kept for the next \ref run() call, unless |
|
829 |
/// \ref resetParams() or \ref reset() is used. |
|
830 |
/// If the underlying digraph was also modified after the construction |
|
831 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
832 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
880 | 833 |
/// |
881 | 834 |
/// For example, |
882 | 835 |
/// \code |
883 | 836 |
/// NetworkSimplex<ListDigraph> ns(graph); |
884 | 837 |
/// |
885 | 838 |
/// // First run |
886 | 839 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
887 | 840 |
/// .supplyMap(sup).run(); |
888 | 841 |
/// |
889 |
/// // Run again with modified cost map ( |
|
842 |
/// // Run again with modified cost map (resetParams() is not called, |
|
890 | 843 |
/// // so only the cost map have to be set again) |
891 | 844 |
/// cost[e] += 100; |
892 | 845 |
/// ns.costMap(cost).run(); |
893 | 846 |
/// |
894 |
/// // Run again from scratch using |
|
847 |
/// // Run again from scratch using resetParams() |
|
895 | 848 |
/// // (the lower bounds will be set to zero on all arcs) |
896 |
/// ns. |
|
849 |
/// ns.resetParams(); |
|
897 | 850 |
/// ns.upperMap(capacity).costMap(cost) |
898 | 851 |
/// .supplyMap(sup).run(); |
899 | 852 |
/// \endcode |
900 | 853 |
/// |
901 | 854 |
/// \return <tt>(*this)</tt> |
902 |
|
|
855 |
/// |
|
856 |
/// \see reset(), run() |
|
857 |
NetworkSimplex& resetParams() { |
|
903 | 858 |
for (int i = 0; i != _node_num; ++i) { |
904 | 859 |
_supply[i] = 0; |
905 | 860 |
} |
906 | 861 |
for (int i = 0; i != _arc_num; ++i) { |
907 | 862 |
_lower[i] = 0; |
908 | 863 |
_upper[i] = INF; |
... | ... |
@@ -910,12 +865,89 @@ |
910 | 865 |
} |
911 | 866 |
_have_lower = false; |
912 | 867 |
_stype = GEQ; |
913 | 868 |
return *this; |
914 | 869 |
} |
915 | 870 |
|
871 |
/// \brief Reset the internal data structures and all the parameters |
|
872 |
/// that have been given before. |
|
873 |
/// |
|
874 |
/// This function resets the internal data structures and all the |
|
875 |
/// paramaters that have been given before using functions \ref lowerMap(), |
|
876 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
877 |
/// \ref supplyType(). |
|
878 |
/// |
|
879 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
|
880 |
/// parameters are kept for the next \ref run() call, unless |
|
881 |
/// \ref resetParams() or \ref reset() is used. |
|
882 |
/// If the underlying digraph was also modified after the construction |
|
883 |
/// of the class or the last \ref reset() call, then the \ref reset() |
|
884 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
|
885 |
/// |
|
886 |
/// See \ref resetParams() for examples. |
|
887 |
/// |
|
888 |
/// \return <tt>(*this)</tt> |
|
889 |
/// |
|
890 |
/// \see resetParams(), run() |
|
891 |
NetworkSimplex& reset() { |
|
892 |
// Resize vectors |
|
893 |
_node_num = countNodes(_graph); |
|
894 |
_arc_num = countArcs(_graph); |
|
895 |
int all_node_num = _node_num + 1; |
|
896 |
int max_arc_num = _arc_num + 2 * _node_num; |
|
897 |
|
|
898 |
_source.resize(max_arc_num); |
|
899 |
_target.resize(max_arc_num); |
|
900 |
|
|
901 |
_lower.resize(_arc_num); |
|
902 |
_upper.resize(_arc_num); |
|
903 |
_cap.resize(max_arc_num); |
|
904 |
_cost.resize(max_arc_num); |
|
905 |
_supply.resize(all_node_num); |
|
906 |
_flow.resize(max_arc_num); |
|
907 |
_pi.resize(all_node_num); |
|
908 |
|
|
909 |
_parent.resize(all_node_num); |
|
910 |
_pred.resize(all_node_num); |
|
911 |
_forward.resize(all_node_num); |
|
912 |
_thread.resize(all_node_num); |
|
913 |
_rev_thread.resize(all_node_num); |
|
914 |
_succ_num.resize(all_node_num); |
|
915 |
_last_succ.resize(all_node_num); |
|
916 |
_state.resize(max_arc_num); |
|
917 |
|
|
918 |
// Copy the graph |
|
919 |
int i = 0; |
|
920 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
921 |
_node_id[n] = i; |
|
922 |
} |
|
923 |
if (_arc_mixing) { |
|
924 |
// Store the arcs in a mixed order |
|
925 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
|
926 |
int i = 0, j = 0; |
|
927 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
928 |
_arc_id[a] = i; |
|
929 |
_source[i] = _node_id[_graph.source(a)]; |
|
930 |
_target[i] = _node_id[_graph.target(a)]; |
|
931 |
if ((i += k) >= _arc_num) i = ++j; |
|
932 |
} |
|
933 |
} else { |
|
934 |
// Store the arcs in the original order |
|
935 |
int i = 0; |
|
936 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
|
937 |
_arc_id[a] = i; |
|
938 |
_source[i] = _node_id[_graph.source(a)]; |
|
939 |
_target[i] = _node_id[_graph.target(a)]; |
|
940 |
} |
|
941 |
} |
|
942 |
|
|
943 |
// Reset parameters |
|
944 |
resetParams(); |
|
945 |
return *this; |
|
946 |
} |
|
947 |
|
|
916 | 948 |
/// @} |
917 | 949 |
|
918 | 950 |
/// \name Query Functions |
919 | 951 |
/// The results of the algorithm can be obtained using these |
920 | 952 |
/// functions.\n |
921 | 953 |
/// The \ref run() function must be called before using them. |
... | ... |
@@ -154,13 +154,13 @@ |
154 | 154 |
|
155 | 155 |
const Constraints& me = *this; |
156 | 156 |
|
157 | 157 |
MCF mcf(me.g); |
158 | 158 |
const MCF& const_mcf = mcf; |
159 | 159 |
|
160 |
b = mcf.reset() |
|
160 |
b = mcf.reset().resetParams() |
|
161 | 161 |
.lowerMap(me.lower) |
162 | 162 |
.upperMap(me.upper) |
163 | 163 |
.costMap(me.cost) |
164 | 164 |
.supplyMap(me.sup) |
165 | 165 |
.stSupply(me.n, me.n, me.k) |
166 | 166 |
.run(); |
... | ... |
@@ -343,13 +343,13 @@ |
343 | 343 |
mcf1.lowerMap(l2).supplyMap(s1); |
344 | 344 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s1, |
345 | 345 |
mcf1.OPTIMAL, true, 5970, test_str + "-3"); |
346 | 346 |
mcf1.stSupply(v, w, 27); |
347 | 347 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2, |
348 | 348 |
mcf1.OPTIMAL, true, 8010, test_str + "-4"); |
349 |
mcf1. |
|
349 |
mcf1.resetParams().supplyMap(s1); |
|
350 | 350 |
checkMcf(mcf1, mcf1.run(param), gr, l1, cu, cc, s1, |
351 | 351 |
mcf1.OPTIMAL, true, 74, test_str + "-5"); |
352 | 352 |
mcf1.lowerMap(l2).stSupply(v, w, 27); |
353 | 353 |
checkMcf(mcf1, mcf1.run(param), gr, l2, cu, cc, s2, |
354 | 354 |
mcf1.OPTIMAL, true, 94, test_str + "-6"); |
355 | 355 |
mcf1.reset(); |
... | ... |
@@ -360,13 +360,13 @@ |
360 | 360 |
mcf1.INFEASIBLE, false, 0, test_str + "-8"); |
361 | 361 |
mcf1.lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4); |
362 | 362 |
checkMcf(mcf1, mcf1.run(param), gr, l3, u, c, s4, |
363 | 363 |
mcf1.OPTIMAL, true, 6360, test_str + "-9"); |
364 | 364 |
|
365 | 365 |
// Tests for the GEQ form |
366 |
mcf1. |
|
366 |
mcf1.resetParams().upperMap(u).costMap(c).supplyMap(s5); |
|
367 | 367 |
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s5, |
368 | 368 |
mcf1.OPTIMAL, true, 3530, test_str + "-10", GEQ); |
369 | 369 |
mcf1.lowerMap(l2); |
370 | 370 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s5, |
371 | 371 |
mcf1.OPTIMAL, true, 4540, test_str + "-11", GEQ); |
372 | 372 |
mcf1.supplyMap(s6); |
... | ... |
@@ -377,13 +377,13 @@ |
377 | 377 |
mcf2.lowerMap(neg1_l1).costMap(neg1_c).supplyMap(neg1_s); |
378 | 378 |
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u1, neg1_c, neg1_s, |
379 | 379 |
mcf2.UNBOUNDED, false, 0, test_str + "-13"); |
380 | 380 |
mcf2.upperMap(neg1_u2); |
381 | 381 |
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l1, neg1_u2, neg1_c, neg1_s, |
382 | 382 |
mcf2.OPTIMAL, true, -40000, test_str + "-14"); |
383 |
mcf2. |
|
383 |
mcf2.resetParams().lowerMap(neg1_l2).costMap(neg1_c).supplyMap(neg1_s); |
|
384 | 384 |
checkMcf(mcf2, mcf2.run(param), neg1_gr, neg1_l2, neg1_u1, neg1_c, neg1_s, |
385 | 385 |
mcf2.UNBOUNDED, false, 0, test_str + "-15"); |
386 | 386 |
|
387 | 387 |
mcf3.costMap(neg2_c).supplyMap(neg2_s); |
388 | 388 |
if (full_neg_cost_support) { |
389 | 389 |
checkMcf(mcf3, mcf3.run(param), neg2_gr, neg2_l, neg2_u, neg2_c, neg2_s, |
0 comments (0 inline)