0
2
1
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <lemon/connectivity.h> |
|
20 |
#include <lemon/list_graph.h> |
|
21 |
#include <lemon/adaptors.h> |
|
22 |
|
|
23 |
#include "test_tools.h" |
|
24 |
|
|
25 |
using namespace lemon; |
|
26 |
|
|
27 |
|
|
28 |
int main() |
|
29 |
{ |
|
30 |
typedef ListDigraph Digraph; |
|
31 |
typedef Undirector<Digraph> Graph; |
|
32 |
|
|
33 |
{ |
|
34 |
Digraph d; |
|
35 |
Digraph::NodeMap<int> order(d); |
|
36 |
Graph g(d); |
|
37 |
|
|
38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
|
39 |
check(countStronglyConnectedComponents(d) == 0, |
|
40 |
"The empty digraph has 0 strongly connected component"); |
|
41 |
check(connected(g), "The empty graph is connected"); |
|
42 |
check(countConnectedComponents(g) == 0, |
|
43 |
"The empty graph has 0 connected component"); |
|
44 |
|
|
45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
|
46 |
check(countBiNodeConnectedComponents(g) == 0, |
|
47 |
"The empty graph has 0 bi-node-connected component"); |
|
48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
|
49 |
check(countBiEdgeConnectedComponents(g) == 0, |
|
50 |
"The empty graph has 0 bi-edge-connected component"); |
|
51 |
|
|
52 |
check(dag(d), "The empty digraph is DAG."); |
|
53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
|
54 |
check(loopFree(d), "The empty digraph is loop-free."); |
|
55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
|
56 |
check(simpleGraph(d), "The empty digraph is simple."); |
|
57 |
|
|
58 |
check(acyclic(g), "The empty graph is acyclic."); |
|
59 |
check(tree(g), "The empty graph is tree."); |
|
60 |
check(bipartite(g), "The empty graph is bipartite."); |
|
61 |
check(loopFree(g), "The empty graph is loop-free."); |
|
62 |
check(parallelFree(g), "The empty graph is parallel-free."); |
|
63 |
check(simpleGraph(g), "The empty graph is simple."); |
|
64 |
} |
|
65 |
|
|
66 |
{ |
|
67 |
Digraph d; |
|
68 |
Digraph::NodeMap<int> order(d); |
|
69 |
Graph g(d); |
|
70 |
Digraph::Node n = d.addNode(); |
|
71 |
|
|
72 |
check(stronglyConnected(d), "This digraph is strongly connected"); |
|
73 |
check(countStronglyConnectedComponents(d) == 1, |
|
74 |
"This digraph has 1 strongly connected component"); |
|
75 |
check(connected(g), "This graph is connected"); |
|
76 |
check(countConnectedComponents(g) == 1, |
|
77 |
"This graph has 1 connected component"); |
|
78 |
|
|
79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
|
80 |
check(countBiNodeConnectedComponents(g) == 0, |
|
81 |
"This graph has 0 bi-node-connected component"); |
|
82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
|
83 |
check(countBiEdgeConnectedComponents(g) == 1, |
|
84 |
"This graph has 1 bi-edge-connected component"); |
|
85 |
|
|
86 |
check(dag(d), "This digraph is DAG."); |
|
87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
|
88 |
check(loopFree(d), "This digraph is loop-free."); |
|
89 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
90 |
check(simpleGraph(d), "This digraph is simple."); |
|
91 |
|
|
92 |
check(acyclic(g), "This graph is acyclic."); |
|
93 |
check(tree(g), "This graph is tree."); |
|
94 |
check(bipartite(g), "This graph is bipartite."); |
|
95 |
check(loopFree(g), "This graph is loop-free."); |
|
96 |
check(parallelFree(g), "This graph is parallel-free."); |
|
97 |
check(simpleGraph(g), "This graph is simple."); |
|
98 |
} |
|
99 |
|
|
100 |
{ |
|
101 |
Digraph d; |
|
102 |
Digraph::NodeMap<int> order(d); |
|
103 |
Graph g(d); |
|
104 |
|
|
105 |
Digraph::Node n1 = d.addNode(); |
|
106 |
Digraph::Node n2 = d.addNode(); |
|
107 |
Digraph::Node n3 = d.addNode(); |
|
108 |
Digraph::Node n4 = d.addNode(); |
|
109 |
Digraph::Node n5 = d.addNode(); |
|
110 |
Digraph::Node n6 = d.addNode(); |
|
111 |
|
|
112 |
d.addArc(n1, n3); |
|
113 |
d.addArc(n3, n2); |
|
114 |
d.addArc(n2, n1); |
|
115 |
d.addArc(n4, n2); |
|
116 |
d.addArc(n4, n3); |
|
117 |
d.addArc(n5, n6); |
|
118 |
d.addArc(n6, n5); |
|
119 |
|
|
120 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
121 |
check(countStronglyConnectedComponents(d) == 3, |
|
122 |
"This digraph has 3 strongly connected components"); |
|
123 |
check(!connected(g), "This graph is not connected"); |
|
124 |
check(countConnectedComponents(g) == 2, |
|
125 |
"This graph has 2 connected components"); |
|
126 |
|
|
127 |
check(!dag(d), "This digraph is not DAG."); |
|
128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
|
129 |
check(loopFree(d), "This digraph is loop-free."); |
|
130 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
131 |
check(simpleGraph(d), "This digraph is simple."); |
|
132 |
|
|
133 |
check(!acyclic(g), "This graph is not acyclic."); |
|
134 |
check(!tree(g), "This graph is not tree."); |
|
135 |
check(!bipartite(g), "This graph is not bipartite."); |
|
136 |
check(loopFree(g), "This graph is loop-free."); |
|
137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
|
138 |
check(!simpleGraph(g), "This graph is not simple."); |
|
139 |
|
|
140 |
d.addArc(n3, n3); |
|
141 |
|
|
142 |
check(!loopFree(d), "This digraph is not loop-free."); |
|
143 |
check(!loopFree(g), "This graph is not loop-free."); |
|
144 |
check(!simpleGraph(d), "This digraph is not simple."); |
|
145 |
|
|
146 |
d.addArc(n3, n2); |
|
147 |
|
|
148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
|
149 |
} |
|
150 |
|
|
151 |
{ |
|
152 |
Digraph d; |
|
153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
|
154 |
Graph g(d); |
|
155 |
|
|
156 |
Digraph::Node n1 = d.addNode(); |
|
157 |
Digraph::Node n2 = d.addNode(); |
|
158 |
Digraph::Node n3 = d.addNode(); |
|
159 |
Digraph::Node n4 = d.addNode(); |
|
160 |
Digraph::Node n5 = d.addNode(); |
|
161 |
Digraph::Node n6 = d.addNode(); |
|
162 |
Digraph::Node n7 = d.addNode(); |
|
163 |
Digraph::Node n8 = d.addNode(); |
|
164 |
|
|
165 |
d.addArc(n1, n2); |
|
166 |
d.addArc(n5, n1); |
|
167 |
d.addArc(n2, n8); |
|
168 |
d.addArc(n8, n5); |
|
169 |
d.addArc(n6, n4); |
|
170 |
d.addArc(n4, n6); |
|
171 |
d.addArc(n2, n5); |
|
172 |
d.addArc(n1, n8); |
|
173 |
d.addArc(n6, n7); |
|
174 |
d.addArc(n7, n6); |
|
175 |
|
|
176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
177 |
check(countStronglyConnectedComponents(d) == 3, |
|
178 |
"This digraph has 3 strongly connected components"); |
|
179 |
Digraph::NodeMap<int> scomp1(d); |
|
180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
|
181 |
"This digraph has 3 strongly connected components"); |
|
182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
|
183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
|
184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
|
185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
|
186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
|
187 |
"Wrong stronglyConnectedComponents()"); |
|
188 |
Digraph::ArcMap<bool> scut1(d, false); |
|
189 |
check(stronglyConnectedCutArcs(d, scut1) == 0, |
|
190 |
"This digraph has 0 strongly connected cut arc."); |
|
191 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
192 |
check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
|
193 |
} |
|
194 |
|
|
195 |
check(!connected(g), "This graph is not connected"); |
|
196 |
check(countConnectedComponents(g) == 3, |
|
197 |
"This graph has 3 connected components"); |
|
198 |
Graph::NodeMap<int> comp(g); |
|
199 |
check(connectedComponents(g, comp) == 3, |
|
200 |
"This graph has 3 connected components"); |
|
201 |
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
|
202 |
comp[n3] != comp[n4], "Wrong connectedComponents()"); |
|
203 |
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
|
204 |
comp[n1] == comp[n8], "Wrong connectedComponents()"); |
|
205 |
check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
|
206 |
"Wrong connectedComponents()"); |
|
207 |
|
|
208 |
cutarcs[d.addArc(n3, n1)] = true; |
|
209 |
cutarcs[d.addArc(n3, n5)] = true; |
|
210 |
cutarcs[d.addArc(n3, n8)] = true; |
|
211 |
cutarcs[d.addArc(n8, n6)] = true; |
|
212 |
cutarcs[d.addArc(n8, n7)] = true; |
|
213 |
|
|
214 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
215 |
check(countStronglyConnectedComponents(d) == 3, |
|
216 |
"This digraph has 3 strongly connected components"); |
|
217 |
Digraph::NodeMap<int> scomp2(d); |
|
218 |
check(stronglyConnectedComponents(d, scomp2) == 3, |
|
219 |
"This digraph has 3 strongly connected components"); |
|
220 |
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
|
221 |
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
|
222 |
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
|
223 |
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
|
224 |
"Wrong stronglyConnectedComponents()"); |
|
225 |
Digraph::ArcMap<bool> scut2(d, false); |
|
226 |
check(stronglyConnectedCutArcs(d, scut2) == 5, |
|
227 |
"This digraph has 5 strongly connected cut arcs."); |
|
228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
|
230 |
} |
|
231 |
} |
|
232 |
|
|
233 |
{ |
|
234 |
// DAG example for topological sort from the book New Algorithms |
|
235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
|
236 |
Digraph d; |
|
237 |
Digraph::NodeMap<int> order(d); |
|
238 |
|
|
239 |
Digraph::Node belt = d.addNode(); |
|
240 |
Digraph::Node trousers = d.addNode(); |
|
241 |
Digraph::Node necktie = d.addNode(); |
|
242 |
Digraph::Node coat = d.addNode(); |
|
243 |
Digraph::Node socks = d.addNode(); |
|
244 |
Digraph::Node shirt = d.addNode(); |
|
245 |
Digraph::Node shoe = d.addNode(); |
|
246 |
Digraph::Node watch = d.addNode(); |
|
247 |
Digraph::Node pants = d.addNode(); |
|
248 |
|
|
249 |
d.addArc(socks, shoe); |
|
250 |
d.addArc(pants, shoe); |
|
251 |
d.addArc(pants, trousers); |
|
252 |
d.addArc(trousers, shoe); |
|
253 |
d.addArc(trousers, belt); |
|
254 |
d.addArc(belt, coat); |
|
255 |
d.addArc(shirt, belt); |
|
256 |
d.addArc(shirt, necktie); |
|
257 |
d.addArc(necktie, coat); |
|
258 |
|
|
259 |
check(dag(d), "This digraph is DAG."); |
|
260 |
topologicalSort(d, order); |
|
261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
|
262 |
check(order[d.source(a)] < order[d.target(a)], |
|
263 |
"Wrong topologicalSort()"); |
|
264 |
} |
|
265 |
} |
|
266 |
|
|
267 |
{ |
|
268 |
ListGraph g; |
|
269 |
ListGraph::NodeMap<bool> map(g); |
|
270 |
|
|
271 |
ListGraph::Node n1 = g.addNode(); |
|
272 |
ListGraph::Node n2 = g.addNode(); |
|
273 |
ListGraph::Node n3 = g.addNode(); |
|
274 |
ListGraph::Node n4 = g.addNode(); |
|
275 |
ListGraph::Node n5 = g.addNode(); |
|
276 |
ListGraph::Node n6 = g.addNode(); |
|
277 |
ListGraph::Node n7 = g.addNode(); |
|
278 |
|
|
279 |
g.addEdge(n1, n3); |
|
280 |
g.addEdge(n1, n4); |
|
281 |
g.addEdge(n2, n5); |
|
282 |
g.addEdge(n3, n6); |
|
283 |
g.addEdge(n4, n6); |
|
284 |
g.addEdge(n4, n7); |
|
285 |
g.addEdge(n5, n7); |
|
286 |
|
|
287 |
check(bipartite(g), "This graph is bipartite"); |
|
288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
|
289 |
|
|
290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
|
291 |
"Wrong bipartitePartitions()"); |
|
292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
|
293 |
"Wrong bipartitePartitions()"); |
|
294 |
} |
|
295 |
|
|
296 |
return 0; |
|
297 |
} |
0 comments (0 inline)