0
2
1
| 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
| 2 |
* |
|
| 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
| 4 |
* |
|
| 5 |
* Copyright (C) 2003-2009 |
|
| 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
| 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
| 8 |
* |
|
| 9 |
* Permission to use, modify and distribute this software is granted |
|
| 10 |
* provided that this copyright notice appears in all copies. For |
|
| 11 |
* precise terms see the accompanying LICENSE file. |
|
| 12 |
* |
|
| 13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
| 14 |
* express or implied, and with no claim as to its suitability for any |
|
| 15 |
* purpose. |
|
| 16 |
* |
|
| 17 |
*/ |
|
| 18 |
|
|
| 19 |
#include <lemon/connectivity.h> |
|
| 20 |
#include <lemon/list_graph.h> |
|
| 21 |
#include <lemon/adaptors.h> |
|
| 22 |
|
|
| 23 |
#include "test_tools.h" |
|
| 24 |
|
|
| 25 |
using namespace lemon; |
|
| 26 |
|
|
| 27 |
|
|
| 28 |
int main() |
|
| 29 |
{
|
|
| 30 |
typedef ListDigraph Digraph; |
|
| 31 |
typedef Undirector<Digraph> Graph; |
|
| 32 |
|
|
| 33 |
{
|
|
| 34 |
Digraph d; |
|
| 35 |
Digraph::NodeMap<int> order(d); |
|
| 36 |
Graph g(d); |
|
| 37 |
|
|
| 38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
|
| 39 |
check(countStronglyConnectedComponents(d) == 0, |
|
| 40 |
"The empty digraph has 0 strongly connected component"); |
|
| 41 |
check(connected(g), "The empty graph is connected"); |
|
| 42 |
check(countConnectedComponents(g) == 0, |
|
| 43 |
"The empty graph has 0 connected component"); |
|
| 44 |
|
|
| 45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
|
| 46 |
check(countBiNodeConnectedComponents(g) == 0, |
|
| 47 |
"The empty graph has 0 bi-node-connected component"); |
|
| 48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
|
| 49 |
check(countBiEdgeConnectedComponents(g) == 0, |
|
| 50 |
"The empty graph has 0 bi-edge-connected component"); |
|
| 51 |
|
|
| 52 |
check(dag(d), "The empty digraph is DAG."); |
|
| 53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
|
| 54 |
check(loopFree(d), "The empty digraph is loop-free."); |
|
| 55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
|
| 56 |
check(simpleGraph(d), "The empty digraph is simple."); |
|
| 57 |
|
|
| 58 |
check(acyclic(g), "The empty graph is acyclic."); |
|
| 59 |
check(tree(g), "The empty graph is tree."); |
|
| 60 |
check(bipartite(g), "The empty graph is bipartite."); |
|
| 61 |
check(loopFree(g), "The empty graph is loop-free."); |
|
| 62 |
check(parallelFree(g), "The empty graph is parallel-free."); |
|
| 63 |
check(simpleGraph(g), "The empty graph is simple."); |
|
| 64 |
} |
|
| 65 |
|
|
| 66 |
{
|
|
| 67 |
Digraph d; |
|
| 68 |
Digraph::NodeMap<int> order(d); |
|
| 69 |
Graph g(d); |
|
| 70 |
Digraph::Node n = d.addNode(); |
|
| 71 |
|
|
| 72 |
check(stronglyConnected(d), "This digraph is strongly connected"); |
|
| 73 |
check(countStronglyConnectedComponents(d) == 1, |
|
| 74 |
"This digraph has 1 strongly connected component"); |
|
| 75 |
check(connected(g), "This graph is connected"); |
|
| 76 |
check(countConnectedComponents(g) == 1, |
|
| 77 |
"This graph has 1 connected component"); |
|
| 78 |
|
|
| 79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
|
| 80 |
check(countBiNodeConnectedComponents(g) == 0, |
|
| 81 |
"This graph has 0 bi-node-connected component"); |
|
| 82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
|
| 83 |
check(countBiEdgeConnectedComponents(g) == 1, |
|
| 84 |
"This graph has 1 bi-edge-connected component"); |
|
| 85 |
|
|
| 86 |
check(dag(d), "This digraph is DAG."); |
|
| 87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
|
| 88 |
check(loopFree(d), "This digraph is loop-free."); |
|
| 89 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
| 90 |
check(simpleGraph(d), "This digraph is simple."); |
|
| 91 |
|
|
| 92 |
check(acyclic(g), "This graph is acyclic."); |
|
| 93 |
check(tree(g), "This graph is tree."); |
|
| 94 |
check(bipartite(g), "This graph is bipartite."); |
|
| 95 |
check(loopFree(g), "This graph is loop-free."); |
|
| 96 |
check(parallelFree(g), "This graph is parallel-free."); |
|
| 97 |
check(simpleGraph(g), "This graph is simple."); |
|
| 98 |
} |
|
| 99 |
|
|
| 100 |
{
|
|
| 101 |
Digraph d; |
|
| 102 |
Digraph::NodeMap<int> order(d); |
|
| 103 |
Graph g(d); |
|
| 104 |
|
|
| 105 |
Digraph::Node n1 = d.addNode(); |
|
| 106 |
Digraph::Node n2 = d.addNode(); |
|
| 107 |
Digraph::Node n3 = d.addNode(); |
|
| 108 |
Digraph::Node n4 = d.addNode(); |
|
| 109 |
Digraph::Node n5 = d.addNode(); |
|
| 110 |
Digraph::Node n6 = d.addNode(); |
|
| 111 |
|
|
| 112 |
d.addArc(n1, n3); |
|
| 113 |
d.addArc(n3, n2); |
|
| 114 |
d.addArc(n2, n1); |
|
| 115 |
d.addArc(n4, n2); |
|
| 116 |
d.addArc(n4, n3); |
|
| 117 |
d.addArc(n5, n6); |
|
| 118 |
d.addArc(n6, n5); |
|
| 119 |
|
|
| 120 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
| 121 |
check(countStronglyConnectedComponents(d) == 3, |
|
| 122 |
"This digraph has 3 strongly connected components"); |
|
| 123 |
check(!connected(g), "This graph is not connected"); |
|
| 124 |
check(countConnectedComponents(g) == 2, |
|
| 125 |
"This graph has 2 connected components"); |
|
| 126 |
|
|
| 127 |
check(!dag(d), "This digraph is not DAG."); |
|
| 128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
|
| 129 |
check(loopFree(d), "This digraph is loop-free."); |
|
| 130 |
check(parallelFree(d), "This digraph is parallel-free."); |
|
| 131 |
check(simpleGraph(d), "This digraph is simple."); |
|
| 132 |
|
|
| 133 |
check(!acyclic(g), "This graph is not acyclic."); |
|
| 134 |
check(!tree(g), "This graph is not tree."); |
|
| 135 |
check(!bipartite(g), "This graph is not bipartite."); |
|
| 136 |
check(loopFree(g), "This graph is loop-free."); |
|
| 137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
|
| 138 |
check(!simpleGraph(g), "This graph is not simple."); |
|
| 139 |
|
|
| 140 |
d.addArc(n3, n3); |
|
| 141 |
|
|
| 142 |
check(!loopFree(d), "This digraph is not loop-free."); |
|
| 143 |
check(!loopFree(g), "This graph is not loop-free."); |
|
| 144 |
check(!simpleGraph(d), "This digraph is not simple."); |
|
| 145 |
|
|
| 146 |
d.addArc(n3, n2); |
|
| 147 |
|
|
| 148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
{
|
|
| 152 |
Digraph d; |
|
| 153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
|
| 154 |
Graph g(d); |
|
| 155 |
|
|
| 156 |
Digraph::Node n1 = d.addNode(); |
|
| 157 |
Digraph::Node n2 = d.addNode(); |
|
| 158 |
Digraph::Node n3 = d.addNode(); |
|
| 159 |
Digraph::Node n4 = d.addNode(); |
|
| 160 |
Digraph::Node n5 = d.addNode(); |
|
| 161 |
Digraph::Node n6 = d.addNode(); |
|
| 162 |
Digraph::Node n7 = d.addNode(); |
|
| 163 |
Digraph::Node n8 = d.addNode(); |
|
| 164 |
|
|
| 165 |
d.addArc(n1, n2); |
|
| 166 |
d.addArc(n5, n1); |
|
| 167 |
d.addArc(n2, n8); |
|
| 168 |
d.addArc(n8, n5); |
|
| 169 |
d.addArc(n6, n4); |
|
| 170 |
d.addArc(n4, n6); |
|
| 171 |
d.addArc(n2, n5); |
|
| 172 |
d.addArc(n1, n8); |
|
| 173 |
d.addArc(n6, n7); |
|
| 174 |
d.addArc(n7, n6); |
|
| 175 |
|
|
| 176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
| 177 |
check(countStronglyConnectedComponents(d) == 3, |
|
| 178 |
"This digraph has 3 strongly connected components"); |
|
| 179 |
Digraph::NodeMap<int> scomp1(d); |
|
| 180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
|
| 181 |
"This digraph has 3 strongly connected components"); |
|
| 182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
|
| 183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
|
| 184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
|
| 185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
|
| 186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
|
| 187 |
"Wrong stronglyConnectedComponents()"); |
|
| 188 |
Digraph::ArcMap<bool> scut1(d, false); |
|
| 189 |
check(stronglyConnectedCutArcs(d, scut1) == 0, |
|
| 190 |
"This digraph has 0 strongly connected cut arc."); |
|
| 191 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
| 192 |
check(!scut1[a], "Wrong stronglyConnectedCutArcs()"); |
|
| 193 |
} |
|
| 194 |
|
|
| 195 |
check(!connected(g), "This graph is not connected"); |
|
| 196 |
check(countConnectedComponents(g) == 3, |
|
| 197 |
"This graph has 3 connected components"); |
|
| 198 |
Graph::NodeMap<int> comp(g); |
|
| 199 |
check(connectedComponents(g, comp) == 3, |
|
| 200 |
"This graph has 3 connected components"); |
|
| 201 |
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] && |
|
| 202 |
comp[n3] != comp[n4], "Wrong connectedComponents()"); |
|
| 203 |
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] && |
|
| 204 |
comp[n1] == comp[n8], "Wrong connectedComponents()"); |
|
| 205 |
check(comp[n4] == comp[n6] && comp[n4] == comp[n7], |
|
| 206 |
"Wrong connectedComponents()"); |
|
| 207 |
|
|
| 208 |
cutarcs[d.addArc(n3, n1)] = true; |
|
| 209 |
cutarcs[d.addArc(n3, n5)] = true; |
|
| 210 |
cutarcs[d.addArc(n3, n8)] = true; |
|
| 211 |
cutarcs[d.addArc(n8, n6)] = true; |
|
| 212 |
cutarcs[d.addArc(n8, n7)] = true; |
|
| 213 |
|
|
| 214 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
|
| 215 |
check(countStronglyConnectedComponents(d) == 3, |
|
| 216 |
"This digraph has 3 strongly connected components"); |
|
| 217 |
Digraph::NodeMap<int> scomp2(d); |
|
| 218 |
check(stronglyConnectedComponents(d, scomp2) == 3, |
|
| 219 |
"This digraph has 3 strongly connected components"); |
|
| 220 |
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()"); |
|
| 221 |
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 && |
|
| 222 |
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()"); |
|
| 223 |
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2, |
|
| 224 |
"Wrong stronglyConnectedComponents()"); |
|
| 225 |
Digraph::ArcMap<bool> scut2(d, false); |
|
| 226 |
check(stronglyConnectedCutArcs(d, scut2) == 5, |
|
| 227 |
"This digraph has 5 strongly connected cut arcs."); |
|
| 228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
| 229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
|
| 230 |
} |
|
| 231 |
} |
|
| 232 |
|
|
| 233 |
{
|
|
| 234 |
// DAG example for topological sort from the book New Algorithms |
|
| 235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
|
| 236 |
Digraph d; |
|
| 237 |
Digraph::NodeMap<int> order(d); |
|
| 238 |
|
|
| 239 |
Digraph::Node belt = d.addNode(); |
|
| 240 |
Digraph::Node trousers = d.addNode(); |
|
| 241 |
Digraph::Node necktie = d.addNode(); |
|
| 242 |
Digraph::Node coat = d.addNode(); |
|
| 243 |
Digraph::Node socks = d.addNode(); |
|
| 244 |
Digraph::Node shirt = d.addNode(); |
|
| 245 |
Digraph::Node shoe = d.addNode(); |
|
| 246 |
Digraph::Node watch = d.addNode(); |
|
| 247 |
Digraph::Node pants = d.addNode(); |
|
| 248 |
|
|
| 249 |
d.addArc(socks, shoe); |
|
| 250 |
d.addArc(pants, shoe); |
|
| 251 |
d.addArc(pants, trousers); |
|
| 252 |
d.addArc(trousers, shoe); |
|
| 253 |
d.addArc(trousers, belt); |
|
| 254 |
d.addArc(belt, coat); |
|
| 255 |
d.addArc(shirt, belt); |
|
| 256 |
d.addArc(shirt, necktie); |
|
| 257 |
d.addArc(necktie, coat); |
|
| 258 |
|
|
| 259 |
check(dag(d), "This digraph is DAG."); |
|
| 260 |
topologicalSort(d, order); |
|
| 261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
|
|
| 262 |
check(order[d.source(a)] < order[d.target(a)], |
|
| 263 |
"Wrong topologicalSort()"); |
|
| 264 |
} |
|
| 265 |
} |
|
| 266 |
|
|
| 267 |
{
|
|
| 268 |
ListGraph g; |
|
| 269 |
ListGraph::NodeMap<bool> map(g); |
|
| 270 |
|
|
| 271 |
ListGraph::Node n1 = g.addNode(); |
|
| 272 |
ListGraph::Node n2 = g.addNode(); |
|
| 273 |
ListGraph::Node n3 = g.addNode(); |
|
| 274 |
ListGraph::Node n4 = g.addNode(); |
|
| 275 |
ListGraph::Node n5 = g.addNode(); |
|
| 276 |
ListGraph::Node n6 = g.addNode(); |
|
| 277 |
ListGraph::Node n7 = g.addNode(); |
|
| 278 |
|
|
| 279 |
g.addEdge(n1, n3); |
|
| 280 |
g.addEdge(n1, n4); |
|
| 281 |
g.addEdge(n2, n5); |
|
| 282 |
g.addEdge(n3, n6); |
|
| 283 |
g.addEdge(n4, n6); |
|
| 284 |
g.addEdge(n4, n7); |
|
| 285 |
g.addEdge(n5, n7); |
|
| 286 |
|
|
| 287 |
check(bipartite(g), "This graph is bipartite"); |
|
| 288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
|
| 289 |
|
|
| 290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
|
| 291 |
"Wrong bipartitePartitions()"); |
|
| 292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
|
| 293 |
"Wrong bipartitePartitions()"); |
|
| 294 |
} |
|
| 295 |
|
|
| 296 |
return 0; |
|
| 297 |
} |
| ... | ... |
@@ -6,12 +6,13 @@ |
| 6 | 6 |
test/test_tools.h |
| 7 | 7 |
|
| 8 | 8 |
check_PROGRAMS += \ |
| 9 | 9 |
test/adaptors_test \ |
| 10 | 10 |
test/bfs_test \ |
| 11 | 11 |
test/circulation_test \ |
| 12 |
test/connectivity_test \ |
|
| 12 | 13 |
test/counter_test \ |
| 13 | 14 |
test/dfs_test \ |
| 14 | 15 |
test/digraph_test \ |
| 15 | 16 |
test/dijkstra_test \ |
| 16 | 17 |
test/dim_test \ |
| 17 | 18 |
test/edge_set_test \ |
| ... | ... |
@@ -51,12 +52,13 @@ |
| 51 | 52 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
| 52 | 53 |
|
| 53 | 54 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
| 54 | 55 |
test_bfs_test_SOURCES = test/bfs_test.cc |
| 55 | 56 |
test_circulation_test_SOURCES = test/circulation_test.cc |
| 56 | 57 |
test_counter_test_SOURCES = test/counter_test.cc |
| 58 |
test_connectivity_test_SOURCES = test/connectivity_test.cc |
|
| 57 | 59 |
test_dfs_test_SOURCES = test/dfs_test.cc |
| 58 | 60 |
test_digraph_test_SOURCES = test/digraph_test.cc |
| 59 | 61 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
| 60 | 62 |
test_dim_test_SOURCES = test/dim_test.cc |
| 61 | 63 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
| 62 | 64 |
test_error_test_SOURCES = test/error_test.cc |
0 comments (0 inline)