gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Bypass warnings with gcc 4.3
0 1 0
default
1 file changed with 5 insertions and 5 deletions:
↑ Collapse diff ↑
Ignore white space 49152 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <sstream>
20 20
#include <lemon/lp_skeleton.h>
21 21
#include "test_tools.h"
22 22
#include <lemon/tolerance.h>
23 23

	
24 24
#ifdef HAVE_CONFIG_H
25 25
#include <lemon/config.h>
26 26
#endif
27 27

	
28 28
#ifdef HAVE_GLPK
29 29
#include <lemon/lp_glpk.h>
30 30
#endif
31 31

	
32 32
#ifdef HAVE_CPLEX
33 33
#include <lemon/lp_cplex.h>
34 34
#endif
35 35

	
36 36
#ifdef HAVE_SOPLEX
37 37
#include <lemon/lp_soplex.h>
38 38
#endif
39 39

	
40 40
#ifdef HAVE_CLP
41 41
#include <lemon/lp_clp.h>
42 42
#endif
43 43

	
44 44
using namespace lemon;
45 45

	
46 46
void lpTest(LpSolver& lp)
47 47
{
48 48

	
49 49
  typedef LpSolver LP;
50 50

	
51 51
  std::vector<LP::Col> x(10);
52 52
  //  for(int i=0;i<10;i++) x.push_back(lp.addCol());
53 53
  lp.addColSet(x);
54 54
  lp.colLowerBound(x,1);
55 55
  lp.colUpperBound(x,1);
56 56
  lp.colBounds(x,1,2);
57 57

	
58 58
  std::vector<LP::Col> y(10);
59 59
  lp.addColSet(y);
60 60

	
61 61
  lp.colLowerBound(y,1);
62 62
  lp.colUpperBound(y,1);
63 63
  lp.colBounds(y,1,2);
64 64

	
65 65
  std::map<int,LP::Col> z;
66 66

	
67 67
  z.insert(std::make_pair(12,INVALID));
68 68
  z.insert(std::make_pair(2,INVALID));
69 69
  z.insert(std::make_pair(7,INVALID));
70 70
  z.insert(std::make_pair(5,INVALID));
71 71

	
72 72
  lp.addColSet(z);
73 73

	
74 74
  lp.colLowerBound(z,1);
75 75
  lp.colUpperBound(z,1);
76 76
  lp.colBounds(z,1,2);
77 77

	
78 78
  {
79 79
    LP::Expr e,f,g;
80 80
    LP::Col p1,p2,p3,p4,p5;
81 81
    LP::Constr c;
82 82

	
83 83
    p1=lp.addCol();
84 84
    p2=lp.addCol();
85 85
    p3=lp.addCol();
86 86
    p4=lp.addCol();
87 87
    p5=lp.addCol();
88 88

	
89 89
    e[p1]=2;
90 90
    *e=12;
91 91
    e[p1]+=2;
92 92
    *e+=12;
93 93
    e[p1]-=2;
94 94
    *e-=12;
95 95

	
96 96
    e=2;
97 97
    e=2.2;
98 98
    e=p1;
99 99
    e=f;
100 100

	
101 101
    e+=2;
102 102
    e+=2.2;
103 103
    e+=p1;
104 104
    e+=f;
105 105

	
106 106
    e-=2;
107 107
    e-=2.2;
108 108
    e-=p1;
109 109
    e-=f;
110 110

	
111 111
    e*=2;
112 112
    e*=2.2;
113 113
    e/=2;
114 114
    e/=2.2;
115 115

	
116 116
    e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+
117 117
       (f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+
118 118
       (f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+
119 119
       2.2*f+f*2.2+f/2.2+
120 120
       2*f+f*2+f/2+
121 121
       2.2*p1+p1*2.2+p1/2.2+
122 122
       2*p1+p1*2+p1/2
123 123
       );
124 124

	
125 125

	
126 126
    c = (e  <= f  );
127 127
    c = (e  <= 2.2);
128 128
    c = (e  <= 2  );
129 129
    c = (e  <= p1 );
130 130
    c = (2.2<= f  );
131 131
    c = (2  <= f  );
132 132
    c = (p1 <= f  );
133 133
    c = (p1 <= p2 );
134 134
    c = (p1 <= 2.2);
135 135
    c = (p1 <= 2  );
136 136
    c = (2.2<= p2 );
137 137
    c = (2  <= p2 );
138 138

	
139 139
    c = (e  >= f  );
140 140
    c = (e  >= 2.2);
141 141
    c = (e  >= 2  );
142 142
    c = (e  >= p1 );
143 143
    c = (2.2>= f  );
144 144
    c = (2  >= f  );
145 145
    c = (p1 >= f  );
146 146
    c = (p1 >= p2 );
147 147
    c = (p1 >= 2.2);
148 148
    c = (p1 >= 2  );
149 149
    c = (2.2>= p2 );
150 150
    c = (2  >= p2 );
151 151

	
152 152
    c = (e  == f  );
153 153
    c = (e  == 2.2);
154 154
    c = (e  == 2  );
155 155
    c = (e  == p1 );
156 156
    c = (2.2== f  );
157 157
    c = (2  == f  );
158 158
    c = (p1 == f  );
159 159
    //c = (p1 == p2 );
160 160
    c = (p1 == 2.2);
161 161
    c = (p1 == 2  );
162 162
    c = (2.2== p2 );
163 163
    c = (2  == p2 );
164 164

	
165
    c = (2 <= e <= 3);
166
    c = (2 <= p1<= 3);
165
    c = ((2 <= e) <= 3);
166
    c = ((2 <= p1) <= 3);
167 167

	
168
    c = (2 >= e >= 3);
169
    c = (2 >= p1>= 3);
168
    c = ((2 >= e) >= 3);
169
    c = ((2 >= p1) >= 3);
170 170

	
171 171
    e[x[3]]=2;
172 172
    e[x[3]]=4;
173 173
    e[x[3]]=1;
174 174
    *e=12;
175 175

	
176 176
    lp.addRow(-LP::INF,e,23);
177 177
    lp.addRow(-LP::INF,3.0*(x[1]+x[2]/2)-x[3],23);
178 178
    lp.addRow(-LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23);
179 179

	
180 180
    lp.addRow(x[1]+x[3]<=x[5]-3);
181
    lp.addRow(-7<=x[1]+x[3]-12<=3);
181
    lp.addRow((-7<=x[1]+x[3]-12)<=3);
182 182
    lp.addRow(x[1]<=x[5]);
183 183

	
184 184
    std::ostringstream buf;
185 185

	
186 186

	
187 187
    e=((p1+p2)+(p1-0.99*p2));
188 188
    //e.prettyPrint(std::cout);
189 189
    //(e<=2).prettyPrint(std::cout);
190 190
    double tolerance=0.001;
191 191
    e.simplify(tolerance);
192 192
    buf << "Coeff. of p2 should be 0.01";
193 193
    check(e[p2]>0, buf.str());
194 194

	
195 195
    tolerance=0.02;
196 196
    e.simplify(tolerance);
197 197
    buf << "Coeff. of p2 should be 0";
198 198
    check(const_cast<const LpSolver::Expr&>(e)[p2]==0, buf.str());
199 199

	
200 200

	
201 201
  }
202 202

	
203 203
  {
204 204
    LP::DualExpr e,f,g;
205 205
    LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID,
206 206
      p4 = INVALID, p5 = INVALID;
207 207

	
208 208
    e[p1]=2;
209 209
    e[p1]+=2;
210 210
    e[p1]-=2;
211 211

	
212 212
    e=p1;
213 213
    e=f;
214 214

	
215 215
    e+=p1;
216 216
    e+=f;
217 217

	
218 218
    e-=p1;
219 219
    e-=f;
220 220

	
221 221
    e*=2;
222 222
    e*=2.2;
223 223
    e/=2;
224 224
    e/=2.2;
225 225

	
226 226
    e=((p1+p2)+(p1-p2)+
227 227
       (p1+f)+(f+p1)+(f+g)+
228 228
       (p1-f)+(f-p1)+(f-g)+
229 229
       2.2*f+f*2.2+f/2.2+
230 230
       2*f+f*2+f/2+
231 231
       2.2*p1+p1*2.2+p1/2.2+
232 232
       2*p1+p1*2+p1/2
233 233
       );
234 234
  }
235 235

	
236 236
}
237 237

	
238 238
void solveAndCheck(LpSolver& lp, LpSolver::ProblemType stat,
239 239
                   double exp_opt) {
240 240
  using std::string;
241 241
  lp.solve();
242 242

	
243 243
  std::ostringstream buf;
244 244
  buf << "PrimalType should be: " << int(stat) << int(lp.primalType());
245 245

	
246 246
  check(lp.primalType()==stat, buf.str());
247 247

	
248 248
  if (stat ==  LpSolver::OPTIMAL) {
249 249
    std::ostringstream sbuf;
250 250
    sbuf << "Wrong optimal value: the right optimum is " << exp_opt;
251 251
    check(std::abs(lp.primal()-exp_opt) < 1e-3, sbuf.str());
252 252
  }
253 253
}
254 254

	
255 255
void aTest(LpSolver & lp)
256 256
{
257 257
  typedef LpSolver LP;
258 258

	
259 259
 //The following example is very simple
260 260

	
261 261
  typedef LpSolver::Row Row;
262 262
  typedef LpSolver::Col Col;
263 263

	
264 264

	
265 265
  Col x1 = lp.addCol();
266 266
  Col x2 = lp.addCol();
267 267

	
268 268

	
269 269
  //Constraints
270 270
  Row upright=lp.addRow(x1+2*x2 <=1);
271 271
  lp.addRow(x1+x2 >=-1);
272 272
  lp.addRow(x1-x2 <=1);
273 273
  lp.addRow(x1-x2 >=-1);
274 274
  //Nonnegativity of the variables
275 275
  lp.colLowerBound(x1, 0);
276 276
  lp.colLowerBound(x2, 0);
277 277
  //Objective function
278 278
  lp.obj(x1+x2);
279 279

	
280 280
  lp.sense(lp.MAX);
281 281

	
282 282
  //Testing the problem retrieving routines
283 283
  check(lp.objCoeff(x1)==1,"First term should be 1 in the obj function!");
284 284
  check(lp.sense() == lp.MAX,"This is a maximization!");
285 285
  check(lp.coeff(upright,x1)==1,"The coefficient in question is 1!");
286 286
  check(lp.colLowerBound(x1)==0,
287 287
        "The lower bound for variable x1 should be 0.");
288 288
  check(lp.colUpperBound(x1)==LpSolver::INF,
289 289
        "The upper bound for variable x1 should be infty.");
290 290
  check(lp.rowLowerBound(upright) == -LpSolver::INF,
291 291
        "The lower bound for the first row should be -infty.");
292 292
  check(lp.rowUpperBound(upright)==1,
293 293
        "The upper bound for the first row should be 1.");
294 294
  LpSolver::Expr e = lp.row(upright);
295 295
  check(e[x1] == 1, "The first coefficient should 1.");
296 296
  check(e[x2] == 2, "The second coefficient should 1.");
297 297

	
298 298
  lp.row(upright, x1+x2 <=1);
299 299
  e = lp.row(upright);
300 300
  check(e[x1] == 1, "The first coefficient should 1.");
301 301
  check(e[x2] == 1, "The second coefficient should 1.");
302 302

	
303 303
  LpSolver::DualExpr de = lp.col(x1);
304 304
  check(  de[upright] == 1, "The first coefficient should 1.");
305 305

	
306 306
  LpSolver* clp = lp.cloneSolver();
307 307

	
308 308
  //Testing the problem retrieving routines
309 309
  check(clp->objCoeff(x1)==1,"First term should be 1 in the obj function!");
310 310
  check(clp->sense() == clp->MAX,"This is a maximization!");
311 311
  check(clp->coeff(upright,x1)==1,"The coefficient in question is 1!");
312 312
  //  std::cout<<lp.colLowerBound(x1)<<std::endl;
313 313
  check(clp->colLowerBound(x1)==0,
314 314
        "The lower bound for variable x1 should be 0.");
315 315
  check(clp->colUpperBound(x1)==LpSolver::INF,
316 316
        "The upper bound for variable x1 should be infty.");
317 317

	
318 318
  check(lp.rowLowerBound(upright)==-LpSolver::INF,
319 319
        "The lower bound for the first row should be -infty.");
320 320
  check(lp.rowUpperBound(upright)==1,
321 321
        "The upper bound for the first row should be 1.");
322 322
  e = clp->row(upright);
323 323
  check(e[x1] == 1, "The first coefficient should 1.");
324 324
  check(e[x2] == 1, "The second coefficient should 1.");
325 325

	
326 326
  de = clp->col(x1);
327 327
  check(de[upright] == 1, "The first coefficient should 1.");
328 328

	
329 329
  delete clp;
330 330

	
331 331
  //Maximization of x1+x2
332 332
  //over the triangle with vertices (0,0) (0,1) (1,0)
333 333
  double expected_opt=1;
334 334
  solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
335 335

	
336 336
  //Minimization
337 337
  lp.sense(lp.MIN);
338 338
  expected_opt=0;
339 339
  solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
340 340

	
341 341
  //Vertex (-1,0) instead of (0,0)
342 342
  lp.colLowerBound(x1, -LpSolver::INF);
343 343
  expected_opt=-1;
344 344
  solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
345 345

	
346 346
  //Erase one constraint and return to maximization
347 347
  lp.erase(upright);
348 348
  lp.sense(lp.MAX);
349 349
  expected_opt=LpSolver::INF;
350 350
  solveAndCheck(lp, LpSolver::UNBOUNDED, expected_opt);
351 351

	
352 352
  //Infeasibilty
353 353
  lp.addRow(x1+x2 <=-2);
354 354
  solveAndCheck(lp, LpSolver::INFEASIBLE, expected_opt);
355 355

	
356 356
}
357 357

	
358 358
int main()
359 359
{
360 360
  LpSkeleton lp_skel;
361 361
  lpTest(lp_skel);
362 362

	
363 363
#ifdef HAVE_GLPK
364 364
  {
365 365
    LpGlpk lp_glpk1,lp_glpk2;
366 366
    lpTest(lp_glpk1);
367 367
    aTest(lp_glpk2);
368 368
  }
369 369
#endif
370 370

	
371 371
#ifdef HAVE_CPLEX
372 372
  try {
373 373
    LpCplex lp_cplex1,lp_cplex2;
374 374
    lpTest(lp_cplex1);
375 375
    aTest(lp_cplex2);
376 376
  } catch (CplexEnv::LicenseError& error) {
377 377
#ifdef LEMON_FORCE_CPLEX_CHECK
378 378
    check(false, error.what());
379 379
#else
380 380
    std::cerr << error.what() << std::endl;
381 381
    std::cerr << "Cplex license check failed, lp check skipped" << std::endl;
382 382
#endif
383 383
  }
384 384
#endif
385 385

	
386 386
#ifdef HAVE_SOPLEX
387 387
  {
388 388
    LpSoplex lp_soplex1,lp_soplex2;
389 389
    lpTest(lp_soplex1);
390 390
    aTest(lp_soplex2);
391 391
  }
392 392
#endif
393 393

	
394 394
#ifdef HAVE_CLP
395 395
  {
396 396
    LpClp lp_clp1,lp_clp2;
397 397
    lpTest(lp_clp1);
398 398
    aTest(lp_clp2);
399 399
  }
400 400
#endif
401 401

	
402 402
  return 0;
403 403
}
0 comments (0 inline)