gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge #417
0 1 0
merge default
1 file changed with 2 insertions and 2 deletions:
↑ Collapse diff ↑
Show white space 768 line context
... ...
@@ -530,791 +530,791 @@
530 530
    /// \ref resetParams() or \ref reset() is used.
531 531
    /// If the underlying digraph was also modified after the construction
532 532
    /// of the class or the last \ref reset() call, then the \ref reset()
533 533
    /// function must be used, otherwise \ref resetParams() is sufficient.
534 534
    ///
535 535
    /// For example,
536 536
    /// \code
537 537
    ///   CostScaling<ListDigraph> cs(graph);
538 538
    ///
539 539
    ///   // First run
540 540
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
541 541
    ///     .supplyMap(sup).run();
542 542
    ///
543 543
    ///   // Run again with modified cost map (resetParams() is not called,
544 544
    ///   // so only the cost map have to be set again)
545 545
    ///   cost[e] += 100;
546 546
    ///   cs.costMap(cost).run();
547 547
    ///
548 548
    ///   // Run again from scratch using resetParams()
549 549
    ///   // (the lower bounds will be set to zero on all arcs)
550 550
    ///   cs.resetParams();
551 551
    ///   cs.upperMap(capacity).costMap(cost)
552 552
    ///     .supplyMap(sup).run();
553 553
    /// \endcode
554 554
    ///
555 555
    /// \return <tt>(*this)</tt>
556 556
    ///
557 557
    /// \see reset(), run()
558 558
    CostScaling& resetParams() {
559 559
      for (int i = 0; i != _res_node_num; ++i) {
560 560
        _supply[i] = 0;
561 561
      }
562 562
      int limit = _first_out[_root];
563 563
      for (int j = 0; j != limit; ++j) {
564 564
        _lower[j] = 0;
565 565
        _upper[j] = INF;
566 566
        _scost[j] = _forward[j] ? 1 : -1;
567 567
      }
568 568
      for (int j = limit; j != _res_arc_num; ++j) {
569 569
        _lower[j] = 0;
570 570
        _upper[j] = INF;
571 571
        _scost[j] = 0;
572 572
        _scost[_reverse[j]] = 0;
573 573
      }
574 574
      _have_lower = false;
575 575
      return *this;
576 576
    }
577 577

	
578 578
    /// \brief Reset all the parameters that have been given before.
579 579
    ///
580 580
    /// This function resets all the paramaters that have been given
581 581
    /// before using functions \ref lowerMap(), \ref upperMap(),
582 582
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
583 583
    ///
584 584
    /// It is useful for multiple run() calls. If this function is not
585 585
    /// used, all the parameters given before are kept for the next
586 586
    /// \ref run() call.
587 587
    /// However, the underlying digraph must not be modified after this
588 588
    /// class have been constructed, since it copies and extends the graph.
589 589
    /// \return <tt>(*this)</tt>
590 590
    CostScaling& reset() {
591 591
      // Resize vectors
592 592
      _node_num = countNodes(_graph);
593 593
      _arc_num = countArcs(_graph);
594 594
      _res_node_num = _node_num + 1;
595 595
      _res_arc_num = 2 * (_arc_num + _node_num);
596 596
      _root = _node_num;
597 597

	
598 598
      _first_out.resize(_res_node_num + 1);
599 599
      _forward.resize(_res_arc_num);
600 600
      _source.resize(_res_arc_num);
601 601
      _target.resize(_res_arc_num);
602 602
      _reverse.resize(_res_arc_num);
603 603

	
604 604
      _lower.resize(_res_arc_num);
605 605
      _upper.resize(_res_arc_num);
606 606
      _scost.resize(_res_arc_num);
607 607
      _supply.resize(_res_node_num);
608 608

	
609 609
      _res_cap.resize(_res_arc_num);
610 610
      _cost.resize(_res_arc_num);
611 611
      _pi.resize(_res_node_num);
612 612
      _excess.resize(_res_node_num);
613 613
      _next_out.resize(_res_node_num);
614 614

	
615 615
      _arc_vec.reserve(_res_arc_num);
616 616
      _cost_vec.reserve(_res_arc_num);
617 617

	
618 618
      // Copy the graph
619 619
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
620 620
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
621 621
        _node_id[n] = i;
622 622
      }
623 623
      i = 0;
624 624
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
625 625
        _first_out[i] = j;
626 626
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
627 627
          _arc_idf[a] = j;
628 628
          _forward[j] = true;
629 629
          _source[j] = i;
630 630
          _target[j] = _node_id[_graph.runningNode(a)];
631 631
        }
632 632
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
633 633
          _arc_idb[a] = j;
634 634
          _forward[j] = false;
635 635
          _source[j] = i;
636 636
          _target[j] = _node_id[_graph.runningNode(a)];
637 637
        }
638 638
        _forward[j] = false;
639 639
        _source[j] = i;
640 640
        _target[j] = _root;
641 641
        _reverse[j] = k;
642 642
        _forward[k] = true;
643 643
        _source[k] = _root;
644 644
        _target[k] = i;
645 645
        _reverse[k] = j;
646 646
        ++j; ++k;
647 647
      }
648 648
      _first_out[i] = j;
649 649
      _first_out[_res_node_num] = k;
650 650
      for (ArcIt a(_graph); a != INVALID; ++a) {
651 651
        int fi = _arc_idf[a];
652 652
        int bi = _arc_idb[a];
653 653
        _reverse[fi] = bi;
654 654
        _reverse[bi] = fi;
655 655
      }
656 656

	
657 657
      // Reset parameters
658 658
      resetParams();
659 659
      return *this;
660 660
    }
661 661

	
662 662
    /// @}
663 663

	
664 664
    /// \name Query Functions
665 665
    /// The results of the algorithm can be obtained using these
666 666
    /// functions.\n
667 667
    /// The \ref run() function must be called before using them.
668 668

	
669 669
    /// @{
670 670

	
671 671
    /// \brief Return the total cost of the found flow.
672 672
    ///
673 673
    /// This function returns the total cost of the found flow.
674 674
    /// Its complexity is O(e).
675 675
    ///
676 676
    /// \note The return type of the function can be specified as a
677 677
    /// template parameter. For example,
678 678
    /// \code
679 679
    ///   cs.totalCost<double>();
680 680
    /// \endcode
681 681
    /// It is useful if the total cost cannot be stored in the \c Cost
682 682
    /// type of the algorithm, which is the default return type of the
683 683
    /// function.
684 684
    ///
685 685
    /// \pre \ref run() must be called before using this function.
686 686
    template <typename Number>
687 687
    Number totalCost() const {
688 688
      Number c = 0;
689 689
      for (ArcIt a(_graph); a != INVALID; ++a) {
690 690
        int i = _arc_idb[a];
691 691
        c += static_cast<Number>(_res_cap[i]) *
692 692
             (-static_cast<Number>(_scost[i]));
693 693
      }
694 694
      return c;
695 695
    }
696 696

	
697 697
#ifndef DOXYGEN
698 698
    Cost totalCost() const {
699 699
      return totalCost<Cost>();
700 700
    }
701 701
#endif
702 702

	
703 703
    /// \brief Return the flow on the given arc.
704 704
    ///
705 705
    /// This function returns the flow on the given arc.
706 706
    ///
707 707
    /// \pre \ref run() must be called before using this function.
708 708
    Value flow(const Arc& a) const {
709 709
      return _res_cap[_arc_idb[a]];
710 710
    }
711 711

	
712 712
    /// \brief Return the flow map (the primal solution).
713 713
    ///
714 714
    /// This function copies the flow value on each arc into the given
715 715
    /// map. The \c Value type of the algorithm must be convertible to
716 716
    /// the \c Value type of the map.
717 717
    ///
718 718
    /// \pre \ref run() must be called before using this function.
719 719
    template <typename FlowMap>
720 720
    void flowMap(FlowMap &map) const {
721 721
      for (ArcIt a(_graph); a != INVALID; ++a) {
722 722
        map.set(a, _res_cap[_arc_idb[a]]);
723 723
      }
724 724
    }
725 725

	
726 726
    /// \brief Return the potential (dual value) of the given node.
727 727
    ///
728 728
    /// This function returns the potential (dual value) of the
729 729
    /// given node.
730 730
    ///
731 731
    /// \pre \ref run() must be called before using this function.
732 732
    Cost potential(const Node& n) const {
733 733
      return static_cast<Cost>(_pi[_node_id[n]]);
734 734
    }
735 735

	
736 736
    /// \brief Return the potential map (the dual solution).
737 737
    ///
738 738
    /// This function copies the potential (dual value) of each node
739 739
    /// into the given map.
740 740
    /// The \c Cost type of the algorithm must be convertible to the
741 741
    /// \c Value type of the map.
742 742
    ///
743 743
    /// \pre \ref run() must be called before using this function.
744 744
    template <typename PotentialMap>
745 745
    void potentialMap(PotentialMap &map) const {
746 746
      for (NodeIt n(_graph); n != INVALID; ++n) {
747 747
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
748 748
      }
749 749
    }
750 750

	
751 751
    /// @}
752 752

	
753 753
  private:
754 754

	
755 755
    // Initialize the algorithm
756 756
    ProblemType init() {
757 757
      if (_res_node_num <= 1) return INFEASIBLE;
758 758

	
759 759
      // Check the sum of supply values
760 760
      _sum_supply = 0;
761 761
      for (int i = 0; i != _root; ++i) {
762 762
        _sum_supply += _supply[i];
763 763
      }
764 764
      if (_sum_supply > 0) return INFEASIBLE;
765 765

	
766 766

	
767 767
      // Initialize vectors
768 768
      for (int i = 0; i != _res_node_num; ++i) {
769 769
        _pi[i] = 0;
770 770
        _excess[i] = _supply[i];
771 771
      }
772 772

	
773 773
      // Remove infinite upper bounds and check negative arcs
774 774
      const Value MAX = std::numeric_limits<Value>::max();
775 775
      int last_out;
776 776
      if (_have_lower) {
777 777
        for (int i = 0; i != _root; ++i) {
778 778
          last_out = _first_out[i+1];
779 779
          for (int j = _first_out[i]; j != last_out; ++j) {
780 780
            if (_forward[j]) {
781 781
              Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
782 782
              if (c >= MAX) return UNBOUNDED;
783 783
              _excess[i] -= c;
784 784
              _excess[_target[j]] += c;
785 785
            }
786 786
          }
787 787
        }
788 788
      } else {
789 789
        for (int i = 0; i != _root; ++i) {
790 790
          last_out = _first_out[i+1];
791 791
          for (int j = _first_out[i]; j != last_out; ++j) {
792 792
            if (_forward[j] && _scost[j] < 0) {
793 793
              Value c = _upper[j];
794 794
              if (c >= MAX) return UNBOUNDED;
795 795
              _excess[i] -= c;
796 796
              _excess[_target[j]] += c;
797 797
            }
798 798
          }
799 799
        }
800 800
      }
801 801
      Value ex, max_cap = 0;
802 802
      for (int i = 0; i != _res_node_num; ++i) {
803 803
        ex = _excess[i];
804 804
        _excess[i] = 0;
805 805
        if (ex < 0) max_cap -= ex;
806 806
      }
807 807
      for (int j = 0; j != _res_arc_num; ++j) {
808 808
        if (_upper[j] >= MAX) _upper[j] = max_cap;
809 809
      }
810 810

	
811 811
      // Initialize the large cost vector and the epsilon parameter
812 812
      _epsilon = 0;
813 813
      LargeCost lc;
814 814
      for (int i = 0; i != _root; ++i) {
815 815
        last_out = _first_out[i+1];
816 816
        for (int j = _first_out[i]; j != last_out; ++j) {
817 817
          lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
818 818
          _cost[j] = lc;
819 819
          if (lc > _epsilon) _epsilon = lc;
820 820
        }
821 821
      }
822 822
      _epsilon /= _alpha;
823 823

	
824 824
      // Initialize maps for Circulation and remove non-zero lower bounds
825 825
      ConstMap<Arc, Value> low(0);
826 826
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
827 827
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
828 828
      ValueArcMap cap(_graph), flow(_graph);
829 829
      ValueNodeMap sup(_graph);
830 830
      for (NodeIt n(_graph); n != INVALID; ++n) {
831 831
        sup[n] = _supply[_node_id[n]];
832 832
      }
833 833
      if (_have_lower) {
834 834
        for (ArcIt a(_graph); a != INVALID; ++a) {
835 835
          int j = _arc_idf[a];
836 836
          Value c = _lower[j];
837 837
          cap[a] = _upper[j] - c;
838 838
          sup[_graph.source(a)] -= c;
839 839
          sup[_graph.target(a)] += c;
840 840
        }
841 841
      } else {
842 842
        for (ArcIt a(_graph); a != INVALID; ++a) {
843 843
          cap[a] = _upper[_arc_idf[a]];
844 844
        }
845 845
      }
846 846

	
847 847
      _sup_node_num = 0;
848 848
      for (NodeIt n(_graph); n != INVALID; ++n) {
849 849
        if (sup[n] > 0) ++_sup_node_num;
850 850
      }
851 851

	
852 852
      // Find a feasible flow using Circulation
853 853
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
854 854
        circ(_graph, low, cap, sup);
855 855
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
856 856

	
857 857
      // Set residual capacities and handle GEQ supply type
858 858
      if (_sum_supply < 0) {
859 859
        for (ArcIt a(_graph); a != INVALID; ++a) {
860 860
          Value fa = flow[a];
861 861
          _res_cap[_arc_idf[a]] = cap[a] - fa;
862 862
          _res_cap[_arc_idb[a]] = fa;
863 863
          sup[_graph.source(a)] -= fa;
864 864
          sup[_graph.target(a)] += fa;
865 865
        }
866 866
        for (NodeIt n(_graph); n != INVALID; ++n) {
867 867
          _excess[_node_id[n]] = sup[n];
868 868
        }
869 869
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
870 870
          int u = _target[a];
871 871
          int ra = _reverse[a];
872 872
          _res_cap[a] = -_sum_supply + 1;
873 873
          _res_cap[ra] = -_excess[u];
874 874
          _cost[a] = 0;
875 875
          _cost[ra] = 0;
876 876
          _excess[u] = 0;
877 877
        }
878 878
      } else {
879 879
        for (ArcIt a(_graph); a != INVALID; ++a) {
880 880
          Value fa = flow[a];
881 881
          _res_cap[_arc_idf[a]] = cap[a] - fa;
882 882
          _res_cap[_arc_idb[a]] = fa;
883 883
        }
884 884
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
885 885
          int ra = _reverse[a];
886 886
          _res_cap[a] = 0;
887 887
          _res_cap[ra] = 0;
888 888
          _cost[a] = 0;
889 889
          _cost[ra] = 0;
890 890
        }
891 891
      }
892 892

	
893 893
      return OPTIMAL;
894 894
    }
895 895

	
896 896
    // Execute the algorithm and transform the results
897 897
    void start(Method method) {
898 898
      // Maximum path length for partial augment
899 899
      const int MAX_PATH_LENGTH = 4;
900 900

	
901 901
      // Initialize data structures for buckets
902 902
      _max_rank = _alpha * _res_node_num;
903 903
      _buckets.resize(_max_rank);
904 904
      _bucket_next.resize(_res_node_num + 1);
905 905
      _bucket_prev.resize(_res_node_num + 1);
906 906
      _rank.resize(_res_node_num + 1);
907 907

	
908 908
      // Execute the algorithm
909 909
      switch (method) {
910 910
        case PUSH:
911 911
          startPush();
912 912
          break;
913 913
        case AUGMENT:
914
          startAugment();
914
          startAugment(_res_node_num - 1);
915 915
          break;
916 916
        case PARTIAL_AUGMENT:
917 917
          startAugment(MAX_PATH_LENGTH);
918 918
          break;
919 919
      }
920 920

	
921 921
      // Compute node potentials for the original costs
922 922
      _arc_vec.clear();
923 923
      _cost_vec.clear();
924 924
      for (int j = 0; j != _res_arc_num; ++j) {
925 925
        if (_res_cap[j] > 0) {
926 926
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
927 927
          _cost_vec.push_back(_scost[j]);
928 928
        }
929 929
      }
930 930
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
931 931

	
932 932
      typename BellmanFord<StaticDigraph, LargeCostArcMap>
933 933
        ::template SetDistMap<LargeCostNodeMap>::Create bf(_sgr, _cost_map);
934 934
      bf.distMap(_pi_map);
935 935
      bf.init(0);
936 936
      bf.start();
937 937

	
938 938
      // Handle non-zero lower bounds
939 939
      if (_have_lower) {
940 940
        int limit = _first_out[_root];
941 941
        for (int j = 0; j != limit; ++j) {
942 942
          if (!_forward[j]) _res_cap[j] += _lower[j];
943 943
        }
944 944
      }
945 945
    }
946 946

	
947 947
    // Initialize a cost scaling phase
948 948
    void initPhase() {
949 949
      // Saturate arcs not satisfying the optimality condition
950 950
      for (int u = 0; u != _res_node_num; ++u) {
951 951
        int last_out = _first_out[u+1];
952 952
        LargeCost pi_u = _pi[u];
953 953
        for (int a = _first_out[u]; a != last_out; ++a) {
954 954
          int v = _target[a];
955 955
          if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
956 956
            Value delta = _res_cap[a];
957 957
            _excess[u] -= delta;
958 958
            _excess[v] += delta;
959 959
            _res_cap[a] = 0;
960 960
            _res_cap[_reverse[a]] += delta;
961 961
          }
962 962
        }
963 963
      }
964 964

	
965 965
      // Find active nodes (i.e. nodes with positive excess)
966 966
      for (int u = 0; u != _res_node_num; ++u) {
967 967
        if (_excess[u] > 0) _active_nodes.push_back(u);
968 968
      }
969 969

	
970 970
      // Initialize the next arcs
971 971
      for (int u = 0; u != _res_node_num; ++u) {
972 972
        _next_out[u] = _first_out[u];
973 973
      }
974 974
    }
975 975

	
976 976
    // Early termination heuristic
977 977
    bool earlyTermination() {
978 978
      const double EARLY_TERM_FACTOR = 3.0;
979 979

	
980 980
      // Build a static residual graph
981 981
      _arc_vec.clear();
982 982
      _cost_vec.clear();
983 983
      for (int j = 0; j != _res_arc_num; ++j) {
984 984
        if (_res_cap[j] > 0) {
985 985
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
986 986
          _cost_vec.push_back(_cost[j] + 1);
987 987
        }
988 988
      }
989 989
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
990 990

	
991 991
      // Run Bellman-Ford algorithm to check if the current flow is optimal
992 992
      BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
993 993
      bf.init(0);
994 994
      bool done = false;
995 995
      int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
996 996
      for (int i = 0; i < K && !done; ++i) {
997 997
        done = bf.processNextWeakRound();
998 998
      }
999 999
      return done;
1000 1000
    }
1001 1001

	
1002 1002
    // Global potential update heuristic
1003 1003
    void globalUpdate() {
1004 1004
      int bucket_end = _root + 1;
1005 1005

	
1006 1006
      // Initialize buckets
1007 1007
      for (int r = 0; r != _max_rank; ++r) {
1008 1008
        _buckets[r] = bucket_end;
1009 1009
      }
1010 1010
      Value total_excess = 0;
1011 1011
      for (int i = 0; i != _res_node_num; ++i) {
1012 1012
        if (_excess[i] < 0) {
1013 1013
          _rank[i] = 0;
1014 1014
          _bucket_next[i] = _buckets[0];
1015 1015
          _bucket_prev[_buckets[0]] = i;
1016 1016
          _buckets[0] = i;
1017 1017
        } else {
1018 1018
          total_excess += _excess[i];
1019 1019
          _rank[i] = _max_rank;
1020 1020
        }
1021 1021
      }
1022 1022
      if (total_excess == 0) return;
1023 1023

	
1024 1024
      // Search the buckets
1025 1025
      int r = 0;
1026 1026
      for ( ; r != _max_rank; ++r) {
1027 1027
        while (_buckets[r] != bucket_end) {
1028 1028
          // Remove the first node from the current bucket
1029 1029
          int u = _buckets[r];
1030 1030
          _buckets[r] = _bucket_next[u];
1031 1031

	
1032 1032
          // Search the incomming arcs of u
1033 1033
          LargeCost pi_u = _pi[u];
1034 1034
          int last_out = _first_out[u+1];
1035 1035
          for (int a = _first_out[u]; a != last_out; ++a) {
1036 1036
            int ra = _reverse[a];
1037 1037
            if (_res_cap[ra] > 0) {
1038 1038
              int v = _source[ra];
1039 1039
              int old_rank_v = _rank[v];
1040 1040
              if (r < old_rank_v) {
1041 1041
                // Compute the new rank of v
1042 1042
                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1043 1043
                int new_rank_v = old_rank_v;
1044 1044
                if (nrc < LargeCost(_max_rank))
1045 1045
                  new_rank_v = r + 1 + int(nrc);
1046 1046

	
1047 1047
                // Change the rank of v
1048 1048
                if (new_rank_v < old_rank_v) {
1049 1049
                  _rank[v] = new_rank_v;
1050 1050
                  _next_out[v] = _first_out[v];
1051 1051

	
1052 1052
                  // Remove v from its old bucket
1053 1053
                  if (old_rank_v < _max_rank) {
1054 1054
                    if (_buckets[old_rank_v] == v) {
1055 1055
                      _buckets[old_rank_v] = _bucket_next[v];
1056 1056
                    } else {
1057 1057
                      _bucket_next[_bucket_prev[v]] = _bucket_next[v];
1058 1058
                      _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
1059 1059
                    }
1060 1060
                  }
1061 1061

	
1062 1062
                  // Insert v to its new bucket
1063 1063
                  _bucket_next[v] = _buckets[new_rank_v];
1064 1064
                  _bucket_prev[_buckets[new_rank_v]] = v;
1065 1065
                  _buckets[new_rank_v] = v;
1066 1066
                }
1067 1067
              }
1068 1068
            }
1069 1069
          }
1070 1070

	
1071 1071
          // Finish search if there are no more active nodes
1072 1072
          if (_excess[u] > 0) {
1073 1073
            total_excess -= _excess[u];
1074 1074
            if (total_excess <= 0) break;
1075 1075
          }
1076 1076
        }
1077 1077
        if (total_excess <= 0) break;
1078 1078
      }
1079 1079

	
1080 1080
      // Relabel nodes
1081 1081
      for (int u = 0; u != _res_node_num; ++u) {
1082 1082
        int k = std::min(_rank[u], r);
1083 1083
        if (k > 0) {
1084 1084
          _pi[u] -= _epsilon * k;
1085 1085
          _next_out[u] = _first_out[u];
1086 1086
        }
1087 1087
      }
1088 1088
    }
1089 1089

	
1090 1090
    /// Execute the algorithm performing augment and relabel operations
1091
    void startAugment(int max_length = std::numeric_limits<int>::max()) {
1091
    void startAugment(int max_length) {
1092 1092
      // Paramters for heuristics
1093 1093
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1094 1094
      const double GLOBAL_UPDATE_FACTOR = 3.0;
1095 1095

	
1096 1096
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1097 1097
        (_res_node_num + _sup_node_num * _sup_node_num));
1098 1098
      int next_update_limit = global_update_freq;
1099 1099

	
1100 1100
      int relabel_cnt = 0;
1101 1101

	
1102 1102
      // Perform cost scaling phases
1103 1103
      std::vector<int> path;
1104 1104
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1105 1105
                                        1 : _epsilon / _alpha )
1106 1106
      {
1107 1107
        // Early termination heuristic
1108 1108
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1109 1109
          if (earlyTermination()) break;
1110 1110
        }
1111 1111

	
1112 1112
        // Initialize current phase
1113 1113
        initPhase();
1114 1114

	
1115 1115
        // Perform partial augment and relabel operations
1116 1116
        while (true) {
1117 1117
          // Select an active node (FIFO selection)
1118 1118
          while (_active_nodes.size() > 0 &&
1119 1119
                 _excess[_active_nodes.front()] <= 0) {
1120 1120
            _active_nodes.pop_front();
1121 1121
          }
1122 1122
          if (_active_nodes.size() == 0) break;
1123 1123
          int start = _active_nodes.front();
1124 1124

	
1125 1125
          // Find an augmenting path from the start node
1126 1126
          path.clear();
1127 1127
          int tip = start;
1128 1128
          while (_excess[tip] >= 0 && int(path.size()) < max_length) {
1129 1129
            int u;
1130 1130
            LargeCost min_red_cost, rc, pi_tip = _pi[tip];
1131 1131
            int last_out = _first_out[tip+1];
1132 1132
            for (int a = _next_out[tip]; a != last_out; ++a) {
1133 1133
              u = _target[a];
1134 1134
              if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
1135 1135
                path.push_back(a);
1136 1136
                _next_out[tip] = a;
1137 1137
                tip = u;
1138 1138
                goto next_step;
1139 1139
              }
1140 1140
            }
1141 1141

	
1142 1142
            // Relabel tip node
1143 1143
            min_red_cost = std::numeric_limits<LargeCost>::max();
1144 1144
            if (tip != start) {
1145 1145
              int ra = _reverse[path.back()];
1146 1146
              min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
1147 1147
            }
1148 1148
            for (int a = _first_out[tip]; a != last_out; ++a) {
1149 1149
              rc = _cost[a] + pi_tip - _pi[_target[a]];
1150 1150
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1151 1151
                min_red_cost = rc;
1152 1152
              }
1153 1153
            }
1154 1154
            _pi[tip] -= min_red_cost + _epsilon;
1155 1155
            _next_out[tip] = _first_out[tip];
1156 1156
            ++relabel_cnt;
1157 1157

	
1158 1158
            // Step back
1159 1159
            if (tip != start) {
1160 1160
              tip = _source[path.back()];
1161 1161
              path.pop_back();
1162 1162
            }
1163 1163

	
1164 1164
          next_step: ;
1165 1165
          }
1166 1166

	
1167 1167
          // Augment along the found path (as much flow as possible)
1168 1168
          Value delta;
1169 1169
          int pa, u, v = start;
1170 1170
          for (int i = 0; i != int(path.size()); ++i) {
1171 1171
            pa = path[i];
1172 1172
            u = v;
1173 1173
            v = _target[pa];
1174 1174
            delta = std::min(_res_cap[pa], _excess[u]);
1175 1175
            _res_cap[pa] -= delta;
1176 1176
            _res_cap[_reverse[pa]] += delta;
1177 1177
            _excess[u] -= delta;
1178 1178
            _excess[v] += delta;
1179 1179
            if (_excess[v] > 0 && _excess[v] <= delta)
1180 1180
              _active_nodes.push_back(v);
1181 1181
          }
1182 1182

	
1183 1183
          // Global update heuristic
1184 1184
          if (relabel_cnt >= next_update_limit) {
1185 1185
            globalUpdate();
1186 1186
            next_update_limit += global_update_freq;
1187 1187
          }
1188 1188
        }
1189 1189
      }
1190 1190
    }
1191 1191

	
1192 1192
    /// Execute the algorithm performing push and relabel operations
1193 1193
    void startPush() {
1194 1194
      // Paramters for heuristics
1195 1195
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1196 1196
      const double GLOBAL_UPDATE_FACTOR = 2.0;
1197 1197

	
1198 1198
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1199 1199
        (_res_node_num + _sup_node_num * _sup_node_num));
1200 1200
      int next_update_limit = global_update_freq;
1201 1201

	
1202 1202
      int relabel_cnt = 0;
1203 1203

	
1204 1204
      // Perform cost scaling phases
1205 1205
      BoolVector hyper(_res_node_num, false);
1206 1206
      LargeCostVector hyper_cost(_res_node_num);
1207 1207
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1208 1208
                                        1 : _epsilon / _alpha )
1209 1209
      {
1210 1210
        // Early termination heuristic
1211 1211
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1212 1212
          if (earlyTermination()) break;
1213 1213
        }
1214 1214

	
1215 1215
        // Initialize current phase
1216 1216
        initPhase();
1217 1217

	
1218 1218
        // Perform push and relabel operations
1219 1219
        while (_active_nodes.size() > 0) {
1220 1220
          LargeCost min_red_cost, rc, pi_n;
1221 1221
          Value delta;
1222 1222
          int n, t, a, last_out = _res_arc_num;
1223 1223

	
1224 1224
        next_node:
1225 1225
          // Select an active node (FIFO selection)
1226 1226
          n = _active_nodes.front();
1227 1227
          last_out = _first_out[n+1];
1228 1228
          pi_n = _pi[n];
1229 1229

	
1230 1230
          // Perform push operations if there are admissible arcs
1231 1231
          if (_excess[n] > 0) {
1232 1232
            for (a = _next_out[n]; a != last_out; ++a) {
1233 1233
              if (_res_cap[a] > 0 &&
1234 1234
                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
1235 1235
                delta = std::min(_res_cap[a], _excess[n]);
1236 1236
                t = _target[a];
1237 1237

	
1238 1238
                // Push-look-ahead heuristic
1239 1239
                Value ahead = -_excess[t];
1240 1240
                int last_out_t = _first_out[t+1];
1241 1241
                LargeCost pi_t = _pi[t];
1242 1242
                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1243 1243
                  if (_res_cap[ta] > 0 &&
1244 1244
                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1245 1245
                    ahead += _res_cap[ta];
1246 1246
                  if (ahead >= delta) break;
1247 1247
                }
1248 1248
                if (ahead < 0) ahead = 0;
1249 1249

	
1250 1250
                // Push flow along the arc
1251 1251
                if (ahead < delta && !hyper[t]) {
1252 1252
                  _res_cap[a] -= ahead;
1253 1253
                  _res_cap[_reverse[a]] += ahead;
1254 1254
                  _excess[n] -= ahead;
1255 1255
                  _excess[t] += ahead;
1256 1256
                  _active_nodes.push_front(t);
1257 1257
                  hyper[t] = true;
1258 1258
                  hyper_cost[t] = _cost[a] + pi_n - pi_t;
1259 1259
                  _next_out[n] = a;
1260 1260
                  goto next_node;
1261 1261
                } else {
1262 1262
                  _res_cap[a] -= delta;
1263 1263
                  _res_cap[_reverse[a]] += delta;
1264 1264
                  _excess[n] -= delta;
1265 1265
                  _excess[t] += delta;
1266 1266
                  if (_excess[t] > 0 && _excess[t] <= delta)
1267 1267
                    _active_nodes.push_back(t);
1268 1268
                }
1269 1269

	
1270 1270
                if (_excess[n] == 0) {
1271 1271
                  _next_out[n] = a;
1272 1272
                  goto remove_nodes;
1273 1273
                }
1274 1274
              }
1275 1275
            }
1276 1276
            _next_out[n] = a;
1277 1277
          }
1278 1278

	
1279 1279
          // Relabel the node if it is still active (or hyper)
1280 1280
          if (_excess[n] > 0 || hyper[n]) {
1281 1281
             min_red_cost = hyper[n] ? -hyper_cost[n] :
1282 1282
               std::numeric_limits<LargeCost>::max();
1283 1283
            for (int a = _first_out[n]; a != last_out; ++a) {
1284 1284
              rc = _cost[a] + pi_n - _pi[_target[a]];
1285 1285
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1286 1286
                min_red_cost = rc;
1287 1287
              }
1288 1288
            }
1289 1289
            _pi[n] -= min_red_cost + _epsilon;
1290 1290
            _next_out[n] = _first_out[n];
1291 1291
            hyper[n] = false;
1292 1292
            ++relabel_cnt;
1293 1293
          }
1294 1294

	
1295 1295
          // Remove nodes that are not active nor hyper
1296 1296
        remove_nodes:
1297 1297
          while ( _active_nodes.size() > 0 &&
1298 1298
                  _excess[_active_nodes.front()] <= 0 &&
1299 1299
                  !hyper[_active_nodes.front()] ) {
1300 1300
            _active_nodes.pop_front();
1301 1301
          }
1302 1302

	
1303 1303
          // Global update heuristic
1304 1304
          if (relabel_cnt >= next_update_limit) {
1305 1305
            globalUpdate();
1306 1306
            for (int u = 0; u != _res_node_num; ++u)
1307 1307
              hyper[u] = false;
1308 1308
            next_update_limit += global_update_freq;
1309 1309
          }
1310 1310
        }
1311 1311
      }
1312 1312
    }
1313 1313

	
1314 1314
  }; //class CostScaling
1315 1315

	
1316 1316
  ///@}
1317 1317

	
1318 1318
} //namespace lemon
1319 1319

	
1320 1320
#endif //LEMON_COST_SCALING_H
0 comments (0 inline)