... | ... |
@@ -26,16 +26,43 @@ |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/bin_heap.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 |
/// \brief Default traits class of CapacityScaling algorithm. |
|
35 |
/// |
|
36 |
/// Default traits class of CapacityScaling algorithm. |
|
37 |
/// \tparam GR Digraph type. |
|
38 |
/// \tparam V The value type used for flow amounts, capacity bounds |
|
39 |
/// and supply values. By default it is \c int. |
|
40 |
/// \tparam C The value type used for costs and potentials. |
|
41 |
/// By default it is the same as \c V. |
|
42 |
template <typename GR, typename V = int, typename C = V> |
|
43 |
struct CapacityScalingDefaultTraits |
|
44 |
{ |
|
45 |
/// The type of the digraph |
|
46 |
typedef GR Digraph; |
|
47 |
/// The type of the flow amounts, capacity bounds and supply values |
|
48 |
typedef V Value; |
|
49 |
/// The type of the arc costs |
|
50 |
typedef C Cost; |
|
51 |
|
|
52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
|
53 |
/// |
|
54 |
/// The type of the heap used for internal Dijkstra computations. |
|
55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
|
56 |
/// its priority type must be \c Cost and its cross reference type |
|
57 |
/// must be \ref RangeMap "RangeMap<int>". |
|
58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
|
59 |
}; |
|
60 |
|
|
34 | 61 |
/// \addtogroup min_cost_flow_algs |
35 | 62 |
/// @{ |
36 | 63 |
|
37 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
38 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
39 | 66 |
/// |
40 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
41 | 68 |
/// of the successive shortest path algorithm for finding a |
... | ... |
@@ -52,25 +79,38 @@ |
52 | 79 |
/// and supply values in the algorithm. By default it is \c int. |
53 | 80 |
/// \tparam C The value type used for costs and potentials in the |
54 | 81 |
/// algorithm. By default it is the same as \c V. |
55 | 82 |
/// |
56 | 83 |
/// \warning Both value types must be signed and all input data must |
57 | 84 |
/// be integer. |
58 | 85 |
/// \warning This algorithm does not support negative costs for such |
59 | 86 |
/// arcs that have infinite upper bound. |
60 |
|
|
87 |
#ifdef DOXYGEN |
|
88 |
template <typename GR, typename V, typename C, typename TR> |
|
89 |
#else |
|
90 |
template < typename GR, typename V = int, typename C = V, |
|
91 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
|
92 |
#endif |
|
61 | 93 |
class CapacityScaling |
62 | 94 |
{ |
63 | 95 |
public: |
64 | 96 |
|
97 |
/// The type of the digraph |
|
98 |
typedef typename TR::Digraph Digraph; |
|
65 | 99 |
/// The type of the flow amounts, capacity bounds and supply values |
66 |
typedef |
|
100 |
typedef typename TR::Value Value; |
|
67 | 101 |
/// The type of the arc costs |
68 |
typedef |
|
102 |
typedef typename TR::Cost Cost; |
|
103 |
|
|
104 |
/// The type of the heap used for internal Dijkstra computations |
|
105 |
typedef typename TR::Heap Heap; |
|
106 |
|
|
107 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
|
108 |
typedef TR Traits; |
|
69 | 109 |
|
70 | 110 |
public: |
71 | 111 |
|
72 | 112 |
/// \brief Problem type constants for the \c run() function. |
73 | 113 |
/// |
74 | 114 |
/// Enum type containing the problem type constants that can be |
75 | 115 |
/// returned by the \ref run() function of the algorithm. |
76 | 116 |
enum ProblemType { |
... | ... |
@@ -87,18 +127,16 @@ |
87 | 127 |
/// these cases. |
88 | 128 |
UNBOUNDED |
89 | 129 |
}; |
90 | 130 |
|
91 | 131 |
private: |
92 | 132 |
|
93 | 133 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
94 | 134 |
|
95 |
typedef std::vector<Arc> ArcVector; |
|
96 |
typedef std::vector<Node> NodeVector; |
|
97 | 135 |
typedef std::vector<int> IntVector; |
98 | 136 |
typedef std::vector<bool> BoolVector; |
99 | 137 |
typedef std::vector<Value> ValueVector; |
100 | 138 |
typedef std::vector<Cost> CostVector; |
101 | 139 |
|
102 | 140 |
private: |
103 | 141 |
|
104 | 142 |
// Data related to the underlying digraph |
... | ... |
@@ -150,19 +188,16 @@ |
150 | 188 |
private: |
151 | 189 |
|
152 | 190 |
// Special implementation of the Dijkstra algorithm for finding |
153 | 191 |
// shortest paths in the residual network of the digraph with |
154 | 192 |
// respect to the reduced arc costs and modifying the node |
155 | 193 |
// potentials according to the found distance labels. |
156 | 194 |
class ResidualDijkstra |
157 | 195 |
{ |
158 |
typedef RangeMap<int> HeapCrossRef; |
|
159 |
typedef BinHeap<Cost, HeapCrossRef> Heap; |
|
160 |
|
|
161 | 196 |
private: |
162 | 197 |
|
163 | 198 |
int _node_num; |
164 | 199 |
const IntVector &_first_out; |
165 | 200 |
const IntVector &_target; |
166 | 201 |
const CostVector &_cost; |
167 | 202 |
const ValueVector &_res_cap; |
168 | 203 |
const ValueVector &_excess; |
... | ... |
@@ -177,17 +212,17 @@ |
177 | 212 |
ResidualDijkstra(CapacityScaling& cs) : |
178 | 213 |
_node_num(cs._node_num), _first_out(cs._first_out), |
179 | 214 |
_target(cs._target), _cost(cs._cost), _res_cap(cs._res_cap), |
180 | 215 |
_excess(cs._excess), _pi(cs._pi), _pred(cs._pred), |
181 | 216 |
_dist(cs._node_num) |
182 | 217 |
{} |
183 | 218 |
|
184 | 219 |
int run(int s, Value delta = 1) { |
185 |
|
|
220 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
|
186 | 221 |
Heap heap(heap_cross_ref); |
187 | 222 |
heap.push(s, 0); |
188 | 223 |
_pred[s] = -1; |
189 | 224 |
_proc_nodes.clear(); |
190 | 225 |
|
191 | 226 |
// Process nodes |
192 | 227 |
while (!heap.empty() && _excess[heap.top()] > -delta) { |
193 | 228 |
int u = heap.top(), v; |
... | ... |
@@ -228,16 +263,42 @@ |
228 | 263 |
|
229 | 264 |
return t; |
230 | 265 |
} |
231 | 266 |
|
232 | 267 |
}; //class ResidualDijkstra |
233 | 268 |
|
234 | 269 |
public: |
235 | 270 |
|
271 |
/// \name Named Template Parameters |
|
272 |
/// @{ |
|
273 |
|
|
274 |
template <typename T> |
|
275 |
struct SetHeapTraits : public Traits { |
|
276 |
typedef T Heap; |
|
277 |
}; |
|
278 |
|
|
279 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
280 |
/// \c Heap type. |
|
281 |
/// |
|
282 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
|
283 |
/// type, which is used for internal Dijkstra computations. |
|
284 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
|
285 |
/// its priority type must be \c Cost and its cross reference type |
|
286 |
/// must be \ref RangeMap "RangeMap<int>". |
|
287 |
template <typename T> |
|
288 |
struct SetHeap |
|
289 |
: public CapacityScaling<GR, V, C, SetHeapTraits<T> > { |
|
290 |
typedef CapacityScaling<GR, V, C, SetHeapTraits<T> > Create; |
|
291 |
}; |
|
292 |
|
|
293 |
/// @} |
|
294 |
|
|
295 |
public: |
|
296 |
|
|
236 | 297 |
/// \brief Constructor. |
237 | 298 |
/// |
238 | 299 |
/// The constructor of the class. |
239 | 300 |
/// |
240 | 301 |
/// \param graph The digraph the algorithm runs on. |
241 | 302 |
CapacityScaling(const GR& graph) : |
242 | 303 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
243 | 304 |
INF(std::numeric_limits<Value>::has_infinity ? |
... | ... |
@@ -426,16 +487,17 @@ |
426 | 487 |
_supply[_node_id[s]] = k; |
427 | 488 |
_supply[_node_id[t]] = -k; |
428 | 489 |
return *this; |
429 | 490 |
} |
430 | 491 |
|
431 | 492 |
/// @} |
432 | 493 |
|
433 | 494 |
/// \name Execution control |
495 |
/// The algorithm can be executed using \ref run(). |
|
434 | 496 |
|
435 | 497 |
/// @{ |
436 | 498 |
|
437 | 499 |
/// \brief Run the algorithm. |
438 | 500 |
/// |
439 | 501 |
/// This function runs the algorithm. |
440 | 502 |
/// The paramters can be specified using functions \ref lowerMap(), |
441 | 503 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
... | ... |
@@ -742,17 +804,17 @@ |
742 | 804 |
} |
743 | 805 |
} |
744 | 806 |
|
745 | 807 |
return pt; |
746 | 808 |
} |
747 | 809 |
|
748 | 810 |
// Execute the capacity scaling algorithm |
749 | 811 |
ProblemType startWithScaling() { |
750 |
// |
|
812 |
// Perform capacity scaling phases |
|
751 | 813 |
int s, t; |
752 | 814 |
int phase_cnt = 0; |
753 | 815 |
int factor = 4; |
754 | 816 |
ResidualDijkstra _dijkstra(*this); |
755 | 817 |
while (true) { |
756 | 818 |
// Saturate all arcs not satisfying the optimality condition |
757 | 819 |
for (int u = 0; u != _node_num; ++u) { |
758 | 820 |
for (int a = _first_out[u]; a != _first_out[u+1]; ++a) { |
0 comments (0 inline)