0
2
0
... | ... |
@@ -41,5 +41,5 @@ |
41 | 41 |
/// |
42 | 42 |
/// This class implements Edmonds' alternating forest matching algorithm |
43 |
/// for finding a maximum cardinality matching in a general graph. |
|
43 |
/// for finding a maximum cardinality matching in a general undirected graph. |
|
44 | 44 |
/// It can be started from an arbitrary initial matching |
45 | 45 |
/// (the default is the empty one). |
... | ... |
@@ -54,8 +54,8 @@ |
54 | 54 |
/// minus the number of barrier nodes is a lower bound on the |
55 | 55 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
56 |
/// tight. This decomposition can be obtained by calling \c |
|
57 |
/// decomposition() after running the algorithm. |
|
56 |
/// tight. This decomposition can be obtained using \ref status() or |
|
57 |
/// \ref statusMap() after running the algorithm. |
|
58 | 58 |
/// |
59 |
/// \tparam GR The graph type the algorithm runs on. |
|
59 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
60 | 60 |
template <typename GR> |
61 | 61 |
class MaxMatching { |
... | ... |
@@ -64,4 +64,5 @@ |
64 | 64 |
/// The graph type of the algorithm |
65 | 65 |
typedef GR Graph; |
66 |
/// The type of the matching map |
|
66 | 67 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
67 | 68 |
MatchingMap; |
... | ... |
@@ -85,4 +86,5 @@ |
85 | 86 |
}; |
86 | 87 |
|
88 |
/// The type of the status map |
|
87 | 89 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
88 | 90 |
|
... | ... |
@@ -584,4 +586,12 @@ |
584 | 586 |
} |
585 | 587 |
|
588 |
/// \brief Return a const reference to the matching map. |
|
589 |
/// |
|
590 |
/// This function returns a const reference to a node map that stores |
|
591 |
/// the matching arc (or edge) incident to each node. |
|
592 |
const MatchingMap& matchingMap() const { |
|
593 |
return *_matching; |
|
594 |
} |
|
595 |
|
|
586 | 596 |
/// \brief Return the mate of the given node. |
587 | 597 |
/// |
... | ... |
@@ -606,8 +616,17 @@ |
606 | 616 |
/// This function returns the \ref Status "status" of the given node |
607 | 617 |
/// in the Edmonds-Gallai decomposition. |
608 |
Status |
|
618 |
Status status(const Node& n) const { |
|
609 | 619 |
return (*_status)[n]; |
610 | 620 |
} |
611 | 621 |
|
622 |
/// \brief Return a const reference to the status map, which stores |
|
623 |
/// the Edmonds-Gallai decomposition. |
|
624 |
/// |
|
625 |
/// This function returns a const reference to a node map that stores the |
|
626 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
|
627 |
const StatusMap& statusMap() const { |
|
628 |
return *_status; |
|
629 |
} |
|
630 |
|
|
612 | 631 |
/// \brief Return \c true if the given node is in the barrier. |
613 | 632 |
/// |
... | ... |
@@ -663,5 +682,5 @@ |
663 | 682 |
/// by \ref MaxWeightedMatching::dualScale "4". |
664 | 683 |
/// |
665 |
/// \tparam GR The graph type the algorithm runs on. |
|
684 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
666 | 685 |
/// \tparam WM The type edge weight map. The default type is |
667 | 686 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
... | ... |
@@ -682,4 +701,5 @@ |
682 | 701 |
typedef typename WeightMap::Value Value; |
683 | 702 |
|
703 |
/// The type of the matching map |
|
684 | 704 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
685 | 705 |
MatchingMap; |
... | ... |
@@ -1830,5 +1850,5 @@ |
1830 | 1850 |
/// |
1831 | 1851 |
/// \pre Either run() or start() must be called before using this function. |
1832 |
Value |
|
1852 |
Value matchingWeight() const { |
|
1833 | 1853 |
Value sum = 0; |
1834 | 1854 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
... | ... |
@@ -1876,4 +1896,12 @@ |
1876 | 1896 |
} |
1877 | 1897 |
|
1898 |
/// \brief Return a const reference to the matching map. |
|
1899 |
/// |
|
1900 |
/// This function returns a const reference to a node map that stores |
|
1901 |
/// the matching arc (or edge) incident to each node. |
|
1902 |
const MatchingMap& matchingMap() const { |
|
1903 |
return *_matching; |
|
1904 |
} |
|
1905 |
|
|
1878 | 1906 |
/// \brief Return the mate of the given node. |
1879 | 1907 |
/// |
... | ... |
@@ -2051,5 +2079,5 @@ |
2051 | 2079 |
/// by \ref MaxWeightedMatching::dualScale "4". |
2052 | 2080 |
/// |
2053 |
/// \tparam GR The graph type the algorithm runs on. |
|
2081 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
2054 | 2082 |
/// \tparam WM The type edge weight map. The default type is |
2055 | 2083 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
... | ... |
@@ -2077,4 +2105,5 @@ |
2077 | 2105 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
2078 | 2106 |
|
2107 |
/// The type of the matching map |
|
2079 | 2108 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
2080 | 2109 |
MatchingMap; |
... | ... |
@@ -3039,5 +3068,5 @@ |
3039 | 3068 |
/// |
3040 | 3069 |
/// \pre Either run() or start() must be called before using this function. |
3041 |
Value |
|
3070 |
Value matchingWeight() const { |
|
3042 | 3071 |
Value sum = 0; |
3043 | 3072 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
... | ... |
@@ -3070,4 +3099,12 @@ |
3070 | 3099 |
} |
3071 | 3100 |
|
3101 |
/// \brief Return a const reference to the matching map. |
|
3102 |
/// |
|
3103 |
/// This function returns a const reference to a node map that stores |
|
3104 |
/// the matching arc (or edge) incident to each node. |
|
3105 |
const MatchingMap& matchingMap() const { |
|
3106 |
return *_matching; |
|
3107 |
} |
|
3108 |
|
|
3072 | 3109 |
/// \brief Return the mate of the given node. |
3073 | 3110 |
/// |
... | ... |
@@ -139,11 +139,15 @@ |
139 | 139 |
const_mat_test.matching(e); |
140 | 140 |
const_mat_test.matching(n); |
141 |
const MaxMatching<Graph>::MatchingMap& mmap = |
|
142 |
const_mat_test.matchingMap(); |
|
143 |
e = mmap[n]; |
|
141 | 144 |
const_mat_test.mate(n); |
142 | 145 |
|
143 | 146 |
MaxMatching<Graph>::Status stat = |
144 |
const_mat_test. |
|
147 |
const_mat_test.status(n); |
|
148 |
const MaxMatching<Graph>::StatusMap& smap = |
|
149 |
const_mat_test.statusMap(); |
|
150 |
stat = smap[n]; |
|
145 | 151 |
const_mat_test.barrier(n); |
146 |
|
|
147 |
ignore_unused_variable_warning(stat); |
|
148 | 152 |
} |
149 | 153 |
|
... | ... |
@@ -168,8 +172,11 @@ |
168 | 172 |
mat_test.run(); |
169 | 173 |
|
170 |
const_mat_test. |
|
174 |
const_mat_test.matchingWeight(); |
|
171 | 175 |
const_mat_test.matchingSize(); |
172 | 176 |
const_mat_test.matching(e); |
173 | 177 |
const_mat_test.matching(n); |
178 |
const MaxWeightedMatching<Graph>::MatchingMap& mmap = |
|
179 |
const_mat_test.matchingMap(); |
|
180 |
e = mmap[n]; |
|
174 | 181 |
const_mat_test.mate(n); |
175 | 182 |
|
... | ... |
@@ -202,7 +209,10 @@ |
202 | 209 |
mat_test.run(); |
203 | 210 |
|
204 |
const_mat_test. |
|
211 |
const_mat_test.matchingWeight(); |
|
205 | 212 |
const_mat_test.matching(e); |
206 | 213 |
const_mat_test.matching(n); |
214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
|
215 |
const_mat_test.matchingMap(); |
|
216 |
e = mmap[n]; |
|
207 | 217 |
const_mat_test.mate(n); |
208 | 218 |
|
... | ... |
@@ -225,7 +235,7 @@ |
225 | 235 |
|
226 | 236 |
for (NodeIt n(graph); n != INVALID; ++n) { |
227 |
check(mm. |
|
237 |
check(mm.status(n) == MaxMatching<SmartGraph>::EVEN || |
|
228 | 238 |
mm.matching(n) != INVALID, "Wrong Gallai-Edmonds decomposition"); |
229 |
if (mm. |
|
239 |
if (mm.status(n) == MaxMatching<SmartGraph>::ODD) { |
|
230 | 240 |
++barrier_num; |
231 | 241 |
} else { |
... | ... |
@@ -240,14 +250,14 @@ |
240 | 250 |
++num; |
241 | 251 |
} |
242 |
check(mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
|
243 |
mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
252 |
check(mm.status(graph.u(e)) != MaxMatching<SmartGraph>::EVEN || |
|
253 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
244 | 254 |
"Wrong Gallai-Edmonds decomposition"); |
245 | 255 |
|
246 |
check(mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
|
247 |
mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
256 |
check(mm.status(graph.v(e)) != MaxMatching<SmartGraph>::EVEN || |
|
257 |
mm.status(graph.u(e)) != MaxMatching<SmartGraph>::MATCHED, |
|
248 | 258 |
"Wrong Gallai-Edmonds decomposition"); |
249 | 259 |
|
250 |
if (mm.decomposition(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
|
251 |
mm.decomposition(graph.v(e)) != MaxMatching<SmartGraph>::ODD) { |
|
260 |
if (mm.status(graph.u(e)) != MaxMatching<SmartGraph>::ODD && |
|
261 |
mm.status(graph.v(e)) != MaxMatching<SmartGraph>::ODD) { |
|
252 | 262 |
comp.join(graph.u(e), graph.v(e)); |
253 | 263 |
} |
... | ... |
@@ -257,5 +267,5 @@ |
257 | 267 |
int odd_comp_num = 0; |
258 | 268 |
for (NodeIt n(graph); n != INVALID; ++n) { |
259 |
if (mm. |
|
269 |
if (mm.status(n) != MaxMatching<SmartGraph>::ODD) { |
|
260 | 270 |
int root = comp.find(n); |
261 | 271 |
if (comp_root.find(root) == comp_root.end()) { |
0 comments (0 inline)