gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Trim the documentation (#359)
0 1 0
1.2
1 file changed with 4 insertions and 64 deletions:
↑ Collapse diff ↑
Ignore white space 48 line context
... ...
@@ -273,139 +273,117 @@
273 273
/**
274 274
@defgroup auxdat Auxiliary Data Structures
275 275
@ingroup datas
276 276
\brief Auxiliary data structures implemented in LEMON.
277 277

	
278 278
This group contains some data structures implemented in LEMON in
279 279
order to make it easier to implement combinatorial algorithms.
280 280
*/
281 281

	
282 282
/**
283 283
@defgroup geomdat Geometric Data Structures
284 284
@ingroup auxdat
285 285
\brief Geometric data structures implemented in LEMON.
286 286

	
287 287
This group contains geometric data structures implemented in LEMON.
288 288

	
289 289
 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
290 290
   vector with the usual operations.
291 291
 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
292 292
   rectangular bounding box of a set of \ref lemon::dim2::Point
293 293
   "dim2::Point"'s.
294 294
*/
295 295

	
296 296
/**
297
@defgroup matrices Matrices
298
@ingroup auxdat
299
\brief Two dimensional data storages implemented in LEMON.
300

	
301
This group contains two dimensional data storages implemented in LEMON.
302
*/
303

	
304
/**
305 297
@defgroup algs Algorithms
306 298
\brief This group contains the several algorithms
307 299
implemented in LEMON.
308 300

	
309 301
This group contains the several algorithms
310 302
implemented in LEMON.
311 303
*/
312 304

	
313 305
/**
314 306
@defgroup search Graph Search
315 307
@ingroup algs
316 308
\brief Common graph search algorithms.
317 309

	
318 310
This group contains the common graph search algorithms, namely
319 311
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)
320 312
\ref clrs01algorithms.
321 313
*/
322 314

	
323 315
/**
324 316
@defgroup shortest_path Shortest Path Algorithms
325 317
@ingroup algs
326 318
\brief Algorithms for finding shortest paths.
327 319

	
328 320
This group contains the algorithms for finding shortest paths in digraphs
329 321
\ref clrs01algorithms.
330 322

	
331 323
 - \ref Dijkstra algorithm for finding shortest paths from a source node
332 324
   when all arc lengths are non-negative.
333 325
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
334 326
   from a source node when arc lenghts can be either positive or negative,
335 327
   but the digraph should not contain directed cycles with negative total
336 328
   length.
337
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
338
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
339
   lenghts can be either positive or negative, but the digraph should
340
   not contain directed cycles with negative total length.
341 329
 - \ref Suurballe A successive shortest path algorithm for finding
342 330
   arc-disjoint paths between two nodes having minimum total length.
343 331
*/
344 332

	
345 333
/**
346 334
@defgroup spantree Minimum Spanning Tree Algorithms
347 335
@ingroup algs
348 336
\brief Algorithms for finding minimum cost spanning trees and arborescences.
349 337

	
350 338
This group contains the algorithms for finding minimum cost spanning
351 339
trees and arborescences \ref clrs01algorithms.
352 340
*/
353 341

	
354 342
/**
355 343
@defgroup max_flow Maximum Flow Algorithms
356 344
@ingroup algs
357 345
\brief Algorithms for finding maximum flows.
358 346

	
359 347
This group contains the algorithms for finding maximum flows and
360 348
feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
361 349

	
362 350
The \e maximum \e flow \e problem is to find a flow of maximum value between
363 351
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
364 352
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
365 353
\f$s, t \in V\f$ source and target nodes.
366 354
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
367 355
following optimization problem.
368 356

	
369 357
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
370 358
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
371 359
    \quad \forall u\in V\setminus\{s,t\} \f]
372 360
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
373 361

	
374
LEMON contains several algorithms for solving maximum flow problems:
375
- \ref EdmondsKarp Edmonds-Karp algorithm
376
  \ref edmondskarp72theoretical.
377
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
378
  \ref goldberg88newapproach.
379
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
380
  \ref dinic70algorithm, \ref sleator83dynamic.
381
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
382
  \ref goldberg88newapproach, \ref sleator83dynamic.
383

	
384
In most cases the \ref Preflow algorithm provides the
385
fastest method for computing a maximum flow. All implementations
386
also provide functions to query the minimum cut, which is the dual
387
problem of maximum flow.
362
\ref Preflow is an efficient implementation of Goldberg-Tarjan's
363
preflow push-relabel algorithm \ref goldberg88newapproach for finding
364
maximum flows. It also provides functions to query the minimum cut,
365
which is the dual problem of maximum flow.
388 366

	
389 367
\ref Circulation is a preflow push-relabel algorithm implemented directly
390 368
for finding feasible circulations, which is a somewhat different problem,
391 369
but it is strongly related to maximum flow.
392 370
For more information, see \ref Circulation.
393 371
*/
394 372

	
395 373
/**
396 374
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
397 375
@ingroup algs
398 376

	
399 377
\brief Algorithms for finding minimum cost flows and circulations.
400 378

	
401 379
This group contains the algorithms for finding minimum cost flows and
402 380
circulations \ref amo93networkflows. For more information about this
403 381
problem and its dual solution, see \ref min_cost_flow
404 382
"Minimum Cost Flow Problem".
405 383

	
406 384
LEMON contains several algorithms for this problem.
407 385
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
408 386
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
409 387
 - \ref CostScaling Cost Scaling algorithm based on push/augment and
410 388
   relabel operations \ref goldberg90approximation, \ref goldberg97efficient,
411 389
   \ref bunnagel98efficient.
... ...
@@ -420,50 +398,48 @@
420 398
CapacityScaling is usually the fastest algorithm (without effective scaling).
421 399
*/
422 400

	
423 401
/**
424 402
@defgroup min_cut Minimum Cut Algorithms
425 403
@ingroup algs
426 404

	
427 405
\brief Algorithms for finding minimum cut in graphs.
428 406

	
429 407
This group contains the algorithms for finding minimum cut in graphs.
430 408

	
431 409
The \e minimum \e cut \e problem is to find a non-empty and non-complete
432 410
\f$X\f$ subset of the nodes with minimum overall capacity on
433 411
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
434 412
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
435 413
cut is the \f$X\f$ solution of the next optimization problem:
436 414

	
437 415
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
438 416
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
439 417

	
440 418
LEMON contains several algorithms related to minimum cut problems:
441 419

	
442 420
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
443 421
  in directed graphs.
444
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
445
  calculating minimum cut in undirected graphs.
446 422
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
447 423
  all-pairs minimum cut in undirected graphs.
448 424

	
449 425
If you want to find minimum cut just between two distinict nodes,
450 426
see the \ref max_flow "maximum flow problem".
451 427
*/
452 428

	
453 429
/**
454 430
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
455 431
@ingroup algs
456 432
\brief Algorithms for finding minimum mean cycles.
457 433

	
458 434
This group contains the algorithms for finding minimum mean cycles
459 435
\ref clrs01algorithms, \ref amo93networkflows.
460 436

	
461 437
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
462 438
of minimum mean length (cost) in a digraph.
463 439
The mean length of a cycle is the average length of its arcs, i.e. the
464 440
ratio between the total length of the cycle and the number of arcs on it.
465 441

	
466 442
This problem has an important connection to \e conservative \e length
467 443
\e functions, too. A length function on the arcs of a digraph is called
468 444
conservative if and only if there is no directed cycle of negative total
469 445
length. For an arbitrary length function, the negative of the minimum
... ...
@@ -484,159 +460,123 @@
484 460
exponential.
485 461
Both Karp and HartmannOrlin algorithms run in time O(ne) and use space
486 462
O(n<sup>2</sup>+e), but the latter one is typically faster due to the
487 463
applied early termination scheme.
488 464
*/
489 465

	
490 466
/**
491 467
@defgroup matching Matching Algorithms
492 468
@ingroup algs
493 469
\brief Algorithms for finding matchings in graphs and bipartite graphs.
494 470

	
495 471
This group contains the algorithms for calculating
496 472
matchings in graphs and bipartite graphs. The general matching problem is
497 473
finding a subset of the edges for which each node has at most one incident
498 474
edge.
499 475

	
500 476
There are several different algorithms for calculate matchings in
501 477
graphs.  The matching problems in bipartite graphs are generally
502 478
easier than in general graphs. The goal of the matching optimization
503 479
can be finding maximum cardinality, maximum weight or minimum cost
504 480
matching. The search can be constrained to find perfect or
505 481
maximum cardinality matching.
506 482

	
507 483
The matching algorithms implemented in LEMON:
508
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
509
  for calculating maximum cardinality matching in bipartite graphs.
510
- \ref PrBipartiteMatching Push-relabel algorithm
511
  for calculating maximum cardinality matching in bipartite graphs.
512
- \ref MaxWeightedBipartiteMatching
513
  Successive shortest path algorithm for calculating maximum weighted
514
  matching and maximum weighted bipartite matching in bipartite graphs.
515
- \ref MinCostMaxBipartiteMatching
516
  Successive shortest path algorithm for calculating minimum cost maximum
517
  matching in bipartite graphs.
518 484
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
519 485
  maximum cardinality matching in general graphs.
520 486
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
521 487
  maximum weighted matching in general graphs.
522 488
- \ref MaxWeightedPerfectMatching
523 489
  Edmond's blossom shrinking algorithm for calculating maximum weighted
524 490
  perfect matching in general graphs.
525 491
- \ref MaxFractionalMatching Push-relabel algorithm for calculating
526 492
  maximum cardinality fractional matching in general graphs.
527 493
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating
528 494
  maximum weighted fractional matching in general graphs.
529 495
- \ref MaxWeightedPerfectFractionalMatching
530 496
  Augmenting path algorithm for calculating maximum weighted
531 497
  perfect fractional matching in general graphs.
532 498

	
533 499
\image html matching.png
534 500
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth
535 501
*/
536 502

	
537 503
/**
538 504
@defgroup graph_properties Connectivity and Other Graph Properties
539 505
@ingroup algs
540 506
\brief Algorithms for discovering the graph properties
541 507

	
542 508
This group contains the algorithms for discovering the graph properties
543 509
like connectivity, bipartiteness, euler property, simplicity etc.
544 510

	
545 511
\image html connected_components.png
546 512
\image latex connected_components.eps "Connected components" width=\textwidth
547 513
*/
548 514

	
549 515
/**
550 516
@defgroup planar Planarity Embedding and Drawing
551 517
@ingroup algs
552 518
\brief Algorithms for planarity checking, embedding and drawing
553 519

	
554 520
This group contains the algorithms for planarity checking,
555 521
embedding and drawing.
556 522

	
557 523
\image html planar.png
558 524
\image latex planar.eps "Plane graph" width=\textwidth
559 525
*/
560 526

	
561 527
/**
562
@defgroup approx Approximation Algorithms
563
@ingroup algs
564
\brief Approximation algorithms.
565

	
566
This group contains the approximation and heuristic algorithms
567
implemented in LEMON.
568
*/
569

	
570
/**
571 528
@defgroup auxalg Auxiliary Algorithms
572 529
@ingroup algs
573 530
\brief Auxiliary algorithms implemented in LEMON.
574 531

	
575 532
This group contains some algorithms implemented in LEMON
576 533
in order to make it easier to implement complex algorithms.
577 534
*/
578 535

	
579 536
/**
580 537
@defgroup gen_opt_group General Optimization Tools
581 538
\brief This group contains some general optimization frameworks
582 539
implemented in LEMON.
583 540

	
584 541
This group contains some general optimization frameworks
585 542
implemented in LEMON.
586 543
*/
587 544

	
588 545
/**
589 546
@defgroup lp_group LP and MIP Solvers
590 547
@ingroup gen_opt_group
591 548
\brief LP and MIP solver interfaces for LEMON.
592 549

	
593 550
This group contains LP and MIP solver interfaces for LEMON.
594 551
Various LP solvers could be used in the same manner with this
595 552
high-level interface.
596 553

	
597 554
The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
598 555
\ref cplex, \ref soplex.
599 556
*/
600 557

	
601 558
/**
602
@defgroup lp_utils Tools for Lp and Mip Solvers
603
@ingroup lp_group
604
\brief Helper tools to the Lp and Mip solvers.
605

	
606
This group adds some helper tools to general optimization framework
607
implemented in LEMON.
608
*/
609

	
610
/**
611
@defgroup metah Metaheuristics
612
@ingroup gen_opt_group
613
\brief Metaheuristics for LEMON library.
614

	
615
This group contains some metaheuristic optimization tools.
616
*/
617

	
618
/**
619 559
@defgroup utils Tools and Utilities
620 560
\brief Tools and utilities for programming in LEMON
621 561

	
622 562
Tools and utilities for programming in LEMON.
623 563
*/
624 564

	
625 565
/**
626 566
@defgroup gutils Basic Graph Utilities
627 567
@ingroup utils
628 568
\brief Simple basic graph utilities.
629 569

	
630 570
This group contains some simple basic graph utilities.
631 571
*/
632 572

	
633 573
/**
634 574
@defgroup misc Miscellaneous Tools
635 575
@ingroup utils
636 576
\brief Tools for development, debugging and testing.
637 577

	
638 578
This group contains several useful tools for development,
639 579
debugging and testing.
640 580
*/
641 581

	
642 582
/**
0 comments (0 inline)