| ... |
... |
@@ -536,133 +536,133 @@
|
| 536 |
536 |
/// are defined between expressions, or even between constraints whenever
|
| 537 |
537 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and
|
| 538 |
538 |
/// \c s and \c t are numbers, then the followings are valid expressions
|
| 539 |
539 |
/// and thus they can be used directly e.g. in \ref addRow() whenever
|
| 540 |
540 |
/// it makes sense.
|
| 541 |
541 |
///\code
|
| 542 |
542 |
/// e<=s
|
| 543 |
543 |
/// e<=f
|
| 544 |
544 |
/// e==f
|
| 545 |
545 |
/// s<=e<=t
|
| 546 |
546 |
/// e>=t
|
| 547 |
547 |
///\endcode
|
| 548 |
548 |
///\warning The validity of a constraint is checked only at run
|
| 549 |
549 |
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will
|
| 550 |
550 |
///compile, but will fail an assertion.
|
| 551 |
551 |
class Constr
|
| 552 |
552 |
{
|
| 553 |
553 |
public:
|
| 554 |
554 |
typedef LpBase::Expr Expr;
|
| 555 |
555 |
typedef Expr::Key Key;
|
| 556 |
556 |
typedef Expr::Value Value;
|
| 557 |
557 |
|
| 558 |
558 |
protected:
|
| 559 |
559 |
Expr _expr;
|
| 560 |
560 |
Value _lb,_ub;
|
| 561 |
561 |
public:
|
| 562 |
562 |
///\e
|
| 563 |
563 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {}
|
| 564 |
564 |
///\e
|
| 565 |
565 |
Constr(Value lb, const Expr &e, Value ub) :
|
| 566 |
566 |
_expr(e), _lb(lb), _ub(ub) {}
|
| 567 |
567 |
Constr(const Expr &e) :
|
| 568 |
568 |
_expr(e), _lb(NaN), _ub(NaN) {}
|
| 569 |
569 |
///\e
|
| 570 |
570 |
void clear()
|
| 571 |
571 |
{
|
| 572 |
572 |
_expr.clear();
|
| 573 |
573 |
_lb=_ub=NaN;
|
| 574 |
574 |
}
|
| 575 |
575 |
|
| 576 |
576 |
///Reference to the linear expression
|
| 577 |
577 |
Expr &expr() { return _expr; }
|
| 578 |
578 |
///Cont reference to the linear expression
|
| 579 |
579 |
const Expr &expr() const { return _expr; }
|
| 580 |
580 |
///Reference to the lower bound.
|
| 581 |
581 |
|
| 582 |
582 |
///\return
|
| 583 |
583 |
///- \ref INF "INF": the constraint is lower unbounded.
|
| 584 |
584 |
///- \ref NaN "NaN": lower bound has not been set.
|
| 585 |
585 |
///- finite number: the lower bound
|
| 586 |
586 |
Value &lowerBound() { return _lb; }
|
| 587 |
587 |
///The const version of \ref lowerBound()
|
| 588 |
588 |
const Value &lowerBound() const { return _lb; }
|
| 589 |
589 |
///Reference to the upper bound.
|
| 590 |
590 |
|
| 591 |
591 |
///\return
|
| 592 |
592 |
///- \ref INF "INF": the constraint is upper unbounded.
|
| 593 |
593 |
///- \ref NaN "NaN": upper bound has not been set.
|
| 594 |
594 |
///- finite number: the upper bound
|
| 595 |
595 |
Value &upperBound() { return _ub; }
|
| 596 |
596 |
///The const version of \ref upperBound()
|
| 597 |
597 |
const Value &upperBound() const { return _ub; }
|
| 598 |
598 |
///Is the constraint lower bounded?
|
| 599 |
599 |
bool lowerBounded() const {
|
| 600 |
|
return _lb != -INF && !std::isnan(_lb);
|
|
600 |
return _lb != -INF && !isnan(_lb);
|
| 601 |
601 |
}
|
| 602 |
602 |
///Is the constraint upper bounded?
|
| 603 |
603 |
bool upperBounded() const {
|
| 604 |
|
return _ub != INF && !std::isnan(_ub);
|
|
604 |
return _ub != INF && !isnan(_ub);
|
| 605 |
605 |
}
|
| 606 |
606 |
|
| 607 |
607 |
};
|
| 608 |
608 |
|
| 609 |
609 |
///Linear expression of rows
|
| 610 |
610 |
|
| 611 |
611 |
///This data structure represents a column of the matrix,
|
| 612 |
612 |
///thas is it strores a linear expression of the dual variables
|
| 613 |
613 |
///(\ref Row "Row"s).
|
| 614 |
614 |
///
|
| 615 |
615 |
///There are several ways to access and modify the contents of this
|
| 616 |
616 |
///container.
|
| 617 |
617 |
///\code
|
| 618 |
618 |
///e[v]=5;
|
| 619 |
619 |
///e[v]+=12;
|
| 620 |
620 |
///e.erase(v);
|
| 621 |
621 |
///\endcode
|
| 622 |
622 |
///or you can also iterate through its elements.
|
| 623 |
623 |
///\code
|
| 624 |
624 |
///double s=0;
|
| 625 |
625 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
|
| 626 |
626 |
/// s+=*i;
|
| 627 |
627 |
///\endcode
|
| 628 |
628 |
///(This code computes the sum of all coefficients).
|
| 629 |
629 |
///- Numbers (<tt>double</tt>'s)
|
| 630 |
630 |
///and variables (\ref Row "Row"s) directly convert to an
|
| 631 |
631 |
///\ref DualExpr and the usual linear operations are defined, so
|
| 632 |
632 |
///\code
|
| 633 |
633 |
///v+w
|
| 634 |
634 |
///2*v-3.12*(v-w/2)
|
| 635 |
635 |
///v*2.1+(3*v+(v*12+w)*3)/2
|
| 636 |
636 |
///\endcode
|
| 637 |
637 |
///are valid \ref DualExpr dual expressions.
|
| 638 |
638 |
///The usual assignment operations are also defined.
|
| 639 |
639 |
///\code
|
| 640 |
640 |
///e=v+w;
|
| 641 |
641 |
///e+=2*v-3.12*(v-w/2);
|
| 642 |
642 |
///e*=3.4;
|
| 643 |
643 |
///e/=5;
|
| 644 |
644 |
///\endcode
|
| 645 |
645 |
///
|
| 646 |
646 |
///\sa Expr
|
| 647 |
647 |
class DualExpr {
|
| 648 |
648 |
friend class LpBase;
|
| 649 |
649 |
public:
|
| 650 |
650 |
/// The key type of the expression
|
| 651 |
651 |
typedef LpBase::Row Key;
|
| 652 |
652 |
/// The value type of the expression
|
| 653 |
653 |
typedef LpBase::Value Value;
|
| 654 |
654 |
|
| 655 |
655 |
protected:
|
| 656 |
656 |
std::map<int, Value> comps;
|
| 657 |
657 |
|
| 658 |
658 |
public:
|
| 659 |
659 |
typedef True SolverExpr;
|
| 660 |
660 |
/// Default constructor
|
| 661 |
661 |
|
| 662 |
662 |
/// Construct an empty expression, the coefficients are
|
| 663 |
663 |
/// initialized to zero.
|
| 664 |
664 |
DualExpr() {}
|
| 665 |
665 |
/// Construct an expression from a row
|
| 666 |
666 |
|
| 667 |
667 |
/// Construct an expression, which has a term with \c r dual
|
| 668 |
668 |
/// variable and 1.0 coefficient.
|
| ... |
... |
@@ -1605,165 +1605,165 @@
|
| 1605 |
1605 |
|
| 1606 |
1606 |
///Create constraint
|
| 1607 |
1607 |
|
| 1608 |
1608 |
///\relates LpBase::Constr
|
| 1609 |
1609 |
///
|
| 1610 |
1610 |
inline LpBase::Constr operator<=(const LpBase::Expr &e,
|
| 1611 |
1611 |
const LpBase::Value &f) {
|
| 1612 |
1612 |
return LpBase::Constr(- LpBase::INF, e, f);
|
| 1613 |
1613 |
}
|
| 1614 |
1614 |
|
| 1615 |
1615 |
///Create constraint
|
| 1616 |
1616 |
|
| 1617 |
1617 |
///\relates LpBase::Constr
|
| 1618 |
1618 |
///
|
| 1619 |
1619 |
inline LpBase::Constr operator>=(const LpBase::Expr &e,
|
| 1620 |
1620 |
const LpBase::Expr &f) {
|
| 1621 |
1621 |
return LpBase::Constr(0, e - f, LpBase::INF);
|
| 1622 |
1622 |
}
|
| 1623 |
1623 |
|
| 1624 |
1624 |
|
| 1625 |
1625 |
///Create constraint
|
| 1626 |
1626 |
|
| 1627 |
1627 |
///\relates LpBase::Constr
|
| 1628 |
1628 |
///
|
| 1629 |
1629 |
inline LpBase::Constr operator>=(const LpBase::Value &e,
|
| 1630 |
1630 |
const LpBase::Expr &f) {
|
| 1631 |
1631 |
return LpBase::Constr(LpBase::NaN, f, e);
|
| 1632 |
1632 |
}
|
| 1633 |
1633 |
|
| 1634 |
1634 |
|
| 1635 |
1635 |
///Create constraint
|
| 1636 |
1636 |
|
| 1637 |
1637 |
///\relates LpBase::Constr
|
| 1638 |
1638 |
///
|
| 1639 |
1639 |
inline LpBase::Constr operator>=(const LpBase::Expr &e,
|
| 1640 |
1640 |
const LpBase::Value &f) {
|
| 1641 |
1641 |
return LpBase::Constr(f, e, LpBase::INF);
|
| 1642 |
1642 |
}
|
| 1643 |
1643 |
|
| 1644 |
1644 |
///Create constraint
|
| 1645 |
1645 |
|
| 1646 |
1646 |
///\relates LpBase::Constr
|
| 1647 |
1647 |
///
|
| 1648 |
1648 |
inline LpBase::Constr operator==(const LpBase::Expr &e,
|
| 1649 |
1649 |
const LpBase::Value &f) {
|
| 1650 |
1650 |
return LpBase::Constr(f, e, f);
|
| 1651 |
1651 |
}
|
| 1652 |
1652 |
|
| 1653 |
1653 |
///Create constraint
|
| 1654 |
1654 |
|
| 1655 |
1655 |
///\relates LpBase::Constr
|
| 1656 |
1656 |
///
|
| 1657 |
1657 |
inline LpBase::Constr operator==(const LpBase::Expr &e,
|
| 1658 |
1658 |
const LpBase::Expr &f) {
|
| 1659 |
1659 |
return LpBase::Constr(0, f - e, 0);
|
| 1660 |
1660 |
}
|
| 1661 |
1661 |
|
| 1662 |
1662 |
///Create constraint
|
| 1663 |
1663 |
|
| 1664 |
1664 |
///\relates LpBase::Constr
|
| 1665 |
1665 |
///
|
| 1666 |
1666 |
inline LpBase::Constr operator<=(const LpBase::Value &n,
|
| 1667 |
1667 |
const LpBase::Constr &c) {
|
| 1668 |
1668 |
LpBase::Constr tmp(c);
|
| 1669 |
|
LEMON_ASSERT(std::isnan(tmp.lowerBound()), "Wrong LP constraint");
|
|
1669 |
LEMON_ASSERT(isnan(tmp.lowerBound()), "Wrong LP constraint");
|
| 1670 |
1670 |
tmp.lowerBound()=n;
|
| 1671 |
1671 |
return tmp;
|
| 1672 |
1672 |
}
|
| 1673 |
1673 |
///Create constraint
|
| 1674 |
1674 |
|
| 1675 |
1675 |
///\relates LpBase::Constr
|
| 1676 |
1676 |
///
|
| 1677 |
1677 |
inline LpBase::Constr operator<=(const LpBase::Constr &c,
|
| 1678 |
1678 |
const LpBase::Value &n)
|
| 1679 |
1679 |
{
|
| 1680 |
1680 |
LpBase::Constr tmp(c);
|
| 1681 |
|
LEMON_ASSERT(std::isnan(tmp.upperBound()), "Wrong LP constraint");
|
|
1681 |
LEMON_ASSERT(isnan(tmp.upperBound()), "Wrong LP constraint");
|
| 1682 |
1682 |
tmp.upperBound()=n;
|
| 1683 |
1683 |
return tmp;
|
| 1684 |
1684 |
}
|
| 1685 |
1685 |
|
| 1686 |
1686 |
///Create constraint
|
| 1687 |
1687 |
|
| 1688 |
1688 |
///\relates LpBase::Constr
|
| 1689 |
1689 |
///
|
| 1690 |
1690 |
inline LpBase::Constr operator>=(const LpBase::Value &n,
|
| 1691 |
1691 |
const LpBase::Constr &c) {
|
| 1692 |
1692 |
LpBase::Constr tmp(c);
|
| 1693 |
|
LEMON_ASSERT(std::isnan(tmp.upperBound()), "Wrong LP constraint");
|
|
1693 |
LEMON_ASSERT(isnan(tmp.upperBound()), "Wrong LP constraint");
|
| 1694 |
1694 |
tmp.upperBound()=n;
|
| 1695 |
1695 |
return tmp;
|
| 1696 |
1696 |
}
|
| 1697 |
1697 |
///Create constraint
|
| 1698 |
1698 |
|
| 1699 |
1699 |
///\relates LpBase::Constr
|
| 1700 |
1700 |
///
|
| 1701 |
1701 |
inline LpBase::Constr operator>=(const LpBase::Constr &c,
|
| 1702 |
1702 |
const LpBase::Value &n)
|
| 1703 |
1703 |
{
|
| 1704 |
1704 |
LpBase::Constr tmp(c);
|
| 1705 |
|
LEMON_ASSERT(std::isnan(tmp.lowerBound()), "Wrong LP constraint");
|
|
1705 |
LEMON_ASSERT(isnan(tmp.lowerBound()), "Wrong LP constraint");
|
| 1706 |
1706 |
tmp.lowerBound()=n;
|
| 1707 |
1707 |
return tmp;
|
| 1708 |
1708 |
}
|
| 1709 |
1709 |
|
| 1710 |
1710 |
///Addition
|
| 1711 |
1711 |
|
| 1712 |
1712 |
///\relates LpBase::DualExpr
|
| 1713 |
1713 |
///
|
| 1714 |
1714 |
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a,
|
| 1715 |
1715 |
const LpBase::DualExpr &b) {
|
| 1716 |
1716 |
LpBase::DualExpr tmp(a);
|
| 1717 |
1717 |
tmp+=b;
|
| 1718 |
1718 |
return tmp;
|
| 1719 |
1719 |
}
|
| 1720 |
1720 |
///Substraction
|
| 1721 |
1721 |
|
| 1722 |
1722 |
///\relates LpBase::DualExpr
|
| 1723 |
1723 |
///
|
| 1724 |
1724 |
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a,
|
| 1725 |
1725 |
const LpBase::DualExpr &b) {
|
| 1726 |
1726 |
LpBase::DualExpr tmp(a);
|
| 1727 |
1727 |
tmp-=b;
|
| 1728 |
1728 |
return tmp;
|
| 1729 |
1729 |
}
|
| 1730 |
1730 |
///Multiply with constant
|
| 1731 |
1731 |
|
| 1732 |
1732 |
///\relates LpBase::DualExpr
|
| 1733 |
1733 |
///
|
| 1734 |
1734 |
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a,
|
| 1735 |
1735 |
const LpBase::Value &b) {
|
| 1736 |
1736 |
LpBase::DualExpr tmp(a);
|
| 1737 |
1737 |
tmp*=b;
|
| 1738 |
1738 |
return tmp;
|
| 1739 |
1739 |
}
|
| 1740 |
1740 |
|
| 1741 |
1741 |
///Multiply with constant
|
| 1742 |
1742 |
|
| 1743 |
1743 |
///\relates LpBase::DualExpr
|
| 1744 |
1744 |
///
|
| 1745 |
1745 |
inline LpBase::DualExpr operator*(const LpBase::Value &a,
|
| 1746 |
1746 |
const LpBase::DualExpr &b) {
|
| 1747 |
1747 |
LpBase::DualExpr tmp(b);
|
| 1748 |
1748 |
tmp*=a;
|
| 1749 |
1749 |
return tmp;
|
| 1750 |
1750 |
}
|
| 1751 |
1751 |
///Divide with constant
|
| 1752 |
1752 |
|
| 1753 |
1753 |
///\relates LpBase::DualExpr
|
| 1754 |
1754 |
///
|
| 1755 |
1755 |
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a,
|
| 1756 |
1756 |
const LpBase::Value &b) {
|
| 1757 |
1757 |
LpBase::DualExpr tmp(a);
|
| 1758 |
1758 |
tmp/=b;
|
| 1759 |
1759 |
return tmp;
|
| 1760 |
1760 |
}
|
| 1761 |
1761 |
|
| 1762 |
1762 |
/// \ingroup lp_group
|
| 1763 |
1763 |
///
|
| 1764 |
1764 |
/// \brief Common base class for LP solvers
|
| 1765 |
1765 |
///
|
| 1766 |
1766 |
/// This class is an abstract base class for LP solvers. This class
|
| 1767 |
1767 |
/// provides a full interface for set and modify an LP problem,
|
| 1768 |
1768 |
/// solve it and retrieve the solution. You can use one of the
|
| 1769 |
1769 |
/// descendants as a concrete implementation, or the \c Lp
|