0
8
2
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
|
20 |
#define LEMON_NETWORK_SIMPLEX_H |
|
21 |
|
|
22 |
/// \ingroup min_cost_flow |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <limits> |
|
29 |
#include <algorithm> |
|
30 |
|
|
31 |
#include <lemon/core.h> |
|
32 |
#include <lemon/math.h> |
|
33 |
#include <lemon/maps.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/adaptors.h> |
|
36 |
|
|
37 |
namespace lemon { |
|
38 |
|
|
39 |
/// \addtogroup min_cost_flow |
|
40 |
/// @{ |
|
41 |
|
|
42 |
/// \brief Implementation of the primal Network Simplex algorithm |
|
43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
44 |
/// |
|
45 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
|
46 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
47 |
/// This algorithm is a specialized version of the linear programming |
|
48 |
/// simplex method directly for the minimum cost flow problem. |
|
49 |
/// It is one of the most efficient solution methods. |
|
50 |
/// |
|
51 |
/// In general this class is the fastest implementation available |
|
52 |
/// in LEMON for the minimum cost flow problem. |
|
53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
54 |
/// constraints. For more information see \ref ProblemType. |
|
55 |
/// |
|
56 |
/// \tparam GR The digraph type the algorithm runs on. |
|
57 |
/// \tparam F The value type used for flow amounts, capacity bounds |
|
58 |
/// and supply values in the algorithm. By default it is \c int. |
|
59 |
/// \tparam C The value type used for costs and potentials in the |
|
60 |
/// algorithm. By default it is the same as \c F. |
|
61 |
/// |
|
62 |
/// \warning Both value types must be signed and all input data must |
|
63 |
/// be integer. |
|
64 |
/// |
|
65 |
/// \note %NetworkSimplex provides five different pivot rule |
|
66 |
/// implementations, from which the most efficient one is used |
|
67 |
/// by default. For more information see \ref PivotRule. |
|
68 |
template <typename GR, typename F = int, typename C = F> |
|
69 |
class NetworkSimplex |
|
70 |
{ |
|
71 |
public: |
|
72 |
|
|
73 |
/// The flow type of the algorithm |
|
74 |
typedef F Flow; |
|
75 |
/// The cost type of the algorithm |
|
76 |
typedef C Cost; |
|
77 |
#ifdef DOXYGEN |
|
78 |
/// The type of the flow map |
|
79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
80 |
/// The type of the potential map |
|
81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
82 |
#else |
|
83 |
/// The type of the flow map |
|
84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
|
85 |
/// The type of the potential map |
|
86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
|
87 |
#endif |
|
88 |
|
|
89 |
public: |
|
90 |
|
|
91 |
/// \brief Enum type for selecting the pivot rule. |
|
92 |
/// |
|
93 |
/// Enum type for selecting the pivot rule for the \ref run() |
|
94 |
/// function. |
|
95 |
/// |
|
96 |
/// \ref NetworkSimplex provides five different pivot rule |
|
97 |
/// implementations that significantly affect the running time |
|
98 |
/// of the algorithm. |
|
99 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
100 |
/// proved to be the most efficient and the most robust on various |
|
101 |
/// test inputs according to our benchmark tests. |
|
102 |
/// However another pivot rule can be selected using the \ref run() |
|
103 |
/// function with the proper parameter. |
|
104 |
enum PivotRule { |
|
105 |
|
|
106 |
/// The First Eligible pivot rule. |
|
107 |
/// The next eligible arc is selected in a wraparound fashion |
|
108 |
/// in every iteration. |
|
109 |
FIRST_ELIGIBLE, |
|
110 |
|
|
111 |
/// The Best Eligible pivot rule. |
|
112 |
/// The best eligible arc is selected in every iteration. |
|
113 |
BEST_ELIGIBLE, |
|
114 |
|
|
115 |
/// The Block Search pivot rule. |
|
116 |
/// A specified number of arcs are examined in every iteration |
|
117 |
/// in a wraparound fashion and the best eligible arc is selected |
|
118 |
/// from this block. |
|
119 |
BLOCK_SEARCH, |
|
120 |
|
|
121 |
/// The Candidate List pivot rule. |
|
122 |
/// In a major iteration a candidate list is built from eligible arcs |
|
123 |
/// in a wraparound fashion and in the following minor iterations |
|
124 |
/// the best eligible arc is selected from this list. |
|
125 |
CANDIDATE_LIST, |
|
126 |
|
|
127 |
/// The Altering Candidate List pivot rule. |
|
128 |
/// It is a modified version of the Candidate List method. |
|
129 |
/// It keeps only the several best eligible arcs from the former |
|
130 |
/// candidate list and extends this list in every iteration. |
|
131 |
ALTERING_LIST |
|
132 |
}; |
|
133 |
|
|
134 |
/// \brief Enum type for selecting the problem type. |
|
135 |
/// |
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
137 |
/// the inequalities in the supply/demand constraints of the |
|
138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
139 |
/// |
|
140 |
/// The default problem type is \c GEQ, since this form is supported |
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
142 |
/// algorithm as well. |
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
144 |
/// function. |
|
145 |
/// |
|
146 |
/// Note that the equality form is a special case of both problem type. |
|
147 |
enum ProblemType { |
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>" |
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
151 |
/// problem is the following. |
|
152 |
/** |
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
155 |
sup(u) \quad \forall u\in V \f] |
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
157 |
*/ |
|
158 |
/// It means that the total demand must be greater or equal to the |
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
160 |
/// negative) and all the supplies have to be carried out from |
|
161 |
/// the supply nodes, but there could be demands that are not |
|
162 |
/// satisfied. |
|
163 |
GEQ, |
|
164 |
/// It is just an alias for the \c GEQ option. |
|
165 |
CARRY_SUPPLIES = GEQ, |
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>" |
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
169 |
/// problem is the following. |
|
170 |
/** |
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
173 |
sup(u) \quad \forall u\in V \f] |
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
175 |
*/ |
|
176 |
/// It means that the total demand must be less or equal to the |
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
178 |
/// positive) and all the demands have to be satisfied, but there |
|
179 |
/// could be supplies that are not carried out from the supply |
|
180 |
/// nodes. |
|
181 |
LEQ, |
|
182 |
/// It is just an alias for the \c LEQ option. |
|
183 |
SATISFY_DEMANDS = LEQ |
|
184 |
}; |
|
185 |
|
|
186 |
private: |
|
187 |
|
|
188 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
189 |
|
|
190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
|
191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
|
192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
|
193 |
|
|
194 |
typedef std::vector<Arc> ArcVector; |
|
195 |
typedef std::vector<Node> NodeVector; |
|
196 |
typedef std::vector<int> IntVector; |
|
197 |
typedef std::vector<bool> BoolVector; |
|
198 |
typedef std::vector<Flow> FlowVector; |
|
199 |
typedef std::vector<Cost> CostVector; |
|
200 |
|
|
201 |
// State constants for arcs |
|
202 |
enum ArcStateEnum { |
|
203 |
STATE_UPPER = -1, |
|
204 |
STATE_TREE = 0, |
|
205 |
STATE_LOWER = 1 |
|
206 |
}; |
|
207 |
|
|
208 |
private: |
|
209 |
|
|
210 |
// Data related to the underlying digraph |
|
211 |
const GR &_graph; |
|
212 |
int _node_num; |
|
213 |
int _arc_num; |
|
214 |
|
|
215 |
// Parameters of the problem |
|
216 |
FlowArcMap *_plower; |
|
217 |
FlowArcMap *_pupper; |
|
218 |
CostArcMap *_pcost; |
|
219 |
FlowNodeMap *_psupply; |
|
220 |
bool _pstsup; |
|
221 |
Node _psource, _ptarget; |
|
222 |
Flow _pstflow; |
|
223 |
ProblemType _ptype; |
|
224 |
|
|
225 |
// Result maps |
|
226 |
FlowMap *_flow_map; |
|
227 |
PotentialMap *_potential_map; |
|
228 |
bool _local_flow; |
|
229 |
bool _local_potential; |
|
230 |
|
|
231 |
// Data structures for storing the digraph |
|
232 |
IntNodeMap _node_id; |
|
233 |
ArcVector _arc_ref; |
|
234 |
IntVector _source; |
|
235 |
IntVector _target; |
|
236 |
|
|
237 |
// Node and arc data |
|
238 |
FlowVector _cap; |
|
239 |
CostVector _cost; |
|
240 |
FlowVector _supply; |
|
241 |
FlowVector _flow; |
|
242 |
CostVector _pi; |
|
243 |
|
|
244 |
// Data for storing the spanning tree structure |
|
245 |
IntVector _parent; |
|
246 |
IntVector _pred; |
|
247 |
IntVector _thread; |
|
248 |
IntVector _rev_thread; |
|
249 |
IntVector _succ_num; |
|
250 |
IntVector _last_succ; |
|
251 |
IntVector _dirty_revs; |
|
252 |
BoolVector _forward; |
|
253 |
IntVector _state; |
|
254 |
int _root; |
|
255 |
|
|
256 |
// Temporary data used in the current pivot iteration |
|
257 |
int in_arc, join, u_in, v_in, u_out, v_out; |
|
258 |
int first, second, right, last; |
|
259 |
int stem, par_stem, new_stem; |
|
260 |
Flow delta; |
|
261 |
|
|
262 |
private: |
|
263 |
|
|
264 |
// Implementation of the First Eligible pivot rule |
|
265 |
class FirstEligiblePivotRule |
|
266 |
{ |
|
267 |
private: |
|
268 |
|
|
269 |
// References to the NetworkSimplex class |
|
270 |
const IntVector &_source; |
|
271 |
const IntVector &_target; |
|
272 |
const CostVector &_cost; |
|
273 |
const IntVector &_state; |
|
274 |
const CostVector &_pi; |
|
275 |
int &_in_arc; |
|
276 |
int _arc_num; |
|
277 |
|
|
278 |
// Pivot rule data |
|
279 |
int _next_arc; |
|
280 |
|
|
281 |
public: |
|
282 |
|
|
283 |
// Constructor |
|
284 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
|
285 |
_source(ns._source), _target(ns._target), |
|
286 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
287 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
288 |
{} |
|
289 |
|
|
290 |
// Find next entering arc |
|
291 |
bool findEnteringArc() { |
|
292 |
Cost c; |
|
293 |
for (int e = _next_arc; e < _arc_num; ++e) { |
|
294 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
295 |
if (c < 0) { |
|
296 |
_in_arc = e; |
|
297 |
_next_arc = e + 1; |
|
298 |
return true; |
|
299 |
} |
|
300 |
} |
|
301 |
for (int e = 0; e < _next_arc; ++e) { |
|
302 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
303 |
if (c < 0) { |
|
304 |
_in_arc = e; |
|
305 |
_next_arc = e + 1; |
|
306 |
return true; |
|
307 |
} |
|
308 |
} |
|
309 |
return false; |
|
310 |
} |
|
311 |
|
|
312 |
}; //class FirstEligiblePivotRule |
|
313 |
|
|
314 |
|
|
315 |
// Implementation of the Best Eligible pivot rule |
|
316 |
class BestEligiblePivotRule |
|
317 |
{ |
|
318 |
private: |
|
319 |
|
|
320 |
// References to the NetworkSimplex class |
|
321 |
const IntVector &_source; |
|
322 |
const IntVector &_target; |
|
323 |
const CostVector &_cost; |
|
324 |
const IntVector &_state; |
|
325 |
const CostVector &_pi; |
|
326 |
int &_in_arc; |
|
327 |
int _arc_num; |
|
328 |
|
|
329 |
public: |
|
330 |
|
|
331 |
// Constructor |
|
332 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
|
333 |
_source(ns._source), _target(ns._target), |
|
334 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
335 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
|
336 |
{} |
|
337 |
|
|
338 |
// Find next entering arc |
|
339 |
bool findEnteringArc() { |
|
340 |
Cost c, min = 0; |
|
341 |
for (int e = 0; e < _arc_num; ++e) { |
|
342 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
343 |
if (c < min) { |
|
344 |
min = c; |
|
345 |
_in_arc = e; |
|
346 |
} |
|
347 |
} |
|
348 |
return min < 0; |
|
349 |
} |
|
350 |
|
|
351 |
}; //class BestEligiblePivotRule |
|
352 |
|
|
353 |
|
|
354 |
// Implementation of the Block Search pivot rule |
|
355 |
class BlockSearchPivotRule |
|
356 |
{ |
|
357 |
private: |
|
358 |
|
|
359 |
// References to the NetworkSimplex class |
|
360 |
const IntVector &_source; |
|
361 |
const IntVector &_target; |
|
362 |
const CostVector &_cost; |
|
363 |
const IntVector &_state; |
|
364 |
const CostVector &_pi; |
|
365 |
int &_in_arc; |
|
366 |
int _arc_num; |
|
367 |
|
|
368 |
// Pivot rule data |
|
369 |
int _block_size; |
|
370 |
int _next_arc; |
|
371 |
|
|
372 |
public: |
|
373 |
|
|
374 |
// Constructor |
|
375 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
|
376 |
_source(ns._source), _target(ns._target), |
|
377 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
378 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
379 |
{ |
|
380 |
// The main parameters of the pivot rule |
|
381 |
const double BLOCK_SIZE_FACTOR = 2.0; |
|
382 |
const int MIN_BLOCK_SIZE = 10; |
|
383 |
|
|
384 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
|
385 |
MIN_BLOCK_SIZE ); |
|
386 |
} |
|
387 |
|
|
388 |
// Find next entering arc |
|
389 |
bool findEnteringArc() { |
|
390 |
Cost c, min = 0; |
|
391 |
int cnt = _block_size; |
|
392 |
int e, min_arc = _next_arc; |
|
393 |
for (e = _next_arc; e < _arc_num; ++e) { |
|
394 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
395 |
if (c < min) { |
|
396 |
min = c; |
|
397 |
min_arc = e; |
|
398 |
} |
|
399 |
if (--cnt == 0) { |
|
400 |
if (min < 0) break; |
|
401 |
cnt = _block_size; |
|
402 |
} |
|
403 |
} |
|
404 |
if (min == 0 || cnt > 0) { |
|
405 |
for (e = 0; e < _next_arc; ++e) { |
|
406 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
407 |
if (c < min) { |
|
408 |
min = c; |
|
409 |
min_arc = e; |
|
410 |
} |
|
411 |
if (--cnt == 0) { |
|
412 |
if (min < 0) break; |
|
413 |
cnt = _block_size; |
|
414 |
} |
|
415 |
} |
|
416 |
} |
|
417 |
if (min >= 0) return false; |
|
418 |
_in_arc = min_arc; |
|
419 |
_next_arc = e; |
|
420 |
return true; |
|
421 |
} |
|
422 |
|
|
423 |
}; //class BlockSearchPivotRule |
|
424 |
|
|
425 |
|
|
426 |
// Implementation of the Candidate List pivot rule |
|
427 |
class CandidateListPivotRule |
|
428 |
{ |
|
429 |
private: |
|
430 |
|
|
431 |
// References to the NetworkSimplex class |
|
432 |
const IntVector &_source; |
|
433 |
const IntVector &_target; |
|
434 |
const CostVector &_cost; |
|
435 |
const IntVector &_state; |
|
436 |
const CostVector &_pi; |
|
437 |
int &_in_arc; |
|
438 |
int _arc_num; |
|
439 |
|
|
440 |
// Pivot rule data |
|
441 |
IntVector _candidates; |
|
442 |
int _list_length, _minor_limit; |
|
443 |
int _curr_length, _minor_count; |
|
444 |
int _next_arc; |
|
445 |
|
|
446 |
public: |
|
447 |
|
|
448 |
/// Constructor |
|
449 |
CandidateListPivotRule(NetworkSimplex &ns) : |
|
450 |
_source(ns._source), _target(ns._target), |
|
451 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
452 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
453 |
{ |
|
454 |
// The main parameters of the pivot rule |
|
455 |
const double LIST_LENGTH_FACTOR = 1.0; |
|
456 |
const int MIN_LIST_LENGTH = 10; |
|
457 |
const double MINOR_LIMIT_FACTOR = 0.1; |
|
458 |
const int MIN_MINOR_LIMIT = 3; |
|
459 |
|
|
460 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)), |
|
461 |
MIN_LIST_LENGTH ); |
|
462 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
|
463 |
MIN_MINOR_LIMIT ); |
|
464 |
_curr_length = _minor_count = 0; |
|
465 |
_candidates.resize(_list_length); |
|
466 |
} |
|
467 |
|
|
468 |
/// Find next entering arc |
|
469 |
bool findEnteringArc() { |
|
470 |
Cost min, c; |
|
471 |
int e, min_arc = _next_arc; |
|
472 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
|
473 |
// Minor iteration: select the best eligible arc from the |
|
474 |
// current candidate list |
|
475 |
++_minor_count; |
|
476 |
min = 0; |
|
477 |
for (int i = 0; i < _curr_length; ++i) { |
|
478 |
e = _candidates[i]; |
|
479 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
480 |
if (c < min) { |
|
481 |
min = c; |
|
482 |
min_arc = e; |
|
483 |
} |
|
484 |
if (c >= 0) { |
|
485 |
_candidates[i--] = _candidates[--_curr_length]; |
|
486 |
} |
|
487 |
} |
|
488 |
if (min < 0) { |
|
489 |
_in_arc = min_arc; |
|
490 |
return true; |
|
491 |
} |
|
492 |
} |
|
493 |
|
|
494 |
// Major iteration: build a new candidate list |
|
495 |
min = 0; |
|
496 |
_curr_length = 0; |
|
497 |
for (e = _next_arc; e < _arc_num; ++e) { |
|
498 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
499 |
if (c < 0) { |
|
500 |
_candidates[_curr_length++] = e; |
|
501 |
if (c < min) { |
|
502 |
min = c; |
|
503 |
min_arc = e; |
|
504 |
} |
|
505 |
if (_curr_length == _list_length) break; |
|
506 |
} |
|
507 |
} |
|
508 |
if (_curr_length < _list_length) { |
|
509 |
for (e = 0; e < _next_arc; ++e) { |
|
510 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
511 |
if (c < 0) { |
|
512 |
_candidates[_curr_length++] = e; |
|
513 |
if (c < min) { |
|
514 |
min = c; |
|
515 |
min_arc = e; |
|
516 |
} |
|
517 |
if (_curr_length == _list_length) break; |
|
518 |
} |
|
519 |
} |
|
520 |
} |
|
521 |
if (_curr_length == 0) return false; |
|
522 |
_minor_count = 1; |
|
523 |
_in_arc = min_arc; |
|
524 |
_next_arc = e; |
|
525 |
return true; |
|
526 |
} |
|
527 |
|
|
528 |
}; //class CandidateListPivotRule |
|
529 |
|
|
530 |
|
|
531 |
// Implementation of the Altering Candidate List pivot rule |
|
532 |
class AlteringListPivotRule |
|
533 |
{ |
|
534 |
private: |
|
535 |
|
|
536 |
// References to the NetworkSimplex class |
|
537 |
const IntVector &_source; |
|
538 |
const IntVector &_target; |
|
539 |
const CostVector &_cost; |
|
540 |
const IntVector &_state; |
|
541 |
const CostVector &_pi; |
|
542 |
int &_in_arc; |
|
543 |
int _arc_num; |
|
544 |
|
|
545 |
// Pivot rule data |
|
546 |
int _block_size, _head_length, _curr_length; |
|
547 |
int _next_arc; |
|
548 |
IntVector _candidates; |
|
549 |
CostVector _cand_cost; |
|
550 |
|
|
551 |
// Functor class to compare arcs during sort of the candidate list |
|
552 |
class SortFunc |
|
553 |
{ |
|
554 |
private: |
|
555 |
const CostVector &_map; |
|
556 |
public: |
|
557 |
SortFunc(const CostVector &map) : _map(map) {} |
|
558 |
bool operator()(int left, int right) { |
|
559 |
return _map[left] > _map[right]; |
|
560 |
} |
|
561 |
}; |
|
562 |
|
|
563 |
SortFunc _sort_func; |
|
564 |
|
|
565 |
public: |
|
566 |
|
|
567 |
// Constructor |
|
568 |
AlteringListPivotRule(NetworkSimplex &ns) : |
|
569 |
_source(ns._source), _target(ns._target), |
|
570 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
571 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
|
572 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
|
573 |
{ |
|
574 |
// The main parameters of the pivot rule |
|
575 |
const double BLOCK_SIZE_FACTOR = 1.5; |
|
576 |
const int MIN_BLOCK_SIZE = 10; |
|
577 |
const double HEAD_LENGTH_FACTOR = 0.1; |
|
578 |
const int MIN_HEAD_LENGTH = 3; |
|
579 |
|
|
580 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
|
581 |
MIN_BLOCK_SIZE ); |
|
582 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
|
583 |
MIN_HEAD_LENGTH ); |
|
584 |
_candidates.resize(_head_length + _block_size); |
|
585 |
_curr_length = 0; |
|
586 |
} |
|
587 |
|
|
588 |
// Find next entering arc |
|
589 |
bool findEnteringArc() { |
|
590 |
// Check the current candidate list |
|
591 |
int e; |
|
592 |
for (int i = 0; i < _curr_length; ++i) { |
|
593 |
e = _candidates[i]; |
|
594 |
_cand_cost[e] = _state[e] * |
|
595 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
596 |
if (_cand_cost[e] >= 0) { |
|
597 |
_candidates[i--] = _candidates[--_curr_length]; |
|
598 |
} |
|
599 |
} |
|
600 |
|
|
601 |
// Extend the list |
|
602 |
int cnt = _block_size; |
|
603 |
int last_arc = 0; |
|
604 |
int limit = _head_length; |
|
605 |
|
|
606 |
for (int e = _next_arc; e < _arc_num; ++e) { |
|
607 |
_cand_cost[e] = _state[e] * |
|
608 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
609 |
if (_cand_cost[e] < 0) { |
|
610 |
_candidates[_curr_length++] = e; |
|
611 |
last_arc = e; |
|
612 |
} |
|
613 |
if (--cnt == 0) { |
|
614 |
if (_curr_length > limit) break; |
|
615 |
limit = 0; |
|
616 |
cnt = _block_size; |
|
617 |
} |
|
618 |
} |
|
619 |
if (_curr_length <= limit) { |
|
620 |
for (int e = 0; e < _next_arc; ++e) { |
|
621 |
_cand_cost[e] = _state[e] * |
|
622 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
623 |
if (_cand_cost[e] < 0) { |
|
624 |
_candidates[_curr_length++] = e; |
|
625 |
last_arc = e; |
|
626 |
} |
|
627 |
if (--cnt == 0) { |
|
628 |
if (_curr_length > limit) break; |
|
629 |
limit = 0; |
|
630 |
cnt = _block_size; |
|
631 |
} |
|
632 |
} |
|
633 |
} |
|
634 |
if (_curr_length == 0) return false; |
|
635 |
_next_arc = last_arc + 1; |
|
636 |
|
|
637 |
// Make heap of the candidate list (approximating a partial sort) |
|
638 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
639 |
_sort_func ); |
|
640 |
|
|
641 |
// Pop the first element of the heap |
|
642 |
_in_arc = _candidates[0]; |
|
643 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
644 |
_sort_func ); |
|
645 |
_curr_length = std::min(_head_length, _curr_length - 1); |
|
646 |
return true; |
|
647 |
} |
|
648 |
|
|
649 |
}; //class AlteringListPivotRule |
|
650 |
|
|
651 |
public: |
|
652 |
|
|
653 |
/// \brief Constructor. |
|
654 |
/// |
|
655 |
/// The constructor of the class. |
|
656 |
/// |
|
657 |
/// \param graph The digraph the algorithm runs on. |
|
658 |
NetworkSimplex(const GR& graph) : |
|
659 |
_graph(graph), |
|
660 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
661 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
662 |
_flow_map(NULL), _potential_map(NULL), |
|
663 |
_local_flow(false), _local_potential(false), |
|
664 |
_node_id(graph) |
|
665 |
{ |
|
666 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
667 |
std::numeric_limits<Flow>::is_signed, |
|
668 |
"The flow type of NetworkSimplex must be signed integer"); |
|
669 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
670 |
std::numeric_limits<Cost>::is_signed, |
|
671 |
"The cost type of NetworkSimplex must be signed integer"); |
|
672 |
} |
|
673 |
|
|
674 |
/// Destructor. |
|
675 |
~NetworkSimplex() { |
|
676 |
if (_local_flow) delete _flow_map; |
|
677 |
if (_local_potential) delete _potential_map; |
|
678 |
} |
|
679 |
|
|
680 |
/// \name Parameters |
|
681 |
/// The parameters of the algorithm can be specified using these |
|
682 |
/// functions. |
|
683 |
|
|
684 |
/// @{ |
|
685 |
|
|
686 |
/// \brief Set the lower bounds on the arcs. |
|
687 |
/// |
|
688 |
/// This function sets the lower bounds on the arcs. |
|
689 |
/// If neither this function nor \ref boundMaps() is used before |
|
690 |
/// calling \ref run(), the lower bounds will be set to zero |
|
691 |
/// on all arcs. |
|
692 |
/// |
|
693 |
/// \param map An arc map storing the lower bounds. |
|
694 |
/// Its \c Value type must be convertible to the \c Flow type |
|
695 |
/// of the algorithm. |
|
696 |
/// |
|
697 |
/// \return <tt>(*this)</tt> |
|
698 |
template <typename LOWER> |
|
699 |
NetworkSimplex& lowerMap(const LOWER& map) { |
|
700 |
delete _plower; |
|
701 |
_plower = new FlowArcMap(_graph); |
|
702 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
703 |
(*_plower)[a] = map[a]; |
|
704 |
} |
|
705 |
return *this; |
|
706 |
} |
|
707 |
|
|
708 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
709 |
/// |
|
710 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
711 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
712 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
713 |
/// the upper bounds (capacities) will be set to |
|
714 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
715 |
/// |
|
716 |
/// \param map An arc map storing the upper bounds. |
|
717 |
/// Its \c Value type must be convertible to the \c Flow type |
|
718 |
/// of the algorithm. |
|
719 |
/// |
|
720 |
/// \return <tt>(*this)</tt> |
|
721 |
template<typename UPPER> |
|
722 |
NetworkSimplex& upperMap(const UPPER& map) { |
|
723 |
delete _pupper; |
|
724 |
_pupper = new FlowArcMap(_graph); |
|
725 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
726 |
(*_pupper)[a] = map[a]; |
|
727 |
} |
|
728 |
return *this; |
|
729 |
} |
|
730 |
|
|
731 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
732 |
/// |
|
733 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
734 |
/// It is just an alias for \ref upperMap(). |
|
735 |
/// |
|
736 |
/// \return <tt>(*this)</tt> |
|
737 |
template<typename CAP> |
|
738 |
NetworkSimplex& capacityMap(const CAP& map) { |
|
739 |
return upperMap(map); |
|
740 |
} |
|
741 |
|
|
742 |
/// \brief Set the lower and upper bounds on the arcs. |
|
743 |
/// |
|
744 |
/// This function sets the lower and upper bounds on the arcs. |
|
745 |
/// If neither this function nor \ref lowerMap() is used before |
|
746 |
/// calling \ref run(), the lower bounds will be set to zero |
|
747 |
/// on all arcs. |
|
748 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
749 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
750 |
/// the upper bounds (capacities) will be set to |
|
751 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
752 |
/// |
|
753 |
/// \param lower An arc map storing the lower bounds. |
|
754 |
/// \param upper An arc map storing the upper bounds. |
|
755 |
/// |
|
756 |
/// The \c Value type of the maps must be convertible to the |
|
757 |
/// \c Flow type of the algorithm. |
|
758 |
/// |
|
759 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
760 |
/// and \ref upperMap() separately. |
|
761 |
/// |
|
762 |
/// \return <tt>(*this)</tt> |
|
763 |
template <typename LOWER, typename UPPER> |
|
764 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
|
765 |
return lowerMap(lower).upperMap(upper); |
|
766 |
} |
|
767 |
|
|
768 |
/// \brief Set the costs of the arcs. |
|
769 |
/// |
|
770 |
/// This function sets the costs of the arcs. |
|
771 |
/// If it is not used before calling \ref run(), the costs |
|
772 |
/// will be set to \c 1 on all arcs. |
|
773 |
/// |
|
774 |
/// \param map An arc map storing the costs. |
|
775 |
/// Its \c Value type must be convertible to the \c Cost type |
|
776 |
/// of the algorithm. |
|
777 |
/// |
|
778 |
/// \return <tt>(*this)</tt> |
|
779 |
template<typename COST> |
|
780 |
NetworkSimplex& costMap(const COST& map) { |
|
781 |
delete _pcost; |
|
782 |
_pcost = new CostArcMap(_graph); |
|
783 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
784 |
(*_pcost)[a] = map[a]; |
|
785 |
} |
|
786 |
return *this; |
|
787 |
} |
|
788 |
|
|
789 |
/// \brief Set the supply values of the nodes. |
|
790 |
/// |
|
791 |
/// This function sets the supply values of the nodes. |
|
792 |
/// If neither this function nor \ref stSupply() is used before |
|
793 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
794 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
795 |
/// |
|
796 |
/// \param map A node map storing the supply values. |
|
797 |
/// Its \c Value type must be convertible to the \c Flow type |
|
798 |
/// of the algorithm. |
|
799 |
/// |
|
800 |
/// \return <tt>(*this)</tt> |
|
801 |
template<typename SUP> |
|
802 |
NetworkSimplex& supplyMap(const SUP& map) { |
|
803 |
delete _psupply; |
|
804 |
_pstsup = false; |
|
805 |
_psupply = new FlowNodeMap(_graph); |
|
806 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
807 |
(*_psupply)[n] = map[n]; |
|
808 |
} |
|
809 |
return *this; |
|
810 |
} |
|
811 |
|
|
812 |
/// \brief Set single source and target nodes and a supply value. |
|
813 |
/// |
|
814 |
/// This function sets a single source node and a single target node |
|
815 |
/// and the required flow value. |
|
816 |
/// If neither this function nor \ref supplyMap() is used before |
|
817 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
818 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
819 |
/// |
|
820 |
/// \param s The source node. |
|
821 |
/// \param t The target node. |
|
822 |
/// \param k The required amount of flow from node \c s to node \c t |
|
823 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
824 |
/// |
|
825 |
/// \return <tt>(*this)</tt> |
|
826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) { |
|
827 |
delete _psupply; |
|
828 |
_psupply = NULL; |
|
829 |
_pstsup = true; |
|
830 |
_psource = s; |
|
831 |
_ptarget = t; |
|
832 |
_pstflow = k; |
|
833 |
return *this; |
|
834 |
} |
|
835 |
|
|
836 |
/// \brief Set the problem type. |
|
837 |
/// |
|
838 |
/// This function sets the problem type for the algorithm. |
|
839 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
840 |
/// type will be used. |
|
841 |
/// |
|
842 |
/// For more information see \ref ProblemType. |
|
843 |
/// |
|
844 |
/// \return <tt>(*this)</tt> |
|
845 |
NetworkSimplex& problemType(ProblemType problem_type) { |
|
846 |
_ptype = problem_type; |
|
847 |
return *this; |
|
848 |
} |
|
849 |
|
|
850 |
/// \brief Set the flow map. |
|
851 |
/// |
|
852 |
/// This function sets the flow map. |
|
853 |
/// If it is not used before calling \ref run(), an instance will |
|
854 |
/// be allocated automatically. The destructor deallocates this |
|
855 |
/// automatically allocated map, of course. |
|
856 |
/// |
|
857 |
/// \return <tt>(*this)</tt> |
|
858 |
NetworkSimplex& flowMap(FlowMap& map) { |
|
859 |
if (_local_flow) { |
|
860 |
delete _flow_map; |
|
861 |
_local_flow = false; |
|
862 |
} |
|
863 |
_flow_map = ↦ |
|
864 |
return *this; |
|
865 |
} |
|
866 |
|
|
867 |
/// \brief Set the potential map. |
|
868 |
/// |
|
869 |
/// This function sets the potential map, which is used for storing |
|
870 |
/// the dual solution. |
|
871 |
/// If it is not used before calling \ref run(), an instance will |
|
872 |
/// be allocated automatically. The destructor deallocates this |
|
873 |
/// automatically allocated map, of course. |
|
874 |
/// |
|
875 |
/// \return <tt>(*this)</tt> |
|
876 |
NetworkSimplex& potentialMap(PotentialMap& map) { |
|
877 |
if (_local_potential) { |
|
878 |
delete _potential_map; |
|
879 |
_local_potential = false; |
|
880 |
} |
|
881 |
_potential_map = ↦ |
|
882 |
return *this; |
|
883 |
} |
|
884 |
|
|
885 |
/// @} |
|
886 |
|
|
887 |
/// \name Execution Control |
|
888 |
/// The algorithm can be executed using \ref run(). |
|
889 |
|
|
890 |
/// @{ |
|
891 |
|
|
892 |
/// \brief Run the algorithm. |
|
893 |
/// |
|
894 |
/// This function runs the algorithm. |
|
895 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
896 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
897 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
898 |
/// \ref problemType(), \ref flowMap() and \ref potentialMap(). |
|
899 |
/// For example, |
|
900 |
/// \code |
|
901 |
/// NetworkSimplex<ListDigraph> ns(graph); |
|
902 |
/// ns.boundMaps(lower, upper).costMap(cost) |
|
903 |
/// .supplyMap(sup).run(); |
|
904 |
/// \endcode |
|
905 |
/// |
|
906 |
/// This function can be called more than once. All the parameters |
|
907 |
/// that have been given are kept for the next call, unless |
|
908 |
/// \ref reset() is called, thus only the modified parameters |
|
909 |
/// have to be set again. See \ref reset() for examples. |
|
910 |
/// |
|
911 |
/// \param pivot_rule The pivot rule that will be used during the |
|
912 |
/// algorithm. For more information see \ref PivotRule. |
|
913 |
/// |
|
914 |
/// \return \c true if a feasible flow can be found. |
|
915 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
916 |
return init() && start(pivot_rule); |
|
917 |
} |
|
918 |
|
|
919 |
/// \brief Reset all the parameters that have been given before. |
|
920 |
/// |
|
921 |
/// This function resets all the paramaters that have been given |
|
922 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
923 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
924 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
925 |
/// \ref flowMap() and \ref potentialMap(). |
|
926 |
/// |
|
927 |
/// It is useful for multiple run() calls. If this function is not |
|
928 |
/// used, all the parameters given before are kept for the next |
|
929 |
/// \ref run() call. |
|
930 |
/// |
|
931 |
/// For example, |
|
932 |
/// \code |
|
933 |
/// NetworkSimplex<ListDigraph> ns(graph); |
|
934 |
/// |
|
935 |
/// // First run |
|
936 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost) |
|
937 |
/// .supplyMap(sup).run(); |
|
938 |
/// |
|
939 |
/// // Run again with modified cost map (reset() is not called, |
|
940 |
/// // so only the cost map have to be set again) |
|
941 |
/// cost[e] += 100; |
|
942 |
/// ns.costMap(cost).run(); |
|
943 |
/// |
|
944 |
/// // Run again from scratch using reset() |
|
945 |
/// // (the lower bounds will be set to zero on all arcs) |
|
946 |
/// ns.reset(); |
|
947 |
/// ns.capacityMap(cap).costMap(cost) |
|
948 |
/// .supplyMap(sup).run(); |
|
949 |
/// \endcode |
|
950 |
/// |
|
951 |
/// \return <tt>(*this)</tt> |
|
952 |
NetworkSimplex& reset() { |
|
953 |
delete _plower; |
|
954 |
delete _pupper; |
|
955 |
delete _pcost; |
|
956 |
delete _psupply; |
|
957 |
_plower = NULL; |
|
958 |
_pupper = NULL; |
|
959 |
_pcost = NULL; |
|
960 |
_psupply = NULL; |
|
961 |
_pstsup = false; |
|
962 |
_ptype = GEQ; |
|
963 |
if (_local_flow) delete _flow_map; |
|
964 |
if (_local_potential) delete _potential_map; |
|
965 |
_flow_map = NULL; |
|
966 |
_potential_map = NULL; |
|
967 |
_local_flow = false; |
|
968 |
_local_potential = false; |
|
969 |
|
|
970 |
return *this; |
|
971 |
} |
|
972 |
|
|
973 |
/// @} |
|
974 |
|
|
975 |
/// \name Query Functions |
|
976 |
/// The results of the algorithm can be obtained using these |
|
977 |
/// functions.\n |
|
978 |
/// The \ref run() function must be called before using them. |
|
979 |
|
|
980 |
/// @{ |
|
981 |
|
|
982 |
/// \brief Return the total cost of the found flow. |
|
983 |
/// |
|
984 |
/// This function returns the total cost of the found flow. |
|
985 |
/// The complexity of the function is O(e). |
|
986 |
/// |
|
987 |
/// \note The return type of the function can be specified as a |
|
988 |
/// template parameter. For example, |
|
989 |
/// \code |
|
990 |
/// ns.totalCost<double>(); |
|
991 |
/// \endcode |
|
992 |
/// It is useful if the total cost cannot be stored in the \c Cost |
|
993 |
/// type of the algorithm, which is the default return type of the |
|
994 |
/// function. |
|
995 |
/// |
|
996 |
/// \pre \ref run() must be called before using this function. |
|
997 |
template <typename Num> |
|
998 |
Num totalCost() const { |
|
999 |
Num c = 0; |
|
1000 |
if (_pcost) { |
|
1001 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
1002 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
1003 |
} else { |
|
1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
1005 |
c += (*_flow_map)[e]; |
|
1006 |
} |
|
1007 |
return c; |
|
1008 |
} |
|
1009 |
|
|
1010 |
#ifndef DOXYGEN |
|
1011 |
Cost totalCost() const { |
|
1012 |
return totalCost<Cost>(); |
|
1013 |
} |
|
1014 |
#endif |
|
1015 |
|
|
1016 |
/// \brief Return the flow on the given arc. |
|
1017 |
/// |
|
1018 |
/// This function returns the flow on the given arc. |
|
1019 |
/// |
|
1020 |
/// \pre \ref run() must be called before using this function. |
|
1021 |
Flow flow(const Arc& a) const { |
|
1022 |
return (*_flow_map)[a]; |
|
1023 |
} |
|
1024 |
|
|
1025 |
/// \brief Return a const reference to the flow map. |
|
1026 |
/// |
|
1027 |
/// This function returns a const reference to an arc map storing |
|
1028 |
/// the found flow. |
|
1029 |
/// |
|
1030 |
/// \pre \ref run() must be called before using this function. |
|
1031 |
const FlowMap& flowMap() const { |
|
1032 |
return *_flow_map; |
|
1033 |
} |
|
1034 |
|
|
1035 |
/// \brief Return the potential (dual value) of the given node. |
|
1036 |
/// |
|
1037 |
/// This function returns the potential (dual value) of the |
|
1038 |
/// given node. |
|
1039 |
/// |
|
1040 |
/// \pre \ref run() must be called before using this function. |
|
1041 |
Cost potential(const Node& n) const { |
|
1042 |
return (*_potential_map)[n]; |
|
1043 |
} |
|
1044 |
|
|
1045 |
/// \brief Return a const reference to the potential map |
|
1046 |
/// (the dual solution). |
|
1047 |
/// |
|
1048 |
/// This function returns a const reference to a node map storing |
|
1049 |
/// the found potentials, which form the dual solution of the |
|
1050 |
/// \ref min_cost_flow "minimum cost flow" problem. |
|
1051 |
/// |
|
1052 |
/// \pre \ref run() must be called before using this function. |
|
1053 |
const PotentialMap& potentialMap() const { |
|
1054 |
return *_potential_map; |
|
1055 |
} |
|
1056 |
|
|
1057 |
/// @} |
|
1058 |
|
|
1059 |
private: |
|
1060 |
|
|
1061 |
// Initialize internal data structures |
|
1062 |
bool init() { |
|
1063 |
// Initialize result maps |
|
1064 |
if (!_flow_map) { |
|
1065 |
_flow_map = new FlowMap(_graph); |
|
1066 |
_local_flow = true; |
|
1067 |
} |
|
1068 |
if (!_potential_map) { |
|
1069 |
_potential_map = new PotentialMap(_graph); |
|
1070 |
_local_potential = true; |
|
1071 |
} |
|
1072 |
|
|
1073 |
// Initialize vectors |
|
1074 |
_node_num = countNodes(_graph); |
|
1075 |
_arc_num = countArcs(_graph); |
|
1076 |
int all_node_num = _node_num + 1; |
|
1077 |
int all_arc_num = _arc_num + _node_num; |
|
1078 |
if (_node_num == 0) return false; |
|
1079 |
|
|
1080 |
_arc_ref.resize(_arc_num); |
|
1081 |
_source.resize(all_arc_num); |
|
1082 |
_target.resize(all_arc_num); |
|
1083 |
|
|
1084 |
_cap.resize(all_arc_num); |
|
1085 |
_cost.resize(all_arc_num); |
|
1086 |
_supply.resize(all_node_num); |
|
1087 |
_flow.resize(all_arc_num); |
|
1088 |
_pi.resize(all_node_num); |
|
1089 |
|
|
1090 |
_parent.resize(all_node_num); |
|
1091 |
_pred.resize(all_node_num); |
|
1092 |
_forward.resize(all_node_num); |
|
1093 |
_thread.resize(all_node_num); |
|
1094 |
_rev_thread.resize(all_node_num); |
|
1095 |
_succ_num.resize(all_node_num); |
|
1096 |
_last_succ.resize(all_node_num); |
|
1097 |
_state.resize(all_arc_num); |
|
1098 |
|
|
1099 |
// Initialize node related data |
|
1100 |
bool valid_supply = true; |
|
1101 |
Flow sum_supply = 0; |
|
1102 |
if (!_pstsup && !_psupply) { |
|
1103 |
_pstsup = true; |
|
1104 |
_psource = _ptarget = NodeIt(_graph); |
|
1105 |
_pstflow = 0; |
|
1106 |
} |
|
1107 |
if (_psupply) { |
|
1108 |
int i = 0; |
|
1109 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
1110 |
_node_id[n] = i; |
|
1111 |
_supply[i] = (*_psupply)[n]; |
|
1112 |
sum_supply += _supply[i]; |
|
1113 |
} |
|
1114 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
1115 |
(_ptype == LEQ && sum_supply >= 0); |
|
1116 |
} else { |
|
1117 |
int i = 0; |
|
1118 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
1119 |
_node_id[n] = i; |
|
1120 |
_supply[i] = 0; |
|
1121 |
} |
|
1122 |
_supply[_node_id[_psource]] = _pstflow; |
|
1123 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
1124 |
} |
|
1125 |
if (!valid_supply) return false; |
|
1126 |
|
|
1127 |
// Infinite capacity value |
|
1128 |
Flow inf_cap = |
|
1129 |
std::numeric_limits<Flow>::has_infinity ? |
|
1130 |
std::numeric_limits<Flow>::infinity() : |
|
1131 |
std::numeric_limits<Flow>::max(); |
|
1132 |
|
|
1133 |
// Initialize artifical cost |
|
1134 |
Cost art_cost; |
|
1135 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1136 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1137 |
} else { |
|
1138 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1139 |
for (int i = 0; i != _arc_num; ++i) { |
|
1140 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1141 |
} |
|
1142 |
art_cost = (art_cost + 1) * _node_num; |
|
1143 |
} |
|
1144 |
|
|
1145 |
// Run Circulation to check if a feasible solution exists |
|
1146 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
1147 |
FlowNodeMap *csup = NULL; |
|
1148 |
bool local_csup = false; |
|
1149 |
if (_psupply) { |
|
1150 |
csup = _psupply; |
|
1151 |
} else { |
|
1152 |
csup = new FlowNodeMap(_graph, 0); |
|
1153 |
(*csup)[_psource] = _pstflow; |
|
1154 |
(*csup)[_ptarget] = -_pstflow; |
|
1155 |
local_csup = true; |
|
1156 |
} |
|
1157 |
bool circ_result = false; |
|
1158 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
|
1159 |
// GEQ problem type |
|
1160 |
if (_plower) { |
|
1161 |
if (_pupper) { |
|
1162 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
1163 |
circ(_graph, *_plower, *_pupper, *csup); |
|
1164 |
circ_result = circ.run(); |
|
1165 |
} else { |
|
1166 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
1167 |
circ(_graph, *_plower, ConstArcMap(inf_cap), *csup); |
|
1168 |
circ_result = circ.run(); |
|
1169 |
} |
|
1170 |
} else { |
|
1171 |
if (_pupper) { |
|
1172 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
1173 |
circ(_graph, ConstArcMap(0), *_pupper, *csup); |
|
1174 |
circ_result = circ.run(); |
|
1175 |
} else { |
|
1176 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
1177 |
circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup); |
|
1178 |
circ_result = circ.run(); |
|
1179 |
} |
|
1180 |
} |
|
1181 |
} else { |
|
1182 |
// LEQ problem type |
|
1183 |
typedef ReverseDigraph<const GR> RevGraph; |
|
1184 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
1185 |
RevGraph rgraph(_graph); |
|
1186 |
NegNodeMap neg_csup(*csup); |
|
1187 |
if (_plower) { |
|
1188 |
if (_pupper) { |
|
1189 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
1190 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
1191 |
circ_result = circ.run(); |
|
1192 |
} else { |
|
1193 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
1194 |
circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup); |
|
1195 |
circ_result = circ.run(); |
|
1196 |
} |
|
1197 |
} else { |
|
1198 |
if (_pupper) { |
|
1199 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
1200 |
circ(rgraph, ConstArcMap(0), *_pupper, neg_csup); |
|
1201 |
circ_result = circ.run(); |
|
1202 |
} else { |
|
1203 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
1204 |
circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup); |
|
1205 |
circ_result = circ.run(); |
|
1206 |
} |
|
1207 |
} |
|
1208 |
} |
|
1209 |
if (local_csup) delete csup; |
|
1210 |
if (!circ_result) return false; |
|
1211 |
|
|
1212 |
// Set data for the artificial root node |
|
1213 |
_root = _node_num; |
|
1214 |
_parent[_root] = -1; |
|
1215 |
_pred[_root] = -1; |
|
1216 |
_thread[_root] = 0; |
|
1217 |
_rev_thread[0] = _root; |
|
1218 |
_succ_num[_root] = all_node_num; |
|
1219 |
_last_succ[_root] = _root - 1; |
|
1220 |
_supply[_root] = -sum_supply; |
|
1221 |
if (sum_supply < 0) { |
|
1222 |
_pi[_root] = -art_cost; |
|
1223 |
} else { |
|
1224 |
_pi[_root] = art_cost; |
|
1225 |
} |
|
1226 |
|
|
1227 |
// Store the arcs in a mixed order |
|
1228 |
int k = std::max(int(sqrt(_arc_num)), 10); |
|
1229 |
int i = 0; |
|
1230 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1231 |
_arc_ref[i] = e; |
|
1232 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
1233 |
} |
|
1234 |
|
|
1235 |
// Initialize arc maps |
|
1236 |
if (_pupper && _pcost) { |
|
1237 |
for (int i = 0; i != _arc_num; ++i) { |
|
1238 |
Arc e = _arc_ref[i]; |
|
1239 |
_source[i] = _node_id[_graph.source(e)]; |
|
1240 |
_target[i] = _node_id[_graph.target(e)]; |
|
1241 |
_cap[i] = (*_pupper)[e]; |
|
1242 |
_cost[i] = (*_pcost)[e]; |
|
1243 |
_flow[i] = 0; |
|
1244 |
_state[i] = STATE_LOWER; |
|
1245 |
} |
|
1246 |
} else { |
|
1247 |
for (int i = 0; i != _arc_num; ++i) { |
|
1248 |
Arc e = _arc_ref[i]; |
|
1249 |
_source[i] = _node_id[_graph.source(e)]; |
|
1250 |
_target[i] = _node_id[_graph.target(e)]; |
|
1251 |
_flow[i] = 0; |
|
1252 |
_state[i] = STATE_LOWER; |
|
1253 |
} |
|
1254 |
if (_pupper) { |
|
1255 |
for (int i = 0; i != _arc_num; ++i) |
|
1256 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
1257 |
} else { |
|
1258 |
for (int i = 0; i != _arc_num; ++i) |
|
1259 |
_cap[i] = inf_cap; |
|
1260 |
} |
|
1261 |
if (_pcost) { |
|
1262 |
for (int i = 0; i != _arc_num; ++i) |
|
1263 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
1264 |
} else { |
|
1265 |
for (int i = 0; i != _arc_num; ++i) |
|
1266 |
_cost[i] = 1; |
|
1267 |
} |
|
1268 |
} |
|
1269 |
|
|
1270 |
// Remove non-zero lower bounds |
|
1271 |
if (_plower) { |
|
1272 |
for (int i = 0; i != _arc_num; ++i) { |
|
1273 |
Flow c = (*_plower)[_arc_ref[i]]; |
|
1274 |
if (c != 0) { |
|
1275 |
_cap[i] -= c; |
|
1276 |
_supply[_source[i]] -= c; |
|
1277 |
_supply[_target[i]] += c; |
|
1278 |
} |
|
1279 |
} |
|
1280 |
} |
|
1281 |
|
|
1282 |
// Add artificial arcs and initialize the spanning tree data structure |
|
1283 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1284 |
_thread[u] = u + 1; |
|
1285 |
_rev_thread[u + 1] = u; |
|
1286 |
_succ_num[u] = 1; |
|
1287 |
_last_succ[u] = u; |
|
1288 |
_parent[u] = _root; |
|
1289 |
_pred[u] = e; |
|
1290 |
_cost[e] = art_cost; |
|
1291 |
_cap[e] = inf_cap; |
|
1292 |
_state[e] = STATE_TREE; |
|
1293 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) { |
|
1294 |
_flow[e] = _supply[u]; |
|
1295 |
_forward[u] = true; |
|
1296 |
_pi[u] = -art_cost + _pi[_root]; |
|
1297 |
} else { |
|
1298 |
_flow[e] = -_supply[u]; |
|
1299 |
_forward[u] = false; |
|
1300 |
_pi[u] = art_cost + _pi[_root]; |
|
1301 |
} |
|
1302 |
} |
|
1303 |
|
|
1304 |
return true; |
|
1305 |
} |
|
1306 |
|
|
1307 |
// Find the join node |
|
1308 |
void findJoinNode() { |
|
1309 |
int u = _source[in_arc]; |
|
1310 |
int v = _target[in_arc]; |
|
1311 |
while (u != v) { |
|
1312 |
if (_succ_num[u] < _succ_num[v]) { |
|
1313 |
u = _parent[u]; |
|
1314 |
} else { |
|
1315 |
v = _parent[v]; |
|
1316 |
} |
|
1317 |
} |
|
1318 |
join = u; |
|
1319 |
} |
|
1320 |
|
|
1321 |
// Find the leaving arc of the cycle and returns true if the |
|
1322 |
// leaving arc is not the same as the entering arc |
|
1323 |
bool findLeavingArc() { |
|
1324 |
// Initialize first and second nodes according to the direction |
|
1325 |
// of the cycle |
|
1326 |
if (_state[in_arc] == STATE_LOWER) { |
|
1327 |
first = _source[in_arc]; |
|
1328 |
second = _target[in_arc]; |
|
1329 |
} else { |
|
1330 |
first = _target[in_arc]; |
|
1331 |
second = _source[in_arc]; |
|
1332 |
} |
|
1333 |
delta = _cap[in_arc]; |
|
1334 |
int result = 0; |
|
1335 |
Flow d; |
|
1336 |
int e; |
|
1337 |
|
|
1338 |
// Search the cycle along the path form the first node to the root |
|
1339 |
for (int u = first; u != join; u = _parent[u]) { |
|
1340 |
e = _pred[u]; |
|
1341 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
|
1342 |
if (d < delta) { |
|
1343 |
delta = d; |
|
1344 |
u_out = u; |
|
1345 |
result = 1; |
|
1346 |
} |
|
1347 |
} |
|
1348 |
// Search the cycle along the path form the second node to the root |
|
1349 |
for (int u = second; u != join; u = _parent[u]) { |
|
1350 |
e = _pred[u]; |
|
1351 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
|
1352 |
if (d <= delta) { |
|
1353 |
delta = d; |
|
1354 |
u_out = u; |
|
1355 |
result = 2; |
|
1356 |
} |
|
1357 |
} |
|
1358 |
|
|
1359 |
if (result == 1) { |
|
1360 |
u_in = first; |
|
1361 |
v_in = second; |
|
1362 |
} else { |
|
1363 |
u_in = second; |
|
1364 |
v_in = first; |
|
1365 |
} |
|
1366 |
return result != 0; |
|
1367 |
} |
|
1368 |
|
|
1369 |
// Change _flow and _state vectors |
|
1370 |
void changeFlow(bool change) { |
|
1371 |
// Augment along the cycle |
|
1372 |
if (delta > 0) { |
|
1373 |
Flow val = _state[in_arc] * delta; |
|
1374 |
_flow[in_arc] += val; |
|
1375 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
|
1376 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
|
1377 |
} |
|
1378 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
|
1379 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
|
1380 |
} |
|
1381 |
} |
|
1382 |
// Update the state of the entering and leaving arcs |
|
1383 |
if (change) { |
|
1384 |
_state[in_arc] = STATE_TREE; |
|
1385 |
_state[_pred[u_out]] = |
|
1386 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
|
1387 |
} else { |
|
1388 |
_state[in_arc] = -_state[in_arc]; |
|
1389 |
} |
|
1390 |
} |
|
1391 |
|
|
1392 |
// Update the tree structure |
|
1393 |
void updateTreeStructure() { |
|
1394 |
int u, w; |
|
1395 |
int old_rev_thread = _rev_thread[u_out]; |
|
1396 |
int old_succ_num = _succ_num[u_out]; |
|
1397 |
int old_last_succ = _last_succ[u_out]; |
|
1398 |
v_out = _parent[u_out]; |
|
1399 |
|
|
1400 |
u = _last_succ[u_in]; // the last successor of u_in |
|
1401 |
right = _thread[u]; // the node after it |
|
1402 |
|
|
1403 |
// Handle the case when old_rev_thread equals to v_in |
|
1404 |
// (it also means that join and v_out coincide) |
|
1405 |
if (old_rev_thread == v_in) { |
|
1406 |
last = _thread[_last_succ[u_out]]; |
|
1407 |
} else { |
|
1408 |
last = _thread[v_in]; |
|
1409 |
} |
|
1410 |
|
|
1411 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
|
1412 |
// between u_in and u_out, whose parent have to be changed) |
|
1413 |
_thread[v_in] = stem = u_in; |
|
1414 |
_dirty_revs.clear(); |
|
1415 |
_dirty_revs.push_back(v_in); |
|
1416 |
par_stem = v_in; |
|
1417 |
while (stem != u_out) { |
|
1418 |
// Insert the next stem node into the thread list |
|
1419 |
new_stem = _parent[stem]; |
|
1420 |
_thread[u] = new_stem; |
|
1421 |
_dirty_revs.push_back(u); |
|
1422 |
|
|
1423 |
// Remove the subtree of stem from the thread list |
|
1424 |
w = _rev_thread[stem]; |
|
1425 |
_thread[w] = right; |
|
1426 |
_rev_thread[right] = w; |
|
1427 |
|
|
1428 |
// Change the parent node and shift stem nodes |
|
1429 |
_parent[stem] = par_stem; |
|
1430 |
par_stem = stem; |
|
1431 |
stem = new_stem; |
|
1432 |
|
|
1433 |
// Update u and right |
|
1434 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
|
1435 |
_rev_thread[par_stem] : _last_succ[stem]; |
|
1436 |
right = _thread[u]; |
|
1437 |
} |
|
1438 |
_parent[u_out] = par_stem; |
|
1439 |
_thread[u] = last; |
|
1440 |
_rev_thread[last] = u; |
|
1441 |
_last_succ[u_out] = u; |
|
1442 |
|
|
1443 |
// Remove the subtree of u_out from the thread list except for |
|
1444 |
// the case when old_rev_thread equals to v_in |
|
1445 |
// (it also means that join and v_out coincide) |
|
1446 |
if (old_rev_thread != v_in) { |
|
1447 |
_thread[old_rev_thread] = right; |
|
1448 |
_rev_thread[right] = old_rev_thread; |
|
1449 |
} |
|
1450 |
|
|
1451 |
// Update _rev_thread using the new _thread values |
|
1452 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
|
1453 |
u = _dirty_revs[i]; |
|
1454 |
_rev_thread[_thread[u]] = u; |
|
1455 |
} |
|
1456 |
|
|
1457 |
// Update _pred, _forward, _last_succ and _succ_num for the |
|
1458 |
// stem nodes from u_out to u_in |
|
1459 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
|
1460 |
u = u_out; |
|
1461 |
while (u != u_in) { |
|
1462 |
w = _parent[u]; |
|
1463 |
_pred[u] = _pred[w]; |
|
1464 |
_forward[u] = !_forward[w]; |
|
1465 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
|
1466 |
_succ_num[u] = tmp_sc; |
|
1467 |
_last_succ[w] = tmp_ls; |
|
1468 |
u = w; |
|
1469 |
} |
|
1470 |
_pred[u_in] = in_arc; |
|
1471 |
_forward[u_in] = (u_in == _source[in_arc]); |
|
1472 |
_succ_num[u_in] = old_succ_num; |
|
1473 |
|
|
1474 |
// Set limits for updating _last_succ form v_in and v_out |
|
1475 |
// towards the root |
|
1476 |
int up_limit_in = -1; |
|
1477 |
int up_limit_out = -1; |
|
1478 |
if (_last_succ[join] == v_in) { |
|
1479 |
up_limit_out = join; |
|
1480 |
} else { |
|
1481 |
up_limit_in = join; |
|
1482 |
} |
|
1483 |
|
|
1484 |
// Update _last_succ from v_in towards the root |
|
1485 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
|
1486 |
u = _parent[u]) { |
|
1487 |
_last_succ[u] = _last_succ[u_out]; |
|
1488 |
} |
|
1489 |
// Update _last_succ from v_out towards the root |
|
1490 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
|
1491 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1492 |
u = _parent[u]) { |
|
1493 |
_last_succ[u] = old_rev_thread; |
|
1494 |
} |
|
1495 |
} else { |
|
1496 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1497 |
u = _parent[u]) { |
|
1498 |
_last_succ[u] = _last_succ[u_out]; |
|
1499 |
} |
|
1500 |
} |
|
1501 |
|
|
1502 |
// Update _succ_num from v_in to join |
|
1503 |
for (u = v_in; u != join; u = _parent[u]) { |
|
1504 |
_succ_num[u] += old_succ_num; |
|
1505 |
} |
|
1506 |
// Update _succ_num from v_out to join |
|
1507 |
for (u = v_out; u != join; u = _parent[u]) { |
|
1508 |
_succ_num[u] -= old_succ_num; |
|
1509 |
} |
|
1510 |
} |
|
1511 |
|
|
1512 |
// Update potentials |
|
1513 |
void updatePotential() { |
|
1514 |
Cost sigma = _forward[u_in] ? |
|
1515 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
|
1516 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
|
1517 |
// Update potentials in the subtree, which has been moved |
|
1518 |
int end = _thread[_last_succ[u_in]]; |
|
1519 |
for (int u = u_in; u != end; u = _thread[u]) { |
|
1520 |
_pi[u] += sigma; |
|
1521 |
} |
|
1522 |
} |
|
1523 |
|
|
1524 |
// Execute the algorithm |
|
1525 |
bool start(PivotRule pivot_rule) { |
|
1526 |
// Select the pivot rule implementation |
|
1527 |
switch (pivot_rule) { |
|
1528 |
case FIRST_ELIGIBLE: |
|
1529 |
return start<FirstEligiblePivotRule>(); |
|
1530 |
case BEST_ELIGIBLE: |
|
1531 |
return start<BestEligiblePivotRule>(); |
|
1532 |
case BLOCK_SEARCH: |
|
1533 |
return start<BlockSearchPivotRule>(); |
|
1534 |
case CANDIDATE_LIST: |
|
1535 |
return start<CandidateListPivotRule>(); |
|
1536 |
case ALTERING_LIST: |
|
1537 |
return start<AlteringListPivotRule>(); |
|
1538 |
} |
|
1539 |
return false; |
|
1540 |
} |
|
1541 |
|
|
1542 |
template <typename PivotRuleImpl> |
|
1543 |
bool start() { |
|
1544 |
PivotRuleImpl pivot(*this); |
|
1545 |
|
|
1546 |
// Execute the Network Simplex algorithm |
|
1547 |
while (pivot.findEnteringArc()) { |
|
1548 |
findJoinNode(); |
|
1549 |
bool change = findLeavingArc(); |
|
1550 |
changeFlow(change); |
|
1551 |
if (change) { |
|
1552 |
updateTreeStructure(); |
|
1553 |
updatePotential(); |
|
1554 |
} |
|
1555 |
} |
|
1556 |
|
|
1557 |
// Copy flow values to _flow_map |
|
1558 |
if (_plower) { |
|
1559 |
for (int i = 0; i != _arc_num; ++i) { |
|
1560 |
Arc e = _arc_ref[i]; |
|
1561 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
1562 |
} |
|
1563 |
} else { |
|
1564 |
for (int i = 0; i != _arc_num; ++i) { |
|
1565 |
_flow_map->set(_arc_ref[i], _flow[i]); |
|
1566 |
} |
|
1567 |
} |
|
1568 |
// Copy potential values to _potential_map |
|
1569 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1570 |
_potential_map->set(n, _pi[_node_id[n]]); |
|
1571 |
} |
|
1572 |
|
|
1573 |
return true; |
|
1574 |
} |
|
1575 |
|
|
1576 |
}; //class NetworkSimplex |
|
1577 |
|
|
1578 |
///@} |
|
1579 |
|
|
1580 |
} //namespace lemon |
|
1581 |
|
|
1582 |
#endif //LEMON_NETWORK_SIMPLEX_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <iostream> |
|
20 |
#include <fstream> |
|
21 |
|
|
22 |
#include <lemon/list_graph.h> |
|
23 |
#include <lemon/lgf_reader.h> |
|
24 |
|
|
25 |
#include <lemon/network_simplex.h> |
|
26 |
|
|
27 |
#include <lemon/concepts/digraph.h> |
|
28 |
#include <lemon/concept_check.h> |
|
29 |
|
|
30 |
#include "test_tools.h" |
|
31 |
|
|
32 |
using namespace lemon; |
|
33 |
|
|
34 |
char test_lgf[] = |
|
35 |
"@nodes\n" |
|
36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
37 |
" 1 20 27 0 20 30\n" |
|
38 |
" 2 -4 0 0 -8 -3\n" |
|
39 |
" 3 0 0 0 0 0\n" |
|
40 |
" 4 0 0 0 0 0\n" |
|
41 |
" 5 9 0 0 6 11\n" |
|
42 |
" 6 -6 0 0 -5 -6\n" |
|
43 |
" 7 0 0 0 0 0\n" |
|
44 |
" 8 0 0 0 0 3\n" |
|
45 |
" 9 3 0 0 0 0\n" |
|
46 |
" 10 -2 0 0 -7 -2\n" |
|
47 |
" 11 0 0 0 -10 0\n" |
|
48 |
" 12 -20 -27 0 -30 -20\n" |
|
49 |
"\n" |
|
50 |
"@arcs\n" |
|
51 |
" cost cap low1 low2\n" |
|
52 |
" 1 2 70 11 0 8\n" |
|
53 |
" 1 3 150 3 0 1\n" |
|
54 |
" 1 4 80 15 0 2\n" |
|
55 |
" 2 8 80 12 0 0\n" |
|
56 |
" 3 5 140 5 0 3\n" |
|
57 |
" 4 6 60 10 0 1\n" |
|
58 |
" 4 7 80 2 0 0\n" |
|
59 |
" 4 8 110 3 0 0\n" |
|
60 |
" 5 7 60 14 0 0\n" |
|
61 |
" 5 11 120 12 0 0\n" |
|
62 |
" 6 3 0 3 0 0\n" |
|
63 |
" 6 9 140 4 0 0\n" |
|
64 |
" 6 10 90 8 0 0\n" |
|
65 |
" 7 1 30 5 0 0\n" |
|
66 |
" 8 12 60 16 0 4\n" |
|
67 |
" 9 12 50 6 0 0\n" |
|
68 |
"10 12 70 13 0 5\n" |
|
69 |
"10 2 100 7 0 0\n" |
|
70 |
"10 7 60 10 0 0\n" |
|
71 |
"11 10 20 14 0 6\n" |
|
72 |
"12 11 30 10 0 0\n" |
|
73 |
"\n" |
|
74 |
"@attributes\n" |
|
75 |
"source 1\n" |
|
76 |
"target 12\n"; |
|
77 |
|
|
78 |
|
|
79 |
enum ProblemType { |
|
80 |
EQ, |
|
81 |
GEQ, |
|
82 |
LEQ |
|
83 |
}; |
|
84 |
|
|
85 |
// Check the interface of an MCF algorithm |
|
86 |
template <typename GR, typename Flow, typename Cost> |
|
87 |
class McfClassConcept |
|
88 |
{ |
|
89 |
public: |
|
90 |
|
|
91 |
template <typename MCF> |
|
92 |
struct Constraints { |
|
93 |
void constraints() { |
|
94 |
checkConcept<concepts::Digraph, GR>(); |
|
95 |
|
|
96 |
MCF mcf(g); |
|
97 |
|
|
98 |
b = mcf.reset() |
|
99 |
.lowerMap(lower) |
|
100 |
.upperMap(upper) |
|
101 |
.capacityMap(upper) |
|
102 |
.boundMaps(lower, upper) |
|
103 |
.costMap(cost) |
|
104 |
.supplyMap(sup) |
|
105 |
.stSupply(n, n, k) |
|
106 |
.flowMap(flow) |
|
107 |
.potentialMap(pot) |
|
108 |
.run(); |
|
109 |
|
|
110 |
const MCF& const_mcf = mcf; |
|
111 |
|
|
112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
114 |
|
|
115 |
v = const_mcf.totalCost(); |
|
116 |
double x = const_mcf.template totalCost<double>(); |
|
117 |
v = const_mcf.flow(a); |
|
118 |
v = const_mcf.potential(n); |
|
119 |
|
|
120 |
ignore_unused_variable_warning(fm); |
|
121 |
ignore_unused_variable_warning(pm); |
|
122 |
ignore_unused_variable_warning(x); |
|
123 |
} |
|
124 |
|
|
125 |
typedef typename GR::Node Node; |
|
126 |
typedef typename GR::Arc Arc; |
|
127 |
typedef concepts::ReadMap<Node, Flow> NM; |
|
128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
|
129 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
|
130 |
|
|
131 |
const GR &g; |
|
132 |
const FAM &lower; |
|
133 |
const FAM &upper; |
|
134 |
const CAM &cost; |
|
135 |
const NM ⊃ |
|
136 |
const Node &n; |
|
137 |
const Arc &a; |
|
138 |
const Flow &k; |
|
139 |
Flow v; |
|
140 |
bool b; |
|
141 |
|
|
142 |
typename MCF::FlowMap &flow; |
|
143 |
typename MCF::PotentialMap &pot; |
|
144 |
}; |
|
145 |
|
|
146 |
}; |
|
147 |
|
|
148 |
|
|
149 |
// Check the feasibility of the given flow (primal soluiton) |
|
150 |
template < typename GR, typename LM, typename UM, |
|
151 |
typename SM, typename FM > |
|
152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
|
153 |
const SM& supply, const FM& flow, |
|
154 |
ProblemType type = EQ ) |
|
155 |
{ |
|
156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
157 |
|
|
158 |
for (ArcIt e(gr); e != INVALID; ++e) { |
|
159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
|
160 |
} |
|
161 |
|
|
162 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
163 |
typename SM::Value sum = 0; |
|
164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
165 |
sum += flow[e]; |
|
166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
167 |
sum -= flow[e]; |
|
168 |
bool b = (type == EQ && sum == supply[n]) || |
|
169 |
(type == GEQ && sum >= supply[n]) || |
|
170 |
(type == LEQ && sum <= supply[n]); |
|
171 |
if (!b) return false; |
|
172 |
} |
|
173 |
|
|
174 |
return true; |
|
175 |
} |
|
176 |
|
|
177 |
// Check the feasibility of the given potentials (dual soluiton) |
|
178 |
// using the "Complementary Slackness" optimality condition |
|
179 |
template < typename GR, typename LM, typename UM, |
|
180 |
typename CM, typename SM, typename FM, typename PM > |
|
181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
|
182 |
const CM& cost, const SM& supply, const FM& flow, |
|
183 |
const PM& pi ) |
|
184 |
{ |
|
185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
186 |
|
|
187 |
bool opt = true; |
|
188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
|
189 |
typename CM::Value red_cost = |
|
190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
|
191 |
opt = red_cost == 0 || |
|
192 |
(red_cost > 0 && flow[e] == lower[e]) || |
|
193 |
(red_cost < 0 && flow[e] == upper[e]); |
|
194 |
} |
|
195 |
|
|
196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
|
197 |
typename SM::Value sum = 0; |
|
198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
199 |
sum += flow[e]; |
|
200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
201 |
sum -= flow[e]; |
|
202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
|
203 |
} |
|
204 |
|
|
205 |
return opt; |
|
206 |
} |
|
207 |
|
|
208 |
// Run a minimum cost flow algorithm and check the results |
|
209 |
template < typename MCF, typename GR, |
|
210 |
typename LM, typename UM, |
|
211 |
typename CM, typename SM > |
|
212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
213 |
const GR& gr, const LM& lower, const UM& upper, |
|
214 |
const CM& cost, const SM& supply, |
|
215 |
bool result, typename CM::Value total, |
|
216 |
const std::string &test_id = "", |
|
217 |
ProblemType type = EQ ) |
|
218 |
{ |
|
219 |
check(mcf_result == result, "Wrong result " + test_id); |
|
220 |
if (result) { |
|
221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
222 |
"The flow is not feasible " + test_id); |
|
223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
|
224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
225 |
mcf.potentialMap()), |
|
226 |
"Wrong potentials " + test_id); |
|
227 |
} |
|
228 |
} |
|
229 |
|
|
230 |
int main() |
|
231 |
{ |
|
232 |
// Check the interfaces |
|
233 |
{ |
|
234 |
typedef int Flow; |
|
235 |
typedef int Cost; |
|
236 |
// TODO: This typedef should be enabled if the standard maps are |
|
237 |
// reference maps in the graph concepts (See #190). |
|
238 |
/**/ |
|
239 |
//typedef concepts::Digraph GR; |
|
240 |
typedef ListDigraph GR; |
|
241 |
/**/ |
|
242 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
|
243 |
NetworkSimplex<GR, Flow, Cost> >(); |
|
244 |
} |
|
245 |
|
|
246 |
// Run various MCF tests |
|
247 |
typedef ListDigraph Digraph; |
|
248 |
DIGRAPH_TYPEDEFS(ListDigraph); |
|
249 |
|
|
250 |
// Read the test digraph |
|
251 |
Digraph gr; |
|
252 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
253 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
254 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
|
255 |
Node v, w; |
|
256 |
|
|
257 |
std::istringstream input(test_lgf); |
|
258 |
DigraphReader<Digraph>(gr, input) |
|
259 |
.arcMap("cost", c) |
|
260 |
.arcMap("cap", u) |
|
261 |
.arcMap("low1", l1) |
|
262 |
.arcMap("low2", l2) |
|
263 |
.nodeMap("sup1", s1) |
|
264 |
.nodeMap("sup2", s2) |
|
265 |
.nodeMap("sup3", s3) |
|
266 |
.nodeMap("sup4", s4) |
|
267 |
.nodeMap("sup5", s5) |
|
268 |
.node("source", v) |
|
269 |
.node("target", w) |
|
270 |
.run(); |
|
271 |
|
|
272 |
// A. Test NetworkSimplex with the default pivot rule |
|
273 |
{ |
|
274 |
NetworkSimplex<Digraph> mcf(gr); |
|
275 |
|
|
276 |
// Check the equality form |
|
277 |
mcf.upperMap(u).costMap(c); |
|
278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
279 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
281 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
282 |
mcf.lowerMap(l2); |
|
283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
284 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
285 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
286 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
287 |
mcf.reset(); |
|
288 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
289 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
290 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
|
291 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
292 |
mcf.reset(); |
|
293 |
checkMcf(mcf, mcf.run(), |
|
294 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
295 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
296 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
|
297 |
|
|
298 |
// Check the GEQ form |
|
299 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
|
300 |
checkMcf(mcf, mcf.run(), |
|
301 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
302 |
mcf.problemType(mcf.GEQ); |
|
303 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
304 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
305 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
306 |
checkMcf(mcf, mcf.run(), |
|
307 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
|
308 |
|
|
309 |
// Check the LEQ form |
|
310 |
mcf.reset().problemType(mcf.LEQ); |
|
311 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
312 |
checkMcf(mcf, mcf.run(), |
|
313 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
|
314 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
315 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
316 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
317 |
checkMcf(mcf, mcf.run(), |
|
318 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
|
319 |
} |
|
320 |
|
|
321 |
// B. Test NetworkSimplex with each pivot rule |
|
322 |
{ |
|
323 |
NetworkSimplex<Digraph> mcf(gr); |
|
324 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
|
325 |
|
|
326 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
|
327 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
328 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
|
329 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
330 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
|
331 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
332 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
|
333 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
334 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
|
335 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
336 |
} |
|
337 |
|
|
338 |
return 0; |
|
339 |
} |
... | ... |
@@ -317,15 +317,15 @@ |
317 | 317 |
|
318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
320 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
|
320 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
|
321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
|
322 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
|
323 | 323 |
following optimization problem. |
324 | 324 |
|
325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
|
326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
|
327 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
|
328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
|
325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
|
326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
|
327 |
\quad \forall u\in V\setminus\{s,t\} \f] |
|
328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
|
329 | 329 |
|
330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
... | ... |
@@ -350,30 +350,98 @@ |
350 | 350 |
|
351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
353 |
in a network with capacity constraints and |
|
353 |
in a network with capacity constraints (lower and upper bounds) |
|
354 |
and arc costs. |
|
354 | 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
355 | 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
356 |
upper bounds for the flow values on the arcs, |
|
357 |
upper bounds for the flow values on the arcs, for which |
|
358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
357 | 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
358 |
on the arcs, and |
|
359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
|
360 |
of the nodes. |
|
361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
|
362 |
the |
|
360 |
on the arcs, and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
361 |
signed supply values of the nodes. |
|
362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
364 |
\f$-sup(u)\f$ demand. |
|
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}^+_0\f$ solution |
|
366 |
of the following optimization problem. |
|
363 | 367 |
|
364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
|
365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
|
366 |
supply(v) \qquad \forall v\in V \f] |
|
367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
|
368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
370 |
sup(u) \quad \forall u\in V \f] |
|
371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
368 | 372 |
|
369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
|
370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
|
371 |
|
|
373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
374 |
zero or negative in order to have a feasible solution (since the sum |
|
375 |
of the expressions on the left-hand side of the inequalities is zero). |
|
376 |
It means that the total demand must be greater or equal to the total |
|
377 |
supply and all the supplies have to be carried out from the supply nodes, |
|
378 |
but there could be demands that are not satisfied. |
|
379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
380 |
constraints have to be satisfied with equality, i.e. all demands |
|
381 |
have to be satisfied and all supplies have to be used. |
|
382 |
|
|
383 |
If you need the opposite inequalities in the supply/demand constraints |
|
384 |
(i.e. the total demand is less than the total supply and all the demands |
|
385 |
have to be satisfied while there could be supplies that are not used), |
|
386 |
then you could easily transform the problem to the above form by reversing |
|
387 |
the direction of the arcs and taking the negative of the supply values |
|
388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
389 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
390 |
for the sake of convenience. |
|
391 |
|
|
392 |
A feasible solution for this problem can be found using \ref Circulation. |
|
393 |
|
|
394 |
Note that the above formulation is actually more general than the usual |
|
395 |
definition of the minimum cost flow problem, in which strict equalities |
|
396 |
are required in the supply/demand contraints, i.e. |
|
397 |
|
|
398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
399 |
sup(u) \quad \forall u\in V. \f] |
|
400 |
|
|
401 |
However if the sum of the supply values is zero, then these two problems |
|
402 |
are equivalent. So if you need the equality form, you have to ensure this |
|
403 |
additional contraint for the algorithms. |
|
404 |
|
|
405 |
The dual solution of the minimum cost flow problem is represented by node |
|
406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
|
407 |
An \f$f: A\rightarrow\mathbf{Z}^+_0\f$ feasible solution of the problem |
|
408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
|
409 |
node potentials the following \e complementary \e slackness optimality |
|
410 |
conditions hold. |
|
411 |
|
|
412 |
- For all \f$uv\in A\f$ arcs: |
|
413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
416 |
- For all \f$u\in V\f$: |
|
417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
418 |
then \f$\pi(u)=0\f$. |
|
419 |
|
|
420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
421 |
\f$uv\in A\f$ with respect to the node potentials \f$\pi\f$, i.e. |
|
422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
423 |
|
|
424 |
All algorithms provide dual solution (node potentials) as well |
|
425 |
if an optimal flow is found. |
|
426 |
|
|
427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
|
428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
|
429 |
pivot strategies. |
|
430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
|
431 |
cost scaling. |
|
432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
|
372 | 433 |
capacity scaling. |
373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
|
374 |
cost scaling. |
|
375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
|
376 |
pivot strategies. |
|
434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
|
436 |
|
|
437 |
Most of these implementations support the general inequality form of the |
|
438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
|
439 |
only support the equality form due to the primal method they use. |
|
440 |
|
|
441 |
In general NetworkSimplex is the most efficient implementation, |
|
442 |
but in special cases other algorithms could be faster. |
|
443 |
For example, if the total supply and/or capacities are rather small, |
|
444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
377 | 445 |
*/ |
378 | 446 |
|
379 | 447 |
/** |
... | ... |
@@ -31,52 +31,52 @@ |
31 | 31 |
/// \brief Default traits class of Circulation class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Circulation class. |
34 |
/// \tparam GR Digraph type. |
|
35 |
/// \tparam LM Lower bound capacity map type. |
|
36 |
/// \tparam UM Upper bound capacity map type. |
|
37 |
/// \tparam DM Delta map type. |
|
34 |
/// |
|
35 |
/// \tparam GR Type of the digraph the algorithm runs on. |
|
36 |
/// \tparam LM The type of the lower bound map. |
|
37 |
/// \tparam UM The type of the upper bound (capacity) map. |
|
38 |
/// \tparam SM The type of the supply map. |
|
38 | 39 |
template <typename GR, typename LM, |
39 |
typename UM, typename |
|
40 |
typename UM, typename SM> |
|
40 | 41 |
struct CirculationDefaultTraits { |
41 | 42 |
|
42 | 43 |
/// \brief The type of the digraph the algorithm runs on. |
43 | 44 |
typedef GR Digraph; |
44 | 45 |
|
45 |
/// \brief The type of the map that stores the circulation lower |
|
46 |
/// bound. |
|
46 |
/// \brief The type of the lower bound map. |
|
47 | 47 |
/// |
48 |
/// The type of the map that stores the circulation lower bound. |
|
49 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
50 |
|
|
48 |
/// The type of the map that stores the lower bounds on the arcs. |
|
49 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
50 |
typedef LM LowerMap; |
|
51 | 51 |
|
52 |
/// \brief The type of the map that stores the circulation upper |
|
53 |
/// bound. |
|
52 |
/// \brief The type of the upper bound (capacity) map. |
|
54 | 53 |
/// |
55 |
/// The type of the map that stores the circulation upper bound. |
|
56 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
57 |
|
|
54 |
/// The type of the map that stores the upper bounds (capacities) |
|
55 |
/// on the arcs. |
|
56 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
57 |
typedef UM UpperMap; |
|
58 | 58 |
|
59 |
/// \brief The type of the map that stores the lower bound for |
|
60 |
/// the supply of the nodes. |
|
59 |
/// \brief The type of supply map. |
|
61 | 60 |
/// |
62 |
/// The type of the map that stores the lower bound for the supply |
|
63 |
/// of the nodes. It must meet the \ref concepts::ReadMap "ReadMap" |
|
64 |
/// concept. |
|
65 |
typedef DM DeltaMap; |
|
61 |
/// The type of the map that stores the signed supply values of the |
|
62 |
/// nodes. |
|
63 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
64 |
typedef SM SupplyMap; |
|
66 | 65 |
|
67 | 66 |
/// \brief The type of the flow values. |
68 |
typedef typename |
|
67 |
typedef typename SupplyMap::Value Flow; |
|
69 | 68 |
|
70 | 69 |
/// \brief The type of the map that stores the flow values. |
71 | 70 |
/// |
72 | 71 |
/// The type of the map that stores the flow values. |
73 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
74 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
72 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
73 |
/// concept. |
|
74 |
typedef typename Digraph::template ArcMap<Flow> FlowMap; |
|
75 | 75 |
|
76 | 76 |
/// \brief Instantiates a FlowMap. |
77 | 77 |
/// |
78 | 78 |
/// This function instantiates a \ref FlowMap. |
79 |
/// \param digraph The digraph |
|
79 |
/// \param digraph The digraph for which we would like to define |
|
80 | 80 |
/// the flow map. |
81 | 81 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
82 | 82 |
return new FlowMap(digraph); |
... | ... |
@@ -93,7 +93,7 @@ |
93 | 93 |
/// \brief Instantiates an Elevator. |
94 | 94 |
/// |
95 | 95 |
/// This function instantiates an \ref Elevator. |
96 |
/// \param digraph The digraph |
|
96 |
/// \param digraph The digraph for which we would like to define |
|
97 | 97 |
/// the elevator. |
98 | 98 |
/// \param max_level The maximum level of the elevator. |
99 | 99 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
... | ... |
@@ -103,7 +103,7 @@ |
103 | 103 |
/// \brief The tolerance used by the algorithm |
104 | 104 |
/// |
105 | 105 |
/// The tolerance used by the algorithm to handle inexact computation. |
106 |
typedef lemon::Tolerance< |
|
106 |
typedef lemon::Tolerance<Flow> Tolerance; |
|
107 | 107 |
|
108 | 108 |
}; |
109 | 109 |
|
... | ... |
@@ -111,53 +111,69 @@ |
111 | 111 |
\brief Push-relabel algorithm for the network circulation problem. |
112 | 112 |
|
113 | 113 |
\ingroup max_flow |
114 |
This class implements a push-relabel algorithm for the network |
|
115 |
circulation problem. |
|
114 |
This class implements a push-relabel algorithm for the \e network |
|
115 |
\e circulation problem. |
|
116 | 116 |
It is to find a feasible circulation when lower and upper bounds |
117 |
are given for the flow values on the arcs and lower bounds |
|
118 |
are given for the supply values of the nodes. |
|
117 |
are given for the flow values on the arcs and lower bounds are |
|
118 |
given for the difference between the outgoing and incoming flow |
|
119 |
at the nodes. |
|
119 | 120 |
|
120 | 121 |
The exact formulation of this problem is the following. |
121 | 122 |
Let \f$G=(V,A)\f$ be a digraph, |
122 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$, |
|
123 |
\f$delta: V\rightarrow\mathbf{R}\f$. Find a feasible circulation |
|
124 |
\f$f: A\rightarrow\mathbf{R}^+_0\f$ so that |
|
125 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) |
|
126 |
\geq delta(v) \quad \forall v\in V, \f] |
|
127 |
\f[ lower(a)\leq f(a) \leq upper(a) \quad \forall a\in A. \f] |
|
128 |
\note \f$delta(v)\f$ specifies a lower bound for the supply of node |
|
129 |
\f$v\f$. It can be either positive or negative, however note that |
|
130 |
\f$\sum_{v\in V}delta(v)\f$ should be zero or negative in order to |
|
131 |
have a feasible solution. |
|
123 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$ denote the lower and |
|
124 |
upper bounds on the arcs, for which \f$0 \leq lower(uv) \leq upper(uv)\f$ |
|
125 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
|
126 |
denotes the signed supply values of the nodes. |
|
127 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
128 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
129 |
\f$-sup(u)\f$ demand. |
|
130 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ |
|
131 |
solution of the following problem. |
|
132 | 132 |
|
133 |
\note A special case of this problem is when |
|
134 |
\f$\sum_{v\in V}delta(v) = 0\f$. Then the supply of each node \f$v\f$ |
|
135 |
will be \e equal \e to \f$delta(v)\f$, if a circulation can be found. |
|
136 |
Thus a feasible solution for the |
|
137 |
\ref min_cost_flow "minimum cost flow" problem can be calculated |
|
138 |
in this way. |
|
133 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
|
134 |
\geq sup(u) \quad \forall u\in V, \f] |
|
135 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
|
136 |
|
|
137 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
138 |
zero or negative in order to have a feasible solution (since the sum |
|
139 |
of the expressions on the left-hand side of the inequalities is zero). |
|
140 |
It means that the total demand must be greater or equal to the total |
|
141 |
supply and all the supplies have to be carried out from the supply nodes, |
|
142 |
but there could be demands that are not satisfied. |
|
143 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
144 |
constraints have to be satisfied with equality, i.e. all demands |
|
145 |
have to be satisfied and all supplies have to be used. |
|
146 |
|
|
147 |
If you need the opposite inequalities in the supply/demand constraints |
|
148 |
(i.e. the total demand is less than the total supply and all the demands |
|
149 |
have to be satisfied while there could be supplies that are not used), |
|
150 |
then you could easily transform the problem to the above form by reversing |
|
151 |
the direction of the arcs and taking the negative of the supply values |
|
152 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
153 |
|
|
154 |
Note that this algorithm also provides a feasible solution for the |
|
155 |
\ref min_cost_flow "minimum cost flow problem". |
|
139 | 156 |
|
140 | 157 |
\tparam GR The type of the digraph the algorithm runs on. |
141 |
\tparam LM The type of the lower bound |
|
158 |
\tparam LM The type of the lower bound map. The default |
|
142 | 159 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
143 |
\tparam UM The type of the upper bound capacity map. The default |
|
144 |
map type is \c LM. |
|
145 |
\tparam DM The type of the map that stores the lower bound |
|
146 |
for the supply of the nodes. The default map type is |
|
160 |
\tparam UM The type of the upper bound (capacity) map. |
|
161 |
The default map type is \c LM. |
|
162 |
\tparam SM The type of the supply map. The default map type is |
|
147 | 163 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
148 | 164 |
*/ |
149 | 165 |
#ifdef DOXYGEN |
150 | 166 |
template< typename GR, |
151 | 167 |
typename LM, |
152 | 168 |
typename UM, |
153 |
typename |
|
169 |
typename SM, |
|
154 | 170 |
typename TR > |
155 | 171 |
#else |
156 | 172 |
template< typename GR, |
157 | 173 |
typename LM = typename GR::template ArcMap<int>, |
158 | 174 |
typename UM = LM, |
159 |
typename DM = typename GR::template NodeMap<typename UM::Value>, |
|
160 |
typename TR = CirculationDefaultTraits<GR, LM, UM, DM> > |
|
175 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
|
176 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
|
161 | 177 |
#endif |
162 | 178 |
class Circulation { |
163 | 179 |
public: |
... | ... |
@@ -167,15 +183,14 @@ |
167 | 183 |
///The type of the digraph the algorithm runs on. |
168 | 184 |
typedef typename Traits::Digraph Digraph; |
169 | 185 |
///The type of the flow values. |
170 |
typedef typename Traits:: |
|
186 |
typedef typename Traits::Flow Flow; |
|
171 | 187 |
|
172 |
/// The type of the lower bound capacity map. |
|
173 |
typedef typename Traits::LCapMap LCapMap; |
|
174 |
/// The type of the upper bound capacity map. |
|
175 |
typedef typename Traits::UCapMap UCapMap; |
|
176 |
/// \brief The type of the map that stores the lower bound for |
|
177 |
/// the supply of the nodes. |
|
178 |
|
|
188 |
///The type of the lower bound map. |
|
189 |
typedef typename Traits::LowerMap LowerMap; |
|
190 |
///The type of the upper bound (capacity) map. |
|
191 |
typedef typename Traits::UpperMap UpperMap; |
|
192 |
///The type of the supply map. |
|
193 |
typedef typename Traits::SupplyMap SupplyMap; |
|
179 | 194 |
///The type of the flow map. |
180 | 195 |
typedef typename Traits::FlowMap FlowMap; |
181 | 196 |
|
... | ... |
@@ -191,9 +206,9 @@ |
191 | 206 |
const Digraph &_g; |
192 | 207 |
int _node_num; |
193 | 208 |
|
194 |
const LCapMap *_lo; |
|
195 |
const UCapMap *_up; |
|
196 |
const |
|
209 |
const LowerMap *_lo; |
|
210 |
const UpperMap *_up; |
|
211 |
const SupplyMap *_supply; |
|
197 | 212 |
|
198 | 213 |
FlowMap *_flow; |
199 | 214 |
bool _local_flow; |
... | ... |
@@ -201,7 +216,7 @@ |
201 | 216 |
Elevator* _level; |
202 | 217 |
bool _local_level; |
203 | 218 |
|
204 |
typedef typename Digraph::template NodeMap< |
|
219 |
typedef typename Digraph::template NodeMap<Flow> ExcessMap; |
|
205 | 220 |
ExcessMap* _excess; |
206 | 221 |
|
207 | 222 |
Tolerance _tol; |
... | ... |
@@ -231,9 +246,9 @@ |
231 | 246 |
/// type. |
232 | 247 |
template <typename T> |
233 | 248 |
struct SetFlowMap |
234 |
: public Circulation<Digraph, |
|
249 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
235 | 250 |
SetFlowMapTraits<T> > { |
236 |
typedef Circulation<Digraph, |
|
251 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
237 | 252 |
SetFlowMapTraits<T> > Create; |
238 | 253 |
}; |
239 | 254 |
|
... | ... |
@@ -257,9 +272,9 @@ |
257 | 272 |
/// \sa SetStandardElevator |
258 | 273 |
template <typename T> |
259 | 274 |
struct SetElevator |
260 |
: public Circulation<Digraph, |
|
275 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
261 | 276 |
SetElevatorTraits<T> > { |
262 |
typedef Circulation<Digraph, |
|
277 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
263 | 278 |
SetElevatorTraits<T> > Create; |
264 | 279 |
}; |
265 | 280 |
|
... | ... |
@@ -285,9 +300,9 @@ |
285 | 300 |
/// \sa SetElevator |
286 | 301 |
template <typename T> |
287 | 302 |
struct SetStandardElevator |
288 |
: public Circulation<Digraph, |
|
303 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
289 | 304 |
SetStandardElevatorTraits<T> > { |
290 |
typedef Circulation<Digraph, |
|
305 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
291 | 306 |
SetStandardElevatorTraits<T> > Create; |
292 | 307 |
}; |
293 | 308 |
|
... | ... |
@@ -299,18 +314,20 @@ |
299 | 314 |
|
300 | 315 |
public: |
301 | 316 |
|
302 |
/// |
|
317 |
/// Constructor. |
|
303 | 318 |
|
304 | 319 |
/// The constructor of the class. |
305 |
/// \param g The digraph the algorithm runs on. |
|
306 |
/// \param lo The lower bound capacity of the arcs. |
|
307 |
/// \param up The upper bound capacity of the arcs. |
|
308 |
/// \param delta The lower bound for the supply of the nodes. |
|
309 |
Circulation(const Digraph &g,const LCapMap &lo, |
|
310 |
const UCapMap &up,const DeltaMap &delta) |
|
311 |
: _g(g), _node_num(), |
|
312 |
_lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false), |
|
313 |
|
|
320 |
/// |
|
321 |
/// \param graph The digraph the algorithm runs on. |
|
322 |
/// \param lower The lower bounds for the flow values on the arcs. |
|
323 |
/// \param upper The upper bounds (capacities) for the flow values |
|
324 |
/// on the arcs. |
|
325 |
/// \param supply The signed supply values of the nodes. |
|
326 |
Circulation(const Digraph &graph, const LowerMap &lower, |
|
327 |
const UpperMap &upper, const SupplyMap &supply) |
|
328 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
|
329 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
|
330 |
_excess(NULL) {} |
|
314 | 331 |
|
315 | 332 |
/// Destructor. |
316 | 333 |
~Circulation() { |
... | ... |
@@ -350,30 +367,30 @@ |
350 | 367 |
|
351 | 368 |
public: |
352 | 369 |
|
353 |
/// Sets the lower bound |
|
370 |
/// Sets the lower bound map. |
|
354 | 371 |
|
355 |
/// Sets the lower bound |
|
372 |
/// Sets the lower bound map. |
|
356 | 373 |
/// \return <tt>(*this)</tt> |
357 |
Circulation& |
|
374 |
Circulation& lowerMap(const LowerMap& map) { |
|
358 | 375 |
_lo = ↦ |
359 | 376 |
return *this; |
360 | 377 |
} |
361 | 378 |
|
362 |
/// Sets the upper bound capacity map. |
|
379 |
/// Sets the upper bound (capacity) map. |
|
363 | 380 |
|
364 |
/// Sets the upper bound capacity map. |
|
381 |
/// Sets the upper bound (capacity) map. |
|
365 | 382 |
/// \return <tt>(*this)</tt> |
366 |
Circulation& |
|
383 |
Circulation& upperMap(const LowerMap& map) { |
|
367 | 384 |
_up = ↦ |
368 | 385 |
return *this; |
369 | 386 |
} |
370 | 387 |
|
371 |
/// Sets the |
|
388 |
/// Sets the supply map. |
|
372 | 389 |
|
373 |
/// Sets the |
|
390 |
/// Sets the supply map. |
|
374 | 391 |
/// \return <tt>(*this)</tt> |
375 |
Circulation& deltaMap(const DeltaMap& map) { |
|
376 |
_delta = ↦ |
|
392 |
Circulation& supplyMap(const SupplyMap& map) { |
|
393 |
_supply = ↦ |
|
377 | 394 |
return *this; |
378 | 395 |
} |
379 | 396 |
|
... | ... |
@@ -453,7 +470,7 @@ |
453 | 470 |
createStructures(); |
454 | 471 |
|
455 | 472 |
for(NodeIt n(_g);n!=INVALID;++n) { |
456 |
(*_excess)[n] = (* |
|
473 |
(*_excess)[n] = (*_supply)[n]; |
|
457 | 474 |
} |
458 | 475 |
|
459 | 476 |
for (ArcIt e(_g);e!=INVALID;++e) { |
... | ... |
@@ -482,7 +499,7 @@ |
482 | 499 |
createStructures(); |
483 | 500 |
|
484 | 501 |
for(NodeIt n(_g);n!=INVALID;++n) { |
485 |
(*_excess)[n] = (* |
|
502 |
(*_excess)[n] = (*_supply)[n]; |
|
486 | 503 |
} |
487 | 504 |
|
488 | 505 |
for (ArcIt e(_g);e!=INVALID;++e) { |
... | ... |
@@ -495,7 +512,7 @@ |
495 | 512 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
496 | 513 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
497 | 514 |
} else { |
498 |
|
|
515 |
Flow fc = -(*_excess)[_g.target(e)]; |
|
499 | 516 |
_flow->set(e, fc); |
500 | 517 |
(*_excess)[_g.target(e)] = 0; |
501 | 518 |
(*_excess)[_g.source(e)] -= fc; |
... | ... |
@@ -528,11 +545,11 @@ |
528 | 545 |
while((act=_level->highestActive())!=INVALID) { |
529 | 546 |
int actlevel=(*_level)[act]; |
530 | 547 |
int mlevel=_node_num; |
531 |
|
|
548 |
Flow exc=(*_excess)[act]; |
|
532 | 549 |
|
533 | 550 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
534 | 551 |
Node v = _g.target(e); |
535 |
|
|
552 |
Flow fc=(*_up)[e]-(*_flow)[e]; |
|
536 | 553 |
if(!_tol.positive(fc)) continue; |
537 | 554 |
if((*_level)[v]<actlevel) { |
538 | 555 |
if(!_tol.less(fc, exc)) { |
... | ... |
@@ -556,7 +573,7 @@ |
556 | 573 |
} |
557 | 574 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
558 | 575 |
Node v = _g.source(e); |
559 |
|
|
576 |
Flow fc=(*_flow)[e]-(*_lo)[e]; |
|
560 | 577 |
if(!_tol.positive(fc)) continue; |
561 | 578 |
if((*_level)[v]<actlevel) { |
562 | 579 |
if(!_tol.less(fc, exc)) { |
... | ... |
@@ -632,7 +649,7 @@ |
632 | 649 |
/// |
633 | 650 |
/// \pre Either \ref run() or \ref init() must be called before |
634 | 651 |
/// using this function. |
635 |
|
|
652 |
Flow flow(const Arc& arc) const { |
|
636 | 653 |
return (*_flow)[arc]; |
637 | 654 |
} |
638 | 655 |
|
... | ... |
@@ -651,8 +668,8 @@ |
651 | 668 |
|
652 | 669 |
Barrier is a set \e B of nodes for which |
653 | 670 |
|
654 |
\f[ \sum_{a\in\delta_{out}(B)} upper(a) - |
|
655 |
\sum_{a\in\delta_{in}(B)} lower(a) < \sum_{v\in B}delta(v) \f] |
|
671 |
\f[ \sum_{uv\in A: u\in B} upper(uv) - |
|
672 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f] |
|
656 | 673 |
|
657 | 674 |
holds. The existence of a set with this property prooves that a |
658 | 675 |
feasible circualtion cannot exist. |
... | ... |
@@ -715,7 +732,7 @@ |
715 | 732 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
716 | 733 |
for(NodeIt n(_g);n!=INVALID;++n) |
717 | 734 |
{ |
718 |
|
|
735 |
Flow dif=-(*_supply)[n]; |
|
719 | 736 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
720 | 737 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
721 | 738 |
if(_tol.negative(dif)) return false; |
... | ... |
@@ -730,10 +747,10 @@ |
730 | 747 |
///\sa barrierMap() |
731 | 748 |
bool checkBarrier() const |
732 | 749 |
{ |
733 |
|
|
750 |
Flow delta=0; |
|
734 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
735 | 752 |
if(barrier(n)) |
736 |
delta-=(* |
|
753 |
delta-=(*_supply)[n]; |
|
737 | 754 |
for(ArcIt e(_g);e!=INVALID;++e) |
738 | 755 |
{ |
739 | 756 |
Node s=_g.source(e); |
... | ... |
@@ -46,18 +46,18 @@ |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 |
typedef typename CapacityMap::Value |
|
49 |
typedef typename CapacityMap::Value Flow; |
|
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
typedef typename Digraph::template ArcMap< |
|
55 |
typedef typename Digraph::template ArcMap<Flow> FlowMap; |
|
56 | 56 |
|
57 | 57 |
/// \brief Instantiates a FlowMap. |
58 | 58 |
/// |
59 | 59 |
/// This function instantiates a \ref FlowMap. |
60 |
/// \param digraph The digraph |
|
60 |
/// \param digraph The digraph for which we would like to define |
|
61 | 61 |
/// the flow map. |
62 | 62 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 63 |
return new FlowMap(digraph); |
... | ... |
@@ -74,7 +74,7 @@ |
74 | 74 |
/// \brief Instantiates an Elevator. |
75 | 75 |
/// |
76 | 76 |
/// This function instantiates an \ref Elevator. |
77 |
/// \param digraph The digraph |
|
77 |
/// \param digraph The digraph for which we would like to define |
|
78 | 78 |
/// the elevator. |
79 | 79 |
/// \param max_level The maximum level of the elevator. |
80 | 80 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
... | ... |
@@ -84,7 +84,7 @@ |
84 | 84 |
/// \brief The tolerance used by the algorithm |
85 | 85 |
/// |
86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 |
typedef lemon::Tolerance< |
|
87 |
typedef lemon::Tolerance<Flow> Tolerance; |
|
88 | 88 |
|
89 | 89 |
}; |
90 | 90 |
|
... | ... |
@@ -125,7 +125,7 @@ |
125 | 125 |
///The type of the capacity map. |
126 | 126 |
typedef typename Traits::CapacityMap CapacityMap; |
127 | 127 |
///The type of the flow values. |
128 |
typedef typename Traits:: |
|
128 |
typedef typename Traits::Flow Flow; |
|
129 | 129 |
|
130 | 130 |
///The type of the flow map. |
131 | 131 |
typedef typename Traits::FlowMap FlowMap; |
... | ... |
@@ -151,7 +151,7 @@ |
151 | 151 |
Elevator* _level; |
152 | 152 |
bool _local_level; |
153 | 153 |
|
154 |
typedef typename Digraph::template NodeMap< |
|
154 |
typedef typename Digraph::template NodeMap<Flow> ExcessMap; |
|
155 | 155 |
ExcessMap* _excess; |
156 | 156 |
|
157 | 157 |
Tolerance _tolerance; |
... | ... |
@@ -470,7 +470,7 @@ |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 |
|
|
473 |
Flow excess = 0; |
|
474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
475 | 475 |
excess += (*_flow)[e]; |
476 | 476 |
} |
... | ... |
@@ -519,7 +519,7 @@ |
519 | 519 |
_level->initFinish(); |
520 | 520 |
|
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 |
|
|
522 |
Flow rem = (*_capacity)[e] - (*_flow)[e]; |
|
523 | 523 |
if (_tolerance.positive(rem)) { |
524 | 524 |
Node u = _graph.target(e); |
525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
... | ... |
@@ -531,7 +531,7 @@ |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 |
|
|
534 |
Flow rem = (*_flow)[e]; |
|
535 | 535 |
if (_tolerance.positive(rem)) { |
536 | 536 |
Node v = _graph.source(e); |
537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
... | ... |
@@ -564,11 +564,11 @@ |
564 | 564 |
int num = _node_num; |
565 | 565 |
|
566 | 566 |
while (num > 0 && n != INVALID) { |
567 |
|
|
567 |
Flow excess = (*_excess)[n]; |
|
568 | 568 |
int new_level = _level->maxLevel(); |
569 | 569 |
|
570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 |
|
|
571 |
Flow rem = (*_capacity)[e] - (*_flow)[e]; |
|
572 | 572 |
if (!_tolerance.positive(rem)) continue; |
573 | 573 |
Node v = _graph.target(e); |
574 | 574 |
if ((*_level)[v] < level) { |
... | ... |
@@ -591,7 +591,7 @@ |
591 | 591 |
} |
592 | 592 |
|
593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
594 |
|
|
594 |
Flow rem = (*_flow)[e]; |
|
595 | 595 |
if (!_tolerance.positive(rem)) continue; |
596 | 596 |
Node v = _graph.source(e); |
597 | 597 |
if ((*_level)[v] < level) { |
... | ... |
@@ -637,11 +637,11 @@ |
637 | 637 |
|
638 | 638 |
num = _node_num * 20; |
639 | 639 |
while (num > 0 && n != INVALID) { |
640 |
|
|
640 |
Flow excess = (*_excess)[n]; |
|
641 | 641 |
int new_level = _level->maxLevel(); |
642 | 642 |
|
643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 |
|
|
644 |
Flow rem = (*_capacity)[e] - (*_flow)[e]; |
|
645 | 645 |
if (!_tolerance.positive(rem)) continue; |
646 | 646 |
Node v = _graph.target(e); |
647 | 647 |
if ((*_level)[v] < level) { |
... | ... |
@@ -664,7 +664,7 @@ |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
667 |
|
|
667 |
Flow rem = (*_flow)[e]; |
|
668 | 668 |
if (!_tolerance.positive(rem)) continue; |
669 | 669 |
Node v = _graph.source(e); |
670 | 670 |
if ((*_level)[v] < level) { |
... | ... |
@@ -778,12 +778,12 @@ |
778 | 778 |
|
779 | 779 |
Node n; |
780 | 780 |
while ((n = _level->highestActive()) != INVALID) { |
781 |
|
|
781 |
Flow excess = (*_excess)[n]; |
|
782 | 782 |
int level = _level->highestActiveLevel(); |
783 | 783 |
int new_level = _level->maxLevel(); |
784 | 784 |
|
785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
786 |
|
|
786 |
Flow rem = (*_capacity)[e] - (*_flow)[e]; |
|
787 | 787 |
if (!_tolerance.positive(rem)) continue; |
788 | 788 |
Node v = _graph.target(e); |
789 | 789 |
if ((*_level)[v] < level) { |
... | ... |
@@ -806,7 +806,7 @@ |
806 | 806 |
} |
807 | 807 |
|
808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
809 |
|
|
809 |
Flow rem = (*_flow)[e]; |
|
810 | 810 |
if (!_tolerance.positive(rem)) continue; |
811 | 811 |
Node v = _graph.source(e); |
812 | 812 |
if ((*_level)[v] < level) { |
... | ... |
@@ -897,7 +897,7 @@ |
897 | 897 |
/// |
898 | 898 |
/// \pre Either \ref run() or \ref init() must be called before |
899 | 899 |
/// using this function. |
900 |
|
|
900 |
Flow flowValue() const { |
|
901 | 901 |
return (*_excess)[_target]; |
902 | 902 |
} |
903 | 903 |
|
... | ... |
@@ -908,7 +908,7 @@ |
908 | 908 |
/// |
909 | 909 |
/// \pre Either \ref run() or \ref init() must be called before |
910 | 910 |
/// using this function. |
911 |
|
|
911 |
Flow flow(const Arc& arc) const { |
|
912 | 912 |
return (*_flow)[arc]; |
913 | 913 |
} |
914 | 914 |
... | ... |
@@ -27,6 +27,7 @@ |
27 | 27 |
test/maps_test \ |
28 | 28 |
test/matching_test \ |
29 | 29 |
test/min_cost_arborescence_test \ |
30 |
test/min_cost_flow_test \ |
|
30 | 31 |
test/path_test \ |
31 | 32 |
test/preflow_test \ |
32 | 33 |
test/radix_sort_test \ |
... | ... |
@@ -72,6 +73,7 @@ |
72 | 73 |
test_mip_test_SOURCES = test/mip_test.cc |
73 | 74 |
test_matching_test_SOURCES = test/matching_test.cc |
74 | 75 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
76 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
|
75 | 77 |
test_path_test_SOURCES = test/path_test.cc |
76 | 78 |
test_preflow_test_SOURCES = test/preflow_test.cc |
77 | 79 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
... | ... |
@@ -57,7 +57,7 @@ |
57 | 57 |
typedef Digraph::Node Node; |
58 | 58 |
typedef Digraph::Arc Arc; |
59 | 59 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
60 |
typedef concepts::ReadMap<Node,VType> |
|
60 |
typedef concepts::ReadMap<Node,VType> SupplyMap; |
|
61 | 61 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
62 | 62 |
typedef concepts::WriteMap<Node,bool> BarrierMap; |
63 | 63 |
|
... | ... |
@@ -68,24 +68,24 @@ |
68 | 68 |
Node n; |
69 | 69 |
Arc a; |
70 | 70 |
CapMap lcap, ucap; |
71 |
|
|
71 |
SupplyMap supply; |
|
72 | 72 |
FlowMap flow; |
73 | 73 |
BarrierMap bar; |
74 | 74 |
VType v; |
75 | 75 |
bool b; |
76 | 76 |
|
77 |
typedef Circulation<Digraph, CapMap, CapMap, |
|
77 |
typedef Circulation<Digraph, CapMap, CapMap, SupplyMap> |
|
78 | 78 |
::SetFlowMap<FlowMap> |
79 | 79 |
::SetElevator<Elev> |
80 | 80 |
::SetStandardElevator<LinkedElev> |
81 | 81 |
::Create CirculationType; |
82 |
CirculationType circ_test(g, lcap, ucap, |
|
82 |
CirculationType circ_test(g, lcap, ucap, supply); |
|
83 | 83 |
const CirculationType& const_circ_test = circ_test; |
84 | 84 |
|
85 | 85 |
circ_test |
86 |
.lowerCapMap(lcap) |
|
87 |
.upperCapMap(ucap) |
|
88 |
. |
|
86 |
.lowerMap(lcap) |
|
87 |
.upperMap(ucap) |
|
88 |
.supplyMap(supply) |
|
89 | 89 |
.flowMap(flow); |
90 | 90 |
|
91 | 91 |
circ_test.init(); |
... | ... |
@@ -43,6 +43,7 @@ |
43 | 43 |
#include <lemon/dijkstra.h> |
44 | 44 |
#include <lemon/preflow.h> |
45 | 45 |
#include <lemon/matching.h> |
46 |
#include <lemon/network_simplex.h> |
|
46 | 47 |
|
47 | 48 |
using namespace lemon; |
48 | 49 |
typedef SmartDigraph Digraph; |
... | ... |
@@ -90,6 +91,28 @@ |
90 | 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
91 | 92 |
} |
92 | 93 |
|
94 |
template<class Value> |
|
95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
|
96 |
DimacsDescriptor &desc) |
|
97 |
{ |
|
98 |
bool report = !ap.given("q"); |
|
99 |
Digraph g; |
|
100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
|
101 |
Digraph::NodeMap<Value> sup(g); |
|
102 |
Timer ti; |
|
103 |
ti.restart(); |
|
104 |
readDimacsMin(is, g, lower, cap, cost, sup, 0, desc); |
|
105 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
|
106 |
ti.restart(); |
|
107 |
NetworkSimplex<Digraph, Value> ns(g); |
|
108 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
109 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
|
110 |
ti.restart(); |
|
111 |
ns.run(); |
|
112 |
if (report) std::cerr << "Run NetworkSimplex: " << ti << '\n'; |
|
113 |
if (report) std::cerr << "\nMin flow cost: " << ns.totalCost() << '\n'; |
|
114 |
} |
|
115 |
|
|
93 | 116 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
94 | 117 |
DimacsDescriptor &desc) |
95 | 118 |
{ |
... | ... |
@@ -128,8 +151,7 @@ |
128 | 151 |
switch(desc.type) |
129 | 152 |
{ |
130 | 153 |
case DimacsDescriptor::MIN: |
131 |
std::cerr << |
|
132 |
"\n\n Sorry, the min. cost flow solver is not yet available.\n"; |
|
154 |
solve_min<Value>(ap,is,os,desc); |
|
133 | 155 |
break; |
134 | 156 |
case DimacsDescriptor::MAX: |
135 | 157 |
solve_max<Value>(ap,is,os,infty,desc); |
0 comments (0 inline)