0
8
2
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
|
20 |
#define LEMON_NETWORK_SIMPLEX_H |
|
21 |
|
|
22 |
/// \ingroup min_cost_flow |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <limits> |
|
29 |
#include <algorithm> |
|
30 |
|
|
31 |
#include <lemon/core.h> |
|
32 |
#include <lemon/math.h> |
|
33 |
#include <lemon/maps.h> |
|
34 |
#include <lemon/circulation.h> |
|
35 |
#include <lemon/adaptors.h> |
|
36 |
|
|
37 |
namespace lemon { |
|
38 |
|
|
39 |
/// \addtogroup min_cost_flow |
|
40 |
/// @{ |
|
41 |
|
|
42 |
/// \brief Implementation of the primal Network Simplex algorithm |
|
43 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
44 |
/// |
|
45 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
|
46 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
|
47 |
/// This algorithm is a specialized version of the linear programming |
|
48 |
/// simplex method directly for the minimum cost flow problem. |
|
49 |
/// It is one of the most efficient solution methods. |
|
50 |
/// |
|
51 |
/// In general this class is the fastest implementation available |
|
52 |
/// in LEMON for the minimum cost flow problem. |
|
53 |
/// Moreover it supports both direction of the supply/demand inequality |
|
54 |
/// constraints. For more information see \ref ProblemType. |
|
55 |
/// |
|
56 |
/// \tparam GR The digraph type the algorithm runs on. |
|
57 |
/// \tparam F The value type used for flow amounts, capacity bounds |
|
58 |
/// and supply values in the algorithm. By default it is \c int. |
|
59 |
/// \tparam C The value type used for costs and potentials in the |
|
60 |
/// algorithm. By default it is the same as \c F. |
|
61 |
/// |
|
62 |
/// \warning Both value types must be signed and all input data must |
|
63 |
/// be integer. |
|
64 |
/// |
|
65 |
/// \note %NetworkSimplex provides five different pivot rule |
|
66 |
/// implementations, from which the most efficient one is used |
|
67 |
/// by default. For more information see \ref PivotRule. |
|
68 |
template <typename GR, typename F = int, typename C = F> |
|
69 |
class NetworkSimplex |
|
70 |
{ |
|
71 |
public: |
|
72 |
|
|
73 |
/// The flow type of the algorithm |
|
74 |
typedef F Flow; |
|
75 |
/// The cost type of the algorithm |
|
76 |
typedef C Cost; |
|
77 |
#ifdef DOXYGEN |
|
78 |
/// The type of the flow map |
|
79 |
typedef GR::ArcMap<Flow> FlowMap; |
|
80 |
/// The type of the potential map |
|
81 |
typedef GR::NodeMap<Cost> PotentialMap; |
|
82 |
#else |
|
83 |
/// The type of the flow map |
|
84 |
typedef typename GR::template ArcMap<Flow> FlowMap; |
|
85 |
/// The type of the potential map |
|
86 |
typedef typename GR::template NodeMap<Cost> PotentialMap; |
|
87 |
#endif |
|
88 |
|
|
89 |
public: |
|
90 |
|
|
91 |
/// \brief Enum type for selecting the pivot rule. |
|
92 |
/// |
|
93 |
/// Enum type for selecting the pivot rule for the \ref run() |
|
94 |
/// function. |
|
95 |
/// |
|
96 |
/// \ref NetworkSimplex provides five different pivot rule |
|
97 |
/// implementations that significantly affect the running time |
|
98 |
/// of the algorithm. |
|
99 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which |
|
100 |
/// proved to be the most efficient and the most robust on various |
|
101 |
/// test inputs according to our benchmark tests. |
|
102 |
/// However another pivot rule can be selected using the \ref run() |
|
103 |
/// function with the proper parameter. |
|
104 |
enum PivotRule { |
|
105 |
|
|
106 |
/// The First Eligible pivot rule. |
|
107 |
/// The next eligible arc is selected in a wraparound fashion |
|
108 |
/// in every iteration. |
|
109 |
FIRST_ELIGIBLE, |
|
110 |
|
|
111 |
/// The Best Eligible pivot rule. |
|
112 |
/// The best eligible arc is selected in every iteration. |
|
113 |
BEST_ELIGIBLE, |
|
114 |
|
|
115 |
/// The Block Search pivot rule. |
|
116 |
/// A specified number of arcs are examined in every iteration |
|
117 |
/// in a wraparound fashion and the best eligible arc is selected |
|
118 |
/// from this block. |
|
119 |
BLOCK_SEARCH, |
|
120 |
|
|
121 |
/// The Candidate List pivot rule. |
|
122 |
/// In a major iteration a candidate list is built from eligible arcs |
|
123 |
/// in a wraparound fashion and in the following minor iterations |
|
124 |
/// the best eligible arc is selected from this list. |
|
125 |
CANDIDATE_LIST, |
|
126 |
|
|
127 |
/// The Altering Candidate List pivot rule. |
|
128 |
/// It is a modified version of the Candidate List method. |
|
129 |
/// It keeps only the several best eligible arcs from the former |
|
130 |
/// candidate list and extends this list in every iteration. |
|
131 |
ALTERING_LIST |
|
132 |
}; |
|
133 |
|
|
134 |
/// \brief Enum type for selecting the problem type. |
|
135 |
/// |
|
136 |
/// Enum type for selecting the problem type, i.e. the direction of |
|
137 |
/// the inequalities in the supply/demand constraints of the |
|
138 |
/// \ref min_cost_flow "minimum cost flow problem". |
|
139 |
/// |
|
140 |
/// The default problem type is \c GEQ, since this form is supported |
|
141 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
142 |
/// algorithm as well. |
|
143 |
/// The \c LEQ problem type can be selected using the \ref problemType() |
|
144 |
/// function. |
|
145 |
/// |
|
146 |
/// Note that the equality form is a special case of both problem type. |
|
147 |
enum ProblemType { |
|
148 |
|
|
149 |
/// This option means that there are "<em>greater or equal</em>" |
|
150 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
151 |
/// problem is the following. |
|
152 |
/** |
|
153 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
154 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
155 |
sup(u) \quad \forall u\in V \f] |
|
156 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
157 |
*/ |
|
158 |
/// It means that the total demand must be greater or equal to the |
|
159 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
160 |
/// negative) and all the supplies have to be carried out from |
|
161 |
/// the supply nodes, but there could be demands that are not |
|
162 |
/// satisfied. |
|
163 |
GEQ, |
|
164 |
/// It is just an alias for the \c GEQ option. |
|
165 |
CARRY_SUPPLIES = GEQ, |
|
166 |
|
|
167 |
/// This option means that there are "<em>less or equal</em>" |
|
168 |
/// constraints in the defintion, i.e. the exact formulation of the |
|
169 |
/// problem is the following. |
|
170 |
/** |
|
171 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
172 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
173 |
sup(u) \quad \forall u\in V \f] |
|
174 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
175 |
*/ |
|
176 |
/// It means that the total demand must be less or equal to the |
|
177 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
178 |
/// positive) and all the demands have to be satisfied, but there |
|
179 |
/// could be supplies that are not carried out from the supply |
|
180 |
/// nodes. |
|
181 |
LEQ, |
|
182 |
/// It is just an alias for the \c LEQ option. |
|
183 |
SATISFY_DEMANDS = LEQ |
|
184 |
}; |
|
185 |
|
|
186 |
private: |
|
187 |
|
|
188 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
189 |
|
|
190 |
typedef typename GR::template ArcMap<Flow> FlowArcMap; |
|
191 |
typedef typename GR::template ArcMap<Cost> CostArcMap; |
|
192 |
typedef typename GR::template NodeMap<Flow> FlowNodeMap; |
|
193 |
|
|
194 |
typedef std::vector<Arc> ArcVector; |
|
195 |
typedef std::vector<Node> NodeVector; |
|
196 |
typedef std::vector<int> IntVector; |
|
197 |
typedef std::vector<bool> BoolVector; |
|
198 |
typedef std::vector<Flow> FlowVector; |
|
199 |
typedef std::vector<Cost> CostVector; |
|
200 |
|
|
201 |
// State constants for arcs |
|
202 |
enum ArcStateEnum { |
|
203 |
STATE_UPPER = -1, |
|
204 |
STATE_TREE = 0, |
|
205 |
STATE_LOWER = 1 |
|
206 |
}; |
|
207 |
|
|
208 |
private: |
|
209 |
|
|
210 |
// Data related to the underlying digraph |
|
211 |
const GR &_graph; |
|
212 |
int _node_num; |
|
213 |
int _arc_num; |
|
214 |
|
|
215 |
// Parameters of the problem |
|
216 |
FlowArcMap *_plower; |
|
217 |
FlowArcMap *_pupper; |
|
218 |
CostArcMap *_pcost; |
|
219 |
FlowNodeMap *_psupply; |
|
220 |
bool _pstsup; |
|
221 |
Node _psource, _ptarget; |
|
222 |
Flow _pstflow; |
|
223 |
ProblemType _ptype; |
|
224 |
|
|
225 |
// Result maps |
|
226 |
FlowMap *_flow_map; |
|
227 |
PotentialMap *_potential_map; |
|
228 |
bool _local_flow; |
|
229 |
bool _local_potential; |
|
230 |
|
|
231 |
// Data structures for storing the digraph |
|
232 |
IntNodeMap _node_id; |
|
233 |
ArcVector _arc_ref; |
|
234 |
IntVector _source; |
|
235 |
IntVector _target; |
|
236 |
|
|
237 |
// Node and arc data |
|
238 |
FlowVector _cap; |
|
239 |
CostVector _cost; |
|
240 |
FlowVector _supply; |
|
241 |
FlowVector _flow; |
|
242 |
CostVector _pi; |
|
243 |
|
|
244 |
// Data for storing the spanning tree structure |
|
245 |
IntVector _parent; |
|
246 |
IntVector _pred; |
|
247 |
IntVector _thread; |
|
248 |
IntVector _rev_thread; |
|
249 |
IntVector _succ_num; |
|
250 |
IntVector _last_succ; |
|
251 |
IntVector _dirty_revs; |
|
252 |
BoolVector _forward; |
|
253 |
IntVector _state; |
|
254 |
int _root; |
|
255 |
|
|
256 |
// Temporary data used in the current pivot iteration |
|
257 |
int in_arc, join, u_in, v_in, u_out, v_out; |
|
258 |
int first, second, right, last; |
|
259 |
int stem, par_stem, new_stem; |
|
260 |
Flow delta; |
|
261 |
|
|
262 |
private: |
|
263 |
|
|
264 |
// Implementation of the First Eligible pivot rule |
|
265 |
class FirstEligiblePivotRule |
|
266 |
{ |
|
267 |
private: |
|
268 |
|
|
269 |
// References to the NetworkSimplex class |
|
270 |
const IntVector &_source; |
|
271 |
const IntVector &_target; |
|
272 |
const CostVector &_cost; |
|
273 |
const IntVector &_state; |
|
274 |
const CostVector &_pi; |
|
275 |
int &_in_arc; |
|
276 |
int _arc_num; |
|
277 |
|
|
278 |
// Pivot rule data |
|
279 |
int _next_arc; |
|
280 |
|
|
281 |
public: |
|
282 |
|
|
283 |
// Constructor |
|
284 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
|
285 |
_source(ns._source), _target(ns._target), |
|
286 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
287 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
288 |
{} |
|
289 |
|
|
290 |
// Find next entering arc |
|
291 |
bool findEnteringArc() { |
|
292 |
Cost c; |
|
293 |
for (int e = _next_arc; e < _arc_num; ++e) { |
|
294 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
295 |
if (c < 0) { |
|
296 |
_in_arc = e; |
|
297 |
_next_arc = e + 1; |
|
298 |
return true; |
|
299 |
} |
|
300 |
} |
|
301 |
for (int e = 0; e < _next_arc; ++e) { |
|
302 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
303 |
if (c < 0) { |
|
304 |
_in_arc = e; |
|
305 |
_next_arc = e + 1; |
|
306 |
return true; |
|
307 |
} |
|
308 |
} |
|
309 |
return false; |
|
310 |
} |
|
311 |
|
|
312 |
}; //class FirstEligiblePivotRule |
|
313 |
|
|
314 |
|
|
315 |
// Implementation of the Best Eligible pivot rule |
|
316 |
class BestEligiblePivotRule |
|
317 |
{ |
|
318 |
private: |
|
319 |
|
|
320 |
// References to the NetworkSimplex class |
|
321 |
const IntVector &_source; |
|
322 |
const IntVector &_target; |
|
323 |
const CostVector &_cost; |
|
324 |
const IntVector &_state; |
|
325 |
const CostVector &_pi; |
|
326 |
int &_in_arc; |
|
327 |
int _arc_num; |
|
328 |
|
|
329 |
public: |
|
330 |
|
|
331 |
// Constructor |
|
332 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
|
333 |
_source(ns._source), _target(ns._target), |
|
334 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
335 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num) |
|
336 |
{} |
|
337 |
|
|
338 |
// Find next entering arc |
|
339 |
bool findEnteringArc() { |
|
340 |
Cost c, min = 0; |
|
341 |
for (int e = 0; e < _arc_num; ++e) { |
|
342 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
343 |
if (c < min) { |
|
344 |
min = c; |
|
345 |
_in_arc = e; |
|
346 |
} |
|
347 |
} |
|
348 |
return min < 0; |
|
349 |
} |
|
350 |
|
|
351 |
}; //class BestEligiblePivotRule |
|
352 |
|
|
353 |
|
|
354 |
// Implementation of the Block Search pivot rule |
|
355 |
class BlockSearchPivotRule |
|
356 |
{ |
|
357 |
private: |
|
358 |
|
|
359 |
// References to the NetworkSimplex class |
|
360 |
const IntVector &_source; |
|
361 |
const IntVector &_target; |
|
362 |
const CostVector &_cost; |
|
363 |
const IntVector &_state; |
|
364 |
const CostVector &_pi; |
|
365 |
int &_in_arc; |
|
366 |
int _arc_num; |
|
367 |
|
|
368 |
// Pivot rule data |
|
369 |
int _block_size; |
|
370 |
int _next_arc; |
|
371 |
|
|
372 |
public: |
|
373 |
|
|
374 |
// Constructor |
|
375 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
|
376 |
_source(ns._source), _target(ns._target), |
|
377 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
378 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
379 |
{ |
|
380 |
// The main parameters of the pivot rule |
|
381 |
const double BLOCK_SIZE_FACTOR = 2.0; |
|
382 |
const int MIN_BLOCK_SIZE = 10; |
|
383 |
|
|
384 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
|
385 |
MIN_BLOCK_SIZE ); |
|
386 |
} |
|
387 |
|
|
388 |
// Find next entering arc |
|
389 |
bool findEnteringArc() { |
|
390 |
Cost c, min = 0; |
|
391 |
int cnt = _block_size; |
|
392 |
int e, min_arc = _next_arc; |
|
393 |
for (e = _next_arc; e < _arc_num; ++e) { |
|
394 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
395 |
if (c < min) { |
|
396 |
min = c; |
|
397 |
min_arc = e; |
|
398 |
} |
|
399 |
if (--cnt == 0) { |
|
400 |
if (min < 0) break; |
|
401 |
cnt = _block_size; |
|
402 |
} |
|
403 |
} |
|
404 |
if (min == 0 || cnt > 0) { |
|
405 |
for (e = 0; e < _next_arc; ++e) { |
|
406 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
407 |
if (c < min) { |
|
408 |
min = c; |
|
409 |
min_arc = e; |
|
410 |
} |
|
411 |
if (--cnt == 0) { |
|
412 |
if (min < 0) break; |
|
413 |
cnt = _block_size; |
|
414 |
} |
|
415 |
} |
|
416 |
} |
|
417 |
if (min >= 0) return false; |
|
418 |
_in_arc = min_arc; |
|
419 |
_next_arc = e; |
|
420 |
return true; |
|
421 |
} |
|
422 |
|
|
423 |
}; //class BlockSearchPivotRule |
|
424 |
|
|
425 |
|
|
426 |
// Implementation of the Candidate List pivot rule |
|
427 |
class CandidateListPivotRule |
|
428 |
{ |
|
429 |
private: |
|
430 |
|
|
431 |
// References to the NetworkSimplex class |
|
432 |
const IntVector &_source; |
|
433 |
const IntVector &_target; |
|
434 |
const CostVector &_cost; |
|
435 |
const IntVector &_state; |
|
436 |
const CostVector &_pi; |
|
437 |
int &_in_arc; |
|
438 |
int _arc_num; |
|
439 |
|
|
440 |
// Pivot rule data |
|
441 |
IntVector _candidates; |
|
442 |
int _list_length, _minor_limit; |
|
443 |
int _curr_length, _minor_count; |
|
444 |
int _next_arc; |
|
445 |
|
|
446 |
public: |
|
447 |
|
|
448 |
/// Constructor |
|
449 |
CandidateListPivotRule(NetworkSimplex &ns) : |
|
450 |
_source(ns._source), _target(ns._target), |
|
451 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
452 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0) |
|
453 |
{ |
|
454 |
// The main parameters of the pivot rule |
|
455 |
const double LIST_LENGTH_FACTOR = 1.0; |
|
456 |
const int MIN_LIST_LENGTH = 10; |
|
457 |
const double MINOR_LIMIT_FACTOR = 0.1; |
|
458 |
const int MIN_MINOR_LIMIT = 3; |
|
459 |
|
|
460 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_arc_num)), |
|
461 |
MIN_LIST_LENGTH ); |
|
462 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
|
463 |
MIN_MINOR_LIMIT ); |
|
464 |
_curr_length = _minor_count = 0; |
|
465 |
_candidates.resize(_list_length); |
|
466 |
} |
|
467 |
|
|
468 |
/// Find next entering arc |
|
469 |
bool findEnteringArc() { |
|
470 |
Cost min, c; |
|
471 |
int e, min_arc = _next_arc; |
|
472 |
if (_curr_length > 0 && _minor_count < _minor_limit) { |
|
473 |
// Minor iteration: select the best eligible arc from the |
|
474 |
// current candidate list |
|
475 |
++_minor_count; |
|
476 |
min = 0; |
|
477 |
for (int i = 0; i < _curr_length; ++i) { |
|
478 |
e = _candidates[i]; |
|
479 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
480 |
if (c < min) { |
|
481 |
min = c; |
|
482 |
min_arc = e; |
|
483 |
} |
|
484 |
if (c >= 0) { |
|
485 |
_candidates[i--] = _candidates[--_curr_length]; |
|
486 |
} |
|
487 |
} |
|
488 |
if (min < 0) { |
|
489 |
_in_arc = min_arc; |
|
490 |
return true; |
|
491 |
} |
|
492 |
} |
|
493 |
|
|
494 |
// Major iteration: build a new candidate list |
|
495 |
min = 0; |
|
496 |
_curr_length = 0; |
|
497 |
for (e = _next_arc; e < _arc_num; ++e) { |
|
498 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
499 |
if (c < 0) { |
|
500 |
_candidates[_curr_length++] = e; |
|
501 |
if (c < min) { |
|
502 |
min = c; |
|
503 |
min_arc = e; |
|
504 |
} |
|
505 |
if (_curr_length == _list_length) break; |
|
506 |
} |
|
507 |
} |
|
508 |
if (_curr_length < _list_length) { |
|
509 |
for (e = 0; e < _next_arc; ++e) { |
|
510 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
511 |
if (c < 0) { |
|
512 |
_candidates[_curr_length++] = e; |
|
513 |
if (c < min) { |
|
514 |
min = c; |
|
515 |
min_arc = e; |
|
516 |
} |
|
517 |
if (_curr_length == _list_length) break; |
|
518 |
} |
|
519 |
} |
|
520 |
} |
|
521 |
if (_curr_length == 0) return false; |
|
522 |
_minor_count = 1; |
|
523 |
_in_arc = min_arc; |
|
524 |
_next_arc = e; |
|
525 |
return true; |
|
526 |
} |
|
527 |
|
|
528 |
}; //class CandidateListPivotRule |
|
529 |
|
|
530 |
|
|
531 |
// Implementation of the Altering Candidate List pivot rule |
|
532 |
class AlteringListPivotRule |
|
533 |
{ |
|
534 |
private: |
|
535 |
|
|
536 |
// References to the NetworkSimplex class |
|
537 |
const IntVector &_source; |
|
538 |
const IntVector &_target; |
|
539 |
const CostVector &_cost; |
|
540 |
const IntVector &_state; |
|
541 |
const CostVector &_pi; |
|
542 |
int &_in_arc; |
|
543 |
int _arc_num; |
|
544 |
|
|
545 |
// Pivot rule data |
|
546 |
int _block_size, _head_length, _curr_length; |
|
547 |
int _next_arc; |
|
548 |
IntVector _candidates; |
|
549 |
CostVector _cand_cost; |
|
550 |
|
|
551 |
// Functor class to compare arcs during sort of the candidate list |
|
552 |
class SortFunc |
|
553 |
{ |
|
554 |
private: |
|
555 |
const CostVector &_map; |
|
556 |
public: |
|
557 |
SortFunc(const CostVector &map) : _map(map) {} |
|
558 |
bool operator()(int left, int right) { |
|
559 |
return _map[left] > _map[right]; |
|
560 |
} |
|
561 |
}; |
|
562 |
|
|
563 |
SortFunc _sort_func; |
|
564 |
|
|
565 |
public: |
|
566 |
|
|
567 |
// Constructor |
|
568 |
AlteringListPivotRule(NetworkSimplex &ns) : |
|
569 |
_source(ns._source), _target(ns._target), |
|
570 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
|
571 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
|
572 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
|
573 |
{ |
|
574 |
// The main parameters of the pivot rule |
|
575 |
const double BLOCK_SIZE_FACTOR = 1.5; |
|
576 |
const int MIN_BLOCK_SIZE = 10; |
|
577 |
const double HEAD_LENGTH_FACTOR = 0.1; |
|
578 |
const int MIN_HEAD_LENGTH = 3; |
|
579 |
|
|
580 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_arc_num)), |
|
581 |
MIN_BLOCK_SIZE ); |
|
582 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
|
583 |
MIN_HEAD_LENGTH ); |
|
584 |
_candidates.resize(_head_length + _block_size); |
|
585 |
_curr_length = 0; |
|
586 |
} |
|
587 |
|
|
588 |
// Find next entering arc |
|
589 |
bool findEnteringArc() { |
|
590 |
// Check the current candidate list |
|
591 |
int e; |
|
592 |
for (int i = 0; i < _curr_length; ++i) { |
|
593 |
e = _candidates[i]; |
|
594 |
_cand_cost[e] = _state[e] * |
|
595 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
596 |
if (_cand_cost[e] >= 0) { |
|
597 |
_candidates[i--] = _candidates[--_curr_length]; |
|
598 |
} |
|
599 |
} |
|
600 |
|
|
601 |
// Extend the list |
|
602 |
int cnt = _block_size; |
|
603 |
int last_arc = 0; |
|
604 |
int limit = _head_length; |
|
605 |
|
|
606 |
for (int e = _next_arc; e < _arc_num; ++e) { |
|
607 |
_cand_cost[e] = _state[e] * |
|
608 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
609 |
if (_cand_cost[e] < 0) { |
|
610 |
_candidates[_curr_length++] = e; |
|
611 |
last_arc = e; |
|
612 |
} |
|
613 |
if (--cnt == 0) { |
|
614 |
if (_curr_length > limit) break; |
|
615 |
limit = 0; |
|
616 |
cnt = _block_size; |
|
617 |
} |
|
618 |
} |
|
619 |
if (_curr_length <= limit) { |
|
620 |
for (int e = 0; e < _next_arc; ++e) { |
|
621 |
_cand_cost[e] = _state[e] * |
|
622 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
|
623 |
if (_cand_cost[e] < 0) { |
|
624 |
_candidates[_curr_length++] = e; |
|
625 |
last_arc = e; |
|
626 |
} |
|
627 |
if (--cnt == 0) { |
|
628 |
if (_curr_length > limit) break; |
|
629 |
limit = 0; |
|
630 |
cnt = _block_size; |
|
631 |
} |
|
632 |
} |
|
633 |
} |
|
634 |
if (_curr_length == 0) return false; |
|
635 |
_next_arc = last_arc + 1; |
|
636 |
|
|
637 |
// Make heap of the candidate list (approximating a partial sort) |
|
638 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
639 |
_sort_func ); |
|
640 |
|
|
641 |
// Pop the first element of the heap |
|
642 |
_in_arc = _candidates[0]; |
|
643 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
|
644 |
_sort_func ); |
|
645 |
_curr_length = std::min(_head_length, _curr_length - 1); |
|
646 |
return true; |
|
647 |
} |
|
648 |
|
|
649 |
}; //class AlteringListPivotRule |
|
650 |
|
|
651 |
public: |
|
652 |
|
|
653 |
/// \brief Constructor. |
|
654 |
/// |
|
655 |
/// The constructor of the class. |
|
656 |
/// |
|
657 |
/// \param graph The digraph the algorithm runs on. |
|
658 |
NetworkSimplex(const GR& graph) : |
|
659 |
_graph(graph), |
|
660 |
_plower(NULL), _pupper(NULL), _pcost(NULL), |
|
661 |
_psupply(NULL), _pstsup(false), _ptype(GEQ), |
|
662 |
_flow_map(NULL), _potential_map(NULL), |
|
663 |
_local_flow(false), _local_potential(false), |
|
664 |
_node_id(graph) |
|
665 |
{ |
|
666 |
LEMON_ASSERT(std::numeric_limits<Flow>::is_integer && |
|
667 |
std::numeric_limits<Flow>::is_signed, |
|
668 |
"The flow type of NetworkSimplex must be signed integer"); |
|
669 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_integer && |
|
670 |
std::numeric_limits<Cost>::is_signed, |
|
671 |
"The cost type of NetworkSimplex must be signed integer"); |
|
672 |
} |
|
673 |
|
|
674 |
/// Destructor. |
|
675 |
~NetworkSimplex() { |
|
676 |
if (_local_flow) delete _flow_map; |
|
677 |
if (_local_potential) delete _potential_map; |
|
678 |
} |
|
679 |
|
|
680 |
/// \name Parameters |
|
681 |
/// The parameters of the algorithm can be specified using these |
|
682 |
/// functions. |
|
683 |
|
|
684 |
/// @{ |
|
685 |
|
|
686 |
/// \brief Set the lower bounds on the arcs. |
|
687 |
/// |
|
688 |
/// This function sets the lower bounds on the arcs. |
|
689 |
/// If neither this function nor \ref boundMaps() is used before |
|
690 |
/// calling \ref run(), the lower bounds will be set to zero |
|
691 |
/// on all arcs. |
|
692 |
/// |
|
693 |
/// \param map An arc map storing the lower bounds. |
|
694 |
/// Its \c Value type must be convertible to the \c Flow type |
|
695 |
/// of the algorithm. |
|
696 |
/// |
|
697 |
/// \return <tt>(*this)</tt> |
|
698 |
template <typename LOWER> |
|
699 |
NetworkSimplex& lowerMap(const LOWER& map) { |
|
700 |
delete _plower; |
|
701 |
_plower = new FlowArcMap(_graph); |
|
702 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
703 |
(*_plower)[a] = map[a]; |
|
704 |
} |
|
705 |
return *this; |
|
706 |
} |
|
707 |
|
|
708 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
709 |
/// |
|
710 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
711 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
712 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
713 |
/// the upper bounds (capacities) will be set to |
|
714 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
715 |
/// |
|
716 |
/// \param map An arc map storing the upper bounds. |
|
717 |
/// Its \c Value type must be convertible to the \c Flow type |
|
718 |
/// of the algorithm. |
|
719 |
/// |
|
720 |
/// \return <tt>(*this)</tt> |
|
721 |
template<typename UPPER> |
|
722 |
NetworkSimplex& upperMap(const UPPER& map) { |
|
723 |
delete _pupper; |
|
724 |
_pupper = new FlowArcMap(_graph); |
|
725 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
726 |
(*_pupper)[a] = map[a]; |
|
727 |
} |
|
728 |
return *this; |
|
729 |
} |
|
730 |
|
|
731 |
/// \brief Set the upper bounds (capacities) on the arcs. |
|
732 |
/// |
|
733 |
/// This function sets the upper bounds (capacities) on the arcs. |
|
734 |
/// It is just an alias for \ref upperMap(). |
|
735 |
/// |
|
736 |
/// \return <tt>(*this)</tt> |
|
737 |
template<typename CAP> |
|
738 |
NetworkSimplex& capacityMap(const CAP& map) { |
|
739 |
return upperMap(map); |
|
740 |
} |
|
741 |
|
|
742 |
/// \brief Set the lower and upper bounds on the arcs. |
|
743 |
/// |
|
744 |
/// This function sets the lower and upper bounds on the arcs. |
|
745 |
/// If neither this function nor \ref lowerMap() is used before |
|
746 |
/// calling \ref run(), the lower bounds will be set to zero |
|
747 |
/// on all arcs. |
|
748 |
/// If none of the functions \ref upperMap(), \ref capacityMap() |
|
749 |
/// and \ref boundMaps() is used before calling \ref run(), |
|
750 |
/// the upper bounds (capacities) will be set to |
|
751 |
/// \c std::numeric_limits<Flow>::max() on all arcs. |
|
752 |
/// |
|
753 |
/// \param lower An arc map storing the lower bounds. |
|
754 |
/// \param upper An arc map storing the upper bounds. |
|
755 |
/// |
|
756 |
/// The \c Value type of the maps must be convertible to the |
|
757 |
/// \c Flow type of the algorithm. |
|
758 |
/// |
|
759 |
/// \note This function is just a shortcut of calling \ref lowerMap() |
|
760 |
/// and \ref upperMap() separately. |
|
761 |
/// |
|
762 |
/// \return <tt>(*this)</tt> |
|
763 |
template <typename LOWER, typename UPPER> |
|
764 |
NetworkSimplex& boundMaps(const LOWER& lower, const UPPER& upper) { |
|
765 |
return lowerMap(lower).upperMap(upper); |
|
766 |
} |
|
767 |
|
|
768 |
/// \brief Set the costs of the arcs. |
|
769 |
/// |
|
770 |
/// This function sets the costs of the arcs. |
|
771 |
/// If it is not used before calling \ref run(), the costs |
|
772 |
/// will be set to \c 1 on all arcs. |
|
773 |
/// |
|
774 |
/// \param map An arc map storing the costs. |
|
775 |
/// Its \c Value type must be convertible to the \c Cost type |
|
776 |
/// of the algorithm. |
|
777 |
/// |
|
778 |
/// \return <tt>(*this)</tt> |
|
779 |
template<typename COST> |
|
780 |
NetworkSimplex& costMap(const COST& map) { |
|
781 |
delete _pcost; |
|
782 |
_pcost = new CostArcMap(_graph); |
|
783 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
|
784 |
(*_pcost)[a] = map[a]; |
|
785 |
} |
|
786 |
return *this; |
|
787 |
} |
|
788 |
|
|
789 |
/// \brief Set the supply values of the nodes. |
|
790 |
/// |
|
791 |
/// This function sets the supply values of the nodes. |
|
792 |
/// If neither this function nor \ref stSupply() is used before |
|
793 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
794 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
795 |
/// |
|
796 |
/// \param map A node map storing the supply values. |
|
797 |
/// Its \c Value type must be convertible to the \c Flow type |
|
798 |
/// of the algorithm. |
|
799 |
/// |
|
800 |
/// \return <tt>(*this)</tt> |
|
801 |
template<typename SUP> |
|
802 |
NetworkSimplex& supplyMap(const SUP& map) { |
|
803 |
delete _psupply; |
|
804 |
_pstsup = false; |
|
805 |
_psupply = new FlowNodeMap(_graph); |
|
806 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
807 |
(*_psupply)[n] = map[n]; |
|
808 |
} |
|
809 |
return *this; |
|
810 |
} |
|
811 |
|
|
812 |
/// \brief Set single source and target nodes and a supply value. |
|
813 |
/// |
|
814 |
/// This function sets a single source node and a single target node |
|
815 |
/// and the required flow value. |
|
816 |
/// If neither this function nor \ref supplyMap() is used before |
|
817 |
/// calling \ref run(), the supply of each node will be set to zero. |
|
818 |
/// (It makes sense only if non-zero lower bounds are given.) |
|
819 |
/// |
|
820 |
/// \param s The source node. |
|
821 |
/// \param t The target node. |
|
822 |
/// \param k The required amount of flow from node \c s to node \c t |
|
823 |
/// (i.e. the supply of \c s and the demand of \c t). |
|
824 |
/// |
|
825 |
/// \return <tt>(*this)</tt> |
|
826 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Flow k) { |
|
827 |
delete _psupply; |
|
828 |
_psupply = NULL; |
|
829 |
_pstsup = true; |
|
830 |
_psource = s; |
|
831 |
_ptarget = t; |
|
832 |
_pstflow = k; |
|
833 |
return *this; |
|
834 |
} |
|
835 |
|
|
836 |
/// \brief Set the problem type. |
|
837 |
/// |
|
838 |
/// This function sets the problem type for the algorithm. |
|
839 |
/// If it is not used before calling \ref run(), the \ref GEQ problem |
|
840 |
/// type will be used. |
|
841 |
/// |
|
842 |
/// For more information see \ref ProblemType. |
|
843 |
/// |
|
844 |
/// \return <tt>(*this)</tt> |
|
845 |
NetworkSimplex& problemType(ProblemType problem_type) { |
|
846 |
_ptype = problem_type; |
|
847 |
return *this; |
|
848 |
} |
|
849 |
|
|
850 |
/// \brief Set the flow map. |
|
851 |
/// |
|
852 |
/// This function sets the flow map. |
|
853 |
/// If it is not used before calling \ref run(), an instance will |
|
854 |
/// be allocated automatically. The destructor deallocates this |
|
855 |
/// automatically allocated map, of course. |
|
856 |
/// |
|
857 |
/// \return <tt>(*this)</tt> |
|
858 |
NetworkSimplex& flowMap(FlowMap& map) { |
|
859 |
if (_local_flow) { |
|
860 |
delete _flow_map; |
|
861 |
_local_flow = false; |
|
862 |
} |
|
863 |
_flow_map = ↦ |
|
864 |
return *this; |
|
865 |
} |
|
866 |
|
|
867 |
/// \brief Set the potential map. |
|
868 |
/// |
|
869 |
/// This function sets the potential map, which is used for storing |
|
870 |
/// the dual solution. |
|
871 |
/// If it is not used before calling \ref run(), an instance will |
|
872 |
/// be allocated automatically. The destructor deallocates this |
|
873 |
/// automatically allocated map, of course. |
|
874 |
/// |
|
875 |
/// \return <tt>(*this)</tt> |
|
876 |
NetworkSimplex& potentialMap(PotentialMap& map) { |
|
877 |
if (_local_potential) { |
|
878 |
delete _potential_map; |
|
879 |
_local_potential = false; |
|
880 |
} |
|
881 |
_potential_map = ↦ |
|
882 |
return *this; |
|
883 |
} |
|
884 |
|
|
885 |
/// @} |
|
886 |
|
|
887 |
/// \name Execution Control |
|
888 |
/// The algorithm can be executed using \ref run(). |
|
889 |
|
|
890 |
/// @{ |
|
891 |
|
|
892 |
/// \brief Run the algorithm. |
|
893 |
/// |
|
894 |
/// This function runs the algorithm. |
|
895 |
/// The paramters can be specified using functions \ref lowerMap(), |
|
896 |
/// \ref upperMap(), \ref capacityMap(), \ref boundMaps(), |
|
897 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
898 |
/// \ref problemType(), \ref flowMap() and \ref potentialMap(). |
|
899 |
/// For example, |
|
900 |
/// \code |
|
901 |
/// NetworkSimplex<ListDigraph> ns(graph); |
|
902 |
/// ns.boundMaps(lower, upper).costMap(cost) |
|
903 |
/// .supplyMap(sup).run(); |
|
904 |
/// \endcode |
|
905 |
/// |
|
906 |
/// This function can be called more than once. All the parameters |
|
907 |
/// that have been given are kept for the next call, unless |
|
908 |
/// \ref reset() is called, thus only the modified parameters |
|
909 |
/// have to be set again. See \ref reset() for examples. |
|
910 |
/// |
|
911 |
/// \param pivot_rule The pivot rule that will be used during the |
|
912 |
/// algorithm. For more information see \ref PivotRule. |
|
913 |
/// |
|
914 |
/// \return \c true if a feasible flow can be found. |
|
915 |
bool run(PivotRule pivot_rule = BLOCK_SEARCH) { |
|
916 |
return init() && start(pivot_rule); |
|
917 |
} |
|
918 |
|
|
919 |
/// \brief Reset all the parameters that have been given before. |
|
920 |
/// |
|
921 |
/// This function resets all the paramaters that have been given |
|
922 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
|
923 |
/// \ref capacityMap(), \ref boundMaps(), \ref costMap(), |
|
924 |
/// \ref supplyMap(), \ref stSupply(), \ref problemType(), |
|
925 |
/// \ref flowMap() and \ref potentialMap(). |
|
926 |
/// |
|
927 |
/// It is useful for multiple run() calls. If this function is not |
|
928 |
/// used, all the parameters given before are kept for the next |
|
929 |
/// \ref run() call. |
|
930 |
/// |
|
931 |
/// For example, |
|
932 |
/// \code |
|
933 |
/// NetworkSimplex<ListDigraph> ns(graph); |
|
934 |
/// |
|
935 |
/// // First run |
|
936 |
/// ns.lowerMap(lower).capacityMap(cap).costMap(cost) |
|
937 |
/// .supplyMap(sup).run(); |
|
938 |
/// |
|
939 |
/// // Run again with modified cost map (reset() is not called, |
|
940 |
/// // so only the cost map have to be set again) |
|
941 |
/// cost[e] += 100; |
|
942 |
/// ns.costMap(cost).run(); |
|
943 |
/// |
|
944 |
/// // Run again from scratch using reset() |
|
945 |
/// // (the lower bounds will be set to zero on all arcs) |
|
946 |
/// ns.reset(); |
|
947 |
/// ns.capacityMap(cap).costMap(cost) |
|
948 |
/// .supplyMap(sup).run(); |
|
949 |
/// \endcode |
|
950 |
/// |
|
951 |
/// \return <tt>(*this)</tt> |
|
952 |
NetworkSimplex& reset() { |
|
953 |
delete _plower; |
|
954 |
delete _pupper; |
|
955 |
delete _pcost; |
|
956 |
delete _psupply; |
|
957 |
_plower = NULL; |
|
958 |
_pupper = NULL; |
|
959 |
_pcost = NULL; |
|
960 |
_psupply = NULL; |
|
961 |
_pstsup = false; |
|
962 |
_ptype = GEQ; |
|
963 |
if (_local_flow) delete _flow_map; |
|
964 |
if (_local_potential) delete _potential_map; |
|
965 |
_flow_map = NULL; |
|
966 |
_potential_map = NULL; |
|
967 |
_local_flow = false; |
|
968 |
_local_potential = false; |
|
969 |
|
|
970 |
return *this; |
|
971 |
} |
|
972 |
|
|
973 |
/// @} |
|
974 |
|
|
975 |
/// \name Query Functions |
|
976 |
/// The results of the algorithm can be obtained using these |
|
977 |
/// functions.\n |
|
978 |
/// The \ref run() function must be called before using them. |
|
979 |
|
|
980 |
/// @{ |
|
981 |
|
|
982 |
/// \brief Return the total cost of the found flow. |
|
983 |
/// |
|
984 |
/// This function returns the total cost of the found flow. |
|
985 |
/// The complexity of the function is O(e). |
|
986 |
/// |
|
987 |
/// \note The return type of the function can be specified as a |
|
988 |
/// template parameter. For example, |
|
989 |
/// \code |
|
990 |
/// ns.totalCost<double>(); |
|
991 |
/// \endcode |
|
992 |
/// It is useful if the total cost cannot be stored in the \c Cost |
|
993 |
/// type of the algorithm, which is the default return type of the |
|
994 |
/// function. |
|
995 |
/// |
|
996 |
/// \pre \ref run() must be called before using this function. |
|
997 |
template <typename Num> |
|
998 |
Num totalCost() const { |
|
999 |
Num c = 0; |
|
1000 |
if (_pcost) { |
|
1001 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
1002 |
c += (*_flow_map)[e] * (*_pcost)[e]; |
|
1003 |
} else { |
|
1004 |
for (ArcIt e(_graph); e != INVALID; ++e) |
|
1005 |
c += (*_flow_map)[e]; |
|
1006 |
} |
|
1007 |
return c; |
|
1008 |
} |
|
1009 |
|
|
1010 |
#ifndef DOXYGEN |
|
1011 |
Cost totalCost() const { |
|
1012 |
return totalCost<Cost>(); |
|
1013 |
} |
|
1014 |
#endif |
|
1015 |
|
|
1016 |
/// \brief Return the flow on the given arc. |
|
1017 |
/// |
|
1018 |
/// This function returns the flow on the given arc. |
|
1019 |
/// |
|
1020 |
/// \pre \ref run() must be called before using this function. |
|
1021 |
Flow flow(const Arc& a) const { |
|
1022 |
return (*_flow_map)[a]; |
|
1023 |
} |
|
1024 |
|
|
1025 |
/// \brief Return a const reference to the flow map. |
|
1026 |
/// |
|
1027 |
/// This function returns a const reference to an arc map storing |
|
1028 |
/// the found flow. |
|
1029 |
/// |
|
1030 |
/// \pre \ref run() must be called before using this function. |
|
1031 |
const FlowMap& flowMap() const { |
|
1032 |
return *_flow_map; |
|
1033 |
} |
|
1034 |
|
|
1035 |
/// \brief Return the potential (dual value) of the given node. |
|
1036 |
/// |
|
1037 |
/// This function returns the potential (dual value) of the |
|
1038 |
/// given node. |
|
1039 |
/// |
|
1040 |
/// \pre \ref run() must be called before using this function. |
|
1041 |
Cost potential(const Node& n) const { |
|
1042 |
return (*_potential_map)[n]; |
|
1043 |
} |
|
1044 |
|
|
1045 |
/// \brief Return a const reference to the potential map |
|
1046 |
/// (the dual solution). |
|
1047 |
/// |
|
1048 |
/// This function returns a const reference to a node map storing |
|
1049 |
/// the found potentials, which form the dual solution of the |
|
1050 |
/// \ref min_cost_flow "minimum cost flow" problem. |
|
1051 |
/// |
|
1052 |
/// \pre \ref run() must be called before using this function. |
|
1053 |
const PotentialMap& potentialMap() const { |
|
1054 |
return *_potential_map; |
|
1055 |
} |
|
1056 |
|
|
1057 |
/// @} |
|
1058 |
|
|
1059 |
private: |
|
1060 |
|
|
1061 |
// Initialize internal data structures |
|
1062 |
bool init() { |
|
1063 |
// Initialize result maps |
|
1064 |
if (!_flow_map) { |
|
1065 |
_flow_map = new FlowMap(_graph); |
|
1066 |
_local_flow = true; |
|
1067 |
} |
|
1068 |
if (!_potential_map) { |
|
1069 |
_potential_map = new PotentialMap(_graph); |
|
1070 |
_local_potential = true; |
|
1071 |
} |
|
1072 |
|
|
1073 |
// Initialize vectors |
|
1074 |
_node_num = countNodes(_graph); |
|
1075 |
_arc_num = countArcs(_graph); |
|
1076 |
int all_node_num = _node_num + 1; |
|
1077 |
int all_arc_num = _arc_num + _node_num; |
|
1078 |
if (_node_num == 0) return false; |
|
1079 |
|
|
1080 |
_arc_ref.resize(_arc_num); |
|
1081 |
_source.resize(all_arc_num); |
|
1082 |
_target.resize(all_arc_num); |
|
1083 |
|
|
1084 |
_cap.resize(all_arc_num); |
|
1085 |
_cost.resize(all_arc_num); |
|
1086 |
_supply.resize(all_node_num); |
|
1087 |
_flow.resize(all_arc_num); |
|
1088 |
_pi.resize(all_node_num); |
|
1089 |
|
|
1090 |
_parent.resize(all_node_num); |
|
1091 |
_pred.resize(all_node_num); |
|
1092 |
_forward.resize(all_node_num); |
|
1093 |
_thread.resize(all_node_num); |
|
1094 |
_rev_thread.resize(all_node_num); |
|
1095 |
_succ_num.resize(all_node_num); |
|
1096 |
_last_succ.resize(all_node_num); |
|
1097 |
_state.resize(all_arc_num); |
|
1098 |
|
|
1099 |
// Initialize node related data |
|
1100 |
bool valid_supply = true; |
|
1101 |
Flow sum_supply = 0; |
|
1102 |
if (!_pstsup && !_psupply) { |
|
1103 |
_pstsup = true; |
|
1104 |
_psource = _ptarget = NodeIt(_graph); |
|
1105 |
_pstflow = 0; |
|
1106 |
} |
|
1107 |
if (_psupply) { |
|
1108 |
int i = 0; |
|
1109 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
1110 |
_node_id[n] = i; |
|
1111 |
_supply[i] = (*_psupply)[n]; |
|
1112 |
sum_supply += _supply[i]; |
|
1113 |
} |
|
1114 |
valid_supply = (_ptype == GEQ && sum_supply <= 0) || |
|
1115 |
(_ptype == LEQ && sum_supply >= 0); |
|
1116 |
} else { |
|
1117 |
int i = 0; |
|
1118 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
|
1119 |
_node_id[n] = i; |
|
1120 |
_supply[i] = 0; |
|
1121 |
} |
|
1122 |
_supply[_node_id[_psource]] = _pstflow; |
|
1123 |
_supply[_node_id[_ptarget]] = -_pstflow; |
|
1124 |
} |
|
1125 |
if (!valid_supply) return false; |
|
1126 |
|
|
1127 |
// Infinite capacity value |
|
1128 |
Flow inf_cap = |
|
1129 |
std::numeric_limits<Flow>::has_infinity ? |
|
1130 |
std::numeric_limits<Flow>::infinity() : |
|
1131 |
std::numeric_limits<Flow>::max(); |
|
1132 |
|
|
1133 |
// Initialize artifical cost |
|
1134 |
Cost art_cost; |
|
1135 |
if (std::numeric_limits<Cost>::is_exact) { |
|
1136 |
art_cost = std::numeric_limits<Cost>::max() / 4 + 1; |
|
1137 |
} else { |
|
1138 |
art_cost = std::numeric_limits<Cost>::min(); |
|
1139 |
for (int i = 0; i != _arc_num; ++i) { |
|
1140 |
if (_cost[i] > art_cost) art_cost = _cost[i]; |
|
1141 |
} |
|
1142 |
art_cost = (art_cost + 1) * _node_num; |
|
1143 |
} |
|
1144 |
|
|
1145 |
// Run Circulation to check if a feasible solution exists |
|
1146 |
typedef ConstMap<Arc, Flow> ConstArcMap; |
|
1147 |
FlowNodeMap *csup = NULL; |
|
1148 |
bool local_csup = false; |
|
1149 |
if (_psupply) { |
|
1150 |
csup = _psupply; |
|
1151 |
} else { |
|
1152 |
csup = new FlowNodeMap(_graph, 0); |
|
1153 |
(*csup)[_psource] = _pstflow; |
|
1154 |
(*csup)[_ptarget] = -_pstflow; |
|
1155 |
local_csup = true; |
|
1156 |
} |
|
1157 |
bool circ_result = false; |
|
1158 |
if (_ptype == GEQ || (_ptype == LEQ && sum_supply == 0)) { |
|
1159 |
// GEQ problem type |
|
1160 |
if (_plower) { |
|
1161 |
if (_pupper) { |
|
1162 |
Circulation<GR, FlowArcMap, FlowArcMap, FlowNodeMap> |
|
1163 |
circ(_graph, *_plower, *_pupper, *csup); |
|
1164 |
circ_result = circ.run(); |
|
1165 |
} else { |
|
1166 |
Circulation<GR, FlowArcMap, ConstArcMap, FlowNodeMap> |
|
1167 |
circ(_graph, *_plower, ConstArcMap(inf_cap), *csup); |
|
1168 |
circ_result = circ.run(); |
|
1169 |
} |
|
1170 |
} else { |
|
1171 |
if (_pupper) { |
|
1172 |
Circulation<GR, ConstArcMap, FlowArcMap, FlowNodeMap> |
|
1173 |
circ(_graph, ConstArcMap(0), *_pupper, *csup); |
|
1174 |
circ_result = circ.run(); |
|
1175 |
} else { |
|
1176 |
Circulation<GR, ConstArcMap, ConstArcMap, FlowNodeMap> |
|
1177 |
circ(_graph, ConstArcMap(0), ConstArcMap(inf_cap), *csup); |
|
1178 |
circ_result = circ.run(); |
|
1179 |
} |
|
1180 |
} |
|
1181 |
} else { |
|
1182 |
// LEQ problem type |
|
1183 |
typedef ReverseDigraph<const GR> RevGraph; |
|
1184 |
typedef NegMap<FlowNodeMap> NegNodeMap; |
|
1185 |
RevGraph rgraph(_graph); |
|
1186 |
NegNodeMap neg_csup(*csup); |
|
1187 |
if (_plower) { |
|
1188 |
if (_pupper) { |
|
1189 |
Circulation<RevGraph, FlowArcMap, FlowArcMap, NegNodeMap> |
|
1190 |
circ(rgraph, *_plower, *_pupper, neg_csup); |
|
1191 |
circ_result = circ.run(); |
|
1192 |
} else { |
|
1193 |
Circulation<RevGraph, FlowArcMap, ConstArcMap, NegNodeMap> |
|
1194 |
circ(rgraph, *_plower, ConstArcMap(inf_cap), neg_csup); |
|
1195 |
circ_result = circ.run(); |
|
1196 |
} |
|
1197 |
} else { |
|
1198 |
if (_pupper) { |
|
1199 |
Circulation<RevGraph, ConstArcMap, FlowArcMap, NegNodeMap> |
|
1200 |
circ(rgraph, ConstArcMap(0), *_pupper, neg_csup); |
|
1201 |
circ_result = circ.run(); |
|
1202 |
} else { |
|
1203 |
Circulation<RevGraph, ConstArcMap, ConstArcMap, NegNodeMap> |
|
1204 |
circ(rgraph, ConstArcMap(0), ConstArcMap(inf_cap), neg_csup); |
|
1205 |
circ_result = circ.run(); |
|
1206 |
} |
|
1207 |
} |
|
1208 |
} |
|
1209 |
if (local_csup) delete csup; |
|
1210 |
if (!circ_result) return false; |
|
1211 |
|
|
1212 |
// Set data for the artificial root node |
|
1213 |
_root = _node_num; |
|
1214 |
_parent[_root] = -1; |
|
1215 |
_pred[_root] = -1; |
|
1216 |
_thread[_root] = 0; |
|
1217 |
_rev_thread[0] = _root; |
|
1218 |
_succ_num[_root] = all_node_num; |
|
1219 |
_last_succ[_root] = _root - 1; |
|
1220 |
_supply[_root] = -sum_supply; |
|
1221 |
if (sum_supply < 0) { |
|
1222 |
_pi[_root] = -art_cost; |
|
1223 |
} else { |
|
1224 |
_pi[_root] = art_cost; |
|
1225 |
} |
|
1226 |
|
|
1227 |
// Store the arcs in a mixed order |
|
1228 |
int k = std::max(int(sqrt(_arc_num)), 10); |
|
1229 |
int i = 0; |
|
1230 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1231 |
_arc_ref[i] = e; |
|
1232 |
if ((i += k) >= _arc_num) i = (i % k) + 1; |
|
1233 |
} |
|
1234 |
|
|
1235 |
// Initialize arc maps |
|
1236 |
if (_pupper && _pcost) { |
|
1237 |
for (int i = 0; i != _arc_num; ++i) { |
|
1238 |
Arc e = _arc_ref[i]; |
|
1239 |
_source[i] = _node_id[_graph.source(e)]; |
|
1240 |
_target[i] = _node_id[_graph.target(e)]; |
|
1241 |
_cap[i] = (*_pupper)[e]; |
|
1242 |
_cost[i] = (*_pcost)[e]; |
|
1243 |
_flow[i] = 0; |
|
1244 |
_state[i] = STATE_LOWER; |
|
1245 |
} |
|
1246 |
} else { |
|
1247 |
for (int i = 0; i != _arc_num; ++i) { |
|
1248 |
Arc e = _arc_ref[i]; |
|
1249 |
_source[i] = _node_id[_graph.source(e)]; |
|
1250 |
_target[i] = _node_id[_graph.target(e)]; |
|
1251 |
_flow[i] = 0; |
|
1252 |
_state[i] = STATE_LOWER; |
|
1253 |
} |
|
1254 |
if (_pupper) { |
|
1255 |
for (int i = 0; i != _arc_num; ++i) |
|
1256 |
_cap[i] = (*_pupper)[_arc_ref[i]]; |
|
1257 |
} else { |
|
1258 |
for (int i = 0; i != _arc_num; ++i) |
|
1259 |
_cap[i] = inf_cap; |
|
1260 |
} |
|
1261 |
if (_pcost) { |
|
1262 |
for (int i = 0; i != _arc_num; ++i) |
|
1263 |
_cost[i] = (*_pcost)[_arc_ref[i]]; |
|
1264 |
} else { |
|
1265 |
for (int i = 0; i != _arc_num; ++i) |
|
1266 |
_cost[i] = 1; |
|
1267 |
} |
|
1268 |
} |
|
1269 |
|
|
1270 |
// Remove non-zero lower bounds |
|
1271 |
if (_plower) { |
|
1272 |
for (int i = 0; i != _arc_num; ++i) { |
|
1273 |
Flow c = (*_plower)[_arc_ref[i]]; |
|
1274 |
if (c != 0) { |
|
1275 |
_cap[i] -= c; |
|
1276 |
_supply[_source[i]] -= c; |
|
1277 |
_supply[_target[i]] += c; |
|
1278 |
} |
|
1279 |
} |
|
1280 |
} |
|
1281 |
|
|
1282 |
// Add artificial arcs and initialize the spanning tree data structure |
|
1283 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1284 |
_thread[u] = u + 1; |
|
1285 |
_rev_thread[u + 1] = u; |
|
1286 |
_succ_num[u] = 1; |
|
1287 |
_last_succ[u] = u; |
|
1288 |
_parent[u] = _root; |
|
1289 |
_pred[u] = e; |
|
1290 |
_cost[e] = art_cost; |
|
1291 |
_cap[e] = inf_cap; |
|
1292 |
_state[e] = STATE_TREE; |
|
1293 |
if (_supply[u] > 0 || (_supply[u] == 0 && sum_supply <= 0)) { |
|
1294 |
_flow[e] = _supply[u]; |
|
1295 |
_forward[u] = true; |
|
1296 |
_pi[u] = -art_cost + _pi[_root]; |
|
1297 |
} else { |
|
1298 |
_flow[e] = -_supply[u]; |
|
1299 |
_forward[u] = false; |
|
1300 |
_pi[u] = art_cost + _pi[_root]; |
|
1301 |
} |
|
1302 |
} |
|
1303 |
|
|
1304 |
return true; |
|
1305 |
} |
|
1306 |
|
|
1307 |
// Find the join node |
|
1308 |
void findJoinNode() { |
|
1309 |
int u = _source[in_arc]; |
|
1310 |
int v = _target[in_arc]; |
|
1311 |
while (u != v) { |
|
1312 |
if (_succ_num[u] < _succ_num[v]) { |
|
1313 |
u = _parent[u]; |
|
1314 |
} else { |
|
1315 |
v = _parent[v]; |
|
1316 |
} |
|
1317 |
} |
|
1318 |
join = u; |
|
1319 |
} |
|
1320 |
|
|
1321 |
// Find the leaving arc of the cycle and returns true if the |
|
1322 |
// leaving arc is not the same as the entering arc |
|
1323 |
bool findLeavingArc() { |
|
1324 |
// Initialize first and second nodes according to the direction |
|
1325 |
// of the cycle |
|
1326 |
if (_state[in_arc] == STATE_LOWER) { |
|
1327 |
first = _source[in_arc]; |
|
1328 |
second = _target[in_arc]; |
|
1329 |
} else { |
|
1330 |
first = _target[in_arc]; |
|
1331 |
second = _source[in_arc]; |
|
1332 |
} |
|
1333 |
delta = _cap[in_arc]; |
|
1334 |
int result = 0; |
|
1335 |
Flow d; |
|
1336 |
int e; |
|
1337 |
|
|
1338 |
// Search the cycle along the path form the first node to the root |
|
1339 |
for (int u = first; u != join; u = _parent[u]) { |
|
1340 |
e = _pred[u]; |
|
1341 |
d = _forward[u] ? _flow[e] : _cap[e] - _flow[e]; |
|
1342 |
if (d < delta) { |
|
1343 |
delta = d; |
|
1344 |
u_out = u; |
|
1345 |
result = 1; |
|
1346 |
} |
|
1347 |
} |
|
1348 |
// Search the cycle along the path form the second node to the root |
|
1349 |
for (int u = second; u != join; u = _parent[u]) { |
|
1350 |
e = _pred[u]; |
|
1351 |
d = _forward[u] ? _cap[e] - _flow[e] : _flow[e]; |
|
1352 |
if (d <= delta) { |
|
1353 |
delta = d; |
|
1354 |
u_out = u; |
|
1355 |
result = 2; |
|
1356 |
} |
|
1357 |
} |
|
1358 |
|
|
1359 |
if (result == 1) { |
|
1360 |
u_in = first; |
|
1361 |
v_in = second; |
|
1362 |
} else { |
|
1363 |
u_in = second; |
|
1364 |
v_in = first; |
|
1365 |
} |
|
1366 |
return result != 0; |
|
1367 |
} |
|
1368 |
|
|
1369 |
// Change _flow and _state vectors |
|
1370 |
void changeFlow(bool change) { |
|
1371 |
// Augment along the cycle |
|
1372 |
if (delta > 0) { |
|
1373 |
Flow val = _state[in_arc] * delta; |
|
1374 |
_flow[in_arc] += val; |
|
1375 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) { |
|
1376 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
|
1377 |
} |
|
1378 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) { |
|
1379 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
|
1380 |
} |
|
1381 |
} |
|
1382 |
// Update the state of the entering and leaving arcs |
|
1383 |
if (change) { |
|
1384 |
_state[in_arc] = STATE_TREE; |
|
1385 |
_state[_pred[u_out]] = |
|
1386 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
|
1387 |
} else { |
|
1388 |
_state[in_arc] = -_state[in_arc]; |
|
1389 |
} |
|
1390 |
} |
|
1391 |
|
|
1392 |
// Update the tree structure |
|
1393 |
void updateTreeStructure() { |
|
1394 |
int u, w; |
|
1395 |
int old_rev_thread = _rev_thread[u_out]; |
|
1396 |
int old_succ_num = _succ_num[u_out]; |
|
1397 |
int old_last_succ = _last_succ[u_out]; |
|
1398 |
v_out = _parent[u_out]; |
|
1399 |
|
|
1400 |
u = _last_succ[u_in]; // the last successor of u_in |
|
1401 |
right = _thread[u]; // the node after it |
|
1402 |
|
|
1403 |
// Handle the case when old_rev_thread equals to v_in |
|
1404 |
// (it also means that join and v_out coincide) |
|
1405 |
if (old_rev_thread == v_in) { |
|
1406 |
last = _thread[_last_succ[u_out]]; |
|
1407 |
} else { |
|
1408 |
last = _thread[v_in]; |
|
1409 |
} |
|
1410 |
|
|
1411 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
|
1412 |
// between u_in and u_out, whose parent have to be changed) |
|
1413 |
_thread[v_in] = stem = u_in; |
|
1414 |
_dirty_revs.clear(); |
|
1415 |
_dirty_revs.push_back(v_in); |
|
1416 |
par_stem = v_in; |
|
1417 |
while (stem != u_out) { |
|
1418 |
// Insert the next stem node into the thread list |
|
1419 |
new_stem = _parent[stem]; |
|
1420 |
_thread[u] = new_stem; |
|
1421 |
_dirty_revs.push_back(u); |
|
1422 |
|
|
1423 |
// Remove the subtree of stem from the thread list |
|
1424 |
w = _rev_thread[stem]; |
|
1425 |
_thread[w] = right; |
|
1426 |
_rev_thread[right] = w; |
|
1427 |
|
|
1428 |
// Change the parent node and shift stem nodes |
|
1429 |
_parent[stem] = par_stem; |
|
1430 |
par_stem = stem; |
|
1431 |
stem = new_stem; |
|
1432 |
|
|
1433 |
// Update u and right |
|
1434 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
|
1435 |
_rev_thread[par_stem] : _last_succ[stem]; |
|
1436 |
right = _thread[u]; |
|
1437 |
} |
|
1438 |
_parent[u_out] = par_stem; |
|
1439 |
_thread[u] = last; |
|
1440 |
_rev_thread[last] = u; |
|
1441 |
_last_succ[u_out] = u; |
|
1442 |
|
|
1443 |
// Remove the subtree of u_out from the thread list except for |
|
1444 |
// the case when old_rev_thread equals to v_in |
|
1445 |
// (it also means that join and v_out coincide) |
|
1446 |
if (old_rev_thread != v_in) { |
|
1447 |
_thread[old_rev_thread] = right; |
|
1448 |
_rev_thread[right] = old_rev_thread; |
|
1449 |
} |
|
1450 |
|
|
1451 |
// Update _rev_thread using the new _thread values |
|
1452 |
for (int i = 0; i < int(_dirty_revs.size()); ++i) { |
|
1453 |
u = _dirty_revs[i]; |
|
1454 |
_rev_thread[_thread[u]] = u; |
|
1455 |
} |
|
1456 |
|
|
1457 |
// Update _pred, _forward, _last_succ and _succ_num for the |
|
1458 |
// stem nodes from u_out to u_in |
|
1459 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
|
1460 |
u = u_out; |
|
1461 |
while (u != u_in) { |
|
1462 |
w = _parent[u]; |
|
1463 |
_pred[u] = _pred[w]; |
|
1464 |
_forward[u] = !_forward[w]; |
|
1465 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
|
1466 |
_succ_num[u] = tmp_sc; |
|
1467 |
_last_succ[w] = tmp_ls; |
|
1468 |
u = w; |
|
1469 |
} |
|
1470 |
_pred[u_in] = in_arc; |
|
1471 |
_forward[u_in] = (u_in == _source[in_arc]); |
|
1472 |
_succ_num[u_in] = old_succ_num; |
|
1473 |
|
|
1474 |
// Set limits for updating _last_succ form v_in and v_out |
|
1475 |
// towards the root |
|
1476 |
int up_limit_in = -1; |
|
1477 |
int up_limit_out = -1; |
|
1478 |
if (_last_succ[join] == v_in) { |
|
1479 |
up_limit_out = join; |
|
1480 |
} else { |
|
1481 |
up_limit_in = join; |
|
1482 |
} |
|
1483 |
|
|
1484 |
// Update _last_succ from v_in towards the root |
|
1485 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
|
1486 |
u = _parent[u]) { |
|
1487 |
_last_succ[u] = _last_succ[u_out]; |
|
1488 |
} |
|
1489 |
// Update _last_succ from v_out towards the root |
|
1490 |
if (join != old_rev_thread && v_in != old_rev_thread) { |
|
1491 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1492 |
u = _parent[u]) { |
|
1493 |
_last_succ[u] = old_rev_thread; |
|
1494 |
} |
|
1495 |
} else { |
|
1496 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
|
1497 |
u = _parent[u]) { |
|
1498 |
_last_succ[u] = _last_succ[u_out]; |
|
1499 |
} |
|
1500 |
} |
|
1501 |
|
|
1502 |
// Update _succ_num from v_in to join |
|
1503 |
for (u = v_in; u != join; u = _parent[u]) { |
|
1504 |
_succ_num[u] += old_succ_num; |
|
1505 |
} |
|
1506 |
// Update _succ_num from v_out to join |
|
1507 |
for (u = v_out; u != join; u = _parent[u]) { |
|
1508 |
_succ_num[u] -= old_succ_num; |
|
1509 |
} |
|
1510 |
} |
|
1511 |
|
|
1512 |
// Update potentials |
|
1513 |
void updatePotential() { |
|
1514 |
Cost sigma = _forward[u_in] ? |
|
1515 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
|
1516 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
|
1517 |
// Update potentials in the subtree, which has been moved |
|
1518 |
int end = _thread[_last_succ[u_in]]; |
|
1519 |
for (int u = u_in; u != end; u = _thread[u]) { |
|
1520 |
_pi[u] += sigma; |
|
1521 |
} |
|
1522 |
} |
|
1523 |
|
|
1524 |
// Execute the algorithm |
|
1525 |
bool start(PivotRule pivot_rule) { |
|
1526 |
// Select the pivot rule implementation |
|
1527 |
switch (pivot_rule) { |
|
1528 |
case FIRST_ELIGIBLE: |
|
1529 |
return start<FirstEligiblePivotRule>(); |
|
1530 |
case BEST_ELIGIBLE: |
|
1531 |
return start<BestEligiblePivotRule>(); |
|
1532 |
case BLOCK_SEARCH: |
|
1533 |
return start<BlockSearchPivotRule>(); |
|
1534 |
case CANDIDATE_LIST: |
|
1535 |
return start<CandidateListPivotRule>(); |
|
1536 |
case ALTERING_LIST: |
|
1537 |
return start<AlteringListPivotRule>(); |
|
1538 |
} |
|
1539 |
return false; |
|
1540 |
} |
|
1541 |
|
|
1542 |
template <typename PivotRuleImpl> |
|
1543 |
bool start() { |
|
1544 |
PivotRuleImpl pivot(*this); |
|
1545 |
|
|
1546 |
// Execute the Network Simplex algorithm |
|
1547 |
while (pivot.findEnteringArc()) { |
|
1548 |
findJoinNode(); |
|
1549 |
bool change = findLeavingArc(); |
|
1550 |
changeFlow(change); |
|
1551 |
if (change) { |
|
1552 |
updateTreeStructure(); |
|
1553 |
updatePotential(); |
|
1554 |
} |
|
1555 |
} |
|
1556 |
|
|
1557 |
// Copy flow values to _flow_map |
|
1558 |
if (_plower) { |
|
1559 |
for (int i = 0; i != _arc_num; ++i) { |
|
1560 |
Arc e = _arc_ref[i]; |
|
1561 |
_flow_map->set(e, (*_plower)[e] + _flow[i]); |
|
1562 |
} |
|
1563 |
} else { |
|
1564 |
for (int i = 0; i != _arc_num; ++i) { |
|
1565 |
_flow_map->set(_arc_ref[i], _flow[i]); |
|
1566 |
} |
|
1567 |
} |
|
1568 |
// Copy potential values to _potential_map |
|
1569 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1570 |
_potential_map->set(n, _pi[_node_id[n]]); |
|
1571 |
} |
|
1572 |
|
|
1573 |
return true; |
|
1574 |
} |
|
1575 |
|
|
1576 |
}; //class NetworkSimplex |
|
1577 |
|
|
1578 |
///@} |
|
1579 |
|
|
1580 |
} //namespace lemon |
|
1581 |
|
|
1582 |
#endif //LEMON_NETWORK_SIMPLEX_H |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#include <iostream> |
|
20 |
#include <fstream> |
|
21 |
|
|
22 |
#include <lemon/list_graph.h> |
|
23 |
#include <lemon/lgf_reader.h> |
|
24 |
|
|
25 |
#include <lemon/network_simplex.h> |
|
26 |
|
|
27 |
#include <lemon/concepts/digraph.h> |
|
28 |
#include <lemon/concept_check.h> |
|
29 |
|
|
30 |
#include "test_tools.h" |
|
31 |
|
|
32 |
using namespace lemon; |
|
33 |
|
|
34 |
char test_lgf[] = |
|
35 |
"@nodes\n" |
|
36 |
"label sup1 sup2 sup3 sup4 sup5\n" |
|
37 |
" 1 20 27 0 20 30\n" |
|
38 |
" 2 -4 0 0 -8 -3\n" |
|
39 |
" 3 0 0 0 0 0\n" |
|
40 |
" 4 0 0 0 0 0\n" |
|
41 |
" 5 9 0 0 6 11\n" |
|
42 |
" 6 -6 0 0 -5 -6\n" |
|
43 |
" 7 0 0 0 0 0\n" |
|
44 |
" 8 0 0 0 0 3\n" |
|
45 |
" 9 3 0 0 0 0\n" |
|
46 |
" 10 -2 0 0 -7 -2\n" |
|
47 |
" 11 0 0 0 -10 0\n" |
|
48 |
" 12 -20 -27 0 -30 -20\n" |
|
49 |
"\n" |
|
50 |
"@arcs\n" |
|
51 |
" cost cap low1 low2\n" |
|
52 |
" 1 2 70 11 0 8\n" |
|
53 |
" 1 3 150 3 0 1\n" |
|
54 |
" 1 4 80 15 0 2\n" |
|
55 |
" 2 8 80 12 0 0\n" |
|
56 |
" 3 5 140 5 0 3\n" |
|
57 |
" 4 6 60 10 0 1\n" |
|
58 |
" 4 7 80 2 0 0\n" |
|
59 |
" 4 8 110 3 0 0\n" |
|
60 |
" 5 7 60 14 0 0\n" |
|
61 |
" 5 11 120 12 0 0\n" |
|
62 |
" 6 3 0 3 0 0\n" |
|
63 |
" 6 9 140 4 0 0\n" |
|
64 |
" 6 10 90 8 0 0\n" |
|
65 |
" 7 1 30 5 0 0\n" |
|
66 |
" 8 12 60 16 0 4\n" |
|
67 |
" 9 12 50 6 0 0\n" |
|
68 |
"10 12 70 13 0 5\n" |
|
69 |
"10 2 100 7 0 0\n" |
|
70 |
"10 7 60 10 0 0\n" |
|
71 |
"11 10 20 14 0 6\n" |
|
72 |
"12 11 30 10 0 0\n" |
|
73 |
"\n" |
|
74 |
"@attributes\n" |
|
75 |
"source 1\n" |
|
76 |
"target 12\n"; |
|
77 |
|
|
78 |
|
|
79 |
enum ProblemType { |
|
80 |
EQ, |
|
81 |
GEQ, |
|
82 |
LEQ |
|
83 |
}; |
|
84 |
|
|
85 |
// Check the interface of an MCF algorithm |
|
86 |
template <typename GR, typename Flow, typename Cost> |
|
87 |
class McfClassConcept |
|
88 |
{ |
|
89 |
public: |
|
90 |
|
|
91 |
template <typename MCF> |
|
92 |
struct Constraints { |
|
93 |
void constraints() { |
|
94 |
checkConcept<concepts::Digraph, GR>(); |
|
95 |
|
|
96 |
MCF mcf(g); |
|
97 |
|
|
98 |
b = mcf.reset() |
|
99 |
.lowerMap(lower) |
|
100 |
.upperMap(upper) |
|
101 |
.capacityMap(upper) |
|
102 |
.boundMaps(lower, upper) |
|
103 |
.costMap(cost) |
|
104 |
.supplyMap(sup) |
|
105 |
.stSupply(n, n, k) |
|
106 |
.flowMap(flow) |
|
107 |
.potentialMap(pot) |
|
108 |
.run(); |
|
109 |
|
|
110 |
const MCF& const_mcf = mcf; |
|
111 |
|
|
112 |
const typename MCF::FlowMap &fm = const_mcf.flowMap(); |
|
113 |
const typename MCF::PotentialMap &pm = const_mcf.potentialMap(); |
|
114 |
|
|
115 |
v = const_mcf.totalCost(); |
|
116 |
double x = const_mcf.template totalCost<double>(); |
|
117 |
v = const_mcf.flow(a); |
|
118 |
v = const_mcf.potential(n); |
|
119 |
|
|
120 |
ignore_unused_variable_warning(fm); |
|
121 |
ignore_unused_variable_warning(pm); |
|
122 |
ignore_unused_variable_warning(x); |
|
123 |
} |
|
124 |
|
|
125 |
typedef typename GR::Node Node; |
|
126 |
typedef typename GR::Arc Arc; |
|
127 |
typedef concepts::ReadMap<Node, Flow> NM; |
|
128 |
typedef concepts::ReadMap<Arc, Flow> FAM; |
|
129 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
|
130 |
|
|
131 |
const GR &g; |
|
132 |
const FAM &lower; |
|
133 |
const FAM &upper; |
|
134 |
const CAM &cost; |
|
135 |
const NM ⊃ |
|
136 |
const Node &n; |
|
137 |
const Arc &a; |
|
138 |
const Flow &k; |
|
139 |
Flow v; |
|
140 |
bool b; |
|
141 |
|
|
142 |
typename MCF::FlowMap &flow; |
|
143 |
typename MCF::PotentialMap &pot; |
|
144 |
}; |
|
145 |
|
|
146 |
}; |
|
147 |
|
|
148 |
|
|
149 |
// Check the feasibility of the given flow (primal soluiton) |
|
150 |
template < typename GR, typename LM, typename UM, |
|
151 |
typename SM, typename FM > |
|
152 |
bool checkFlow( const GR& gr, const LM& lower, const UM& upper, |
|
153 |
const SM& supply, const FM& flow, |
|
154 |
ProblemType type = EQ ) |
|
155 |
{ |
|
156 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
157 |
|
|
158 |
for (ArcIt e(gr); e != INVALID; ++e) { |
|
159 |
if (flow[e] < lower[e] || flow[e] > upper[e]) return false; |
|
160 |
} |
|
161 |
|
|
162 |
for (NodeIt n(gr); n != INVALID; ++n) { |
|
163 |
typename SM::Value sum = 0; |
|
164 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
165 |
sum += flow[e]; |
|
166 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
167 |
sum -= flow[e]; |
|
168 |
bool b = (type == EQ && sum == supply[n]) || |
|
169 |
(type == GEQ && sum >= supply[n]) || |
|
170 |
(type == LEQ && sum <= supply[n]); |
|
171 |
if (!b) return false; |
|
172 |
} |
|
173 |
|
|
174 |
return true; |
|
175 |
} |
|
176 |
|
|
177 |
// Check the feasibility of the given potentials (dual soluiton) |
|
178 |
// using the "Complementary Slackness" optimality condition |
|
179 |
template < typename GR, typename LM, typename UM, |
|
180 |
typename CM, typename SM, typename FM, typename PM > |
|
181 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
|
182 |
const CM& cost, const SM& supply, const FM& flow, |
|
183 |
const PM& pi ) |
|
184 |
{ |
|
185 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
|
186 |
|
|
187 |
bool opt = true; |
|
188 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
|
189 |
typename CM::Value red_cost = |
|
190 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
|
191 |
opt = red_cost == 0 || |
|
192 |
(red_cost > 0 && flow[e] == lower[e]) || |
|
193 |
(red_cost < 0 && flow[e] == upper[e]); |
|
194 |
} |
|
195 |
|
|
196 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
|
197 |
typename SM::Value sum = 0; |
|
198 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
|
199 |
sum += flow[e]; |
|
200 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
|
201 |
sum -= flow[e]; |
|
202 |
opt = (sum == supply[n]) || (pi[n] == 0); |
|
203 |
} |
|
204 |
|
|
205 |
return opt; |
|
206 |
} |
|
207 |
|
|
208 |
// Run a minimum cost flow algorithm and check the results |
|
209 |
template < typename MCF, typename GR, |
|
210 |
typename LM, typename UM, |
|
211 |
typename CM, typename SM > |
|
212 |
void checkMcf( const MCF& mcf, bool mcf_result, |
|
213 |
const GR& gr, const LM& lower, const UM& upper, |
|
214 |
const CM& cost, const SM& supply, |
|
215 |
bool result, typename CM::Value total, |
|
216 |
const std::string &test_id = "", |
|
217 |
ProblemType type = EQ ) |
|
218 |
{ |
|
219 |
check(mcf_result == result, "Wrong result " + test_id); |
|
220 |
if (result) { |
|
221 |
check(checkFlow(gr, lower, upper, supply, mcf.flowMap(), type), |
|
222 |
"The flow is not feasible " + test_id); |
|
223 |
check(mcf.totalCost() == total, "The flow is not optimal " + test_id); |
|
224 |
check(checkPotential(gr, lower, upper, cost, supply, mcf.flowMap(), |
|
225 |
mcf.potentialMap()), |
|
226 |
"Wrong potentials " + test_id); |
|
227 |
} |
|
228 |
} |
|
229 |
|
|
230 |
int main() |
|
231 |
{ |
|
232 |
// Check the interfaces |
|
233 |
{ |
|
234 |
typedef int Flow; |
|
235 |
typedef int Cost; |
|
236 |
// TODO: This typedef should be enabled if the standard maps are |
|
237 |
// reference maps in the graph concepts (See #190). |
|
238 |
/**/ |
|
239 |
//typedef concepts::Digraph GR; |
|
240 |
typedef ListDigraph GR; |
|
241 |
/**/ |
|
242 |
checkConcept< McfClassConcept<GR, Flow, Cost>, |
|
243 |
NetworkSimplex<GR, Flow, Cost> >(); |
|
244 |
} |
|
245 |
|
|
246 |
// Run various MCF tests |
|
247 |
typedef ListDigraph Digraph; |
|
248 |
DIGRAPH_TYPEDEFS(ListDigraph); |
|
249 |
|
|
250 |
// Read the test digraph |
|
251 |
Digraph gr; |
|
252 |
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), u(gr); |
|
253 |
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr); |
|
254 |
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max()); |
|
255 |
Node v, w; |
|
256 |
|
|
257 |
std::istringstream input(test_lgf); |
|
258 |
DigraphReader<Digraph>(gr, input) |
|
259 |
.arcMap("cost", c) |
|
260 |
.arcMap("cap", u) |
|
261 |
.arcMap("low1", l1) |
|
262 |
.arcMap("low2", l2) |
|
263 |
.nodeMap("sup1", s1) |
|
264 |
.nodeMap("sup2", s2) |
|
265 |
.nodeMap("sup3", s3) |
|
266 |
.nodeMap("sup4", s4) |
|
267 |
.nodeMap("sup5", s5) |
|
268 |
.node("source", v) |
|
269 |
.node("target", w) |
|
270 |
.run(); |
|
271 |
|
|
272 |
// A. Test NetworkSimplex with the default pivot rule |
|
273 |
{ |
|
274 |
NetworkSimplex<Digraph> mcf(gr); |
|
275 |
|
|
276 |
// Check the equality form |
|
277 |
mcf.upperMap(u).costMap(c); |
|
278 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
279 |
gr, l1, u, c, s1, true, 5240, "#A1"); |
|
280 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
281 |
gr, l1, u, c, s2, true, 7620, "#A2"); |
|
282 |
mcf.lowerMap(l2); |
|
283 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
284 |
gr, l2, u, c, s1, true, 5970, "#A3"); |
|
285 |
checkMcf(mcf, mcf.stSupply(v, w, 27).run(), |
|
286 |
gr, l2, u, c, s2, true, 8010, "#A4"); |
|
287 |
mcf.reset(); |
|
288 |
checkMcf(mcf, mcf.supplyMap(s1).run(), |
|
289 |
gr, l1, cu, cc, s1, true, 74, "#A5"); |
|
290 |
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(), |
|
291 |
gr, l2, cu, cc, s2, true, 94, "#A6"); |
|
292 |
mcf.reset(); |
|
293 |
checkMcf(mcf, mcf.run(), |
|
294 |
gr, l1, cu, cc, s3, true, 0, "#A7"); |
|
295 |
checkMcf(mcf, mcf.boundMaps(l2, u).run(), |
|
296 |
gr, l2, u, cc, s3, false, 0, "#A8"); |
|
297 |
|
|
298 |
// Check the GEQ form |
|
299 |
mcf.reset().upperMap(u).costMap(c).supplyMap(s4); |
|
300 |
checkMcf(mcf, mcf.run(), |
|
301 |
gr, l1, u, c, s4, true, 3530, "#A9", GEQ); |
|
302 |
mcf.problemType(mcf.GEQ); |
|
303 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
304 |
gr, l2, u, c, s4, true, 4540, "#A10", GEQ); |
|
305 |
mcf.problemType(mcf.CARRY_SUPPLIES).supplyMap(s5); |
|
306 |
checkMcf(mcf, mcf.run(), |
|
307 |
gr, l2, u, c, s5, false, 0, "#A11", GEQ); |
|
308 |
|
|
309 |
// Check the LEQ form |
|
310 |
mcf.reset().problemType(mcf.LEQ); |
|
311 |
mcf.upperMap(u).costMap(c).supplyMap(s5); |
|
312 |
checkMcf(mcf, mcf.run(), |
|
313 |
gr, l1, u, c, s5, true, 5080, "#A12", LEQ); |
|
314 |
checkMcf(mcf, mcf.lowerMap(l2).run(), |
|
315 |
gr, l2, u, c, s5, true, 5930, "#A13", LEQ); |
|
316 |
mcf.problemType(mcf.SATISFY_DEMANDS).supplyMap(s4); |
|
317 |
checkMcf(mcf, mcf.run(), |
|
318 |
gr, l2, u, c, s4, false, 0, "#A14", LEQ); |
|
319 |
} |
|
320 |
|
|
321 |
// B. Test NetworkSimplex with each pivot rule |
|
322 |
{ |
|
323 |
NetworkSimplex<Digraph> mcf(gr); |
|
324 |
mcf.supplyMap(s1).costMap(c).capacityMap(u).lowerMap(l2); |
|
325 |
|
|
326 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE), |
|
327 |
gr, l2, u, c, s1, true, 5970, "#B1"); |
|
328 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE), |
|
329 |
gr, l2, u, c, s1, true, 5970, "#B2"); |
|
330 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH), |
|
331 |
gr, l2, u, c, s1, true, 5970, "#B3"); |
|
332 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST), |
|
333 |
gr, l2, u, c, s1, true, 5970, "#B4"); |
|
334 |
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST), |
|
335 |
gr, l2, u, c, s1, true, 5970, "#B5"); |
|
336 |
} |
|
337 |
|
|
338 |
return 0; |
|
339 |
} |
... | ... |
@@ -133,436 +133,504 @@ |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
142 | 142 |
@ingroup graphs |
143 | 143 |
\brief Graph types between real graphs and graph adaptors. |
144 | 144 |
|
145 | 145 |
This group contains some graph types between real graphs and graph adaptors. |
146 | 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
147 | 147 |
On the other hand they are not light-weight structures as the adaptors. |
148 | 148 |
*/ |
149 | 149 |
|
150 | 150 |
/** |
151 | 151 |
@defgroup maps Maps |
152 | 152 |
@ingroup datas |
153 | 153 |
\brief Map structures implemented in LEMON. |
154 | 154 |
|
155 | 155 |
This group contains the map structures implemented in LEMON. |
156 | 156 |
|
157 | 157 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
158 | 158 |
new maps from existing ones. |
159 | 159 |
|
160 | 160 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
161 | 161 |
*/ |
162 | 162 |
|
163 | 163 |
/** |
164 | 164 |
@defgroup graph_maps Graph Maps |
165 | 165 |
@ingroup maps |
166 | 166 |
\brief Special graph-related maps. |
167 | 167 |
|
168 | 168 |
This group contains maps that are specifically designed to assign |
169 | 169 |
values to the nodes and arcs/edges of graphs. |
170 | 170 |
|
171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
173 | 173 |
*/ |
174 | 174 |
|
175 | 175 |
/** |
176 | 176 |
\defgroup map_adaptors Map Adaptors |
177 | 177 |
\ingroup maps |
178 | 178 |
\brief Tools to create new maps from existing ones |
179 | 179 |
|
180 | 180 |
This group contains map adaptors that are used to create "implicit" |
181 | 181 |
maps from other maps. |
182 | 182 |
|
183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
184 | 184 |
They can make arithmetic and logical operations between one or two maps |
185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
187 | 187 |
|
188 | 188 |
The typical usage of this classes is passing implicit maps to |
189 | 189 |
algorithms. If a function type algorithm is called then the function |
190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
192 | 192 |
\code |
193 | 193 |
Color nodeColor(int deg) { |
194 | 194 |
if (deg >= 2) { |
195 | 195 |
return Color(0.5, 0.0, 0.5); |
196 | 196 |
} else if (deg == 1) { |
197 | 197 |
return Color(1.0, 0.5, 1.0); |
198 | 198 |
} else { |
199 | 199 |
return Color(0.0, 0.0, 0.0); |
200 | 200 |
} |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
204 | 204 |
|
205 | 205 |
graphToEps(graph, "graph.eps") |
206 | 206 |
.coords(coords).scaleToA4().undirected() |
207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
208 | 208 |
.run(); |
209 | 209 |
\endcode |
210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
212 | 212 |
and the previously created map. The composed map is a proper function to |
213 | 213 |
get the color of each node. |
214 | 214 |
|
215 | 215 |
The usage with class type algorithms is little bit harder. In this |
216 | 216 |
case the function type map adaptors can not be used, because the |
217 | 217 |
function map adaptors give back temporary objects. |
218 | 218 |
\code |
219 | 219 |
Digraph graph; |
220 | 220 |
|
221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
222 | 222 |
DoubleArcMap length(graph); |
223 | 223 |
DoubleArcMap speed(graph); |
224 | 224 |
|
225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
226 | 226 |
TimeMap time(length, speed); |
227 | 227 |
|
228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
229 | 229 |
dijkstra.run(source, target); |
230 | 230 |
\endcode |
231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
234 | 234 |
class. We use the implicit minimum time map as the length map of the |
235 | 235 |
\c Dijkstra algorithm. |
236 | 236 |
*/ |
237 | 237 |
|
238 | 238 |
/** |
239 | 239 |
@defgroup matrices Matrices |
240 | 240 |
@ingroup datas |
241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
242 | 242 |
|
243 | 243 |
This group contains two dimensional data storages implemented in LEMON. |
244 | 244 |
*/ |
245 | 245 |
|
246 | 246 |
/** |
247 | 247 |
@defgroup paths Path Structures |
248 | 248 |
@ingroup datas |
249 | 249 |
\brief %Path structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
This group contains the path structures implemented in LEMON. |
252 | 252 |
|
253 | 253 |
LEMON provides flexible data structures to work with paths. |
254 | 254 |
All of them have similar interfaces and they can be copied easily with |
255 | 255 |
assignment operators and copy constructors. This makes it easy and |
256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
257 | 257 |
any kind of path structure. |
258 | 258 |
|
259 | 259 |
\sa lemon::concepts::Path |
260 | 260 |
*/ |
261 | 261 |
|
262 | 262 |
/** |
263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
264 | 264 |
@ingroup datas |
265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
266 | 266 |
|
267 | 267 |
This group contains some data structures implemented in LEMON in |
268 | 268 |
order to make it easier to implement combinatorial algorithms. |
269 | 269 |
*/ |
270 | 270 |
|
271 | 271 |
/** |
272 | 272 |
@defgroup algs Algorithms |
273 | 273 |
\brief This group contains the several algorithms |
274 | 274 |
implemented in LEMON. |
275 | 275 |
|
276 | 276 |
This group contains the several algorithms |
277 | 277 |
implemented in LEMON. |
278 | 278 |
*/ |
279 | 279 |
|
280 | 280 |
/** |
281 | 281 |
@defgroup search Graph Search |
282 | 282 |
@ingroup algs |
283 | 283 |
\brief Common graph search algorithms. |
284 | 284 |
|
285 | 285 |
This group contains the common graph search algorithms, namely |
286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
287 | 287 |
*/ |
288 | 288 |
|
289 | 289 |
/** |
290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
291 | 291 |
@ingroup algs |
292 | 292 |
\brief Algorithms for finding shortest paths. |
293 | 293 |
|
294 | 294 |
This group contains the algorithms for finding shortest paths in digraphs. |
295 | 295 |
|
296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
297 | 297 |
when all arc lengths are non-negative. |
298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
300 | 300 |
but the digraph should not contain directed cycles with negative total |
301 | 301 |
length. |
302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
304 | 304 |
lenghts can be either positive or negative, but the digraph should |
305 | 305 |
not contain directed cycles with negative total length. |
306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
308 | 308 |
*/ |
309 | 309 |
|
310 | 310 |
/** |
311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
312 | 312 |
@ingroup algs |
313 | 313 |
\brief Algorithms for finding maximum flows. |
314 | 314 |
|
315 | 315 |
This group contains the algorithms for finding maximum flows and |
316 | 316 |
feasible circulations. |
317 | 317 |
|
318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
320 | 320 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
322 | 322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
323 | 323 |
following optimization problem. |
324 | 324 |
|
325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
|
326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
|
327 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
|
328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
|
325 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
|
326 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
|
327 |
\quad \forall u\in V\setminus\{s,t\} \f] |
|
328 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
|
329 | 329 |
|
330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
335 | 335 |
|
336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
337 | 337 |
fastest method for computing a maximum flow. All implementations |
338 | 338 |
provides functions to also query the minimum cut, which is the dual |
339 | 339 |
problem of the maximum flow. |
340 | 340 |
*/ |
341 | 341 |
|
342 | 342 |
/** |
343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
344 | 344 |
@ingroup algs |
345 | 345 |
|
346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
347 | 347 |
|
348 | 348 |
This group contains the algorithms for finding minimum cost flows and |
349 | 349 |
circulations. |
350 | 350 |
|
351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
353 |
in a network with capacity constraints and |
|
353 |
in a network with capacity constraints (lower and upper bounds) |
|
354 |
and arc costs. |
|
354 | 355 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
355 | 356 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
356 |
upper bounds for the flow values on the arcs, |
|
357 |
upper bounds for the flow values on the arcs, for which |
|
358 |
\f$0 \leq lower(uv) \leq upper(uv)\f$ holds for all \f$uv\in A\f$. |
|
357 | 359 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
358 |
on the arcs, and |
|
359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
|
360 |
of the nodes. |
|
361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
|
362 |
the |
|
360 |
on the arcs, and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
361 |
signed supply values of the nodes. |
|
362 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
363 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
364 |
\f$-sup(u)\f$ demand. |
|
365 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}^+_0\f$ solution |
|
366 |
of the following optimization problem. |
|
363 | 367 |
|
364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
|
365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
|
366 |
supply(v) \qquad \forall v\in V \f] |
|
367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
|
368 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
369 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
370 |
sup(u) \quad \forall u\in V \f] |
|
371 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
368 | 372 |
|
369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
|
370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
|
371 |
|
|
373 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
374 |
zero or negative in order to have a feasible solution (since the sum |
|
375 |
of the expressions on the left-hand side of the inequalities is zero). |
|
376 |
It means that the total demand must be greater or equal to the total |
|
377 |
supply and all the supplies have to be carried out from the supply nodes, |
|
378 |
but there could be demands that are not satisfied. |
|
379 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
380 |
constraints have to be satisfied with equality, i.e. all demands |
|
381 |
have to be satisfied and all supplies have to be used. |
|
382 |
|
|
383 |
If you need the opposite inequalities in the supply/demand constraints |
|
384 |
(i.e. the total demand is less than the total supply and all the demands |
|
385 |
have to be satisfied while there could be supplies that are not used), |
|
386 |
then you could easily transform the problem to the above form by reversing |
|
387 |
the direction of the arcs and taking the negative of the supply values |
|
388 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
389 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
390 |
for the sake of convenience. |
|
391 |
|
|
392 |
A feasible solution for this problem can be found using \ref Circulation. |
|
393 |
|
|
394 |
Note that the above formulation is actually more general than the usual |
|
395 |
definition of the minimum cost flow problem, in which strict equalities |
|
396 |
are required in the supply/demand contraints, i.e. |
|
397 |
|
|
398 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
399 |
sup(u) \quad \forall u\in V. \f] |
|
400 |
|
|
401 |
However if the sum of the supply values is zero, then these two problems |
|
402 |
are equivalent. So if you need the equality form, you have to ensure this |
|
403 |
additional contraint for the algorithms. |
|
404 |
|
|
405 |
The dual solution of the minimum cost flow problem is represented by node |
|
406 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
|
407 |
An \f$f: A\rightarrow\mathbf{Z}^+_0\f$ feasible solution of the problem |
|
408 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
|
409 |
node potentials the following \e complementary \e slackness optimality |
|
410 |
conditions hold. |
|
411 |
|
|
412 |
- For all \f$uv\in A\f$ arcs: |
|
413 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
414 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
415 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
416 |
- For all \f$u\in V\f$: |
|
417 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
418 |
then \f$\pi(u)=0\f$. |
|
419 |
|
|
420 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
421 |
\f$uv\in A\f$ with respect to the node potentials \f$\pi\f$, i.e. |
|
422 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
423 |
|
|
424 |
All algorithms provide dual solution (node potentials) as well |
|
425 |
if an optimal flow is found. |
|
426 |
|
|
427 |
LEMON contains several algorithms for solving minimum cost flow problems. |
|
428 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
|
429 |
pivot strategies. |
|
430 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
|
431 |
cost scaling. |
|
432 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
|
372 | 433 |
capacity scaling. |
373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
|
374 |
cost scaling. |
|
375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
|
376 |
pivot strategies. |
|
434 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
|
435 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
|
436 |
|
|
437 |
Most of these implementations support the general inequality form of the |
|
438 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
|
439 |
only support the equality form due to the primal method they use. |
|
440 |
|
|
441 |
In general NetworkSimplex is the most efficient implementation, |
|
442 |
but in special cases other algorithms could be faster. |
|
443 |
For example, if the total supply and/or capacities are rather small, |
|
444 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
377 | 445 |
*/ |
378 | 446 |
|
379 | 447 |
/** |
380 | 448 |
@defgroup min_cut Minimum Cut Algorithms |
381 | 449 |
@ingroup algs |
382 | 450 |
|
383 | 451 |
\brief Algorithms for finding minimum cut in graphs. |
384 | 452 |
|
385 | 453 |
This group contains the algorithms for finding minimum cut in graphs. |
386 | 454 |
|
387 | 455 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
388 | 456 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
389 | 457 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
390 | 458 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
391 | 459 |
cut is the \f$X\f$ solution of the next optimization problem: |
392 | 460 |
|
393 | 461 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
394 | 462 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
395 | 463 |
|
396 | 464 |
LEMON contains several algorithms related to minimum cut problems: |
397 | 465 |
|
398 | 466 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
399 | 467 |
in directed graphs. |
400 | 468 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
401 | 469 |
calculating minimum cut in undirected graphs. |
402 | 470 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
403 | 471 |
all-pairs minimum cut in undirected graphs. |
404 | 472 |
|
405 | 473 |
If you want to find minimum cut just between two distinict nodes, |
406 | 474 |
see the \ref max_flow "maximum flow problem". |
407 | 475 |
*/ |
408 | 476 |
|
409 | 477 |
/** |
410 | 478 |
@defgroup graph_properties Connectivity and Other Graph Properties |
411 | 479 |
@ingroup algs |
412 | 480 |
\brief Algorithms for discovering the graph properties |
413 | 481 |
|
414 | 482 |
This group contains the algorithms for discovering the graph properties |
415 | 483 |
like connectivity, bipartiteness, euler property, simplicity etc. |
416 | 484 |
|
417 | 485 |
\image html edge_biconnected_components.png |
418 | 486 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
419 | 487 |
*/ |
420 | 488 |
|
421 | 489 |
/** |
422 | 490 |
@defgroup planar Planarity Embedding and Drawing |
423 | 491 |
@ingroup algs |
424 | 492 |
\brief Algorithms for planarity checking, embedding and drawing |
425 | 493 |
|
426 | 494 |
This group contains the algorithms for planarity checking, |
427 | 495 |
embedding and drawing. |
428 | 496 |
|
429 | 497 |
\image html planar.png |
430 | 498 |
\image latex planar.eps "Plane graph" width=\textwidth |
431 | 499 |
*/ |
432 | 500 |
|
433 | 501 |
/** |
434 | 502 |
@defgroup matching Matching Algorithms |
435 | 503 |
@ingroup algs |
436 | 504 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
437 | 505 |
|
438 | 506 |
This group contains the algorithms for calculating |
439 | 507 |
matchings in graphs and bipartite graphs. The general matching problem is |
440 | 508 |
finding a subset of the edges for which each node has at most one incident |
441 | 509 |
edge. |
442 | 510 |
|
443 | 511 |
There are several different algorithms for calculate matchings in |
444 | 512 |
graphs. The matching problems in bipartite graphs are generally |
445 | 513 |
easier than in general graphs. The goal of the matching optimization |
446 | 514 |
can be finding maximum cardinality, maximum weight or minimum cost |
447 | 515 |
matching. The search can be constrained to find perfect or |
448 | 516 |
maximum cardinality matching. |
449 | 517 |
|
450 | 518 |
The matching algorithms implemented in LEMON: |
451 | 519 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
452 | 520 |
for calculating maximum cardinality matching in bipartite graphs. |
453 | 521 |
- \ref PrBipartiteMatching Push-relabel algorithm |
454 | 522 |
for calculating maximum cardinality matching in bipartite graphs. |
455 | 523 |
- \ref MaxWeightedBipartiteMatching |
456 | 524 |
Successive shortest path algorithm for calculating maximum weighted |
457 | 525 |
matching and maximum weighted bipartite matching in bipartite graphs. |
458 | 526 |
- \ref MinCostMaxBipartiteMatching |
459 | 527 |
Successive shortest path algorithm for calculating minimum cost maximum |
460 | 528 |
matching in bipartite graphs. |
461 | 529 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
462 | 530 |
maximum cardinality matching in general graphs. |
463 | 531 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
464 | 532 |
maximum weighted matching in general graphs. |
465 | 533 |
- \ref MaxWeightedPerfectMatching |
466 | 534 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
467 | 535 |
perfect matching in general graphs. |
468 | 536 |
|
469 | 537 |
\image html bipartite_matching.png |
470 | 538 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
471 | 539 |
*/ |
472 | 540 |
|
473 | 541 |
/** |
474 | 542 |
@defgroup spantree Minimum Spanning Tree Algorithms |
475 | 543 |
@ingroup algs |
476 | 544 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
477 | 545 |
|
478 | 546 |
This group contains the algorithms for finding a minimum cost spanning |
479 | 547 |
tree in a graph. |
480 | 548 |
*/ |
481 | 549 |
|
482 | 550 |
/** |
483 | 551 |
@defgroup auxalg Auxiliary Algorithms |
484 | 552 |
@ingroup algs |
485 | 553 |
\brief Auxiliary algorithms implemented in LEMON. |
486 | 554 |
|
487 | 555 |
This group contains some algorithms implemented in LEMON |
488 | 556 |
in order to make it easier to implement complex algorithms. |
489 | 557 |
*/ |
490 | 558 |
|
491 | 559 |
/** |
492 | 560 |
@defgroup approx Approximation Algorithms |
493 | 561 |
@ingroup algs |
494 | 562 |
\brief Approximation algorithms. |
495 | 563 |
|
496 | 564 |
This group contains the approximation and heuristic algorithms |
497 | 565 |
implemented in LEMON. |
498 | 566 |
*/ |
499 | 567 |
|
500 | 568 |
/** |
501 | 569 |
@defgroup gen_opt_group General Optimization Tools |
502 | 570 |
\brief This group contains some general optimization frameworks |
503 | 571 |
implemented in LEMON. |
504 | 572 |
|
505 | 573 |
This group contains some general optimization frameworks |
506 | 574 |
implemented in LEMON. |
507 | 575 |
*/ |
508 | 576 |
|
509 | 577 |
/** |
510 | 578 |
@defgroup lp_group Lp and Mip Solvers |
511 | 579 |
@ingroup gen_opt_group |
512 | 580 |
\brief Lp and Mip solver interfaces for LEMON. |
513 | 581 |
|
514 | 582 |
This group contains Lp and Mip solver interfaces for LEMON. The |
515 | 583 |
various LP solvers could be used in the same manner with this |
516 | 584 |
interface. |
517 | 585 |
*/ |
518 | 586 |
|
519 | 587 |
/** |
520 | 588 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
521 | 589 |
@ingroup lp_group |
522 | 590 |
\brief Helper tools to the Lp and Mip solvers. |
523 | 591 |
|
524 | 592 |
This group adds some helper tools to general optimization framework |
525 | 593 |
implemented in LEMON. |
526 | 594 |
*/ |
527 | 595 |
|
528 | 596 |
/** |
529 | 597 |
@defgroup metah Metaheuristics |
530 | 598 |
@ingroup gen_opt_group |
531 | 599 |
\brief Metaheuristics for LEMON library. |
532 | 600 |
|
533 | 601 |
This group contains some metaheuristic optimization tools. |
534 | 602 |
*/ |
535 | 603 |
|
536 | 604 |
/** |
537 | 605 |
@defgroup utils Tools and Utilities |
538 | 606 |
\brief Tools and utilities for programming in LEMON |
539 | 607 |
|
540 | 608 |
Tools and utilities for programming in LEMON. |
541 | 609 |
*/ |
542 | 610 |
|
543 | 611 |
/** |
544 | 612 |
@defgroup gutils Basic Graph Utilities |
545 | 613 |
@ingroup utils |
546 | 614 |
\brief Simple basic graph utilities. |
547 | 615 |
|
548 | 616 |
This group contains some simple basic graph utilities. |
549 | 617 |
*/ |
550 | 618 |
|
551 | 619 |
/** |
552 | 620 |
@defgroup misc Miscellaneous Tools |
553 | 621 |
@ingroup utils |
554 | 622 |
\brief Tools for development, debugging and testing. |
555 | 623 |
|
556 | 624 |
This group contains several useful tools for development, |
557 | 625 |
debugging and testing. |
558 | 626 |
*/ |
559 | 627 |
|
560 | 628 |
/** |
561 | 629 |
@defgroup timecount Time Measuring and Counting |
562 | 630 |
@ingroup misc |
563 | 631 |
\brief Simple tools for measuring the performance of algorithms. |
564 | 632 |
|
565 | 633 |
This group contains simple tools for measuring the performance |
566 | 634 |
of algorithms. |
567 | 635 |
*/ |
568 | 636 |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt |
4 | 4 |
|
5 | 5 |
pkgconfig_DATA += lemon/lemon.pc |
6 | 6 |
|
7 | 7 |
lib_LTLIBRARIES += lemon/libemon.la |
8 | 8 |
|
9 | 9 |
lemon_libemon_la_SOURCES = \ |
10 | 10 |
lemon/arg_parser.cc \ |
11 | 11 |
lemon/base.cc \ |
12 | 12 |
lemon/color.cc \ |
13 | 13 |
lemon/lp_base.cc \ |
14 | 14 |
lemon/lp_skeleton.cc \ |
15 | 15 |
lemon/random.cc \ |
16 | 16 |
lemon/bits/windows.cc |
17 | 17 |
|
18 | 18 |
|
19 | 19 |
lemon_libemon_la_CXXFLAGS = \ |
20 | 20 |
$(AM_CXXFLAGS) \ |
21 | 21 |
$(GLPK_CFLAGS) \ |
22 | 22 |
$(CPLEX_CFLAGS) \ |
23 | 23 |
$(SOPLEX_CXXFLAGS) \ |
24 | 24 |
$(CLP_CXXFLAGS) \ |
25 | 25 |
$(CBC_CXXFLAGS) |
26 | 26 |
|
27 | 27 |
lemon_libemon_la_LDFLAGS = \ |
28 | 28 |
$(GLPK_LIBS) \ |
29 | 29 |
$(CPLEX_LIBS) \ |
30 | 30 |
$(SOPLEX_LIBS) \ |
31 | 31 |
$(CLP_LIBS) \ |
32 | 32 |
$(CBC_LIBS) |
33 | 33 |
|
34 | 34 |
if HAVE_GLPK |
35 | 35 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
36 | 36 |
endif |
37 | 37 |
|
38 | 38 |
if HAVE_CPLEX |
39 | 39 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
40 | 40 |
endif |
41 | 41 |
|
42 | 42 |
if HAVE_SOPLEX |
43 | 43 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
44 | 44 |
endif |
45 | 45 |
|
46 | 46 |
if HAVE_CLP |
47 | 47 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
48 | 48 |
endif |
49 | 49 |
|
50 | 50 |
if HAVE_CBC |
51 | 51 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
52 | 52 |
endif |
53 | 53 |
|
54 | 54 |
lemon_HEADERS += \ |
55 | 55 |
lemon/adaptors.h \ |
56 | 56 |
lemon/arg_parser.h \ |
57 | 57 |
lemon/assert.h \ |
58 | 58 |
lemon/bfs.h \ |
59 | 59 |
lemon/bin_heap.h \ |
60 | 60 |
lemon/circulation.h \ |
61 | 61 |
lemon/clp.h \ |
62 | 62 |
lemon/color.h \ |
63 | 63 |
lemon/concept_check.h \ |
64 | 64 |
lemon/connectivity.h \ |
65 | 65 |
lemon/counter.h \ |
66 | 66 |
lemon/core.h \ |
67 | 67 |
lemon/cplex.h \ |
68 | 68 |
lemon/dfs.h \ |
69 | 69 |
lemon/dijkstra.h \ |
70 | 70 |
lemon/dim2.h \ |
71 | 71 |
lemon/dimacs.h \ |
72 | 72 |
lemon/edge_set.h \ |
73 | 73 |
lemon/elevator.h \ |
74 | 74 |
lemon/error.h \ |
75 | 75 |
lemon/euler.h \ |
76 | 76 |
lemon/full_graph.h \ |
77 | 77 |
lemon/glpk.h \ |
78 | 78 |
lemon/gomory_hu.h \ |
79 | 79 |
lemon/graph_to_eps.h \ |
80 | 80 |
lemon/grid_graph.h \ |
81 | 81 |
lemon/hypercube_graph.h \ |
82 | 82 |
lemon/kruskal.h \ |
83 | 83 |
lemon/hao_orlin.h \ |
84 | 84 |
lemon/lgf_reader.h \ |
85 | 85 |
lemon/lgf_writer.h \ |
86 | 86 |
lemon/list_graph.h \ |
87 | 87 |
lemon/lp.h \ |
88 | 88 |
lemon/lp_base.h \ |
89 | 89 |
lemon/lp_skeleton.h \ |
90 | 90 |
lemon/list_graph.h \ |
91 | 91 |
lemon/maps.h \ |
92 | 92 |
lemon/matching.h \ |
93 | 93 |
lemon/math.h \ |
94 | 94 |
lemon/min_cost_arborescence.h \ |
95 | 95 |
lemon/nauty_reader.h \ |
96 |
lemon/network_simplex.h \ |
|
96 | 97 |
lemon/path.h \ |
97 | 98 |
lemon/preflow.h \ |
98 | 99 |
lemon/radix_sort.h \ |
99 | 100 |
lemon/random.h \ |
100 | 101 |
lemon/smart_graph.h \ |
101 | 102 |
lemon/soplex.h \ |
102 | 103 |
lemon/suurballe.h \ |
103 | 104 |
lemon/time_measure.h \ |
104 | 105 |
lemon/tolerance.h \ |
105 | 106 |
lemon/unionfind.h \ |
106 | 107 |
lemon/bits/windows.h |
107 | 108 |
|
108 | 109 |
bits_HEADERS += \ |
109 | 110 |
lemon/bits/alteration_notifier.h \ |
110 | 111 |
lemon/bits/array_map.h \ |
111 | 112 |
lemon/bits/base_extender.h \ |
112 | 113 |
lemon/bits/bezier.h \ |
113 | 114 |
lemon/bits/default_map.h \ |
114 | 115 |
lemon/bits/edge_set_extender.h \ |
115 | 116 |
lemon/bits/enable_if.h \ |
116 | 117 |
lemon/bits/graph_adaptor_extender.h \ |
117 | 118 |
lemon/bits/graph_extender.h \ |
118 | 119 |
lemon/bits/map_extender.h \ |
119 | 120 |
lemon/bits/path_dump.h \ |
120 | 121 |
lemon/bits/solver_bits.h \ |
121 | 122 |
lemon/bits/traits.h \ |
122 | 123 |
lemon/bits/variant.h \ |
123 | 124 |
lemon/bits/vector_map.h |
124 | 125 |
|
125 | 126 |
concept_HEADERS += \ |
126 | 127 |
lemon/concepts/digraph.h \ |
127 | 128 |
lemon/concepts/graph.h \ |
128 | 129 |
lemon/concepts/graph_components.h \ |
129 | 130 |
lemon/concepts/heap.h \ |
130 | 131 |
lemon/concepts/maps.h \ |
131 | 132 |
lemon/concepts/path.h |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
///\ingroup max_flow |
26 | 26 |
///\file |
27 | 27 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
28 | 28 |
/// |
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Circulation class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Circulation class. |
34 |
/// \tparam GR Digraph type. |
|
35 |
/// \tparam LM Lower bound capacity map type. |
|
36 |
/// \tparam UM Upper bound capacity map type. |
|
37 |
/// \tparam DM Delta map type. |
|
34 |
/// |
|
35 |
/// \tparam GR Type of the digraph the algorithm runs on. |
|
36 |
/// \tparam LM The type of the lower bound map. |
|
37 |
/// \tparam UM The type of the upper bound (capacity) map. |
|
38 |
/// \tparam SM The type of the supply map. |
|
38 | 39 |
template <typename GR, typename LM, |
39 |
typename UM, typename |
|
40 |
typename UM, typename SM> |
|
40 | 41 |
struct CirculationDefaultTraits { |
41 | 42 |
|
42 | 43 |
/// \brief The type of the digraph the algorithm runs on. |
43 | 44 |
typedef GR Digraph; |
44 | 45 |
|
45 |
/// \brief The type of the map that stores the circulation lower |
|
46 |
/// bound. |
|
46 |
/// \brief The type of the lower bound map. |
|
47 | 47 |
/// |
48 |
/// The type of the map that stores the circulation lower bound. |
|
49 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
50 |
|
|
48 |
/// The type of the map that stores the lower bounds on the arcs. |
|
49 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
50 |
typedef LM LowerMap; |
|
51 | 51 |
|
52 |
/// \brief The type of the map that stores the circulation upper |
|
53 |
/// bound. |
|
52 |
/// \brief The type of the upper bound (capacity) map. |
|
54 | 53 |
/// |
55 |
/// The type of the map that stores the circulation upper bound. |
|
56 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
|
57 |
|
|
54 |
/// The type of the map that stores the upper bounds (capacities) |
|
55 |
/// on the arcs. |
|
56 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
57 |
typedef UM UpperMap; |
|
58 | 58 |
|
59 |
/// \brief The type of the map that stores the lower bound for |
|
60 |
/// the supply of the nodes. |
|
59 |
/// \brief The type of supply map. |
|
61 | 60 |
/// |
62 |
/// The type of the map that stores the lower bound for the supply |
|
63 |
/// of the nodes. It must meet the \ref concepts::ReadMap "ReadMap" |
|
64 |
/// concept. |
|
65 |
typedef DM DeltaMap; |
|
61 |
/// The type of the map that stores the signed supply values of the |
|
62 |
/// nodes. |
|
63 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
64 |
typedef SM SupplyMap; |
|
66 | 65 |
|
67 | 66 |
/// \brief The type of the flow values. |
68 |
typedef typename |
|
67 |
typedef typename SupplyMap::Value Flow; |
|
69 | 68 |
|
70 | 69 |
/// \brief The type of the map that stores the flow values. |
71 | 70 |
/// |
72 | 71 |
/// The type of the map that stores the flow values. |
73 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
74 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
|
72 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
73 |
/// concept. |
|
74 |
typedef typename Digraph::template ArcMap<Flow> FlowMap; |
|
75 | 75 |
|
76 | 76 |
/// \brief Instantiates a FlowMap. |
77 | 77 |
/// |
78 | 78 |
/// This function instantiates a \ref FlowMap. |
79 |
/// \param digraph The digraph |
|
79 |
/// \param digraph The digraph for which we would like to define |
|
80 | 80 |
/// the flow map. |
81 | 81 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
82 | 82 |
return new FlowMap(digraph); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
/// \brief The elevator type used by the algorithm. |
86 | 86 |
/// |
87 | 87 |
/// The elevator type used by the algorithm. |
88 | 88 |
/// |
89 | 89 |
/// \sa Elevator |
90 | 90 |
/// \sa LinkedElevator |
91 | 91 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
92 | 92 |
|
93 | 93 |
/// \brief Instantiates an Elevator. |
94 | 94 |
/// |
95 | 95 |
/// This function instantiates an \ref Elevator. |
96 |
/// \param digraph The digraph |
|
96 |
/// \param digraph The digraph for which we would like to define |
|
97 | 97 |
/// the elevator. |
98 | 98 |
/// \param max_level The maximum level of the elevator. |
99 | 99 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
100 | 100 |
return new Elevator(digraph, max_level); |
101 | 101 |
} |
102 | 102 |
|
103 | 103 |
/// \brief The tolerance used by the algorithm |
104 | 104 |
/// |
105 | 105 |
/// The tolerance used by the algorithm to handle inexact computation. |
106 |
typedef lemon::Tolerance< |
|
106 |
typedef lemon::Tolerance<Flow> Tolerance; |
|
107 | 107 |
|
108 | 108 |
}; |
109 | 109 |
|
110 | 110 |
/** |
111 | 111 |
\brief Push-relabel algorithm for the network circulation problem. |
112 | 112 |
|
113 | 113 |
\ingroup max_flow |
114 |
This class implements a push-relabel algorithm for the network |
|
115 |
circulation problem. |
|
114 |
This class implements a push-relabel algorithm for the \e network |
|
115 |
\e circulation problem. |
|
116 | 116 |
It is to find a feasible circulation when lower and upper bounds |
117 |
are given for the flow values on the arcs and lower bounds |
|
118 |
are given for the supply values of the nodes. |
|
117 |
are given for the flow values on the arcs and lower bounds are |
|
118 |
given for the difference between the outgoing and incoming flow |
|
119 |
at the nodes. |
|
119 | 120 |
|
120 | 121 |
The exact formulation of this problem is the following. |
121 | 122 |
Let \f$G=(V,A)\f$ be a digraph, |
122 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$, |
|
123 |
\f$delta: V\rightarrow\mathbf{R}\f$. Find a feasible circulation |
|
124 |
\f$f: A\rightarrow\mathbf{R}^+_0\f$ so that |
|
125 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) |
|
126 |
\geq delta(v) \quad \forall v\in V, \f] |
|
127 |
\f[ lower(a)\leq f(a) \leq upper(a) \quad \forall a\in A. \f] |
|
128 |
\note \f$delta(v)\f$ specifies a lower bound for the supply of node |
|
129 |
\f$v\f$. It can be either positive or negative, however note that |
|
130 |
\f$\sum_{v\in V}delta(v)\f$ should be zero or negative in order to |
|
131 |
have a feasible solution. |
|
123 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$ denote the lower and |
|
124 |
upper bounds on the arcs, for which \f$0 \leq lower(uv) \leq upper(uv)\f$ |
|
125 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
|
126 |
denotes the signed supply values of the nodes. |
|
127 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
128 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
129 |
\f$-sup(u)\f$ demand. |
|
130 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ |
|
131 |
solution of the following problem. |
|
132 | 132 |
|
133 |
\note A special case of this problem is when |
|
134 |
\f$\sum_{v\in V}delta(v) = 0\f$. Then the supply of each node \f$v\f$ |
|
135 |
will be \e equal \e to \f$delta(v)\f$, if a circulation can be found. |
|
136 |
Thus a feasible solution for the |
|
137 |
\ref min_cost_flow "minimum cost flow" problem can be calculated |
|
138 |
in this way. |
|
133 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
|
134 |
\geq sup(u) \quad \forall u\in V, \f] |
|
135 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
|
136 |
|
|
137 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
138 |
zero or negative in order to have a feasible solution (since the sum |
|
139 |
of the expressions on the left-hand side of the inequalities is zero). |
|
140 |
It means that the total demand must be greater or equal to the total |
|
141 |
supply and all the supplies have to be carried out from the supply nodes, |
|
142 |
but there could be demands that are not satisfied. |
|
143 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
144 |
constraints have to be satisfied with equality, i.e. all demands |
|
145 |
have to be satisfied and all supplies have to be used. |
|
146 |
|
|
147 |
If you need the opposite inequalities in the supply/demand constraints |
|
148 |
(i.e. the total demand is less than the total supply and all the demands |
|
149 |
have to be satisfied while there could be supplies that are not used), |
|
150 |
then you could easily transform the problem to the above form by reversing |
|
151 |
the direction of the arcs and taking the negative of the supply values |
|
152 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
153 |
|
|
154 |
Note that this algorithm also provides a feasible solution for the |
|
155 |
\ref min_cost_flow "minimum cost flow problem". |
|
139 | 156 |
|
140 | 157 |
\tparam GR The type of the digraph the algorithm runs on. |
141 |
\tparam LM The type of the lower bound |
|
158 |
\tparam LM The type of the lower bound map. The default |
|
142 | 159 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
143 |
\tparam UM The type of the upper bound capacity map. The default |
|
144 |
map type is \c LM. |
|
145 |
\tparam DM The type of the map that stores the lower bound |
|
146 |
for the supply of the nodes. The default map type is |
|
160 |
\tparam UM The type of the upper bound (capacity) map. |
|
161 |
The default map type is \c LM. |
|
162 |
\tparam SM The type of the supply map. The default map type is |
|
147 | 163 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
148 | 164 |
*/ |
149 | 165 |
#ifdef DOXYGEN |
150 | 166 |
template< typename GR, |
151 | 167 |
typename LM, |
152 | 168 |
typename UM, |
153 |
typename |
|
169 |
typename SM, |
|
154 | 170 |
typename TR > |
155 | 171 |
#else |
156 | 172 |
template< typename GR, |
157 | 173 |
typename LM = typename GR::template ArcMap<int>, |
158 | 174 |
typename UM = LM, |
159 |
typename DM = typename GR::template NodeMap<typename UM::Value>, |
|
160 |
typename TR = CirculationDefaultTraits<GR, LM, UM, DM> > |
|
175 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
|
176 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
|
161 | 177 |
#endif |
162 | 178 |
class Circulation { |
163 | 179 |
public: |
164 | 180 |
|
165 | 181 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
166 | 182 |
typedef TR Traits; |
167 | 183 |
///The type of the digraph the algorithm runs on. |
168 | 184 |
typedef typename Traits::Digraph Digraph; |
169 | 185 |
///The type of the flow values. |
170 |
typedef typename Traits:: |
|
186 |
typedef typename Traits::Flow Flow; |
|
171 | 187 |
|
172 |
/// The type of the lower bound capacity map. |
|
173 |
typedef typename Traits::LCapMap LCapMap; |
|
174 |
/// The type of the upper bound capacity map. |
|
175 |
typedef typename Traits::UCapMap UCapMap; |
|
176 |
/// \brief The type of the map that stores the lower bound for |
|
177 |
/// the supply of the nodes. |
|
178 |
|
|
188 |
///The type of the lower bound map. |
|
189 |
typedef typename Traits::LowerMap LowerMap; |
|
190 |
///The type of the upper bound (capacity) map. |
|
191 |
typedef typename Traits::UpperMap UpperMap; |
|
192 |
///The type of the supply map. |
|
193 |
typedef typename Traits::SupplyMap SupplyMap; |
|
179 | 194 |
///The type of the flow map. |
180 | 195 |
typedef typename Traits::FlowMap FlowMap; |
181 | 196 |
|
182 | 197 |
///The type of the elevator. |
183 | 198 |
typedef typename Traits::Elevator Elevator; |
184 | 199 |
///The type of the tolerance. |
185 | 200 |
typedef typename Traits::Tolerance Tolerance; |
186 | 201 |
|
187 | 202 |
private: |
188 | 203 |
|
189 | 204 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
190 | 205 |
|
191 | 206 |
const Digraph &_g; |
192 | 207 |
int _node_num; |
193 | 208 |
|
194 |
const LCapMap *_lo; |
|
195 |
const UCapMap *_up; |
|
196 |
const |
|
209 |
const LowerMap *_lo; |
|
210 |
const UpperMap *_up; |
|
211 |
const SupplyMap *_supply; |
|
197 | 212 |
|
198 | 213 |
FlowMap *_flow; |
199 | 214 |
bool _local_flow; |
200 | 215 |
|
201 | 216 |
Elevator* _level; |
202 | 217 |
bool _local_level; |
203 | 218 |
|
204 |
typedef typename Digraph::template NodeMap< |
|
219 |
typedef typename Digraph::template NodeMap<Flow> ExcessMap; |
|
205 | 220 |
ExcessMap* _excess; |
206 | 221 |
|
207 | 222 |
Tolerance _tol; |
208 | 223 |
int _el; |
209 | 224 |
|
210 | 225 |
public: |
211 | 226 |
|
212 | 227 |
typedef Circulation Create; |
213 | 228 |
|
214 | 229 |
///\name Named Template Parameters |
215 | 230 |
|
216 | 231 |
///@{ |
217 | 232 |
|
218 | 233 |
template <typename T> |
219 | 234 |
struct SetFlowMapTraits : public Traits { |
220 | 235 |
typedef T FlowMap; |
221 | 236 |
static FlowMap *createFlowMap(const Digraph&) { |
222 | 237 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
223 | 238 |
return 0; // ignore warnings |
224 | 239 |
} |
225 | 240 |
}; |
226 | 241 |
|
227 | 242 |
/// \brief \ref named-templ-param "Named parameter" for setting |
228 | 243 |
/// FlowMap type |
229 | 244 |
/// |
230 | 245 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
231 | 246 |
/// type. |
232 | 247 |
template <typename T> |
233 | 248 |
struct SetFlowMap |
234 |
: public Circulation<Digraph, |
|
249 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
235 | 250 |
SetFlowMapTraits<T> > { |
236 |
typedef Circulation<Digraph, |
|
251 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
237 | 252 |
SetFlowMapTraits<T> > Create; |
238 | 253 |
}; |
239 | 254 |
|
240 | 255 |
template <typename T> |
241 | 256 |
struct SetElevatorTraits : public Traits { |
242 | 257 |
typedef T Elevator; |
243 | 258 |
static Elevator *createElevator(const Digraph&, int) { |
244 | 259 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
245 | 260 |
return 0; // ignore warnings |
246 | 261 |
} |
247 | 262 |
}; |
248 | 263 |
|
249 | 264 |
/// \brief \ref named-templ-param "Named parameter" for setting |
250 | 265 |
/// Elevator type |
251 | 266 |
/// |
252 | 267 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
253 | 268 |
/// type. If this named parameter is used, then an external |
254 | 269 |
/// elevator object must be passed to the algorithm using the |
255 | 270 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
256 | 271 |
/// \ref run() or \ref init(). |
257 | 272 |
/// \sa SetStandardElevator |
258 | 273 |
template <typename T> |
259 | 274 |
struct SetElevator |
260 |
: public Circulation<Digraph, |
|
275 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
261 | 276 |
SetElevatorTraits<T> > { |
262 |
typedef Circulation<Digraph, |
|
277 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
263 | 278 |
SetElevatorTraits<T> > Create; |
264 | 279 |
}; |
265 | 280 |
|
266 | 281 |
template <typename T> |
267 | 282 |
struct SetStandardElevatorTraits : public Traits { |
268 | 283 |
typedef T Elevator; |
269 | 284 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
270 | 285 |
return new Elevator(digraph, max_level); |
271 | 286 |
} |
272 | 287 |
}; |
273 | 288 |
|
274 | 289 |
/// \brief \ref named-templ-param "Named parameter" for setting |
275 | 290 |
/// Elevator type with automatic allocation |
276 | 291 |
/// |
277 | 292 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
278 | 293 |
/// type with automatic allocation. |
279 | 294 |
/// The Elevator should have standard constructor interface to be |
280 | 295 |
/// able to automatically created by the algorithm (i.e. the |
281 | 296 |
/// digraph and the maximum level should be passed to it). |
282 | 297 |
/// However an external elevator object could also be passed to the |
283 | 298 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
284 | 299 |
/// before calling \ref run() or \ref init(). |
285 | 300 |
/// \sa SetElevator |
286 | 301 |
template <typename T> |
287 | 302 |
struct SetStandardElevator |
288 |
: public Circulation<Digraph, |
|
303 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
289 | 304 |
SetStandardElevatorTraits<T> > { |
290 |
typedef Circulation<Digraph, |
|
305 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
|
291 | 306 |
SetStandardElevatorTraits<T> > Create; |
292 | 307 |
}; |
293 | 308 |
|
294 | 309 |
/// @} |
295 | 310 |
|
296 | 311 |
protected: |
297 | 312 |
|
298 | 313 |
Circulation() {} |
299 | 314 |
|
300 | 315 |
public: |
301 | 316 |
|
302 |
/// |
|
317 |
/// Constructor. |
|
303 | 318 |
|
304 | 319 |
/// The constructor of the class. |
305 |
/// \param g The digraph the algorithm runs on. |
|
306 |
/// \param lo The lower bound capacity of the arcs. |
|
307 |
/// \param up The upper bound capacity of the arcs. |
|
308 |
/// \param delta The lower bound for the supply of the nodes. |
|
309 |
Circulation(const Digraph &g,const LCapMap &lo, |
|
310 |
const UCapMap &up,const DeltaMap &delta) |
|
311 |
: _g(g), _node_num(), |
|
312 |
_lo(&lo),_up(&up),_delta(&delta),_flow(0),_local_flow(false), |
|
313 |
|
|
320 |
/// |
|
321 |
/// \param graph The digraph the algorithm runs on. |
|
322 |
/// \param lower The lower bounds for the flow values on the arcs. |
|
323 |
/// \param upper The upper bounds (capacities) for the flow values |
|
324 |
/// on the arcs. |
|
325 |
/// \param supply The signed supply values of the nodes. |
|
326 |
Circulation(const Digraph &graph, const LowerMap &lower, |
|
327 |
const UpperMap &upper, const SupplyMap &supply) |
|
328 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
|
329 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
|
330 |
_excess(NULL) {} |
|
314 | 331 |
|
315 | 332 |
/// Destructor. |
316 | 333 |
~Circulation() { |
317 | 334 |
destroyStructures(); |
318 | 335 |
} |
319 | 336 |
|
320 | 337 |
|
321 | 338 |
private: |
322 | 339 |
|
323 | 340 |
void createStructures() { |
324 | 341 |
_node_num = _el = countNodes(_g); |
325 | 342 |
|
326 | 343 |
if (!_flow) { |
327 | 344 |
_flow = Traits::createFlowMap(_g); |
328 | 345 |
_local_flow = true; |
329 | 346 |
} |
330 | 347 |
if (!_level) { |
331 | 348 |
_level = Traits::createElevator(_g, _node_num); |
332 | 349 |
_local_level = true; |
333 | 350 |
} |
334 | 351 |
if (!_excess) { |
335 | 352 |
_excess = new ExcessMap(_g); |
336 | 353 |
} |
337 | 354 |
} |
338 | 355 |
|
339 | 356 |
void destroyStructures() { |
340 | 357 |
if (_local_flow) { |
341 | 358 |
delete _flow; |
342 | 359 |
} |
343 | 360 |
if (_local_level) { |
344 | 361 |
delete _level; |
345 | 362 |
} |
346 | 363 |
if (_excess) { |
347 | 364 |
delete _excess; |
348 | 365 |
} |
349 | 366 |
} |
350 | 367 |
|
351 | 368 |
public: |
352 | 369 |
|
353 |
/// Sets the lower bound |
|
370 |
/// Sets the lower bound map. |
|
354 | 371 |
|
355 |
/// Sets the lower bound |
|
372 |
/// Sets the lower bound map. |
|
356 | 373 |
/// \return <tt>(*this)</tt> |
357 |
Circulation& |
|
374 |
Circulation& lowerMap(const LowerMap& map) { |
|
358 | 375 |
_lo = ↦ |
359 | 376 |
return *this; |
360 | 377 |
} |
361 | 378 |
|
362 |
/// Sets the upper bound capacity map. |
|
379 |
/// Sets the upper bound (capacity) map. |
|
363 | 380 |
|
364 |
/// Sets the upper bound capacity map. |
|
381 |
/// Sets the upper bound (capacity) map. |
|
365 | 382 |
/// \return <tt>(*this)</tt> |
366 |
Circulation& |
|
383 |
Circulation& upperMap(const LowerMap& map) { |
|
367 | 384 |
_up = ↦ |
368 | 385 |
return *this; |
369 | 386 |
} |
370 | 387 |
|
371 |
/// Sets the |
|
388 |
/// Sets the supply map. |
|
372 | 389 |
|
373 |
/// Sets the |
|
390 |
/// Sets the supply map. |
|
374 | 391 |
/// \return <tt>(*this)</tt> |
375 |
Circulation& deltaMap(const DeltaMap& map) { |
|
376 |
_delta = ↦ |
|
392 |
Circulation& supplyMap(const SupplyMap& map) { |
|
393 |
_supply = ↦ |
|
377 | 394 |
return *this; |
378 | 395 |
} |
379 | 396 |
|
380 | 397 |
/// \brief Sets the flow map. |
381 | 398 |
/// |
382 | 399 |
/// Sets the flow map. |
383 | 400 |
/// If you don't use this function before calling \ref run() or |
384 | 401 |
/// \ref init(), an instance will be allocated automatically. |
385 | 402 |
/// The destructor deallocates this automatically allocated map, |
386 | 403 |
/// of course. |
387 | 404 |
/// \return <tt>(*this)</tt> |
388 | 405 |
Circulation& flowMap(FlowMap& map) { |
389 | 406 |
if (_local_flow) { |
390 | 407 |
delete _flow; |
391 | 408 |
_local_flow = false; |
392 | 409 |
} |
393 | 410 |
_flow = ↦ |
394 | 411 |
return *this; |
395 | 412 |
} |
396 | 413 |
|
397 | 414 |
/// \brief Sets the elevator used by algorithm. |
398 | 415 |
/// |
399 | 416 |
/// Sets the elevator used by algorithm. |
400 | 417 |
/// If you don't use this function before calling \ref run() or |
401 | 418 |
/// \ref init(), an instance will be allocated automatically. |
402 | 419 |
/// The destructor deallocates this automatically allocated elevator, |
403 | 420 |
/// of course. |
404 | 421 |
/// \return <tt>(*this)</tt> |
405 | 422 |
Circulation& elevator(Elevator& elevator) { |
406 | 423 |
if (_local_level) { |
407 | 424 |
delete _level; |
408 | 425 |
_local_level = false; |
409 | 426 |
} |
410 | 427 |
_level = &elevator; |
411 | 428 |
return *this; |
412 | 429 |
} |
413 | 430 |
|
414 | 431 |
/// \brief Returns a const reference to the elevator. |
415 | 432 |
/// |
416 | 433 |
/// Returns a const reference to the elevator. |
417 | 434 |
/// |
418 | 435 |
/// \pre Either \ref run() or \ref init() must be called before |
419 | 436 |
/// using this function. |
420 | 437 |
const Elevator& elevator() const { |
421 | 438 |
return *_level; |
422 | 439 |
} |
423 | 440 |
|
424 | 441 |
/// \brief Sets the tolerance used by algorithm. |
425 | 442 |
/// |
426 | 443 |
/// Sets the tolerance used by algorithm. |
427 | 444 |
Circulation& tolerance(const Tolerance& tolerance) const { |
428 | 445 |
_tol = tolerance; |
429 | 446 |
return *this; |
430 | 447 |
} |
431 | 448 |
|
432 | 449 |
/// \brief Returns a const reference to the tolerance. |
433 | 450 |
/// |
434 | 451 |
/// Returns a const reference to the tolerance. |
435 | 452 |
const Tolerance& tolerance() const { |
436 | 453 |
return tolerance; |
437 | 454 |
} |
438 | 455 |
|
439 | 456 |
/// \name Execution Control |
440 | 457 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
441 | 458 |
/// If you need more control on the initial solution or the execution, |
442 | 459 |
/// first you have to call one of the \ref init() functions, then |
443 | 460 |
/// the \ref start() function. |
444 | 461 |
|
445 | 462 |
///@{ |
446 | 463 |
|
447 | 464 |
/// Initializes the internal data structures. |
448 | 465 |
|
449 | 466 |
/// Initializes the internal data structures and sets all flow values |
450 | 467 |
/// to the lower bound. |
451 | 468 |
void init() |
452 | 469 |
{ |
453 | 470 |
createStructures(); |
454 | 471 |
|
455 | 472 |
for(NodeIt n(_g);n!=INVALID;++n) { |
456 |
(*_excess)[n] = (* |
|
473 |
(*_excess)[n] = (*_supply)[n]; |
|
457 | 474 |
} |
458 | 475 |
|
459 | 476 |
for (ArcIt e(_g);e!=INVALID;++e) { |
460 | 477 |
_flow->set(e, (*_lo)[e]); |
461 | 478 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
462 | 479 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
463 | 480 |
} |
464 | 481 |
|
465 | 482 |
// global relabeling tested, but in general case it provides |
466 | 483 |
// worse performance for random digraphs |
467 | 484 |
_level->initStart(); |
468 | 485 |
for(NodeIt n(_g);n!=INVALID;++n) |
469 | 486 |
_level->initAddItem(n); |
470 | 487 |
_level->initFinish(); |
471 | 488 |
for(NodeIt n(_g);n!=INVALID;++n) |
472 | 489 |
if(_tol.positive((*_excess)[n])) |
473 | 490 |
_level->activate(n); |
474 | 491 |
} |
475 | 492 |
|
476 | 493 |
/// Initializes the internal data structures using a greedy approach. |
477 | 494 |
|
478 | 495 |
/// Initializes the internal data structures using a greedy approach |
479 | 496 |
/// to construct the initial solution. |
480 | 497 |
void greedyInit() |
481 | 498 |
{ |
482 | 499 |
createStructures(); |
483 | 500 |
|
484 | 501 |
for(NodeIt n(_g);n!=INVALID;++n) { |
485 |
(*_excess)[n] = (* |
|
502 |
(*_excess)[n] = (*_supply)[n]; |
|
486 | 503 |
} |
487 | 504 |
|
488 | 505 |
for (ArcIt e(_g);e!=INVALID;++e) { |
489 | 506 |
if (!_tol.positive((*_excess)[_g.target(e)] + (*_up)[e])) { |
490 | 507 |
_flow->set(e, (*_up)[e]); |
491 | 508 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
492 | 509 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
493 | 510 |
} else if (_tol.positive((*_excess)[_g.target(e)] + (*_lo)[e])) { |
494 | 511 |
_flow->set(e, (*_lo)[e]); |
495 | 512 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
496 | 513 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
497 | 514 |
} else { |
498 |
|
|
515 |
Flow fc = -(*_excess)[_g.target(e)]; |
|
499 | 516 |
_flow->set(e, fc); |
500 | 517 |
(*_excess)[_g.target(e)] = 0; |
501 | 518 |
(*_excess)[_g.source(e)] -= fc; |
502 | 519 |
} |
503 | 520 |
} |
504 | 521 |
|
505 | 522 |
_level->initStart(); |
506 | 523 |
for(NodeIt n(_g);n!=INVALID;++n) |
507 | 524 |
_level->initAddItem(n); |
508 | 525 |
_level->initFinish(); |
509 | 526 |
for(NodeIt n(_g);n!=INVALID;++n) |
510 | 527 |
if(_tol.positive((*_excess)[n])) |
511 | 528 |
_level->activate(n); |
512 | 529 |
} |
513 | 530 |
|
514 | 531 |
///Executes the algorithm |
515 | 532 |
|
516 | 533 |
///This function executes the algorithm. |
517 | 534 |
/// |
518 | 535 |
///\return \c true if a feasible circulation is found. |
519 | 536 |
/// |
520 | 537 |
///\sa barrier() |
521 | 538 |
///\sa barrierMap() |
522 | 539 |
bool start() |
523 | 540 |
{ |
524 | 541 |
|
525 | 542 |
Node act; |
526 | 543 |
Node bact=INVALID; |
527 | 544 |
Node last_activated=INVALID; |
528 | 545 |
while((act=_level->highestActive())!=INVALID) { |
529 | 546 |
int actlevel=(*_level)[act]; |
530 | 547 |
int mlevel=_node_num; |
531 |
|
|
548 |
Flow exc=(*_excess)[act]; |
|
532 | 549 |
|
533 | 550 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
534 | 551 |
Node v = _g.target(e); |
535 |
|
|
552 |
Flow fc=(*_up)[e]-(*_flow)[e]; |
|
536 | 553 |
if(!_tol.positive(fc)) continue; |
537 | 554 |
if((*_level)[v]<actlevel) { |
538 | 555 |
if(!_tol.less(fc, exc)) { |
539 | 556 |
_flow->set(e, (*_flow)[e] + exc); |
540 | 557 |
(*_excess)[v] += exc; |
541 | 558 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
542 | 559 |
_level->activate(v); |
543 | 560 |
(*_excess)[act] = 0; |
544 | 561 |
_level->deactivate(act); |
545 | 562 |
goto next_l; |
546 | 563 |
} |
547 | 564 |
else { |
548 | 565 |
_flow->set(e, (*_up)[e]); |
549 | 566 |
(*_excess)[v] += fc; |
550 | 567 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
551 | 568 |
_level->activate(v); |
552 | 569 |
exc-=fc; |
553 | 570 |
} |
554 | 571 |
} |
555 | 572 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
556 | 573 |
} |
557 | 574 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
558 | 575 |
Node v = _g.source(e); |
559 |
|
|
576 |
Flow fc=(*_flow)[e]-(*_lo)[e]; |
|
560 | 577 |
if(!_tol.positive(fc)) continue; |
561 | 578 |
if((*_level)[v]<actlevel) { |
562 | 579 |
if(!_tol.less(fc, exc)) { |
563 | 580 |
_flow->set(e, (*_flow)[e] - exc); |
564 | 581 |
(*_excess)[v] += exc; |
565 | 582 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
566 | 583 |
_level->activate(v); |
567 | 584 |
(*_excess)[act] = 0; |
568 | 585 |
_level->deactivate(act); |
569 | 586 |
goto next_l; |
570 | 587 |
} |
571 | 588 |
else { |
572 | 589 |
_flow->set(e, (*_lo)[e]); |
573 | 590 |
(*_excess)[v] += fc; |
574 | 591 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
575 | 592 |
_level->activate(v); |
576 | 593 |
exc-=fc; |
577 | 594 |
} |
578 | 595 |
} |
579 | 596 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
580 | 597 |
} |
581 | 598 |
|
582 | 599 |
(*_excess)[act] = exc; |
583 | 600 |
if(!_tol.positive(exc)) _level->deactivate(act); |
584 | 601 |
else if(mlevel==_node_num) { |
585 | 602 |
_level->liftHighestActiveToTop(); |
586 | 603 |
_el = _node_num; |
587 | 604 |
return false; |
588 | 605 |
} |
589 | 606 |
else { |
590 | 607 |
_level->liftHighestActive(mlevel+1); |
591 | 608 |
if(_level->onLevel(actlevel)==0) { |
592 | 609 |
_el = actlevel; |
593 | 610 |
return false; |
594 | 611 |
} |
595 | 612 |
} |
596 | 613 |
next_l: |
597 | 614 |
; |
598 | 615 |
} |
599 | 616 |
return true; |
600 | 617 |
} |
601 | 618 |
|
602 | 619 |
/// Runs the algorithm. |
603 | 620 |
|
604 | 621 |
/// This function runs the algorithm. |
605 | 622 |
/// |
606 | 623 |
/// \return \c true if a feasible circulation is found. |
607 | 624 |
/// |
608 | 625 |
/// \note Apart from the return value, c.run() is just a shortcut of |
609 | 626 |
/// the following code. |
610 | 627 |
/// \code |
611 | 628 |
/// c.greedyInit(); |
612 | 629 |
/// c.start(); |
613 | 630 |
/// \endcode |
614 | 631 |
bool run() { |
615 | 632 |
greedyInit(); |
616 | 633 |
return start(); |
617 | 634 |
} |
618 | 635 |
|
619 | 636 |
/// @} |
620 | 637 |
|
621 | 638 |
/// \name Query Functions |
622 | 639 |
/// The results of the circulation algorithm can be obtained using |
623 | 640 |
/// these functions.\n |
624 | 641 |
/// Either \ref run() or \ref start() should be called before |
625 | 642 |
/// using them. |
626 | 643 |
|
627 | 644 |
///@{ |
628 | 645 |
|
629 | 646 |
/// \brief Returns the flow on the given arc. |
630 | 647 |
/// |
631 | 648 |
/// Returns the flow on the given arc. |
632 | 649 |
/// |
633 | 650 |
/// \pre Either \ref run() or \ref init() must be called before |
634 | 651 |
/// using this function. |
635 |
|
|
652 |
Flow flow(const Arc& arc) const { |
|
636 | 653 |
return (*_flow)[arc]; |
637 | 654 |
} |
638 | 655 |
|
639 | 656 |
/// \brief Returns a const reference to the flow map. |
640 | 657 |
/// |
641 | 658 |
/// Returns a const reference to the arc map storing the found flow. |
642 | 659 |
/// |
643 | 660 |
/// \pre Either \ref run() or \ref init() must be called before |
644 | 661 |
/// using this function. |
645 | 662 |
const FlowMap& flowMap() const { |
646 | 663 |
return *_flow; |
647 | 664 |
} |
648 | 665 |
|
649 | 666 |
/** |
650 | 667 |
\brief Returns \c true if the given node is in a barrier. |
651 | 668 |
|
652 | 669 |
Barrier is a set \e B of nodes for which |
653 | 670 |
|
654 |
\f[ \sum_{a\in\delta_{out}(B)} upper(a) - |
|
655 |
\sum_{a\in\delta_{in}(B)} lower(a) < \sum_{v\in B}delta(v) \f] |
|
671 |
\f[ \sum_{uv\in A: u\in B} upper(uv) - |
|
672 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f] |
|
656 | 673 |
|
657 | 674 |
holds. The existence of a set with this property prooves that a |
658 | 675 |
feasible circualtion cannot exist. |
659 | 676 |
|
660 | 677 |
This function returns \c true if the given node is in the found |
661 | 678 |
barrier. If a feasible circulation is found, the function |
662 | 679 |
gives back \c false for every node. |
663 | 680 |
|
664 | 681 |
\pre Either \ref run() or \ref init() must be called before |
665 | 682 |
using this function. |
666 | 683 |
|
667 | 684 |
\sa barrierMap() |
668 | 685 |
\sa checkBarrier() |
669 | 686 |
*/ |
670 | 687 |
bool barrier(const Node& node) const |
671 | 688 |
{ |
672 | 689 |
return (*_level)[node] >= _el; |
673 | 690 |
} |
674 | 691 |
|
675 | 692 |
/// \brief Gives back a barrier. |
676 | 693 |
/// |
677 | 694 |
/// This function sets \c bar to the characteristic vector of the |
678 | 695 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
679 | 696 |
/// node map with \c bool (or convertible) value type. |
680 | 697 |
/// |
681 | 698 |
/// If a feasible circulation is found, the function gives back an |
682 | 699 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
683 | 700 |
/// |
684 | 701 |
/// \note This function calls \ref barrier() for each node, |
685 | 702 |
/// so it runs in O(n) time. |
686 | 703 |
/// |
687 | 704 |
/// \pre Either \ref run() or \ref init() must be called before |
688 | 705 |
/// using this function. |
689 | 706 |
/// |
690 | 707 |
/// \sa barrier() |
691 | 708 |
/// \sa checkBarrier() |
692 | 709 |
template<class BarrierMap> |
693 | 710 |
void barrierMap(BarrierMap &bar) const |
694 | 711 |
{ |
695 | 712 |
for(NodeIt n(_g);n!=INVALID;++n) |
696 | 713 |
bar.set(n, (*_level)[n] >= _el); |
697 | 714 |
} |
698 | 715 |
|
699 | 716 |
/// @} |
700 | 717 |
|
701 | 718 |
/// \name Checker Functions |
702 | 719 |
/// The feasibility of the results can be checked using |
703 | 720 |
/// these functions.\n |
704 | 721 |
/// Either \ref run() or \ref start() should be called before |
705 | 722 |
/// using them. |
706 | 723 |
|
707 | 724 |
///@{ |
708 | 725 |
|
709 | 726 |
///Check if the found flow is a feasible circulation |
710 | 727 |
|
711 | 728 |
///Check if the found flow is a feasible circulation, |
712 | 729 |
/// |
713 | 730 |
bool checkFlow() const { |
714 | 731 |
for(ArcIt e(_g);e!=INVALID;++e) |
715 | 732 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
716 | 733 |
for(NodeIt n(_g);n!=INVALID;++n) |
717 | 734 |
{ |
718 |
|
|
735 |
Flow dif=-(*_supply)[n]; |
|
719 | 736 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
720 | 737 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
721 | 738 |
if(_tol.negative(dif)) return false; |
722 | 739 |
} |
723 | 740 |
return true; |
724 | 741 |
} |
725 | 742 |
|
726 | 743 |
///Check whether or not the last execution provides a barrier |
727 | 744 |
|
728 | 745 |
///Check whether or not the last execution provides a barrier. |
729 | 746 |
///\sa barrier() |
730 | 747 |
///\sa barrierMap() |
731 | 748 |
bool checkBarrier() const |
732 | 749 |
{ |
733 |
|
|
750 |
Flow delta=0; |
|
734 | 751 |
for(NodeIt n(_g);n!=INVALID;++n) |
735 | 752 |
if(barrier(n)) |
736 |
delta-=(* |
|
753 |
delta-=(*_supply)[n]; |
|
737 | 754 |
for(ArcIt e(_g);e!=INVALID;++e) |
738 | 755 |
{ |
739 | 756 |
Node s=_g.source(e); |
740 | 757 |
Node t=_g.target(e); |
741 | 758 |
if(barrier(s)&&!barrier(t)) delta+=(*_up)[e]; |
742 | 759 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
743 | 760 |
} |
744 | 761 |
return _tol.negative(delta); |
745 | 762 |
} |
746 | 763 |
|
747 | 764 |
/// @} |
748 | 765 |
|
749 | 766 |
}; |
750 | 767 |
|
751 | 768 |
} |
752 | 769 |
|
753 | 770 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_PREFLOW_H |
20 | 20 |
#define LEMON_PREFLOW_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
/// \file |
26 | 26 |
/// \ingroup max_flow |
27 | 27 |
/// \brief Implementation of the preflow algorithm. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 |
typedef typename CapacityMap::Value |
|
49 |
typedef typename CapacityMap::Value Flow; |
|
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
typedef typename Digraph::template ArcMap< |
|
55 |
typedef typename Digraph::template ArcMap<Flow> FlowMap; |
|
56 | 56 |
|
57 | 57 |
/// \brief Instantiates a FlowMap. |
58 | 58 |
/// |
59 | 59 |
/// This function instantiates a \ref FlowMap. |
60 |
/// \param digraph The digraph |
|
60 |
/// \param digraph The digraph for which we would like to define |
|
61 | 61 |
/// the flow map. |
62 | 62 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 63 |
return new FlowMap(digraph); |
64 | 64 |
} |
65 | 65 |
|
66 | 66 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 67 |
/// |
68 | 68 |
/// The elevator type used by Preflow algorithm. |
69 | 69 |
/// |
70 | 70 |
/// \sa Elevator |
71 | 71 |
/// \sa LinkedElevator |
72 | 72 |
typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator; |
73 | 73 |
|
74 | 74 |
/// \brief Instantiates an Elevator. |
75 | 75 |
/// |
76 | 76 |
/// This function instantiates an \ref Elevator. |
77 |
/// \param digraph The digraph |
|
77 |
/// \param digraph The digraph for which we would like to define |
|
78 | 78 |
/// the elevator. |
79 | 79 |
/// \param max_level The maximum level of the elevator. |
80 | 80 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
81 | 81 |
return new Elevator(digraph, max_level); |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
/// \brief The tolerance used by the algorithm |
85 | 85 |
/// |
86 | 86 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 |
typedef lemon::Tolerance< |
|
87 |
typedef lemon::Tolerance<Flow> Tolerance; |
|
88 | 88 |
|
89 | 89 |
}; |
90 | 90 |
|
91 | 91 |
|
92 | 92 |
/// \ingroup max_flow |
93 | 93 |
/// |
94 | 94 |
/// \brief %Preflow algorithm class. |
95 | 95 |
/// |
96 | 96 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
97 | 97 |
/// \e push-relabel algorithm producing a \ref max_flow |
98 | 98 |
/// "flow of maximum value" in a digraph. |
99 | 99 |
/// The preflow algorithms are the fastest known maximum |
100 | 100 |
/// flow algorithms. The current implementation use a mixture of the |
101 | 101 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
102 | 102 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
103 | 103 |
/// |
104 | 104 |
/// The algorithm consists of two phases. After the first phase |
105 | 105 |
/// the maximum flow value and the minimum cut is obtained. The |
106 | 106 |
/// second phase constructs a feasible maximum flow on each arc. |
107 | 107 |
/// |
108 | 108 |
/// \tparam GR The type of the digraph the algorithm runs on. |
109 | 109 |
/// \tparam CAP The type of the capacity map. The default map |
110 | 110 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
111 | 111 |
#ifdef DOXYGEN |
112 | 112 |
template <typename GR, typename CAP, typename TR> |
113 | 113 |
#else |
114 | 114 |
template <typename GR, |
115 | 115 |
typename CAP = typename GR::template ArcMap<int>, |
116 | 116 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
117 | 117 |
#endif |
118 | 118 |
class Preflow { |
119 | 119 |
public: |
120 | 120 |
|
121 | 121 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
122 | 122 |
typedef TR Traits; |
123 | 123 |
///The type of the digraph the algorithm runs on. |
124 | 124 |
typedef typename Traits::Digraph Digraph; |
125 | 125 |
///The type of the capacity map. |
126 | 126 |
typedef typename Traits::CapacityMap CapacityMap; |
127 | 127 |
///The type of the flow values. |
128 |
typedef typename Traits:: |
|
128 |
typedef typename Traits::Flow Flow; |
|
129 | 129 |
|
130 | 130 |
///The type of the flow map. |
131 | 131 |
typedef typename Traits::FlowMap FlowMap; |
132 | 132 |
///The type of the elevator. |
133 | 133 |
typedef typename Traits::Elevator Elevator; |
134 | 134 |
///The type of the tolerance. |
135 | 135 |
typedef typename Traits::Tolerance Tolerance; |
136 | 136 |
|
137 | 137 |
private: |
138 | 138 |
|
139 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
140 | 140 |
|
141 | 141 |
const Digraph& _graph; |
142 | 142 |
const CapacityMap* _capacity; |
143 | 143 |
|
144 | 144 |
int _node_num; |
145 | 145 |
|
146 | 146 |
Node _source, _target; |
147 | 147 |
|
148 | 148 |
FlowMap* _flow; |
149 | 149 |
bool _local_flow; |
150 | 150 |
|
151 | 151 |
Elevator* _level; |
152 | 152 |
bool _local_level; |
153 | 153 |
|
154 |
typedef typename Digraph::template NodeMap< |
|
154 |
typedef typename Digraph::template NodeMap<Flow> ExcessMap; |
|
155 | 155 |
ExcessMap* _excess; |
156 | 156 |
|
157 | 157 |
Tolerance _tolerance; |
158 | 158 |
|
159 | 159 |
bool _phase; |
160 | 160 |
|
161 | 161 |
|
162 | 162 |
void createStructures() { |
163 | 163 |
_node_num = countNodes(_graph); |
164 | 164 |
|
165 | 165 |
if (!_flow) { |
166 | 166 |
_flow = Traits::createFlowMap(_graph); |
167 | 167 |
_local_flow = true; |
168 | 168 |
} |
169 | 169 |
if (!_level) { |
170 | 170 |
_level = Traits::createElevator(_graph, _node_num); |
171 | 171 |
_local_level = true; |
172 | 172 |
} |
173 | 173 |
if (!_excess) { |
174 | 174 |
_excess = new ExcessMap(_graph); |
175 | 175 |
} |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
void destroyStructures() { |
179 | 179 |
if (_local_flow) { |
180 | 180 |
delete _flow; |
181 | 181 |
} |
182 | 182 |
if (_local_level) { |
183 | 183 |
delete _level; |
184 | 184 |
} |
185 | 185 |
if (_excess) { |
186 | 186 |
delete _excess; |
187 | 187 |
} |
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
public: |
191 | 191 |
|
192 | 192 |
typedef Preflow Create; |
193 | 193 |
|
194 | 194 |
///\name Named Template Parameters |
195 | 195 |
|
196 | 196 |
///@{ |
197 | 197 |
|
198 | 198 |
template <typename T> |
199 | 199 |
struct SetFlowMapTraits : public Traits { |
200 | 200 |
typedef T FlowMap; |
201 | 201 |
static FlowMap *createFlowMap(const Digraph&) { |
202 | 202 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
203 | 203 |
return 0; // ignore warnings |
204 | 204 |
} |
205 | 205 |
}; |
206 | 206 |
|
207 | 207 |
/// \brief \ref named-templ-param "Named parameter" for setting |
208 | 208 |
/// FlowMap type |
209 | 209 |
/// |
210 | 210 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
211 | 211 |
/// type. |
212 | 212 |
template <typename T> |
213 | 213 |
struct SetFlowMap |
214 | 214 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > { |
215 | 215 |
typedef Preflow<Digraph, CapacityMap, |
216 | 216 |
SetFlowMapTraits<T> > Create; |
217 | 217 |
}; |
218 | 218 |
|
219 | 219 |
template <typename T> |
220 | 220 |
struct SetElevatorTraits : public Traits { |
221 | 221 |
typedef T Elevator; |
222 | 222 |
static Elevator *createElevator(const Digraph&, int) { |
223 | 223 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
224 | 224 |
return 0; // ignore warnings |
225 | 225 |
} |
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// \brief \ref named-templ-param "Named parameter" for setting |
229 | 229 |
/// Elevator type |
230 | 230 |
/// |
231 | 231 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
232 | 232 |
/// type. If this named parameter is used, then an external |
233 | 233 |
/// elevator object must be passed to the algorithm using the |
234 | 234 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
235 | 235 |
/// \ref run() or \ref init(). |
236 | 236 |
/// \sa SetStandardElevator |
237 | 237 |
template <typename T> |
238 | 238 |
struct SetElevator |
239 | 239 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > { |
240 | 240 |
typedef Preflow<Digraph, CapacityMap, |
241 | 241 |
SetElevatorTraits<T> > Create; |
242 | 242 |
}; |
243 | 243 |
|
244 | 244 |
template <typename T> |
245 | 245 |
struct SetStandardElevatorTraits : public Traits { |
246 | 246 |
typedef T Elevator; |
247 | 247 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
248 | 248 |
return new Elevator(digraph, max_level); |
249 | 249 |
} |
250 | 250 |
}; |
251 | 251 |
|
252 | 252 |
/// \brief \ref named-templ-param "Named parameter" for setting |
253 | 253 |
/// Elevator type with automatic allocation |
254 | 254 |
/// |
255 | 255 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
256 | 256 |
/// type with automatic allocation. |
257 | 257 |
/// The Elevator should have standard constructor interface to be |
258 | 258 |
/// able to automatically created by the algorithm (i.e. the |
259 | 259 |
/// digraph and the maximum level should be passed to it). |
260 | 260 |
/// However an external elevator object could also be passed to the |
261 | 261 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
262 | 262 |
/// before calling \ref run() or \ref init(). |
263 | 263 |
/// \sa SetElevator |
264 | 264 |
template <typename T> |
265 | 265 |
struct SetStandardElevator |
266 | 266 |
: public Preflow<Digraph, CapacityMap, |
267 | 267 |
SetStandardElevatorTraits<T> > { |
268 | 268 |
typedef Preflow<Digraph, CapacityMap, |
269 | 269 |
SetStandardElevatorTraits<T> > Create; |
270 | 270 |
}; |
271 | 271 |
|
272 | 272 |
/// @} |
273 | 273 |
|
274 | 274 |
protected: |
275 | 275 |
|
276 | 276 |
Preflow() {} |
277 | 277 |
|
278 | 278 |
public: |
279 | 279 |
|
280 | 280 |
|
281 | 281 |
/// \brief The constructor of the class. |
282 | 282 |
/// |
283 | 283 |
/// The constructor of the class. |
284 | 284 |
/// \param digraph The digraph the algorithm runs on. |
285 | 285 |
/// \param capacity The capacity of the arcs. |
286 | 286 |
/// \param source The source node. |
287 | 287 |
/// \param target The target node. |
288 | 288 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
289 | 289 |
Node source, Node target) |
290 | 290 |
: _graph(digraph), _capacity(&capacity), |
291 | 291 |
_node_num(0), _source(source), _target(target), |
292 | 292 |
_flow(0), _local_flow(false), |
293 | 293 |
_level(0), _local_level(false), |
294 | 294 |
_excess(0), _tolerance(), _phase() {} |
295 | 295 |
|
296 | 296 |
/// \brief Destructor. |
297 | 297 |
/// |
298 | 298 |
/// Destructor. |
299 | 299 |
~Preflow() { |
300 | 300 |
destroyStructures(); |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
/// \brief Sets the capacity map. |
304 | 304 |
/// |
305 | 305 |
/// Sets the capacity map. |
306 | 306 |
/// \return <tt>(*this)</tt> |
307 | 307 |
Preflow& capacityMap(const CapacityMap& map) { |
308 | 308 |
_capacity = ↦ |
309 | 309 |
return *this; |
310 | 310 |
} |
311 | 311 |
|
312 | 312 |
/// \brief Sets the flow map. |
313 | 313 |
/// |
314 | 314 |
/// Sets the flow map. |
315 | 315 |
/// If you don't use this function before calling \ref run() or |
316 | 316 |
/// \ref init(), an instance will be allocated automatically. |
317 | 317 |
/// The destructor deallocates this automatically allocated map, |
318 | 318 |
/// of course. |
319 | 319 |
/// \return <tt>(*this)</tt> |
320 | 320 |
Preflow& flowMap(FlowMap& map) { |
321 | 321 |
if (_local_flow) { |
322 | 322 |
delete _flow; |
323 | 323 |
_local_flow = false; |
324 | 324 |
} |
325 | 325 |
_flow = ↦ |
326 | 326 |
return *this; |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
/// \brief Sets the source node. |
330 | 330 |
/// |
331 | 331 |
/// Sets the source node. |
332 | 332 |
/// \return <tt>(*this)</tt> |
333 | 333 |
Preflow& source(const Node& node) { |
334 | 334 |
_source = node; |
335 | 335 |
return *this; |
336 | 336 |
} |
337 | 337 |
|
338 | 338 |
/// \brief Sets the target node. |
339 | 339 |
/// |
340 | 340 |
/// Sets the target node. |
341 | 341 |
/// \return <tt>(*this)</tt> |
342 | 342 |
Preflow& target(const Node& node) { |
343 | 343 |
_target = node; |
344 | 344 |
return *this; |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
/// \brief Sets the elevator used by algorithm. |
348 | 348 |
/// |
349 | 349 |
/// Sets the elevator used by algorithm. |
350 | 350 |
/// If you don't use this function before calling \ref run() or |
351 | 351 |
/// \ref init(), an instance will be allocated automatically. |
352 | 352 |
/// The destructor deallocates this automatically allocated elevator, |
353 | 353 |
/// of course. |
354 | 354 |
/// \return <tt>(*this)</tt> |
355 | 355 |
Preflow& elevator(Elevator& elevator) { |
356 | 356 |
if (_local_level) { |
357 | 357 |
delete _level; |
358 | 358 |
_local_level = false; |
359 | 359 |
} |
360 | 360 |
_level = &elevator; |
361 | 361 |
return *this; |
362 | 362 |
} |
363 | 363 |
|
364 | 364 |
/// \brief Returns a const reference to the elevator. |
365 | 365 |
/// |
366 | 366 |
/// Returns a const reference to the elevator. |
367 | 367 |
/// |
368 | 368 |
/// \pre Either \ref run() or \ref init() must be called before |
369 | 369 |
/// using this function. |
370 | 370 |
const Elevator& elevator() const { |
371 | 371 |
return *_level; |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
/// \brief Sets the tolerance used by algorithm. |
375 | 375 |
/// |
376 | 376 |
/// Sets the tolerance used by algorithm. |
377 | 377 |
Preflow& tolerance(const Tolerance& tolerance) const { |
378 | 378 |
_tolerance = tolerance; |
379 | 379 |
return *this; |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
/// \brief Returns a const reference to the tolerance. |
383 | 383 |
/// |
384 | 384 |
/// Returns a const reference to the tolerance. |
385 | 385 |
const Tolerance& tolerance() const { |
386 | 386 |
return tolerance; |
387 | 387 |
} |
388 | 388 |
|
389 | 389 |
/// \name Execution Control |
390 | 390 |
/// The simplest way to execute the preflow algorithm is to use |
391 | 391 |
/// \ref run() or \ref runMinCut().\n |
392 | 392 |
/// If you need more control on the initial solution or the execution, |
393 | 393 |
/// first you have to call one of the \ref init() functions, then |
394 | 394 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
395 | 395 |
|
396 | 396 |
///@{ |
397 | 397 |
|
398 | 398 |
/// \brief Initializes the internal data structures. |
399 | 399 |
/// |
400 | 400 |
/// Initializes the internal data structures and sets the initial |
401 | 401 |
/// flow to zero on each arc. |
402 | 402 |
void init() { |
403 | 403 |
createStructures(); |
404 | 404 |
|
405 | 405 |
_phase = true; |
406 | 406 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
407 | 407 |
(*_excess)[n] = 0; |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
411 | 411 |
_flow->set(e, 0); |
412 | 412 |
} |
413 | 413 |
|
414 | 414 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
415 | 415 |
|
416 | 416 |
_level->initStart(); |
417 | 417 |
_level->initAddItem(_target); |
418 | 418 |
|
419 | 419 |
std::vector<Node> queue; |
420 | 420 |
reached[_source] = true; |
421 | 421 |
|
422 | 422 |
queue.push_back(_target); |
423 | 423 |
reached[_target] = true; |
424 | 424 |
while (!queue.empty()) { |
425 | 425 |
_level->initNewLevel(); |
426 | 426 |
std::vector<Node> nqueue; |
427 | 427 |
for (int i = 0; i < int(queue.size()); ++i) { |
428 | 428 |
Node n = queue[i]; |
429 | 429 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
430 | 430 |
Node u = _graph.source(e); |
431 | 431 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
432 | 432 |
reached[u] = true; |
433 | 433 |
_level->initAddItem(u); |
434 | 434 |
nqueue.push_back(u); |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
} |
438 | 438 |
queue.swap(nqueue); |
439 | 439 |
} |
440 | 440 |
_level->initFinish(); |
441 | 441 |
|
442 | 442 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
443 | 443 |
if (_tolerance.positive((*_capacity)[e])) { |
444 | 444 |
Node u = _graph.target(e); |
445 | 445 |
if ((*_level)[u] == _level->maxLevel()) continue; |
446 | 446 |
_flow->set(e, (*_capacity)[e]); |
447 | 447 |
(*_excess)[u] += (*_capacity)[e]; |
448 | 448 |
if (u != _target && !_level->active(u)) { |
449 | 449 |
_level->activate(u); |
450 | 450 |
} |
451 | 451 |
} |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
|
455 | 455 |
/// \brief Initializes the internal data structures using the |
456 | 456 |
/// given flow map. |
457 | 457 |
/// |
458 | 458 |
/// Initializes the internal data structures and sets the initial |
459 | 459 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
460 | 460 |
/// flow or at least a preflow, i.e. at each node excluding the |
461 | 461 |
/// source node the incoming flow should greater or equal to the |
462 | 462 |
/// outgoing flow. |
463 | 463 |
/// \return \c false if the given \c flowMap is not a preflow. |
464 | 464 |
template <typename FlowMap> |
465 | 465 |
bool init(const FlowMap& flowMap) { |
466 | 466 |
createStructures(); |
467 | 467 |
|
468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
469 | 469 |
_flow->set(e, flowMap[e]); |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 |
|
|
473 |
Flow excess = 0; |
|
474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
475 | 475 |
excess += (*_flow)[e]; |
476 | 476 |
} |
477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
478 | 478 |
excess -= (*_flow)[e]; |
479 | 479 |
} |
480 | 480 |
if (excess < 0 && n != _source) return false; |
481 | 481 |
(*_excess)[n] = excess; |
482 | 482 |
} |
483 | 483 |
|
484 | 484 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
485 | 485 |
|
486 | 486 |
_level->initStart(); |
487 | 487 |
_level->initAddItem(_target); |
488 | 488 |
|
489 | 489 |
std::vector<Node> queue; |
490 | 490 |
reached[_source] = true; |
491 | 491 |
|
492 | 492 |
queue.push_back(_target); |
493 | 493 |
reached[_target] = true; |
494 | 494 |
while (!queue.empty()) { |
495 | 495 |
_level->initNewLevel(); |
496 | 496 |
std::vector<Node> nqueue; |
497 | 497 |
for (int i = 0; i < int(queue.size()); ++i) { |
498 | 498 |
Node n = queue[i]; |
499 | 499 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
500 | 500 |
Node u = _graph.source(e); |
501 | 501 |
if (!reached[u] && |
502 | 502 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
503 | 503 |
reached[u] = true; |
504 | 504 |
_level->initAddItem(u); |
505 | 505 |
nqueue.push_back(u); |
506 | 506 |
} |
507 | 507 |
} |
508 | 508 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
509 | 509 |
Node v = _graph.target(e); |
510 | 510 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
511 | 511 |
reached[v] = true; |
512 | 512 |
_level->initAddItem(v); |
513 | 513 |
nqueue.push_back(v); |
514 | 514 |
} |
515 | 515 |
} |
516 | 516 |
} |
517 | 517 |
queue.swap(nqueue); |
518 | 518 |
} |
519 | 519 |
_level->initFinish(); |
520 | 520 |
|
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 |
|
|
522 |
Flow rem = (*_capacity)[e] - (*_flow)[e]; |
|
523 | 523 |
if (_tolerance.positive(rem)) { |
524 | 524 |
Node u = _graph.target(e); |
525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
526 | 526 |
_flow->set(e, (*_capacity)[e]); |
527 | 527 |
(*_excess)[u] += rem; |
528 | 528 |
if (u != _target && !_level->active(u)) { |
529 | 529 |
_level->activate(u); |
530 | 530 |
} |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 |
|
|
534 |
Flow rem = (*_flow)[e]; |
|
535 | 535 |
if (_tolerance.positive(rem)) { |
536 | 536 |
Node v = _graph.source(e); |
537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
538 | 538 |
_flow->set(e, 0); |
539 | 539 |
(*_excess)[v] += rem; |
540 | 540 |
if (v != _target && !_level->active(v)) { |
541 | 541 |
_level->activate(v); |
542 | 542 |
} |
543 | 543 |
} |
544 | 544 |
} |
545 | 545 |
return true; |
546 | 546 |
} |
547 | 547 |
|
548 | 548 |
/// \brief Starts the first phase of the preflow algorithm. |
549 | 549 |
/// |
550 | 550 |
/// The preflow algorithm consists of two phases, this method runs |
551 | 551 |
/// the first phase. After the first phase the maximum flow value |
552 | 552 |
/// and a minimum value cut can already be computed, although a |
553 | 553 |
/// maximum flow is not yet obtained. So after calling this method |
554 | 554 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
555 | 555 |
/// minCut() returns a minimum cut. |
556 | 556 |
/// \pre One of the \ref init() functions must be called before |
557 | 557 |
/// using this function. |
558 | 558 |
void startFirstPhase() { |
559 | 559 |
_phase = true; |
560 | 560 |
|
561 | 561 |
Node n = _level->highestActive(); |
562 | 562 |
int level = _level->highestActiveLevel(); |
563 | 563 |
while (n != INVALID) { |
564 | 564 |
int num = _node_num; |
565 | 565 |
|
566 | 566 |
while (num > 0 && n != INVALID) { |
567 |
|
|
567 |
Flow excess = (*_excess)[n]; |
|
568 | 568 |
int new_level = _level->maxLevel(); |
569 | 569 |
|
570 | 570 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 |
|
|
571 |
Flow rem = (*_capacity)[e] - (*_flow)[e]; |
|
572 | 572 |
if (!_tolerance.positive(rem)) continue; |
573 | 573 |
Node v = _graph.target(e); |
574 | 574 |
if ((*_level)[v] < level) { |
575 | 575 |
if (!_level->active(v) && v != _target) { |
576 | 576 |
_level->activate(v); |
577 | 577 |
} |
578 | 578 |
if (!_tolerance.less(rem, excess)) { |
579 | 579 |
_flow->set(e, (*_flow)[e] + excess); |
580 | 580 |
(*_excess)[v] += excess; |
581 | 581 |
excess = 0; |
582 | 582 |
goto no_more_push_1; |
583 | 583 |
} else { |
584 | 584 |
excess -= rem; |
585 | 585 |
(*_excess)[v] += rem; |
586 | 586 |
_flow->set(e, (*_capacity)[e]); |
587 | 587 |
} |
588 | 588 |
} else if (new_level > (*_level)[v]) { |
589 | 589 |
new_level = (*_level)[v]; |
590 | 590 |
} |
591 | 591 |
} |
592 | 592 |
|
593 | 593 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
594 |
|
|
594 |
Flow rem = (*_flow)[e]; |
|
595 | 595 |
if (!_tolerance.positive(rem)) continue; |
596 | 596 |
Node v = _graph.source(e); |
597 | 597 |
if ((*_level)[v] < level) { |
598 | 598 |
if (!_level->active(v) && v != _target) { |
599 | 599 |
_level->activate(v); |
600 | 600 |
} |
601 | 601 |
if (!_tolerance.less(rem, excess)) { |
602 | 602 |
_flow->set(e, (*_flow)[e] - excess); |
603 | 603 |
(*_excess)[v] += excess; |
604 | 604 |
excess = 0; |
605 | 605 |
goto no_more_push_1; |
606 | 606 |
} else { |
607 | 607 |
excess -= rem; |
608 | 608 |
(*_excess)[v] += rem; |
609 | 609 |
_flow->set(e, 0); |
610 | 610 |
} |
611 | 611 |
} else if (new_level > (*_level)[v]) { |
612 | 612 |
new_level = (*_level)[v]; |
613 | 613 |
} |
614 | 614 |
} |
615 | 615 |
|
616 | 616 |
no_more_push_1: |
617 | 617 |
|
618 | 618 |
(*_excess)[n] = excess; |
619 | 619 |
|
620 | 620 |
if (excess != 0) { |
621 | 621 |
if (new_level + 1 < _level->maxLevel()) { |
622 | 622 |
_level->liftHighestActive(new_level + 1); |
623 | 623 |
} else { |
624 | 624 |
_level->liftHighestActiveToTop(); |
625 | 625 |
} |
626 | 626 |
if (_level->emptyLevel(level)) { |
627 | 627 |
_level->liftToTop(level); |
628 | 628 |
} |
629 | 629 |
} else { |
630 | 630 |
_level->deactivate(n); |
631 | 631 |
} |
632 | 632 |
|
633 | 633 |
n = _level->highestActive(); |
634 | 634 |
level = _level->highestActiveLevel(); |
635 | 635 |
--num; |
636 | 636 |
} |
637 | 637 |
|
638 | 638 |
num = _node_num * 20; |
639 | 639 |
while (num > 0 && n != INVALID) { |
640 |
|
|
640 |
Flow excess = (*_excess)[n]; |
|
641 | 641 |
int new_level = _level->maxLevel(); |
642 | 642 |
|
643 | 643 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 |
|
|
644 |
Flow rem = (*_capacity)[e] - (*_flow)[e]; |
|
645 | 645 |
if (!_tolerance.positive(rem)) continue; |
646 | 646 |
Node v = _graph.target(e); |
647 | 647 |
if ((*_level)[v] < level) { |
648 | 648 |
if (!_level->active(v) && v != _target) { |
649 | 649 |
_level->activate(v); |
650 | 650 |
} |
651 | 651 |
if (!_tolerance.less(rem, excess)) { |
652 | 652 |
_flow->set(e, (*_flow)[e] + excess); |
653 | 653 |
(*_excess)[v] += excess; |
654 | 654 |
excess = 0; |
655 | 655 |
goto no_more_push_2; |
656 | 656 |
} else { |
657 | 657 |
excess -= rem; |
658 | 658 |
(*_excess)[v] += rem; |
659 | 659 |
_flow->set(e, (*_capacity)[e]); |
660 | 660 |
} |
661 | 661 |
} else if (new_level > (*_level)[v]) { |
662 | 662 |
new_level = (*_level)[v]; |
663 | 663 |
} |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
667 |
|
|
667 |
Flow rem = (*_flow)[e]; |
|
668 | 668 |
if (!_tolerance.positive(rem)) continue; |
669 | 669 |
Node v = _graph.source(e); |
670 | 670 |
if ((*_level)[v] < level) { |
671 | 671 |
if (!_level->active(v) && v != _target) { |
672 | 672 |
_level->activate(v); |
673 | 673 |
} |
674 | 674 |
if (!_tolerance.less(rem, excess)) { |
675 | 675 |
_flow->set(e, (*_flow)[e] - excess); |
676 | 676 |
(*_excess)[v] += excess; |
677 | 677 |
excess = 0; |
678 | 678 |
goto no_more_push_2; |
679 | 679 |
} else { |
680 | 680 |
excess -= rem; |
681 | 681 |
(*_excess)[v] += rem; |
682 | 682 |
_flow->set(e, 0); |
683 | 683 |
} |
684 | 684 |
} else if (new_level > (*_level)[v]) { |
685 | 685 |
new_level = (*_level)[v]; |
686 | 686 |
} |
687 | 687 |
} |
688 | 688 |
|
689 | 689 |
no_more_push_2: |
690 | 690 |
|
691 | 691 |
(*_excess)[n] = excess; |
692 | 692 |
|
693 | 693 |
if (excess != 0) { |
694 | 694 |
if (new_level + 1 < _level->maxLevel()) { |
695 | 695 |
_level->liftActiveOn(level, new_level + 1); |
696 | 696 |
} else { |
697 | 697 |
_level->liftActiveToTop(level); |
698 | 698 |
} |
699 | 699 |
if (_level->emptyLevel(level)) { |
700 | 700 |
_level->liftToTop(level); |
701 | 701 |
} |
702 | 702 |
} else { |
703 | 703 |
_level->deactivate(n); |
704 | 704 |
} |
705 | 705 |
|
706 | 706 |
while (level >= 0 && _level->activeFree(level)) { |
707 | 707 |
--level; |
708 | 708 |
} |
709 | 709 |
if (level == -1) { |
710 | 710 |
n = _level->highestActive(); |
711 | 711 |
level = _level->highestActiveLevel(); |
712 | 712 |
} else { |
713 | 713 |
n = _level->activeOn(level); |
714 | 714 |
} |
715 | 715 |
--num; |
716 | 716 |
} |
717 | 717 |
} |
718 | 718 |
} |
719 | 719 |
|
720 | 720 |
/// \brief Starts the second phase of the preflow algorithm. |
721 | 721 |
/// |
722 | 722 |
/// The preflow algorithm consists of two phases, this method runs |
723 | 723 |
/// the second phase. After calling one of the \ref init() functions |
724 | 724 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
725 | 725 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
726 | 726 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
727 | 727 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
728 | 728 |
/// must be called before using this function. |
729 | 729 |
void startSecondPhase() { |
730 | 730 |
_phase = false; |
731 | 731 |
|
732 | 732 |
typename Digraph::template NodeMap<bool> reached(_graph); |
733 | 733 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
734 | 734 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
735 | 735 |
} |
736 | 736 |
|
737 | 737 |
_level->initStart(); |
738 | 738 |
_level->initAddItem(_source); |
739 | 739 |
|
740 | 740 |
std::vector<Node> queue; |
741 | 741 |
queue.push_back(_source); |
742 | 742 |
reached[_source] = true; |
743 | 743 |
|
744 | 744 |
while (!queue.empty()) { |
745 | 745 |
_level->initNewLevel(); |
746 | 746 |
std::vector<Node> nqueue; |
747 | 747 |
for (int i = 0; i < int(queue.size()); ++i) { |
748 | 748 |
Node n = queue[i]; |
749 | 749 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
750 | 750 |
Node v = _graph.target(e); |
751 | 751 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
752 | 752 |
reached[v] = true; |
753 | 753 |
_level->initAddItem(v); |
754 | 754 |
nqueue.push_back(v); |
755 | 755 |
} |
756 | 756 |
} |
757 | 757 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
758 | 758 |
Node u = _graph.source(e); |
759 | 759 |
if (!reached[u] && |
760 | 760 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
761 | 761 |
reached[u] = true; |
762 | 762 |
_level->initAddItem(u); |
763 | 763 |
nqueue.push_back(u); |
764 | 764 |
} |
765 | 765 |
} |
766 | 766 |
} |
767 | 767 |
queue.swap(nqueue); |
768 | 768 |
} |
769 | 769 |
_level->initFinish(); |
770 | 770 |
|
771 | 771 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
772 | 772 |
if (!reached[n]) { |
773 | 773 |
_level->dirtyTopButOne(n); |
774 | 774 |
} else if ((*_excess)[n] > 0 && _target != n) { |
775 | 775 |
_level->activate(n); |
776 | 776 |
} |
777 | 777 |
} |
778 | 778 |
|
779 | 779 |
Node n; |
780 | 780 |
while ((n = _level->highestActive()) != INVALID) { |
781 |
|
|
781 |
Flow excess = (*_excess)[n]; |
|
782 | 782 |
int level = _level->highestActiveLevel(); |
783 | 783 |
int new_level = _level->maxLevel(); |
784 | 784 |
|
785 | 785 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
786 |
|
|
786 |
Flow rem = (*_capacity)[e] - (*_flow)[e]; |
|
787 | 787 |
if (!_tolerance.positive(rem)) continue; |
788 | 788 |
Node v = _graph.target(e); |
789 | 789 |
if ((*_level)[v] < level) { |
790 | 790 |
if (!_level->active(v) && v != _source) { |
791 | 791 |
_level->activate(v); |
792 | 792 |
} |
793 | 793 |
if (!_tolerance.less(rem, excess)) { |
794 | 794 |
_flow->set(e, (*_flow)[e] + excess); |
795 | 795 |
(*_excess)[v] += excess; |
796 | 796 |
excess = 0; |
797 | 797 |
goto no_more_push; |
798 | 798 |
} else { |
799 | 799 |
excess -= rem; |
800 | 800 |
(*_excess)[v] += rem; |
801 | 801 |
_flow->set(e, (*_capacity)[e]); |
802 | 802 |
} |
803 | 803 |
} else if (new_level > (*_level)[v]) { |
804 | 804 |
new_level = (*_level)[v]; |
805 | 805 |
} |
806 | 806 |
} |
807 | 807 |
|
808 | 808 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
809 |
|
|
809 |
Flow rem = (*_flow)[e]; |
|
810 | 810 |
if (!_tolerance.positive(rem)) continue; |
811 | 811 |
Node v = _graph.source(e); |
812 | 812 |
if ((*_level)[v] < level) { |
813 | 813 |
if (!_level->active(v) && v != _source) { |
814 | 814 |
_level->activate(v); |
815 | 815 |
} |
816 | 816 |
if (!_tolerance.less(rem, excess)) { |
817 | 817 |
_flow->set(e, (*_flow)[e] - excess); |
818 | 818 |
(*_excess)[v] += excess; |
819 | 819 |
excess = 0; |
820 | 820 |
goto no_more_push; |
821 | 821 |
} else { |
822 | 822 |
excess -= rem; |
823 | 823 |
(*_excess)[v] += rem; |
824 | 824 |
_flow->set(e, 0); |
825 | 825 |
} |
826 | 826 |
} else if (new_level > (*_level)[v]) { |
827 | 827 |
new_level = (*_level)[v]; |
828 | 828 |
} |
829 | 829 |
} |
830 | 830 |
|
831 | 831 |
no_more_push: |
832 | 832 |
|
833 | 833 |
(*_excess)[n] = excess; |
834 | 834 |
|
835 | 835 |
if (excess != 0) { |
836 | 836 |
if (new_level + 1 < _level->maxLevel()) { |
837 | 837 |
_level->liftHighestActive(new_level + 1); |
838 | 838 |
} else { |
839 | 839 |
// Calculation error |
840 | 840 |
_level->liftHighestActiveToTop(); |
841 | 841 |
} |
842 | 842 |
if (_level->emptyLevel(level)) { |
843 | 843 |
// Calculation error |
844 | 844 |
_level->liftToTop(level); |
845 | 845 |
} |
846 | 846 |
} else { |
847 | 847 |
_level->deactivate(n); |
848 | 848 |
} |
849 | 849 |
|
850 | 850 |
} |
851 | 851 |
} |
852 | 852 |
|
853 | 853 |
/// \brief Runs the preflow algorithm. |
854 | 854 |
/// |
855 | 855 |
/// Runs the preflow algorithm. |
856 | 856 |
/// \note pf.run() is just a shortcut of the following code. |
857 | 857 |
/// \code |
858 | 858 |
/// pf.init(); |
859 | 859 |
/// pf.startFirstPhase(); |
860 | 860 |
/// pf.startSecondPhase(); |
861 | 861 |
/// \endcode |
862 | 862 |
void run() { |
863 | 863 |
init(); |
864 | 864 |
startFirstPhase(); |
865 | 865 |
startSecondPhase(); |
866 | 866 |
} |
867 | 867 |
|
868 | 868 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
869 | 869 |
/// |
870 | 870 |
/// Runs the preflow algorithm to compute the minimum cut. |
871 | 871 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
872 | 872 |
/// \code |
873 | 873 |
/// pf.init(); |
874 | 874 |
/// pf.startFirstPhase(); |
875 | 875 |
/// \endcode |
876 | 876 |
void runMinCut() { |
877 | 877 |
init(); |
878 | 878 |
startFirstPhase(); |
879 | 879 |
} |
880 | 880 |
|
881 | 881 |
/// @} |
882 | 882 |
|
883 | 883 |
/// \name Query Functions |
884 | 884 |
/// The results of the preflow algorithm can be obtained using these |
885 | 885 |
/// functions.\n |
886 | 886 |
/// Either one of the \ref run() "run*()" functions or one of the |
887 | 887 |
/// \ref startFirstPhase() "start*()" functions should be called |
888 | 888 |
/// before using them. |
889 | 889 |
|
890 | 890 |
///@{ |
891 | 891 |
|
892 | 892 |
/// \brief Returns the value of the maximum flow. |
893 | 893 |
/// |
894 | 894 |
/// Returns the value of the maximum flow by returning the excess |
895 | 895 |
/// of the target node. This value equals to the value of |
896 | 896 |
/// the maximum flow already after the first phase of the algorithm. |
897 | 897 |
/// |
898 | 898 |
/// \pre Either \ref run() or \ref init() must be called before |
899 | 899 |
/// using this function. |
900 |
|
|
900 |
Flow flowValue() const { |
|
901 | 901 |
return (*_excess)[_target]; |
902 | 902 |
} |
903 | 903 |
|
904 | 904 |
/// \brief Returns the flow on the given arc. |
905 | 905 |
/// |
906 | 906 |
/// Returns the flow on the given arc. This method can |
907 | 907 |
/// be called after the second phase of the algorithm. |
908 | 908 |
/// |
909 | 909 |
/// \pre Either \ref run() or \ref init() must be called before |
910 | 910 |
/// using this function. |
911 |
|
|
911 |
Flow flow(const Arc& arc) const { |
|
912 | 912 |
return (*_flow)[arc]; |
913 | 913 |
} |
914 | 914 |
|
915 | 915 |
/// \brief Returns a const reference to the flow map. |
916 | 916 |
/// |
917 | 917 |
/// Returns a const reference to the arc map storing the found flow. |
918 | 918 |
/// This method can be called after the second phase of the algorithm. |
919 | 919 |
/// |
920 | 920 |
/// \pre Either \ref run() or \ref init() must be called before |
921 | 921 |
/// using this function. |
922 | 922 |
const FlowMap& flowMap() const { |
923 | 923 |
return *_flow; |
924 | 924 |
} |
925 | 925 |
|
926 | 926 |
/// \brief Returns \c true when the node is on the source side of the |
927 | 927 |
/// minimum cut. |
928 | 928 |
/// |
929 | 929 |
/// Returns true when the node is on the source side of the found |
930 | 930 |
/// minimum cut. This method can be called both after running \ref |
931 | 931 |
/// startFirstPhase() and \ref startSecondPhase(). |
932 | 932 |
/// |
933 | 933 |
/// \pre Either \ref run() or \ref init() must be called before |
934 | 934 |
/// using this function. |
935 | 935 |
bool minCut(const Node& node) const { |
936 | 936 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
937 | 937 |
} |
938 | 938 |
|
939 | 939 |
/// \brief Gives back a minimum value cut. |
940 | 940 |
/// |
941 | 941 |
/// Sets \c cutMap to the characteristic vector of a minimum value |
942 | 942 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
943 | 943 |
/// node map with \c bool (or convertible) value type. |
944 | 944 |
/// |
945 | 945 |
/// This method can be called both after running \ref startFirstPhase() |
946 | 946 |
/// and \ref startSecondPhase(). The result after the second phase |
947 | 947 |
/// could be slightly different if inexact computation is used. |
948 | 948 |
/// |
949 | 949 |
/// \note This function calls \ref minCut() for each node, so it runs in |
950 | 950 |
/// O(n) time. |
951 | 951 |
/// |
952 | 952 |
/// \pre Either \ref run() or \ref init() must be called before |
953 | 953 |
/// using this function. |
954 | 954 |
template <typename CutMap> |
955 | 955 |
void minCutMap(CutMap& cutMap) const { |
956 | 956 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
957 | 957 |
cutMap.set(n, minCut(n)); |
958 | 958 |
} |
959 | 959 |
} |
960 | 960 |
|
961 | 961 |
/// @} |
962 | 962 |
}; |
963 | 963 |
} |
964 | 964 |
|
965 | 965 |
#endif |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
IF(HAVE_GLPK) |
7 | 7 |
INCLUDE_DIRECTORIES(${GLPK_INCLUDE_DIR}) |
8 | 8 |
ENDIF(HAVE_GLPK) |
9 | 9 |
|
10 | 10 |
LINK_DIRECTORIES(${PROJECT_BINARY_DIR}/lemon) |
11 | 11 |
|
12 | 12 |
SET(TESTS |
13 | 13 |
adaptors_test |
14 | 14 |
bfs_test |
15 | 15 |
circulation_test |
16 | 16 |
counter_test |
17 | 17 |
dfs_test |
18 | 18 |
digraph_test |
19 | 19 |
dijkstra_test |
20 | 20 |
dim_test |
21 | 21 |
edge_set_test |
22 | 22 |
error_test |
23 | 23 |
euler_test |
24 | 24 |
gomory_hu_test |
25 | 25 |
graph_copy_test |
26 | 26 |
graph_test |
27 | 27 |
graph_utils_test |
28 | 28 |
hao_orlin_test |
29 | 29 |
heap_test |
30 | 30 |
kruskal_test |
31 | 31 |
maps_test |
32 | 32 |
matching_test |
33 | 33 |
min_cost_arborescence_test |
34 |
min_cost_flow_test |
|
34 | 35 |
path_test |
35 | 36 |
preflow_test |
36 | 37 |
radix_sort_test |
37 | 38 |
random_test |
38 | 39 |
suurballe_test |
39 | 40 |
time_measure_test |
40 | 41 |
unionfind_test) |
41 | 42 |
|
42 | 43 |
IF(HAVE_LP) |
43 | 44 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
44 | 45 |
IF(HAVE_GLPK) |
45 | 46 |
TARGET_LINK_LIBRARIES(lp_test lemon ${GLPK_LIBRARIES}) |
46 | 47 |
ENDIF(HAVE_GLPK) |
47 | 48 |
ADD_TEST(lp_test lp_test) |
48 | 49 |
|
49 | 50 |
IF(WIN32 AND HAVE_GLPK) |
50 | 51 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
51 | 52 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
52 | 53 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
53 | 54 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
54 | 55 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
55 | 56 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
56 | 57 |
) |
57 | 58 |
ENDIF(WIN32 AND HAVE_GLPK) |
58 | 59 |
ENDIF(HAVE_LP) |
59 | 60 |
|
60 | 61 |
IF(HAVE_MIP) |
61 | 62 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
62 | 63 |
IF(HAVE_GLPK) |
63 | 64 |
TARGET_LINK_LIBRARIES(mip_test lemon ${GLPK_LIBRARIES}) |
64 | 65 |
ENDIF(HAVE_GLPK) |
65 | 66 |
ADD_TEST(mip_test mip_test) |
66 | 67 |
|
67 | 68 |
IF(WIN32 AND HAVE_GLPK) |
68 | 69 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
69 | 70 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
70 | 71 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
71 | 72 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
72 | 73 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
73 | 74 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
74 | 75 |
) |
75 | 76 |
ENDIF(WIN32 AND HAVE_GLPK) |
76 | 77 |
ENDIF(HAVE_MIP) |
77 | 78 |
|
78 | 79 |
FOREACH(TEST_NAME ${TESTS}) |
79 | 80 |
ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc) |
80 | 81 |
TARGET_LINK_LIBRARIES(${TEST_NAME} lemon) |
81 | 82 |
ADD_TEST(${TEST_NAME} ${TEST_NAME}) |
82 | 83 |
ENDFOREACH(TEST_NAME) |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/CMakeLists.txt |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/graph_test.h \ |
6 | 6 |
test/test_tools.h |
7 | 7 |
|
8 | 8 |
check_PROGRAMS += \ |
9 | 9 |
test/adaptors_test \ |
10 | 10 |
test/bfs_test \ |
11 | 11 |
test/circulation_test \ |
12 | 12 |
test/counter_test \ |
13 | 13 |
test/dfs_test \ |
14 | 14 |
test/digraph_test \ |
15 | 15 |
test/dijkstra_test \ |
16 | 16 |
test/dim_test \ |
17 | 17 |
test/edge_set_test \ |
18 | 18 |
test/error_test \ |
19 | 19 |
test/euler_test \ |
20 | 20 |
test/gomory_hu_test \ |
21 | 21 |
test/graph_copy_test \ |
22 | 22 |
test/graph_test \ |
23 | 23 |
test/graph_utils_test \ |
24 | 24 |
test/hao_orlin_test \ |
25 | 25 |
test/heap_test \ |
26 | 26 |
test/kruskal_test \ |
27 | 27 |
test/maps_test \ |
28 | 28 |
test/matching_test \ |
29 | 29 |
test/min_cost_arborescence_test \ |
30 |
test/min_cost_flow_test \ |
|
30 | 31 |
test/path_test \ |
31 | 32 |
test/preflow_test \ |
32 | 33 |
test/radix_sort_test \ |
33 | 34 |
test/random_test \ |
34 | 35 |
test/suurballe_test \ |
35 | 36 |
test/test_tools_fail \ |
36 | 37 |
test/test_tools_pass \ |
37 | 38 |
test/time_measure_test \ |
38 | 39 |
test/unionfind_test |
39 | 40 |
|
40 | 41 |
test_test_tools_pass_DEPENDENCIES = demo |
41 | 42 |
|
42 | 43 |
if HAVE_LP |
43 | 44 |
check_PROGRAMS += test/lp_test |
44 | 45 |
endif HAVE_LP |
45 | 46 |
if HAVE_MIP |
46 | 47 |
check_PROGRAMS += test/mip_test |
47 | 48 |
endif HAVE_MIP |
48 | 49 |
|
49 | 50 |
TESTS += $(check_PROGRAMS) |
50 | 51 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
51 | 52 |
|
52 | 53 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
53 | 54 |
test_bfs_test_SOURCES = test/bfs_test.cc |
54 | 55 |
test_circulation_test_SOURCES = test/circulation_test.cc |
55 | 56 |
test_counter_test_SOURCES = test/counter_test.cc |
56 | 57 |
test_dfs_test_SOURCES = test/dfs_test.cc |
57 | 58 |
test_digraph_test_SOURCES = test/digraph_test.cc |
58 | 59 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
59 | 60 |
test_dim_test_SOURCES = test/dim_test.cc |
60 | 61 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
61 | 62 |
test_error_test_SOURCES = test/error_test.cc |
62 | 63 |
test_euler_test_SOURCES = test/euler_test.cc |
63 | 64 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
64 | 65 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
65 | 66 |
test_graph_test_SOURCES = test/graph_test.cc |
66 | 67 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
67 | 68 |
test_heap_test_SOURCES = test/heap_test.cc |
68 | 69 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
69 | 70 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
70 | 71 |
test_lp_test_SOURCES = test/lp_test.cc |
71 | 72 |
test_maps_test_SOURCES = test/maps_test.cc |
72 | 73 |
test_mip_test_SOURCES = test/mip_test.cc |
73 | 74 |
test_matching_test_SOURCES = test/matching_test.cc |
74 | 75 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
76 |
test_min_cost_flow_test_SOURCES = test/min_cost_flow_test.cc |
|
75 | 77 |
test_path_test_SOURCES = test/path_test.cc |
76 | 78 |
test_preflow_test_SOURCES = test/preflow_test.cc |
77 | 79 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
78 | 80 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
79 | 81 |
test_random_test_SOURCES = test/random_test.cc |
80 | 82 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
81 | 83 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
82 | 84 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
83 | 85 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
|
21 | 21 |
#include "test_tools.h" |
22 | 22 |
#include <lemon/list_graph.h> |
23 | 23 |
#include <lemon/circulation.h> |
24 | 24 |
#include <lemon/lgf_reader.h> |
25 | 25 |
#include <lemon/concepts/digraph.h> |
26 | 26 |
#include <lemon/concepts/maps.h> |
27 | 27 |
|
28 | 28 |
using namespace lemon; |
29 | 29 |
|
30 | 30 |
char test_lgf[] = |
31 | 31 |
"@nodes\n" |
32 | 32 |
"label\n" |
33 | 33 |
"0\n" |
34 | 34 |
"1\n" |
35 | 35 |
"2\n" |
36 | 36 |
"3\n" |
37 | 37 |
"4\n" |
38 | 38 |
"5\n" |
39 | 39 |
"@arcs\n" |
40 | 40 |
" lcap ucap\n" |
41 | 41 |
"0 1 2 10\n" |
42 | 42 |
"0 2 2 6\n" |
43 | 43 |
"1 3 4 7\n" |
44 | 44 |
"1 4 0 5\n" |
45 | 45 |
"2 4 1 3\n" |
46 | 46 |
"3 5 3 8\n" |
47 | 47 |
"4 5 3 7\n" |
48 | 48 |
"@attributes\n" |
49 | 49 |
"source 0\n" |
50 | 50 |
"sink 5\n"; |
51 | 51 |
|
52 | 52 |
void checkCirculationCompile() |
53 | 53 |
{ |
54 | 54 |
typedef int VType; |
55 | 55 |
typedef concepts::Digraph Digraph; |
56 | 56 |
|
57 | 57 |
typedef Digraph::Node Node; |
58 | 58 |
typedef Digraph::Arc Arc; |
59 | 59 |
typedef concepts::ReadMap<Arc,VType> CapMap; |
60 |
typedef concepts::ReadMap<Node,VType> |
|
60 |
typedef concepts::ReadMap<Node,VType> SupplyMap; |
|
61 | 61 |
typedef concepts::ReadWriteMap<Arc,VType> FlowMap; |
62 | 62 |
typedef concepts::WriteMap<Node,bool> BarrierMap; |
63 | 63 |
|
64 | 64 |
typedef Elevator<Digraph, Digraph::Node> Elev; |
65 | 65 |
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev; |
66 | 66 |
|
67 | 67 |
Digraph g; |
68 | 68 |
Node n; |
69 | 69 |
Arc a; |
70 | 70 |
CapMap lcap, ucap; |
71 |
|
|
71 |
SupplyMap supply; |
|
72 | 72 |
FlowMap flow; |
73 | 73 |
BarrierMap bar; |
74 | 74 |
VType v; |
75 | 75 |
bool b; |
76 | 76 |
|
77 |
typedef Circulation<Digraph, CapMap, CapMap, |
|
77 |
typedef Circulation<Digraph, CapMap, CapMap, SupplyMap> |
|
78 | 78 |
::SetFlowMap<FlowMap> |
79 | 79 |
::SetElevator<Elev> |
80 | 80 |
::SetStandardElevator<LinkedElev> |
81 | 81 |
::Create CirculationType; |
82 |
CirculationType circ_test(g, lcap, ucap, |
|
82 |
CirculationType circ_test(g, lcap, ucap, supply); |
|
83 | 83 |
const CirculationType& const_circ_test = circ_test; |
84 | 84 |
|
85 | 85 |
circ_test |
86 |
.lowerCapMap(lcap) |
|
87 |
.upperCapMap(ucap) |
|
88 |
. |
|
86 |
.lowerMap(lcap) |
|
87 |
.upperMap(ucap) |
|
88 |
.supplyMap(supply) |
|
89 | 89 |
.flowMap(flow); |
90 | 90 |
|
91 | 91 |
circ_test.init(); |
92 | 92 |
circ_test.greedyInit(); |
93 | 93 |
circ_test.start(); |
94 | 94 |
circ_test.run(); |
95 | 95 |
|
96 | 96 |
v = const_circ_test.flow(a); |
97 | 97 |
const FlowMap& fm = const_circ_test.flowMap(); |
98 | 98 |
b = const_circ_test.barrier(n); |
99 | 99 |
const_circ_test.barrierMap(bar); |
100 | 100 |
|
101 | 101 |
ignore_unused_variable_warning(fm); |
102 | 102 |
} |
103 | 103 |
|
104 | 104 |
template <class G, class LM, class UM, class DM> |
105 | 105 |
void checkCirculation(const G& g, const LM& lm, const UM& um, |
106 | 106 |
const DM& dm, bool find) |
107 | 107 |
{ |
108 | 108 |
Circulation<G, LM, UM, DM> circ(g, lm, um, dm); |
109 | 109 |
bool ret = circ.run(); |
110 | 110 |
if (find) { |
111 | 111 |
check(ret, "A feasible solution should have been found."); |
112 | 112 |
check(circ.checkFlow(), "The found flow is corrupt."); |
113 | 113 |
check(!circ.checkBarrier(), "A barrier should not have been found."); |
114 | 114 |
} else { |
115 | 115 |
check(!ret, "A feasible solution should not have been found."); |
116 | 116 |
check(circ.checkBarrier(), "The found barrier is corrupt."); |
117 | 117 |
} |
118 | 118 |
} |
119 | 119 |
|
120 | 120 |
int main (int, char*[]) |
121 | 121 |
{ |
122 | 122 |
typedef ListDigraph Digraph; |
123 | 123 |
DIGRAPH_TYPEDEFS(Digraph); |
124 | 124 |
|
125 | 125 |
Digraph g; |
126 | 126 |
IntArcMap lo(g), up(g); |
127 | 127 |
IntNodeMap delta(g, 0); |
128 | 128 |
Node s, t; |
129 | 129 |
|
130 | 130 |
std::istringstream input(test_lgf); |
131 | 131 |
DigraphReader<Digraph>(g,input). |
132 | 132 |
arcMap("lcap", lo). |
133 | 133 |
arcMap("ucap", up). |
134 | 134 |
node("source",s). |
135 | 135 |
node("sink",t). |
136 | 136 |
run(); |
137 | 137 |
|
138 | 138 |
delta[s] = 7; delta[t] = -7; |
139 | 139 |
checkCirculation(g, lo, up, delta, true); |
140 | 140 |
|
141 | 141 |
delta[s] = 13; delta[t] = -13; |
142 | 142 |
checkCirculation(g, lo, up, delta, true); |
143 | 143 |
|
144 | 144 |
delta[s] = 6; delta[t] = -6; |
145 | 145 |
checkCirculation(g, lo, up, delta, false); |
146 | 146 |
|
147 | 147 |
delta[s] = 14; delta[t] = -14; |
148 | 148 |
checkCirculation(g, lo, up, delta, false); |
149 | 149 |
|
150 | 150 |
delta[s] = 7; delta[t] = -13; |
151 | 151 |
checkCirculation(g, lo, up, delta, true); |
152 | 152 |
|
153 | 153 |
delta[s] = 5; delta[t] = -15; |
154 | 154 |
checkCirculation(g, lo, up, delta, true); |
155 | 155 |
|
156 | 156 |
delta[s] = 10; delta[t] = -11; |
157 | 157 |
checkCirculation(g, lo, up, delta, true); |
158 | 158 |
|
159 | 159 |
delta[s] = 11; delta[t] = -10; |
160 | 160 |
checkCirculation(g, lo, up, delta, false); |
161 | 161 |
|
162 | 162 |
return 0; |
163 | 163 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup tools |
20 | 20 |
///\file |
21 | 21 |
///\brief DIMACS problem solver. |
22 | 22 |
/// |
23 | 23 |
/// This program solves various problems given in DIMACS format. |
24 | 24 |
/// |
25 | 25 |
/// See |
26 | 26 |
/// \code |
27 | 27 |
/// dimacs-solver --help |
28 | 28 |
/// \endcode |
29 | 29 |
/// for more info on usage. |
30 | 30 |
|
31 | 31 |
#include <iostream> |
32 | 32 |
#include <fstream> |
33 | 33 |
#include <cstring> |
34 | 34 |
|
35 | 35 |
#include <lemon/smart_graph.h> |
36 | 36 |
#include <lemon/dimacs.h> |
37 | 37 |
#include <lemon/lgf_writer.h> |
38 | 38 |
#include <lemon/time_measure.h> |
39 | 39 |
|
40 | 40 |
#include <lemon/arg_parser.h> |
41 | 41 |
#include <lemon/error.h> |
42 | 42 |
|
43 | 43 |
#include <lemon/dijkstra.h> |
44 | 44 |
#include <lemon/preflow.h> |
45 | 45 |
#include <lemon/matching.h> |
46 |
#include <lemon/network_simplex.h> |
|
46 | 47 |
|
47 | 48 |
using namespace lemon; |
48 | 49 |
typedef SmartDigraph Digraph; |
49 | 50 |
DIGRAPH_TYPEDEFS(Digraph); |
50 | 51 |
typedef SmartGraph Graph; |
51 | 52 |
|
52 | 53 |
template<class Value> |
53 | 54 |
void solve_sp(ArgParser &ap, std::istream &is, std::ostream &, |
54 | 55 |
DimacsDescriptor &desc) |
55 | 56 |
{ |
56 | 57 |
bool report = !ap.given("q"); |
57 | 58 |
Digraph g; |
58 | 59 |
Node s; |
59 | 60 |
Digraph::ArcMap<Value> len(g); |
60 | 61 |
Timer t; |
61 | 62 |
t.restart(); |
62 | 63 |
readDimacsSp(is, g, len, s, desc); |
63 | 64 |
if(report) std::cerr << "Read the file: " << t << '\n'; |
64 | 65 |
t.restart(); |
65 | 66 |
Dijkstra<Digraph, Digraph::ArcMap<Value> > dij(g,len); |
66 | 67 |
if(report) std::cerr << "Setup Dijkstra class: " << t << '\n'; |
67 | 68 |
t.restart(); |
68 | 69 |
dij.run(s); |
69 | 70 |
if(report) std::cerr << "Run Dijkstra: " << t << '\n'; |
70 | 71 |
} |
71 | 72 |
|
72 | 73 |
template<class Value> |
73 | 74 |
void solve_max(ArgParser &ap, std::istream &is, std::ostream &, |
74 | 75 |
Value infty, DimacsDescriptor &desc) |
75 | 76 |
{ |
76 | 77 |
bool report = !ap.given("q"); |
77 | 78 |
Digraph g; |
78 | 79 |
Node s,t; |
79 | 80 |
Digraph::ArcMap<Value> cap(g); |
80 | 81 |
Timer ti; |
81 | 82 |
ti.restart(); |
82 | 83 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
83 | 84 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
84 | 85 |
ti.restart(); |
85 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
86 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
87 | 88 |
ti.restart(); |
88 | 89 |
pre.run(); |
89 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
90 | 91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
91 | 92 |
} |
92 | 93 |
|
94 |
template<class Value> |
|
95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
|
96 |
DimacsDescriptor &desc) |
|
97 |
{ |
|
98 |
bool report = !ap.given("q"); |
|
99 |
Digraph g; |
|
100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
|
101 |
Digraph::NodeMap<Value> sup(g); |
|
102 |
Timer ti; |
|
103 |
ti.restart(); |
|
104 |
readDimacsMin(is, g, lower, cap, cost, sup, 0, desc); |
|
105 |
if (report) std::cerr << "Read the file: " << ti << '\n'; |
|
106 |
ti.restart(); |
|
107 |
NetworkSimplex<Digraph, Value> ns(g); |
|
108 |
ns.lowerMap(lower).capacityMap(cap).costMap(cost).supplyMap(sup); |
|
109 |
if (report) std::cerr << "Setup NetworkSimplex class: " << ti << '\n'; |
|
110 |
ti.restart(); |
|
111 |
ns.run(); |
|
112 |
if (report) std::cerr << "Run NetworkSimplex: " << ti << '\n'; |
|
113 |
if (report) std::cerr << "\nMin flow cost: " << ns.totalCost() << '\n'; |
|
114 |
} |
|
115 |
|
|
93 | 116 |
void solve_mat(ArgParser &ap, std::istream &is, std::ostream &, |
94 | 117 |
DimacsDescriptor &desc) |
95 | 118 |
{ |
96 | 119 |
bool report = !ap.given("q"); |
97 | 120 |
Graph g; |
98 | 121 |
Timer ti; |
99 | 122 |
ti.restart(); |
100 | 123 |
readDimacsMat(is, g, desc); |
101 | 124 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
102 | 125 |
ti.restart(); |
103 | 126 |
MaxMatching<Graph> mat(g); |
104 | 127 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
105 | 128 |
ti.restart(); |
106 | 129 |
mat.run(); |
107 | 130 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
108 | 131 |
if(report) std::cerr << "\nCardinality of max matching: " |
109 | 132 |
<< mat.matchingSize() << '\n'; |
110 | 133 |
} |
111 | 134 |
|
112 | 135 |
|
113 | 136 |
template<class Value> |
114 | 137 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
115 | 138 |
DimacsDescriptor &desc) |
116 | 139 |
{ |
117 | 140 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
118 | 141 |
Value infty; |
119 | 142 |
iss >> infty; |
120 | 143 |
if(iss.fail()) |
121 | 144 |
{ |
122 | 145 |
std::cerr << "Cannot interpret '" |
123 | 146 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
124 | 147 |
<< std::endl; |
125 | 148 |
exit(1); |
126 | 149 |
} |
127 | 150 |
|
128 | 151 |
switch(desc.type) |
129 | 152 |
{ |
130 | 153 |
case DimacsDescriptor::MIN: |
131 |
std::cerr << |
|
132 |
"\n\n Sorry, the min. cost flow solver is not yet available.\n"; |
|
154 |
solve_min<Value>(ap,is,os,desc); |
|
133 | 155 |
break; |
134 | 156 |
case DimacsDescriptor::MAX: |
135 | 157 |
solve_max<Value>(ap,is,os,infty,desc); |
136 | 158 |
break; |
137 | 159 |
case DimacsDescriptor::SP: |
138 | 160 |
solve_sp<Value>(ap,is,os,desc); |
139 | 161 |
break; |
140 | 162 |
case DimacsDescriptor::MAT: |
141 | 163 |
solve_mat(ap,is,os,desc); |
142 | 164 |
break; |
143 | 165 |
default: |
144 | 166 |
break; |
145 | 167 |
} |
146 | 168 |
} |
147 | 169 |
|
148 | 170 |
int main(int argc, const char *argv[]) { |
149 | 171 |
typedef SmartDigraph Digraph; |
150 | 172 |
|
151 | 173 |
typedef Digraph::Arc Arc; |
152 | 174 |
|
153 | 175 |
std::string inputName; |
154 | 176 |
std::string outputName; |
155 | 177 |
|
156 | 178 |
ArgParser ap(argc, argv); |
157 | 179 |
ap.other("[INFILE [OUTFILE]]", |
158 | 180 |
"If either the INFILE or OUTFILE file is missing the standard\n" |
159 | 181 |
" input/output will be used instead.") |
160 | 182 |
.boolOption("q", "Do not print any report") |
161 | 183 |
.boolOption("int","Use 'int' for capacities, costs etc. (default)") |
162 | 184 |
.optionGroup("datatype","int") |
163 | 185 |
#ifdef HAVE_LONG_LONG |
164 | 186 |
.boolOption("long","Use 'long long' for capacities, costs etc.") |
165 | 187 |
.optionGroup("datatype","long") |
166 | 188 |
#endif |
167 | 189 |
.boolOption("double","Use 'double' for capacities, costs etc.") |
168 | 190 |
.optionGroup("datatype","double") |
169 | 191 |
.boolOption("ldouble","Use 'long double' for capacities, costs etc.") |
170 | 192 |
.optionGroup("datatype","ldouble") |
171 | 193 |
.onlyOneGroup("datatype") |
172 | 194 |
.stringOption("infcap","Value used for 'very high' capacities","0") |
173 | 195 |
.run(); |
174 | 196 |
|
175 | 197 |
std::ifstream input; |
176 | 198 |
std::ofstream output; |
177 | 199 |
|
178 | 200 |
switch(ap.files().size()) |
179 | 201 |
{ |
180 | 202 |
case 2: |
181 | 203 |
output.open(ap.files()[1].c_str()); |
182 | 204 |
if (!output) { |
183 | 205 |
throw IoError("Cannot open the file for writing", ap.files()[1]); |
184 | 206 |
} |
185 | 207 |
case 1: |
186 | 208 |
input.open(ap.files()[0].c_str()); |
187 | 209 |
if (!input) { |
188 | 210 |
throw IoError("File cannot be found", ap.files()[0]); |
189 | 211 |
} |
190 | 212 |
case 0: |
191 | 213 |
break; |
192 | 214 |
default: |
193 | 215 |
std::cerr << ap.commandName() << ": too many arguments\n"; |
194 | 216 |
return 1; |
195 | 217 |
} |
196 | 218 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
197 | 219 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
198 | 220 |
|
199 | 221 |
DimacsDescriptor desc = dimacsType(is); |
200 | 222 |
|
201 | 223 |
if(!ap.given("q")) |
202 | 224 |
{ |
203 | 225 |
std::cout << "Problem type: "; |
204 | 226 |
switch(desc.type) |
205 | 227 |
{ |
206 | 228 |
case DimacsDescriptor::MIN: |
207 | 229 |
std::cout << "min"; |
208 | 230 |
break; |
209 | 231 |
case DimacsDescriptor::MAX: |
210 | 232 |
std::cout << "max"; |
211 | 233 |
break; |
212 | 234 |
case DimacsDescriptor::SP: |
213 | 235 |
std::cout << "sp"; |
214 | 236 |
case DimacsDescriptor::MAT: |
215 | 237 |
std::cout << "mat"; |
216 | 238 |
break; |
217 | 239 |
default: |
218 | 240 |
exit(1); |
219 | 241 |
break; |
220 | 242 |
} |
221 | 243 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
222 | 244 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
223 | 245 |
std::cout << "\n\n"; |
224 | 246 |
} |
225 | 247 |
|
226 | 248 |
if(ap.given("double")) |
227 | 249 |
solve<double>(ap,is,os,desc); |
228 | 250 |
else if(ap.given("ldouble")) |
229 | 251 |
solve<long double>(ap,is,os,desc); |
230 | 252 |
#ifdef HAVE_LONG_LONG |
231 | 253 |
else if(ap.given("long")) |
232 | 254 |
solve<long long>(ap,is,os,desc); |
233 | 255 |
#endif |
234 | 256 |
else solve<int>(ap,is,os,desc); |
235 | 257 |
|
236 | 258 |
return 0; |
237 | 259 |
} |
0 comments (0 inline)