gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Small improvements in maps.h - Add a new version of constMap() function. - Fix in FunctorToMap class.
0 2 0
default
2 files changed with 18 insertions and 6 deletions:
↑ Collapse diff ↑
Ignore white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25 25

	
26 26
#include <lemon/bits/utility.h>
27 27
#include <lemon/bits/traits.h>
28 28

	
29 29
///\file
30 30
///\ingroup maps
31 31
///\brief Miscellaneous property maps
32 32

	
33 33
#include <map>
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \addtogroup maps
38 38
  /// @{
39 39

	
40 40
  /// Base class of maps.
41 41

	
42 42
  /// Base class of maps. It provides the necessary type definitions
43 43
  /// required by the map %concepts.
44 44
  template<typename K, typename V>
45 45
  class MapBase {
46 46
  public:
47 47
    /// \biref The key type of the map.
48 48
    typedef K Key;
49 49
    /// \brief The value type of the map.
50 50
    /// (The type of objects associated with the keys).
51 51
    typedef V Value;
52 52
  };
53 53

	
54 54

	
55 55
  /// Null map. (a.k.a. DoNothingMap)
56 56

	
57 57
  /// This map can be used if you have to provide a map only for
58 58
  /// its type definitions, or if you have to provide a writable map,
59 59
  /// but data written to it is not required (i.e. it will be sent to
60 60
  /// <tt>/dev/null</tt>).
61 61
  /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
62 62
  ///
63 63
  /// \sa ConstMap
64 64
  template<typename K, typename V>
65 65
  class NullMap : public MapBase<K, V> {
66 66
  public:
67 67
    typedef MapBase<K, V> Parent;
68 68
    typedef typename Parent::Key Key;
69 69
    typedef typename Parent::Value Value;
70 70

	
71 71
    /// Gives back a default constructed element.
72 72
    Value operator[](const Key&) const { return Value(); }
73 73
    /// Absorbs the value.
74 74
    void set(const Key&, const Value&) {}
75 75
  };
76 76

	
77 77
  /// Returns a \ref NullMap class
78 78

	
79 79
  /// This function just returns a \ref NullMap class.
80 80
  /// \relates NullMap
81 81
  template <typename K, typename V>
82 82
  NullMap<K, V> nullMap() {
83 83
    return NullMap<K, V>();
84 84
  }
85 85

	
86 86

	
87 87
  /// Constant map.
88 88

	
89 89
  /// This \ref concepts::ReadMap "readable map" assigns a specified
90 90
  /// value to each key.
91 91
  ///
92 92
  /// In other aspects it is equivalent to \ref NullMap.
93 93
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
94 94
  /// concept, but it absorbs the data written to it.
95 95
  ///
96 96
  /// The simplest way of using this map is through the constMap()
97 97
  /// function.
98 98
  ///
99 99
  /// \sa NullMap
100 100
  /// \sa IdentityMap
101 101
  template<typename K, typename V>
102 102
  class ConstMap : public MapBase<K, V> {
103 103
  private:
104 104
    V _value;
105 105
  public:
106 106
    typedef MapBase<K, V> Parent;
107 107
    typedef typename Parent::Key Key;
108 108
    typedef typename Parent::Value Value;
109 109

	
110 110
    /// Default constructor
111 111

	
112 112
    /// Default constructor.
113 113
    /// The value of the map will be default constructed.
114 114
    ConstMap() {}
115 115

	
116 116
    /// Constructor with specified initial value
117 117

	
118 118
    /// Constructor with specified initial value.
119
    /// \param v is the initial value of the map.
119
    /// \param v The initial value of the map.
120 120
    ConstMap(const Value &v) : _value(v) {}
121 121

	
122 122
    /// Gives back the specified value.
123 123
    Value operator[](const Key&) const { return _value; }
124 124

	
125 125
    /// Absorbs the value.
126 126
    void set(const Key&, const Value&) {}
127 127

	
128 128
    /// Sets the value that is assigned to each key.
129 129
    void setAll(const Value &v) {
130 130
      _value = v;
131 131
    }
132 132

	
133 133
    template<typename V1>
134 134
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
135 135
  };
136 136

	
137 137
  /// Returns a \ref ConstMap class
138 138

	
139 139
  /// This function just returns a \ref ConstMap class.
140 140
  /// \relates ConstMap
141 141
  template<typename K, typename V>
142 142
  inline ConstMap<K, V> constMap(const V &v) {
143 143
    return ConstMap<K, V>(v);
144 144
  }
145 145

	
146
  template<typename K, typename V>
147
  inline ConstMap<K, V> constMap() {
148
    return ConstMap<K, V>();
149
  }
150

	
146 151

	
147 152
  template<typename T, T v>
148 153
  struct Const {};
149 154

	
150 155
  /// Constant map with inlined constant value.
151 156

	
152 157
  /// This \ref concepts::ReadMap "readable map" assigns a specified
153 158
  /// value to each key.
154 159
  ///
155 160
  /// In other aspects it is equivalent to \ref NullMap.
156 161
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
157 162
  /// concept, but it absorbs the data written to it.
158 163
  ///
159 164
  /// The simplest way of using this map is through the constMap()
160 165
  /// function.
161 166
  ///
162 167
  /// \sa NullMap
163 168
  /// \sa IdentityMap
164 169
  template<typename K, typename V, V v>
165 170
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
166 171
  public:
167 172
    typedef MapBase<K, V> Parent;
168 173
    typedef typename Parent::Key Key;
169 174
    typedef typename Parent::Value Value;
170 175

	
171 176
    /// Constructor.
172 177
    ConstMap() {}
173 178

	
174 179
    /// Gives back the specified value.
175 180
    Value operator[](const Key&) const { return v; }
176 181

	
177 182
    /// Absorbs the value.
178 183
    void set(const Key&, const Value&) {}
179 184
  };
180 185

	
181 186
  /// Returns a \ref ConstMap class with inlined constant value
182 187

	
183 188
  /// This function just returns a \ref ConstMap class with inlined
184 189
  /// constant value.
185 190
  /// \relates ConstMap
186 191
  template<typename K, typename V, V v>
187 192
  inline ConstMap<K, Const<V, v> > constMap() {
188 193
    return ConstMap<K, Const<V, v> >();
189 194
  }
190 195

	
191 196

	
192 197
  /// Identity map.
193 198

	
194 199
  /// This \ref concepts::ReadMap "read-only map" gives back the given
195 200
  /// key as value without any modification.
196 201
  ///
197 202
  /// \sa ConstMap
198 203
  template <typename T>
199 204
  class IdentityMap : public MapBase<T, T> {
200 205
  public:
201 206
    typedef MapBase<T, T> Parent;
202 207
    typedef typename Parent::Key Key;
203 208
    typedef typename Parent::Value Value;
204 209

	
205 210
    /// Gives back the given value without any modification.
206 211
    Value operator[](const Key &k) const {
207 212
      return k;
208 213
    }
209 214
  };
210 215

	
211 216
  /// Returns an \ref IdentityMap class
212 217

	
213 218
  /// This function just returns an \ref IdentityMap class.
214 219
  /// \relates IdentityMap
215 220
  template<typename T>
216 221
  inline IdentityMap<T> identityMap() {
217 222
    return IdentityMap<T>();
218 223
  }
219 224

	
220 225

	
221 226
  /// \brief Map for storing values for integer keys from the range
222 227
  /// <tt>[0..size-1]</tt>.
223 228
  ///
224 229
  /// This map is essentially a wrapper for \c std::vector. It assigns
225 230
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
226 231
  /// It can be used with some data structures, for example
227 232
  /// \ref UnionFind, \ref BinHeap, when the used items are small
228 233
  /// integers. This map conforms the \ref concepts::ReferenceMap
229 234
  /// "ReferenceMap" concept.
230 235
  ///
231 236
  /// The simplest way of using this map is through the rangeMap()
232 237
  /// function.
233 238
  template <typename V>
234 239
  class RangeMap : public MapBase<int, V> {
235 240
    template <typename V1>
236 241
    friend class RangeMap;
237 242
  private:
238 243

	
239 244
    typedef std::vector<V> Vector;
240 245
    Vector _vector;
241 246

	
242 247
  public:
243 248

	
244 249
    typedef MapBase<int, V> Parent;
245 250
    /// Key type
246 251
    typedef typename Parent::Key Key;
247 252
    /// Value type
248 253
    typedef typename Parent::Value Value;
249 254
    /// Reference type
250 255
    typedef typename Vector::reference Reference;
251 256
    /// Const reference type
252 257
    typedef typename Vector::const_reference ConstReference;
253 258

	
254 259
    typedef True ReferenceMapTag;
255 260

	
256 261
  public:
257 262

	
258 263
    /// Constructor with specified default value.
259 264
    RangeMap(int size = 0, const Value &value = Value())
260 265
      : _vector(size, value) {}
261 266

	
262 267
    /// Constructs the map from an appropriate \c std::vector.
263 268
    template <typename V1>
264 269
    RangeMap(const std::vector<V1>& vector)
265 270
      : _vector(vector.begin(), vector.end()) {}
266 271

	
267 272
    /// Constructs the map from another \ref RangeMap.
268 273
    template <typename V1>
269 274
    RangeMap(const RangeMap<V1> &c)
270 275
      : _vector(c._vector.begin(), c._vector.end()) {}
271 276

	
272 277
    /// Returns the size of the map.
273 278
    int size() {
274 279
      return _vector.size();
275 280
    }
276 281

	
277 282
    /// Resizes the map.
278 283

	
279 284
    /// Resizes the underlying \c std::vector container, so changes the
280 285
    /// keyset of the map.
281 286
    /// \param size The new size of the map. The new keyset will be the
282 287
    /// range <tt>[0..size-1]</tt>.
283 288
    /// \param value The default value to assign to the new keys.
284 289
    void resize(int size, const Value &value = Value()) {
285 290
      _vector.resize(size, value);
286 291
    }
287 292

	
288 293
  private:
289 294

	
290 295
    RangeMap& operator=(const RangeMap&);
291 296

	
292 297
  public:
293 298

	
294 299
    ///\e
295 300
    Reference operator[](const Key &k) {
296 301
      return _vector[k];
297 302
    }
298 303

	
299 304
    ///\e
300 305
    ConstReference operator[](const Key &k) const {
301 306
      return _vector[k];
302 307
    }
303 308

	
304 309
    ///\e
305 310
    void set(const Key &k, const Value &v) {
306 311
      _vector[k] = v;
307 312
    }
308 313
  };
309 314

	
310 315
  /// Returns a \ref RangeMap class
311 316

	
312 317
  /// This function just returns a \ref RangeMap class.
313 318
  /// \relates RangeMap
314 319
  template<typename V>
315 320
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
316 321
    return RangeMap<V>(size, value);
317 322
  }
318 323

	
319 324
  /// \brief Returns a \ref RangeMap class created from an appropriate
320 325
  /// \c std::vector
321 326

	
322 327
  /// This function just returns a \ref RangeMap class created from an
323 328
  /// appropriate \c std::vector.
324 329
  /// \relates RangeMap
325 330
  template<typename V>
326 331
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
327 332
    return RangeMap<V>(vector);
328 333
  }
329 334

	
330 335

	
331 336
  /// Map type based on \c std::map
332 337

	
333 338
  /// This map is essentially a wrapper for \c std::map with addition
334 339
  /// that you can specify a default value for the keys that are not
335 340
  /// stored actually. This value can be different from the default
336 341
  /// contructed value (i.e. \c %Value()).
337 342
  /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap"
... ...
@@ -424,385 +429,385 @@
424 429

	
425 430
    ///\e
426 431
    void setAll(const Value &v) {
427 432
      _value = v;
428 433
      _map.clear();
429 434
    }
430 435
  };
431 436

	
432 437
  /// Returns a \ref SparseMap class
433 438

	
434 439
  /// This function just returns a \ref SparseMap class with specified
435 440
  /// default value.
436 441
  /// \relates SparseMap
437 442
  template<typename K, typename V, typename Compare>
438 443
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
439 444
    return SparseMap<K, V, Compare>(value);
440 445
  }
441 446

	
442 447
  template<typename K, typename V>
443 448
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
444 449
    return SparseMap<K, V, std::less<K> >(value);
445 450
  }
446 451

	
447 452
  /// \brief Returns a \ref SparseMap class created from an appropriate
448 453
  /// \c std::map
449 454

	
450 455
  /// This function just returns a \ref SparseMap class created from an
451 456
  /// appropriate \c std::map.
452 457
  /// \relates SparseMap
453 458
  template<typename K, typename V, typename Compare>
454 459
  inline SparseMap<K, V, Compare>
455 460
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
456 461
  {
457 462
    return SparseMap<K, V, Compare>(map, value);
458 463
  }
459 464

	
460 465
  /// @}
461 466

	
462 467
  /// \addtogroup map_adaptors
463 468
  /// @{
464 469

	
465 470
  /// Composition of two maps
466 471

	
467 472
  /// This \ref concepts::ReadMap "read-only map" returns the
468 473
  /// composition of two given maps. That is to say, if \c m1 is of
469 474
  /// type \c M1 and \c m2 is of \c M2, then for
470 475
  /// \code
471 476
  ///   ComposeMap<M1, M2> cm(m1,m2);
472 477
  /// \endcode
473 478
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
474 479
  ///
475 480
  /// The \c Key type of the map is inherited from \c M2 and the
476 481
  /// \c Value type is from \c M1.
477 482
  /// \c M2::Value must be convertible to \c M1::Key.
478 483
  ///
479 484
  /// The simplest way of using this map is through the composeMap()
480 485
  /// function.
481 486
  ///
482 487
  /// \sa CombineMap
483 488
  ///
484 489
  /// \todo Check the requirements.
485 490
  template <typename M1, typename M2>
486 491
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
487 492
    const M1 &_m1;
488 493
    const M2 &_m2;
489 494
  public:
490 495
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
491 496
    typedef typename Parent::Key Key;
492 497
    typedef typename Parent::Value Value;
493 498

	
494 499
    /// Constructor
495 500
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
496 501

	
497 502
    /// \e
498 503
    typename MapTraits<M1>::ConstReturnValue
499 504
    operator[](const Key &k) const { return _m1[_m2[k]]; }
500 505
  };
501 506

	
502 507
  /// Returns a \ref ComposeMap class
503 508

	
504 509
  /// This function just returns a \ref ComposeMap class.
505 510
  ///
506 511
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
507 512
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
508 513
  /// will be equal to <tt>m1[m2[x]]</tt>.
509 514
  ///
510 515
  /// \relates ComposeMap
511 516
  template <typename M1, typename M2>
512 517
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
513 518
    return ComposeMap<M1, M2>(m1, m2);
514 519
  }
515 520

	
516 521

	
517 522
  /// Combination of two maps using an STL (binary) functor.
518 523

	
519 524
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
520 525
  /// binary functor and returns the combination of the two given maps
521 526
  /// using the functor.
522 527
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
523 528
  /// and \c f is of \c F, then for
524 529
  /// \code
525 530
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
526 531
  /// \endcode
527 532
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
528 533
  ///
529 534
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
530 535
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
531 536
  /// \c M2::Value and \c M1::Value must be convertible to the
532 537
  /// corresponding input parameter of \c F and the return type of \c F
533 538
  /// must be convertible to \c V.
534 539
  ///
535 540
  /// The simplest way of using this map is through the combineMap()
536 541
  /// function.
537 542
  ///
538 543
  /// \sa ComposeMap
539 544
  ///
540 545
  /// \todo Check the requirements.
541 546
  template<typename M1, typename M2, typename F,
542 547
	   typename V = typename F::result_type>
543 548
  class CombineMap : public MapBase<typename M1::Key, V> {
544 549
    const M1 &_m1;
545 550
    const M2 &_m2;
546 551
    F _f;
547 552
  public:
548 553
    typedef MapBase<typename M1::Key, V> Parent;
549 554
    typedef typename Parent::Key Key;
550 555
    typedef typename Parent::Value Value;
551 556

	
552 557
    /// Constructor
553 558
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
554 559
      : _m1(m1), _m2(m2), _f(f) {}
555 560
    /// \e
556 561
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
557 562
  };
558 563

	
559 564
  /// Returns a \ref CombineMap class
560 565

	
561 566
  /// This function just returns a \ref CombineMap class.
562 567
  ///
563 568
  /// For example, if \c m1 and \c m2 are both maps with \c double
564 569
  /// values, then
565 570
  /// \code
566 571
  ///   combineMap(m1,m2,std::plus<double>())
567 572
  /// \endcode
568 573
  /// is equivalent to
569 574
  /// \code
570 575
  ///   addMap(m1,m2)
571 576
  /// \endcode
572 577
  ///
573 578
  /// This function is specialized for adaptable binary function
574 579
  /// classes and C++ functions.
575 580
  ///
576 581
  /// \relates CombineMap
577 582
  template<typename M1, typename M2, typename F, typename V>
578 583
  inline CombineMap<M1, M2, F, V>
579 584
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
580 585
    return CombineMap<M1, M2, F, V>(m1,m2,f);
581 586
  }
582 587

	
583 588
  template<typename M1, typename M2, typename F>
584 589
  inline CombineMap<M1, M2, F, typename F::result_type>
585 590
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
586 591
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
587 592
  }
588 593

	
589 594
  template<typename M1, typename M2, typename K1, typename K2, typename V>
590 595
  inline CombineMap<M1, M2, V (*)(K1, K2), V>
591 596
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
592 597
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
593 598
  }
594 599

	
595 600

	
596 601
  /// Converts an STL style (unary) functor to a map
597 602

	
598 603
  /// This \ref concepts::ReadMap "read-only map" returns the value
599 604
  /// of a given functor. Actually, it just wraps the functor and
600 605
  /// provides the \c Key and \c Value typedefs.
601 606
  ///
602 607
  /// Template parameters \c K and \c V will become its \c Key and
603 608
  /// \c Value. In most cases they have to be given explicitly because
604 609
  /// a functor typically does not provide \c argument_type and
605 610
  /// \c result_type typedefs.
606 611
  /// Parameter \c F is the type of the used functor.
607 612
  ///
608 613
  /// The simplest way of using this map is through the functorToMap()
609 614
  /// function.
610 615
  ///
611 616
  /// \sa MapToFunctor
612 617
  template<typename F,
613 618
	   typename K = typename F::argument_type,
614 619
	   typename V = typename F::result_type>
615 620
  class FunctorToMap : public MapBase<K, V> {
616
    const F &_f;
621
    F _f;
617 622
  public:
618 623
    typedef MapBase<K, V> Parent;
619 624
    typedef typename Parent::Key Key;
620 625
    typedef typename Parent::Value Value;
621 626

	
622 627
    /// Constructor
623 628
    FunctorToMap(const F &f = F()) : _f(f) {}
624 629
    /// \e
625 630
    Value operator[](const Key &k) const { return _f(k); }
626 631
  };
627 632

	
628 633
  /// Returns a \ref FunctorToMap class
629 634

	
630 635
  /// This function just returns a \ref FunctorToMap class.
631 636
  ///
632 637
  /// This function is specialized for adaptable binary function
633 638
  /// classes and C++ functions.
634 639
  ///
635 640
  /// \relates FunctorToMap
636 641
  template<typename K, typename V, typename F>
637 642
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
638 643
    return FunctorToMap<F, K, V>(f);
639 644
  }
640 645

	
641 646
  template <typename F>
642 647
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
643 648
    functorToMap(const F &f)
644 649
  {
645 650
    return FunctorToMap<F, typename F::argument_type,
646 651
      typename F::result_type>(f);
647 652
  }
648 653

	
649 654
  template <typename K, typename V>
650 655
  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
651 656
    return FunctorToMap<V (*)(K), K, V>(f);
652 657
  }
653 658

	
654 659

	
655 660
  /// Converts a map to an STL style (unary) functor
656 661

	
657 662
  /// This class converts a map to an STL style (unary) functor.
658 663
  /// That is it provides an <tt>operator()</tt> to read its values.
659 664
  ///
660 665
  /// For the sake of convenience it also works as a usual
661 666
  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
662 667
  /// and the \c Key and \c Value typedefs also exist.
663 668
  ///
664 669
  /// The simplest way of using this map is through the mapToFunctor()
665 670
  /// function.
666 671
  ///
667 672
  ///\sa FunctorToMap
668 673
  template <typename M>
669 674
  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
670 675
    const M &_m;
671 676
  public:
672 677
    typedef MapBase<typename M::Key, typename M::Value> Parent;
673 678
    typedef typename Parent::Key Key;
674 679
    typedef typename Parent::Value Value;
675 680

	
676 681
    typedef typename Parent::Key argument_type;
677 682
    typedef typename Parent::Value result_type;
678 683

	
679 684
    /// Constructor
680 685
    MapToFunctor(const M &m) : _m(m) {}
681 686
    /// \e
682 687
    Value operator()(const Key &k) const { return _m[k]; }
683 688
    /// \e
684 689
    Value operator[](const Key &k) const { return _m[k]; }
685 690
  };
686 691

	
687 692
  /// Returns a \ref MapToFunctor class
688 693

	
689 694
  /// This function just returns a \ref MapToFunctor class.
690 695
  /// \relates MapToFunctor
691 696
  template<typename M>
692 697
  inline MapToFunctor<M> mapToFunctor(const M &m) {
693 698
    return MapToFunctor<M>(m);
694 699
  }
695 700

	
696 701

	
697 702
  /// \brief Map adaptor to convert the \c Value type of a map to
698 703
  /// another type using the default conversion.
699 704

	
700 705
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
701 706
  /// "readable map" to another type using the default conversion.
702 707
  /// The \c Key type of it is inherited from \c M and the \c Value
703 708
  /// type is \c V.
704 709
  /// This type conforms the \ref concepts::ReadMap "ReadMap" concept.
705 710
  ///
706 711
  /// The simplest way of using this map is through the convertMap()
707 712
  /// function.
708 713
  template <typename M, typename V>
709 714
  class ConvertMap : public MapBase<typename M::Key, V> {
710 715
    const M &_m;
711 716
  public:
712 717
    typedef MapBase<typename M::Key, V> Parent;
713 718
    typedef typename Parent::Key Key;
714 719
    typedef typename Parent::Value Value;
715 720

	
716 721
    /// Constructor
717 722

	
718 723
    /// Constructor.
719 724
    /// \param m The underlying map.
720 725
    ConvertMap(const M &m) : _m(m) {}
721 726

	
722 727
    /// \e
723 728
    Value operator[](const Key &k) const { return _m[k]; }
724 729
  };
725 730

	
726 731
  /// Returns a \ref ConvertMap class
727 732

	
728 733
  /// This function just returns a \ref ConvertMap class.
729 734
  /// \relates ConvertMap
730 735
  template<typename V, typename M>
731 736
  inline ConvertMap<M, V> convertMap(const M &map) {
732 737
    return ConvertMap<M, V>(map);
733 738
  }
734 739

	
735 740

	
736 741
  /// Applies all map setting operations to two maps
737 742

	
738 743
  /// This map has two \ref concepts::WriteMap "writable map" parameters
739 744
  /// and each write request will be passed to both of them.
740 745
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
741 746
  /// operations will return the corresponding values of \c M1.
742 747
  ///
743 748
  /// The \c Key and \c Value types are inherited from \c M1.
744 749
  /// The \c Key and \c Value of \c M2 must be convertible from those
745 750
  /// of \c M1.
746 751
  ///
747 752
  /// The simplest way of using this map is through the forkMap()
748 753
  /// function.
749 754
  template<typename  M1, typename M2>
750 755
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
751 756
    M1 &_m1;
752 757
    M2 &_m2;
753 758
  public:
754 759
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
755 760
    typedef typename Parent::Key Key;
756 761
    typedef typename Parent::Value Value;
757 762

	
758 763
    /// Constructor
759 764
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
760 765
    /// Returns the value associated with the given key in the first map.
761 766
    Value operator[](const Key &k) const { return _m1[k]; }
762 767
    /// Sets the value associated with the given key in both maps.
763 768
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
764 769
  };
765 770

	
766 771
  /// Returns a \ref ForkMap class
767 772

	
768 773
  /// This function just returns a \ref ForkMap class.
769 774
  /// \relates ForkMap
770 775
  template <typename M1, typename M2>
771 776
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
772 777
    return ForkMap<M1,M2>(m1,m2);
773 778
  }
774 779

	
775 780

	
776 781
  /// Sum of two maps
777 782

	
778 783
  /// This \ref concepts::ReadMap "read-only map" returns the sum
779 784
  /// of the values of the two given maps.
780 785
  /// Its \c Key and \c Value types are inherited from \c M1.
781 786
  /// The \c Key and \c Value of \c M2 must be convertible to those of
782 787
  /// \c M1.
783 788
  ///
784 789
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
785 790
  /// \code
786 791
  ///   AddMap<M1,M2> am(m1,m2);
787 792
  /// \endcode
788 793
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
789 794
  ///
790 795
  /// The simplest way of using this map is through the addMap()
791 796
  /// function.
792 797
  ///
793 798
  /// \sa SubMap, MulMap, DivMap
794 799
  /// \sa ShiftMap, ShiftWriteMap
795 800
  template<typename M1, typename M2>
796 801
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
797 802
    const M1 &_m1;
798 803
    const M2 &_m2;
799 804
  public:
800 805
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
801 806
    typedef typename Parent::Key Key;
802 807
    typedef typename Parent::Value Value;
803 808

	
804 809
    /// Constructor
805 810
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
806 811
    /// \e
807 812
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
808 813
  };
Ignore white space 384 line context
1 1
/* -*- C++ -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <deque>
20 20
#include <set>
21 21

	
22 22
#include <lemon/concept_check.h>
23 23
#include <lemon/concepts/maps.h>
24 24
#include <lemon/maps.h>
25 25

	
26 26
#include "test_tools.h"
27 27

	
28 28
using namespace lemon;
29 29
using namespace lemon::concepts;
30 30

	
31 31
struct A {};
32 32
inline bool operator<(A, A) { return true; }
33 33
struct B {};
34 34

	
35 35
class C {
36 36
  int x;
37 37
public:
38 38
  C(int _x) : x(_x) {}
39 39
};
40 40

	
41 41
class F {
42 42
public:
43 43
  typedef A argument_type;
44 44
  typedef B result_type;
45 45

	
46 46
  B operator()(const A&) const { return B(); }
47 47
private:
48 48
  F& operator=(const F&);
49 49
};
50 50

	
51 51
int func(A) { return 3; }
52 52

	
53 53
int binc(int a, B) { return a+1; }
54 54

	
55 55
typedef ReadMap<A, double> DoubleMap;
56 56
typedef ReadWriteMap<A, double> DoubleWriteMap;
57 57
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap;
58 58

	
59 59
typedef ReadMap<A, bool> BoolMap;
60 60
typedef ReadWriteMap<A, bool> BoolWriteMap;
61 61
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap;
62 62

	
63 63
int main()
64 64
{
65 65
  // Map concepts
66 66
  checkConcept<ReadMap<A,B>, ReadMap<A,B> >();
67 67
  checkConcept<ReadMap<A,C>, ReadMap<A,C> >();
68 68
  checkConcept<WriteMap<A,B>, WriteMap<A,B> >();
69 69
  checkConcept<WriteMap<A,C>, WriteMap<A,C> >();
70 70
  checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >();
71 71
  checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >();
72 72
  checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >();
73 73
  checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >();
74 74

	
75 75
  // NullMap
76 76
  {
77 77
    checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >();
78 78
    NullMap<A,B> map1;
79 79
    NullMap<A,B> map2 = map1;
80 80
    map1 = nullMap<A,B>();
81 81
  }
82 82

	
83 83
  // ConstMap
84 84
  {
85 85
    checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >();
86
    checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >();
86 87
    ConstMap<A,B> map1;
87 88
    ConstMap<A,B> map2(B());
88 89
    ConstMap<A,B> map3 = map1;
89 90
    map1 = constMap<A>(B());
91
    map1 = constMap<A,B>();
90 92
    map1.setAll(B());
93
    ConstMap<A,C> map4(C(1));
94
    ConstMap<A,C> map5 = map4;
95
    map4 = constMap<A>(C(2));
96
    map4.setAll(C(3));
91 97

	
92 98
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >();
93 99
    check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap");
94 100

	
95 101
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >();
96
    ConstMap<A,Const<int,10> > map4;
97
    ConstMap<A,Const<int,10> > map5 = map4;
98
    map4 = map5;
99
    check(map4[A()] == 10 && map5[A()] == 10, "Something is wrong with ConstMap");
102
    ConstMap<A,Const<int,10> > map6;
103
    ConstMap<A,Const<int,10> > map7 = map6;
104
    map6 = constMap<A,int,10>();
105
    map7 = constMap<A,Const<int,10> >();
106
    check(map6[A()] == 10 && map7[A()] == 10, "Something is wrong with ConstMap");
100 107
  }
101 108

	
102 109
  // IdentityMap
103 110
  {
104 111
    checkConcept<ReadMap<A,A>, IdentityMap<A> >();
105 112
    IdentityMap<A> map1;
106 113
    IdentityMap<A> map2 = map1;
107 114
    map1 = identityMap<A>();
108 115

	
109 116
    checkConcept<ReadMap<double,double>, IdentityMap<double> >();
110 117
    check(identityMap<double>()[1.0] == 1.0 && identityMap<double>()[3.14] == 3.14,
111 118
          "Something is wrong with IdentityMap");
112 119
  }
113 120

	
114 121
  // RangeMap
115 122
  {
116 123
    checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >();
117 124
    RangeMap<B> map1;
118 125
    RangeMap<B> map2(10);
119 126
    RangeMap<B> map3(10,B());
120 127
    RangeMap<B> map4 = map1;
121 128
    RangeMap<B> map5 = rangeMap<B>();
122 129
    RangeMap<B> map6 = rangeMap<B>(10);
123 130
    RangeMap<B> map7 = rangeMap(10,B());
124 131

	
125 132
    checkConcept< ReferenceMap<int, double, double&, const double&>,
126 133
                  RangeMap<double> >();
127 134
    std::vector<double> v(10, 0);
128 135
    v[5] = 100;
129 136
    RangeMap<double> map8(v);
130 137
    RangeMap<double> map9 = rangeMap(v);
131 138
    check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100,
132 139
          "Something is wrong with RangeMap");
133 140
  }
134 141

	
135 142
  // SparseMap
136 143
  {
137 144
    checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >();
138 145
    SparseMap<A,B> map1;
139 146
    SparseMap<A,B> map2(B());
140 147
    SparseMap<A,B> map3 = sparseMap<A,B>();
141 148
    SparseMap<A,B> map4 = sparseMap<A>(B());
142 149

	
143 150
    checkConcept< ReferenceMap<double, int, int&, const int&>,
144 151
                  SparseMap<double, int> >();
145 152
    std::map<double, int> m;
146 153
    SparseMap<double, int> map5(m);
147 154
    SparseMap<double, int> map6(m,10);
148 155
    SparseMap<double, int> map7 = sparseMap(m);
149 156
    SparseMap<double, int> map8 = sparseMap(m,10);
150 157

	
151 158
    check(map5[1.0] == 0 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 10,
152 159
          "Something is wrong with SparseMap");
153 160
    map5[1.0] = map6[3.14] = 100;
154 161
    check(map5[1.0] == 100 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 100,
155 162
          "Something is wrong with SparseMap");
156 163
  }
157 164

	
158 165
  // ComposeMap
159 166
  {
160 167
    typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap;
161 168
    checkConcept<ReadMap<B,double>, CompMap>();
162 169
    CompMap map1(DoubleMap(),ReadMap<B,A>());
163 170
    CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>());
164 171

	
165 172
    SparseMap<double, bool> m1(false); m1[3.14] = true;
166 173
    RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14;
167 174
    check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], "Something is wrong with ComposeMap")
168 175
  }
169 176

	
170 177
  // CombineMap
171 178
  {
172 179
    typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap;
173 180
    checkConcept<ReadMap<A,double>, CombMap>();
174 181
    CombMap map1(DoubleMap(), DoubleMap());
175 182
    CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>());
176 183

	
177 184
    check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3,
178 185
          "Something is wrong with CombineMap");
179 186
  }
180 187

	
181 188
  // FunctorToMap, MapToFunctor
182 189
  {
183 190
    checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >();
184 191
    checkConcept<ReadMap<A,B>, FunctorToMap<F> >();
185 192
    FunctorToMap<F> map1;
186 193
    FunctorToMap<F> map2(F());
187 194
    B b = functorToMap(F())[A()];
188 195

	
189 196
    checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >();
190 197
    MapToFunctor<ReadMap<A,B> > map(ReadMap<A,B>());
191 198

	
192 199
    check(functorToMap(&func)[A()] == 3, "Something is wrong with FunctorToMap");
193 200
    check(mapToFunctor(constMap<A,int>(2))(A()) == 2, "Something is wrong with MapToFunctor");
194 201
    check(mapToFunctor(functorToMap(&func))(A()) == 3 && mapToFunctor(functorToMap(&func))[A()] == 3,
195 202
          "Something is wrong with FunctorToMap or MapToFunctor");
196 203
    check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2,
197 204
          "Something is wrong with FunctorToMap or MapToFunctor");
198 205
  }
199 206

	
200 207
  // ConvertMap
201 208
  {
202 209
    checkConcept<ReadMap<double,double>, ConvertMap<ReadMap<double, int>, double> >();
203 210
    ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true));
204 211
    ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false));
205 212
  }
206 213

	
207 214
  // ForkMap
208 215
  {
209 216
    checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >();
210 217

	
211 218
    typedef RangeMap<double> RM;
212 219
    typedef SparseMap<int, double> SM;
213 220
    RM m1(10, -1);
214 221
    SM m2(-1);
215 222
    checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >();
216 223
    checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >();
217 224
    ForkMap<RM, SM> map1(m1,m2);
218 225
    ForkMap<SM, RM> map2 = forkMap(m2,m1);
219 226
    map2.set(5, 10);
220 227
    check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && m2[5] == 10 && map2[1] == -1 && map2[5] == 10,
221 228
          "Something is wrong with ForkMap");
222 229
  }
223 230

	
224 231
  // Arithmetic maps:
225 232
  // - AddMap, SubMap, MulMap, DivMap
226 233
  // - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap
227 234
  // - NegMap, NegWriteMap, AbsMap
228 235
  {
229 236
    checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >();
230 237
    checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >();
231 238
    checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >();
232 239
    checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >();
233 240

	
234 241
    ConstMap<int, double> c1(1.0), c2(3.14);
235 242
    IdentityMap<int> im;
236 243
    ConvertMap<IdentityMap<int>, double> id(im);
237 244
    check(addMap(c1,id)[0] == 1.0  && addMap(c1,id)[10] == 11.0, "Something is wrong with AddMap");
238 245
    check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0,  "Something is wrong with SubMap");
239 246
    check(mulMap(id,c2)[0] == 0    && mulMap(id,c2)[2]  == 6.28, "Something is wrong with MulMap");
240 247
    check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2]  == 1.57, "Something is wrong with DivMap");
241 248

	
242 249
    checkConcept<DoubleMap, ShiftMap<DoubleMap> >();
243 250
    checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >();
244 251
    checkConcept<DoubleMap, ScaleMap<DoubleMap> >();
245 252
    checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >();
246 253
    checkConcept<DoubleMap, NegMap<DoubleMap> >();
247 254
    checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >();
248 255
    checkConcept<DoubleMap, AbsMap<DoubleMap> >();
249 256

	
250 257
    check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0,
251 258
          "Something is wrong with ShiftMap");
252 259
    check(shiftWriteMap(id, 2.0)[1] == 3.0 && shiftWriteMap(id, 2.0)[10] == 12.0,
253 260
          "Something is wrong with ShiftWriteMap");
254 261
    check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0,
255 262
          "Something is wrong with ScaleMap");
256 263
    check(scaleWriteMap(id, 2.0)[1] == 2.0 && scaleWriteMap(id, 2.0)[10] == 20.0,
257 264
          "Something is wrong with ScaleWriteMap");
258 265
    check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0,
259 266
          "Something is wrong with NegMap");
260 267
    check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0,
261 268
          "Something is wrong with NegWriteMap");
262 269
    check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0,
263 270
          "Something is wrong with AbsMap");
264 271
  }
265 272

	
266 273
  // Logical maps:
267 274
  // - TrueMap, FalseMap
268 275
  // - AndMap, OrMap
269 276
  // - NotMap, NotWriteMap
270 277
  // - EqualMap, LessMap
271 278
  {
272 279
    checkConcept<BoolMap, TrueMap<A> >();
273 280
    checkConcept<BoolMap, FalseMap<A> >();
274 281
    checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >();
275 282
    checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >();
276 283
    checkConcept<BoolMap, NotMap<BoolMap> >();
277 284
    checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >();
278 285
    checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >();
279 286
    checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >();
280 287

	
281 288
    TrueMap<int> tm;
282 289
    FalseMap<int> fm;
283 290
    RangeMap<bool> rm(2);
284 291
    rm[0] = true; rm[1] = false;
285 292
    check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && !andMap(fm,rm)[0] && !andMap(fm,rm)[1],
286 293
          "Something is wrong with AndMap");
287 294
    check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && orMap(fm,rm)[0] && !orMap(fm,rm)[1],
288 295
          "Something is wrong with OrMap");
289 296
    check(!notMap(rm)[0] && notMap(rm)[1], "Something is wrong with NotMap");
290 297
    check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], "Something is wrong with NotWriteMap");
291 298

	
0 comments (0 inline)