gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 3 2
merge default
3 files changed with 946 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_MIN_COST_ARBORESCENCE_H
20
#define LEMON_MIN_COST_ARBORESCENCE_H
21

	
22
///\ingroup spantree
23
///\file
24
///\brief Minimum Cost Arborescence algorithm.
25

	
26
#include <vector>
27

	
28
#include <lemon/list_graph.h>
29
#include <lemon/bin_heap.h>
30
#include <lemon/assert.h>
31

	
32
namespace lemon {
33

	
34

	
35
  /// \brief Default traits class for MinCostArborescence class.
36
  ///
37
  /// Default traits class for MinCostArborescence class.
38
  /// \param _Digraph Digraph type.
39
  /// \param _CostMap Type of cost map.
40
  template <class _Digraph, class _CostMap>
41
  struct MinCostArborescenceDefaultTraits{
42

	
43
    /// \brief The digraph type the algorithm runs on.
44
    typedef _Digraph Digraph;
45

	
46
    /// \brief The type of the map that stores the arc costs.
47
    ///
48
    /// The type of the map that stores the arc costs.
49
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
50
    typedef _CostMap CostMap;
51

	
52
    /// \brief The value type of the costs.
53
    ///
54
    /// The value type of the costs.
55
    typedef typename CostMap::Value Value;
56

	
57
    /// \brief The type of the map that stores which arcs are in the
58
    /// arborescence.
59
    ///
60
    /// The type of the map that stores which arcs are in the
61
    /// arborescence.  It must meet the \ref concepts::WriteMap
62
    /// "WriteMap" concept.  Initially it will be set to false on each
63
    /// arc. After it will set all arborescence arcs once.
64
    typedef typename Digraph::template ArcMap<bool> ArborescenceMap;
65

	
66
    /// \brief Instantiates a ArborescenceMap.
67
    ///
68
    /// This function instantiates a \ref ArborescenceMap.
69
    /// \param digraph is the graph, to which we would like to
70
    /// calculate the ArborescenceMap.
71
    static ArborescenceMap *createArborescenceMap(const Digraph &digraph){
72
      return new ArborescenceMap(digraph);
73
    }
74

	
75
    /// \brief The type of the PredMap
76
    ///
77
    /// The type of the PredMap. It is a node map with an arc value type.
78
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
79

	
80
    /// \brief Instantiates a PredMap.
81
    ///
82
    /// This function instantiates a \ref PredMap.
83
    /// \param _digraph is the digraph, to which we would like to define the
84
    /// PredMap.
85
    static PredMap *createPredMap(const Digraph &digraph){
86
      return new PredMap(digraph);
87
    }
88

	
89
  };
90

	
91
  /// \ingroup spantree
92
  ///
93
  /// \brief %MinCostArborescence algorithm class.
94
  ///
95
  /// This class provides an efficient implementation of
96
  /// %MinCostArborescence algorithm. The arborescence is a tree
97
  /// which is directed from a given source node of the digraph. One or
98
  /// more sources should be given for the algorithm and it will calculate
99
  /// the minimum cost subgraph which are union of arborescences with the
100
  /// given sources and spans all the nodes which are reachable from the
101
  /// sources. The time complexity of the algorithm is \f$ O(n^2+e) \f$.
102
  ///
103
  /// The algorithm provides also an optimal dual solution, therefore
104
  /// the optimality of the solution can be checked.
105
  ///
106
  /// \param _Digraph The digraph type the algorithm runs on. The default value
107
  /// is \ref ListDigraph.
108
  /// \param _CostMap This read-only ArcMap determines the costs of the
109
  /// arcs. It is read once for each arc, so the map may involve in
110
  /// relatively time consuming process to compute the arc cost if
111
  /// it is necessary. The default map type is \ref
112
  /// concepts::Digraph::ArcMap "Digraph::ArcMap<int>".
113
  /// \param _Traits Traits class to set various data types used
114
  /// by the algorithm. The default traits class is
115
  /// \ref MinCostArborescenceDefaultTraits
116
  /// "MinCostArborescenceDefaultTraits<_Digraph, _CostMap>".  See \ref
117
  /// MinCostArborescenceDefaultTraits for the documentation of a
118
  /// MinCostArborescence traits class.
119
  ///
120
  /// \author Balazs Dezso
121
#ifndef DOXYGEN
122
  template <typename _Digraph = ListDigraph,
123
            typename _CostMap = typename _Digraph::template ArcMap<int>,
124
            typename _Traits =
125
            MinCostArborescenceDefaultTraits<_Digraph, _CostMap> >
126
#else
127
  template <typename _Digraph, typename _CostMap, typedef _Traits>
128
#endif
129
  class MinCostArborescence {
130
  public:
131

	
132
    /// The traits.
133
    typedef _Traits Traits;
134
    /// The type of the underlying digraph.
135
    typedef typename Traits::Digraph Digraph;
136
    /// The type of the map that stores the arc costs.
137
    typedef typename Traits::CostMap CostMap;
138
    ///The type of the costs of the arcs.
139
    typedef typename Traits::Value Value;
140
    ///The type of the predecessor map.
141
    typedef typename Traits::PredMap PredMap;
142
    ///The type of the map that stores which arcs are in the arborescence.
143
    typedef typename Traits::ArborescenceMap ArborescenceMap;
144

	
145
    typedef MinCostArborescence Create;
146

	
147
  private:
148

	
149
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
150

	
151
    struct CostArc {
152

	
153
      Arc arc;
154
      Value value;
155

	
156
      CostArc() {}
157
      CostArc(Arc _arc, Value _value) : arc(_arc), value(_value) {}
158

	
159
    };
160

	
161
    const Digraph *_digraph;
162
    const CostMap *_cost;
163

	
164
    PredMap *_pred;
165
    bool local_pred;
166

	
167
    ArborescenceMap *_arborescence;
168
    bool local_arborescence;
169

	
170
    typedef typename Digraph::template ArcMap<int> ArcOrder;
171
    ArcOrder *_arc_order;
172

	
173
    typedef typename Digraph::template NodeMap<int> NodeOrder;
174
    NodeOrder *_node_order;
175

	
176
    typedef typename Digraph::template NodeMap<CostArc> CostArcMap;
177
    CostArcMap *_cost_arcs;
178

	
179
    struct StackLevel {
180

	
181
      std::vector<CostArc> arcs;
182
      int node_level;
183

	
184
    };
185

	
186
    std::vector<StackLevel> level_stack;
187
    std::vector<Node> queue;
188

	
189
    typedef std::vector<typename Digraph::Node> DualNodeList;
190

	
191
    DualNodeList _dual_node_list;
192

	
193
    struct DualVariable {
194
      int begin, end;
195
      Value value;
196

	
197
      DualVariable(int _begin, int _end, Value _value)
198
        : begin(_begin), end(_end), value(_value) {}
199

	
200
    };
201

	
202
    typedef std::vector<DualVariable> DualVariables;
203

	
204
    DualVariables _dual_variables;
205

	
206
    typedef typename Digraph::template NodeMap<int> HeapCrossRef;
207

	
208
    HeapCrossRef *_heap_cross_ref;
209

	
210
    typedef BinHeap<int, HeapCrossRef> Heap;
211

	
212
    Heap *_heap;
213

	
214
  protected:
215

	
216
    MinCostArborescence() {}
217

	
218
  private:
219

	
220
    void createStructures() {
221
      if (!_pred) {
222
        local_pred = true;
223
        _pred = Traits::createPredMap(*_digraph);
224
      }
225
      if (!_arborescence) {
226
        local_arborescence = true;
227
        _arborescence = Traits::createArborescenceMap(*_digraph);
228
      }
229
      if (!_arc_order) {
230
        _arc_order = new ArcOrder(*_digraph);
231
      }
232
      if (!_node_order) {
233
        _node_order = new NodeOrder(*_digraph);
234
      }
235
      if (!_cost_arcs) {
236
        _cost_arcs = new CostArcMap(*_digraph);
237
      }
238
      if (!_heap_cross_ref) {
239
        _heap_cross_ref = new HeapCrossRef(*_digraph, -1);
240
      }
241
      if (!_heap) {
242
        _heap = new Heap(*_heap_cross_ref);
243
      }
244
    }
245

	
246
    void destroyStructures() {
247
      if (local_arborescence) {
248
        delete _arborescence;
249
      }
250
      if (local_pred) {
251
        delete _pred;
252
      }
253
      if (_arc_order) {
254
        delete _arc_order;
255
      }
256
      if (_node_order) {
257
        delete _node_order;
258
      }
259
      if (_cost_arcs) {
260
        delete _cost_arcs;
261
      }
262
      if (_heap) {
263
        delete _heap;
264
      }
265
      if (_heap_cross_ref) {
266
        delete _heap_cross_ref;
267
      }
268
    }
269

	
270
    Arc prepare(Node node) {
271
      std::vector<Node> nodes;
272
      (*_node_order)[node] = _dual_node_list.size();
273
      StackLevel level;
274
      level.node_level = _dual_node_list.size();
275
      _dual_node_list.push_back(node);
276
      for (InArcIt it(*_digraph, node); it != INVALID; ++it) {
277
        Arc arc = it;
278
        Node source = _digraph->source(arc);
279
        Value value = (*_cost)[it];
280
        if (source == node || (*_node_order)[source] == -3) continue;
281
        if ((*_cost_arcs)[source].arc == INVALID) {
282
          (*_cost_arcs)[source].arc = arc;
283
          (*_cost_arcs)[source].value = value;
284
          nodes.push_back(source);
285
        } else {
286
          if ((*_cost_arcs)[source].value > value) {
287
            (*_cost_arcs)[source].arc = arc;
288
            (*_cost_arcs)[source].value = value;
289
          }
290
        }
291
      }
292
      CostArc minimum = (*_cost_arcs)[nodes[0]];
293
      for (int i = 1; i < int(nodes.size()); ++i) {
294
        if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
295
          minimum = (*_cost_arcs)[nodes[i]];
296
        }
297
      }
298
      _arc_order->set(minimum.arc, _dual_variables.size());
299
      DualVariable var(_dual_node_list.size() - 1,
300
                       _dual_node_list.size(), minimum.value);
301
      _dual_variables.push_back(var);
302
      for (int i = 0; i < int(nodes.size()); ++i) {
303
        (*_cost_arcs)[nodes[i]].value -= minimum.value;
304
        level.arcs.push_back((*_cost_arcs)[nodes[i]]);
305
        (*_cost_arcs)[nodes[i]].arc = INVALID;
306
      }
307
      level_stack.push_back(level);
308
      return minimum.arc;
309
    }
310

	
311
    Arc contract(Node node) {
312
      int node_bottom = bottom(node);
313
      std::vector<Node> nodes;
314
      while (!level_stack.empty() &&
315
             level_stack.back().node_level >= node_bottom) {
316
        for (int i = 0; i < int(level_stack.back().arcs.size()); ++i) {
317
          Arc arc = level_stack.back().arcs[i].arc;
318
          Node source = _digraph->source(arc);
319
          Value value = level_stack.back().arcs[i].value;
320
          if ((*_node_order)[source] >= node_bottom) continue;
321
          if ((*_cost_arcs)[source].arc == INVALID) {
322
            (*_cost_arcs)[source].arc = arc;
323
            (*_cost_arcs)[source].value = value;
324
            nodes.push_back(source);
325
          } else {
326
            if ((*_cost_arcs)[source].value > value) {
327
              (*_cost_arcs)[source].arc = arc;
328
              (*_cost_arcs)[source].value = value;
329
            }
330
          }
331
        }
332
        level_stack.pop_back();
333
      }
334
      CostArc minimum = (*_cost_arcs)[nodes[0]];
335
      for (int i = 1; i < int(nodes.size()); ++i) {
336
        if ((*_cost_arcs)[nodes[i]].value < minimum.value) {
337
          minimum = (*_cost_arcs)[nodes[i]];
338
        }
339
      }
340
      _arc_order->set(minimum.arc, _dual_variables.size());
341
      DualVariable var(node_bottom, _dual_node_list.size(), minimum.value);
342
      _dual_variables.push_back(var);
343
      StackLevel level;
344
      level.node_level = node_bottom;
345
      for (int i = 0; i < int(nodes.size()); ++i) {
346
        (*_cost_arcs)[nodes[i]].value -= minimum.value;
347
        level.arcs.push_back((*_cost_arcs)[nodes[i]]);
348
        (*_cost_arcs)[nodes[i]].arc = INVALID;
349
      }
350
      level_stack.push_back(level);
351
      return minimum.arc;
352
    }
353

	
354
    int bottom(Node node) {
355
      int k = level_stack.size() - 1;
356
      while (level_stack[k].node_level > (*_node_order)[node]) {
357
        --k;
358
      }
359
      return level_stack[k].node_level;
360
    }
361

	
362
    void finalize(Arc arc) {
363
      Node node = _digraph->target(arc);
364
      _heap->push(node, (*_arc_order)[arc]);
365
      _pred->set(node, arc);
366
      while (!_heap->empty()) {
367
        Node source = _heap->top();
368
        _heap->pop();
369
        _node_order->set(source, -1);
370
        for (OutArcIt it(*_digraph, source); it != INVALID; ++it) {
371
          if ((*_arc_order)[it] < 0) continue;
372
          Node target = _digraph->target(it);
373
          switch(_heap->state(target)) {
374
          case Heap::PRE_HEAP:
375
            _heap->push(target, (*_arc_order)[it]);
376
            _pred->set(target, it);
377
            break;
378
          case Heap::IN_HEAP:
379
            if ((*_arc_order)[it] < (*_heap)[target]) {
380
              _heap->decrease(target, (*_arc_order)[it]);
381
              _pred->set(target, it);
382
            }
383
            break;
384
          case Heap::POST_HEAP:
385
            break;
386
          }
387
        }
388
        _arborescence->set((*_pred)[source], true);
389
      }
390
    }
391

	
392

	
393
  public:
394

	
395
    /// \name Named template parameters
396

	
397
    /// @{
398

	
399
    template <class T>
400
    struct DefArborescenceMapTraits : public Traits {
401
      typedef T ArborescenceMap;
402
      static ArborescenceMap *createArborescenceMap(const Digraph &)
403
      {
404
        LEMON_ASSERT(false, "ArborescenceMap is not initialized");
405
        return 0; // ignore warnings
406
      }
407
    };
408

	
409
    /// \brief \ref named-templ-param "Named parameter" for
410
    /// setting ArborescenceMap type
411
    ///
412
    /// \ref named-templ-param "Named parameter" for setting
413
    /// ArborescenceMap type
414
    template <class T>
415
    struct DefArborescenceMap
416
      : public MinCostArborescence<Digraph, CostMap,
417
                                   DefArborescenceMapTraits<T> > {
418
    };
419

	
420
    template <class T>
421
    struct DefPredMapTraits : public Traits {
422
      typedef T PredMap;
423
      static PredMap *createPredMap(const Digraph &)
424
      {
425
        LEMON_ASSERT(false, "PredMap is not initialized");
426
      }
427
    };
428

	
429
    /// \brief \ref named-templ-param "Named parameter" for
430
    /// setting PredMap type
431
    ///
432
    /// \ref named-templ-param "Named parameter" for setting
433
    /// PredMap type
434
    template <class T>
435
    struct DefPredMap
436
      : public MinCostArborescence<Digraph, CostMap, DefPredMapTraits<T> > {
437
    };
438

	
439
    /// @}
440

	
441
    /// \brief Constructor.
442
    ///
443
    /// \param _digraph The digraph the algorithm will run on.
444
    /// \param _cost The cost map used by the algorithm.
445
    MinCostArborescence(const Digraph& digraph, const CostMap& cost)
446
      : _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false),
447
        _arborescence(0), local_arborescence(false),
448
        _arc_order(0), _node_order(0), _cost_arcs(0),
449
        _heap_cross_ref(0), _heap(0) {}
450

	
451
    /// \brief Destructor.
452
    ~MinCostArborescence() {
453
      destroyStructures();
454
    }
455

	
456
    /// \brief Sets the arborescence map.
457
    ///
458
    /// Sets the arborescence map.
459
    /// \return \c (*this)
460
    MinCostArborescence& arborescenceMap(ArborescenceMap& m) {
461
      if (local_arborescence) {
462
        delete _arborescence;
463
      }
464
      local_arborescence = false;
465
      _arborescence = &m;
466
      return *this;
467
    }
468

	
469
    /// \brief Sets the arborescence map.
470
    ///
471
    /// Sets the arborescence map.
472
    /// \return \c (*this)
473
    MinCostArborescence& predMap(PredMap& m) {
474
      if (local_pred) {
475
        delete _pred;
476
      }
477
      local_pred = false;
478
      _pred = &m;
479
      return *this;
480
    }
481

	
482
    /// \name Query Functions
483
    /// The result of the %MinCostArborescence algorithm can be obtained
484
    /// using these functions.\n
485
    /// Before the use of these functions,
486
    /// either run() or start() must be called.
487

	
488
    /// @{
489

	
490
    /// \brief Returns a reference to the arborescence map.
491
    ///
492
    /// Returns a reference to the arborescence map.
493
    const ArborescenceMap& arborescenceMap() const {
494
      return *_arborescence;
495
    }
496

	
497
    /// \brief Returns true if the arc is in the arborescence.
498
    ///
499
    /// Returns true if the arc is in the arborescence.
500
    /// \param arc The arc of the digraph.
501
    /// \pre \ref run() must be called before using this function.
502
    bool arborescence(Arc arc) const {
503
      return (*_pred)[_digraph->target(arc)] == arc;
504
    }
505

	
506
    /// \brief Returns a reference to the pred map.
507
    ///
508
    /// Returns a reference to the pred map.
509
    const PredMap& predMap() const {
510
      return *_pred;
511
    }
512

	
513
    /// \brief Returns the predecessor arc of the given node.
514
    ///
515
    /// Returns the predecessor arc of the given node.
516
    Arc pred(Node node) const {
517
      return (*_pred)[node];
518
    }
519

	
520
    /// \brief Returns the cost of the arborescence.
521
    ///
522
    /// Returns the cost of the arborescence.
523
    Value arborescenceValue() const {
524
      Value sum = 0;
525
      for (ArcIt it(*_digraph); it != INVALID; ++it) {
526
        if (arborescence(it)) {
527
          sum += (*_cost)[it];
528
        }
529
      }
530
      return sum;
531
    }
532

	
533
    /// \brief Indicates that a node is reachable from the sources.
534
    ///
535
    /// Indicates that a node is reachable from the sources.
536
    bool reached(Node node) const {
537
      return (*_node_order)[node] != -3;
538
    }
539

	
540
    /// \brief Indicates that a node is processed.
541
    ///
542
    /// Indicates that a node is processed. The arborescence path exists
543
    /// from the source to the given node.
544
    bool processed(Node node) const {
545
      return (*_node_order)[node] == -1;
546
    }
547

	
548
    /// \brief Returns the number of the dual variables in basis.
549
    ///
550
    /// Returns the number of the dual variables in basis.
551
    int dualNum() const {
552
      return _dual_variables.size();
553
    }
554

	
555
    /// \brief Returns the value of the dual solution.
556
    ///
557
    /// Returns the value of the dual solution. It should be
558
    /// equal to the arborescence value.
559
    Value dualValue() const {
560
      Value sum = 0;
561
      for (int i = 0; i < int(_dual_variables.size()); ++i) {
562
        sum += _dual_variables[i].value;
563
      }
564
      return sum;
565
    }
566

	
567
    /// \brief Returns the number of the nodes in the dual variable.
568
    ///
569
    /// Returns the number of the nodes in the dual variable.
570
    int dualSize(int k) const {
571
      return _dual_variables[k].end - _dual_variables[k].begin;
572
    }
573

	
574
    /// \brief Returns the value of the dual variable.
575
    ///
576
    /// Returns the the value of the dual variable.
577
    const Value& dualValue(int k) const {
578
      return _dual_variables[k].value;
579
    }
580

	
581
    /// \brief Lemon iterator for get a dual variable.
582
    ///
583
    /// Lemon iterator for get a dual variable. This class provides
584
    /// a common style lemon iterator which gives back a subset of
585
    /// the nodes.
586
    class DualIt {
587
    public:
588

	
589
      /// \brief Constructor.
590
      ///
591
      /// Constructor for get the nodeset of the variable.
592
      DualIt(const MinCostArborescence& algorithm, int variable)
593
        : _algorithm(&algorithm)
594
      {
595
        _index = _algorithm->_dual_variables[variable].begin;
596
        _last = _algorithm->_dual_variables[variable].end;
597
      }
598

	
599
      /// \brief Conversion to node.
600
      ///
601
      /// Conversion to node.
602
      operator Node() const {
603
        return _algorithm->_dual_node_list[_index];
604
      }
605

	
606
      /// \brief Increment operator.
607
      ///
608
      /// Increment operator.
609
      DualIt& operator++() {
610
        ++_index;
611
        return *this;
612
      }
613

	
614
      /// \brief Validity checking
615
      ///
616
      /// Checks whether the iterator is invalid.
617
      bool operator==(Invalid) const {
618
        return _index == _last;
619
      }
620

	
621
      /// \brief Validity checking
622
      ///
623
      /// Checks whether the iterator is valid.
624
      bool operator!=(Invalid) const {
625
        return _index != _last;
626
      }
627

	
628
    private:
629
      const MinCostArborescence* _algorithm;
630
      int _index, _last;
631
    };
632

	
633
    /// @}
634

	
635
    /// \name Execution control
636
    /// The simplest way to execute the algorithm is to use
637
    /// one of the member functions called \c run(...). \n
638
    /// If you need more control on the execution,
639
    /// first you must call \ref init(), then you can add several
640
    /// source nodes with \ref addSource().
641
    /// Finally \ref start() will perform the arborescence
642
    /// computation.
643

	
644
    ///@{
645

	
646
    /// \brief Initializes the internal data structures.
647
    ///
648
    /// Initializes the internal data structures.
649
    ///
650
    void init() {
651
      createStructures();
652
      _heap->clear();
653
      for (NodeIt it(*_digraph); it != INVALID; ++it) {
654
        (*_cost_arcs)[it].arc = INVALID;
655
        _node_order->set(it, -3);
656
        _heap_cross_ref->set(it, Heap::PRE_HEAP);
657
        _pred->set(it, INVALID);
658
      }
659
      for (ArcIt it(*_digraph); it != INVALID; ++it) {
660
        _arborescence->set(it, false);
661
        _arc_order->set(it, -1);
662
      }
663
      _dual_node_list.clear();
664
      _dual_variables.clear();
665
    }
666

	
667
    /// \brief Adds a new source node.
668
    ///
669
    /// Adds a new source node to the algorithm.
670
    void addSource(Node source) {
671
      std::vector<Node> nodes;
672
      nodes.push_back(source);
673
      while (!nodes.empty()) {
674
        Node node = nodes.back();
675
        nodes.pop_back();
676
        for (OutArcIt it(*_digraph, node); it != INVALID; ++it) {
677
          Node target = _digraph->target(it);
678
          if ((*_node_order)[target] == -3) {
679
            (*_node_order)[target] = -2;
680
            nodes.push_back(target);
681
            queue.push_back(target);
682
          }
683
        }
684
      }
685
      (*_node_order)[source] = -1;
686
    }
687

	
688
    /// \brief Processes the next node in the priority queue.
689
    ///
690
    /// Processes the next node in the priority queue.
691
    ///
692
    /// \return The processed node.
693
    ///
694
    /// \warning The queue must not be empty!
695
    Node processNextNode() {
696
      Node node = queue.back();
697
      queue.pop_back();
698
      if ((*_node_order)[node] == -2) {
699
        Arc arc = prepare(node);
700
        Node source = _digraph->source(arc);
701
        while ((*_node_order)[source] != -1) {
702
          if ((*_node_order)[source] >= 0) {
703
            arc = contract(source);
704
          } else {
705
            arc = prepare(source);
706
          }
707
          source = _digraph->source(arc);
708
        }
709
        finalize(arc);
710
        level_stack.clear();
711
      }
712
      return node;
713
    }
714

	
715
    /// \brief Returns the number of the nodes to be processed.
716
    ///
717
    /// Returns the number of the nodes to be processed.
718
    int queueSize() const {
719
      return queue.size();
720
    }
721

	
722
    /// \brief Returns \c false if there are nodes to be processed.
723
    ///
724
    /// Returns \c false if there are nodes to be processed.
725
    bool emptyQueue() const {
726
      return queue.empty();
727
    }
728

	
729
    /// \brief Executes the algorithm.
730
    ///
731
    /// Executes the algorithm.
732
    ///
733
    /// \pre init() must be called and at least one node should be added
734
    /// with addSource() before using this function.
735
    ///
736
    ///\note mca.start() is just a shortcut of the following code.
737
    ///\code
738
    ///while (!mca.emptyQueue()) {
739
    ///  mca.processNextNode();
740
    ///}
741
    ///\endcode
742
    void start() {
743
      while (!emptyQueue()) {
744
        processNextNode();
745
      }
746
    }
747

	
748
    /// \brief Runs %MinCostArborescence algorithm from node \c s.
749
    ///
750
    /// This method runs the %MinCostArborescence algorithm from
751
    /// a root node \c s.
752
    ///
753
    /// \note mca.run(s) is just a shortcut of the following code.
754
    /// \code
755
    /// mca.init();
756
    /// mca.addSource(s);
757
    /// mca.start();
758
    /// \endcode
759
    void run(Node node) {
760
      init();
761
      addSource(node);
762
      start();
763
    }
764

	
765
    ///@}
766

	
767
  };
768

	
769
  /// \ingroup spantree
770
  ///
771
  /// \brief Function type interface for MinCostArborescence algorithm.
772
  ///
773
  /// Function type interface for MinCostArborescence algorithm.
774
  /// \param digraph The Digraph that the algorithm runs on.
775
  /// \param cost The CostMap of the arcs.
776
  /// \param source The source of the arborescence.
777
  /// \retval arborescence The bool ArcMap which stores the arborescence.
778
  /// \return The cost of the arborescence.
779
  ///
780
  /// \sa MinCostArborescence
781
  template <typename Digraph, typename CostMap, typename ArborescenceMap>
782
  typename CostMap::Value minCostArborescence(const Digraph& digraph,
783
                                              const CostMap& cost,
784
                                              typename Digraph::Node source,
785
                                              ArborescenceMap& arborescence) {
786
    typename MinCostArborescence<Digraph, CostMap>
787
      ::template DefArborescenceMap<ArborescenceMap>
788
      ::Create mca(digraph, cost);
789
    mca.arborescenceMap(arborescence);
790
    mca.run(source);
791
    return mca.arborescenceValue();
792
  }
793

	
794
}
795

	
796
#endif
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#include <iostream>
20
#include <set>
21
#include <vector>
22
#include <iterator>
23

	
24
#include <lemon/smart_graph.h>
25
#include <lemon/min_cost_arborescence.h>
26
#include <lemon/lgf_reader.h>
27

	
28
#include "test_tools.h"
29

	
30
using namespace lemon;
31
using namespace std;
32

	
33
const char test_lgf[] =
34
  "@nodes\n"
35
  "label\n"
36
  "0\n"
37
  "1\n"
38
  "2\n"
39
  "3\n"
40
  "4\n"
41
  "5\n"
42
  "6\n"
43
  "7\n"
44
  "8\n"
45
  "9\n"
46
  "@arcs\n"
47
  "     label  cost\n"
48
  "1 8  0      107\n"
49
  "0 3  1      70\n"
50
  "2 1  2      46\n"
51
  "4 1  3      28\n"
52
  "4 4  4      91\n"
53
  "3 9  5      76\n"
54
  "9 8  6      61\n"
55
  "8 1  7      39\n"
56
  "9 8  8      74\n"
57
  "8 0  9      39\n"
58
  "4 3  10     45\n"
59
  "2 2  11     34\n"
60
  "0 1  12     100\n"
61
  "6 3  13     95\n"
62
  "4 1  14     22\n"
63
  "1 1  15     31\n"
64
  "7 2  16     51\n"
65
  "2 6  17     29\n"
66
  "8 3  18     115\n"
67
  "6 9  19     32\n"
68
  "1 1  20     60\n"
69
  "0 3  21     40\n"
70
  "@attributes\n"
71
  "source 0\n";
72

	
73
int main() {
74
  typedef SmartDigraph Digraph;
75
  DIGRAPH_TYPEDEFS(Digraph);
76

	
77
  typedef Digraph::ArcMap<double> CostMap;
78

	
79
  Digraph digraph;
80
  CostMap cost(digraph);
81
  Node source;
82

	
83
  std::istringstream is(test_lgf);
84
  digraphReader(digraph, is).
85
    arcMap("cost", cost).
86
    node("source", source).run();
87

	
88
  MinCostArborescence<Digraph, CostMap> mca(digraph, cost);
89
  mca.run(source);
90

	
91
  vector<pair<double, set<Node> > > dualSolution(mca.dualNum());
92

	
93
  for (int i = 0; i < mca.dualNum(); ++i) {
94
    dualSolution[i].first = mca.dualValue(i);
95
    for (MinCostArborescence<Digraph, CostMap>::DualIt it(mca, i);
96
         it != INVALID; ++it) {
97
      dualSolution[i].second.insert(it);
98
    }
99
  }
100

	
101
  for (ArcIt it(digraph); it != INVALID; ++it) {
102
    if (mca.reached(digraph.source(it))) {
103
      double sum = 0.0;
104
      for (int i = 0; i < int(dualSolution.size()); ++i) {
105
        if (dualSolution[i].second.find(digraph.target(it))
106
            != dualSolution[i].second.end() &&
107
            dualSolution[i].second.find(digraph.source(it))
108
            == dualSolution[i].second.end()) {
109
          sum += dualSolution[i].first;
110
        }
111
      }
112
      if (mca.arborescence(it)) {
113
        check(sum == cost[it], "INVALID DUAL");
114
      }
115
      check(sum <= cost[it], "INVALID DUAL");
116
    }
117
  }
118

	
119

	
120
  check(mca.dualValue() == mca.arborescenceValue(), "INVALID DUAL");
121

	
122
  check(mca.reached(source), "INVALID ARBORESCENCE");
123
  for (ArcIt a(digraph); a != INVALID; ++a) {
124
    check(!mca.reached(digraph.source(a)) ||
125
          mca.reached(digraph.target(a)), "INVALID ARBORESCENCE");
126
  }
127

	
128
  for (NodeIt n(digraph); n != INVALID; ++n) {
129
    if (!mca.reached(n)) continue;
130
    int cnt = 0;
131
    for (InArcIt a(digraph, n); a != INVALID; ++a) {
132
      if (mca.arborescence(a)) {
133
        check(mca.pred(n) == a, "INVALID ARBORESCENCE");
134
        ++cnt;
135
      }
136
    }
137
    check((n == source ? cnt == 0 : cnt == 1), "INVALID ARBORESCENCE");
138
  }
139

	
140
  Digraph::ArcMap<bool> arborescence(digraph);
141
  check(mca.arborescenceValue() ==
142
        minCostArborescence(digraph, cost, source, arborescence),
143
        "WRONG FUNCTION");
144

	
145
  return 0;
146
}
Ignore white space 6 line context
... ...
@@ -83,6 +83,7 @@
83 83
	lemon/maps.h \
84 84
	lemon/math.h \
85 85
	lemon/max_matching.h \
86
	lemon/min_cost_arborescence.h \
86 87
	lemon/nauty_reader.h \
87 88
	lemon/path.h \
88 89
	lemon/preflow.h \
Ignore white space 6 line context
... ...
@@ -29,6 +29,7 @@
29 29
  kruskal_test
30 30
  maps_test
31 31
  max_matching_test
32
  min_cost_arborescence_test
32 33
  path_test
33 34
  preflow_test
34 35
  radix_sort_test
Ignore white space 6 line context
... ...
@@ -25,6 +25,7 @@
25 25
	test/kruskal_test \
26 26
	test/maps_test \
27 27
	test/max_matching_test \
28
	test/min_cost_arborescence_test \
28 29
	test/path_test \
29 30
	test/preflow_test \
30 31
	test/radix_sort_test \
... ...
@@ -66,6 +67,7 @@
66 67
test_maps_test_SOURCES = test/maps_test.cc
67 68
test_mip_test_SOURCES = test/mip_test.cc
68 69
test_max_matching_test_SOURCES = test/max_matching_test.cc
70
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc
69 71
test_path_test_SOURCES = test/path_test.cc
70 72
test_preflow_test_SOURCES = test/preflow_test.cc
71 73
test_radix_sort_test_SOURCES = test/radix_sort_test.cc
0 comments (0 inline)