... |
... |
@@ -6,47 +6,47 @@
|
6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
8 |
8 |
*
|
9 |
9 |
* Permission to use, modify and distribute this software is granted
|
10 |
10 |
* provided that this copyright notice appears in all copies. For
|
11 |
11 |
* precise terms see the accompanying LICENSE file.
|
12 |
12 |
*
|
13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
15 |
15 |
* purpose.
|
16 |
16 |
*
|
17 |
17 |
*/
|
18 |
18 |
|
19 |
19 |
#ifndef LEMON_NETWORK_SIMPLEX_H
|
20 |
20 |
#define LEMON_NETWORK_SIMPLEX_H
|
21 |
21 |
|
22 |
|
/// \ingroup min_cost_flow
|
|
22 |
/// \ingroup min_cost_flow_algs
|
23 |
23 |
///
|
24 |
24 |
/// \file
|
25 |
25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow.
|
26 |
26 |
|
27 |
27 |
#include <vector>
|
28 |
28 |
#include <limits>
|
29 |
29 |
#include <algorithm>
|
30 |
30 |
|
31 |
31 |
#include <lemon/core.h>
|
32 |
32 |
#include <lemon/math.h>
|
33 |
33 |
|
34 |
34 |
namespace lemon {
|
35 |
35 |
|
36 |
|
/// \addtogroup min_cost_flow
|
|
36 |
/// \addtogroup min_cost_flow_algs
|
37 |
37 |
/// @{
|
38 |
38 |
|
39 |
39 |
/// \brief Implementation of the primal Network Simplex algorithm
|
40 |
40 |
/// for finding a \ref min_cost_flow "minimum cost flow".
|
41 |
41 |
///
|
42 |
42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm
|
43 |
43 |
/// for finding a \ref min_cost_flow "minimum cost flow".
|
44 |
44 |
/// This algorithm is a specialized version of the linear programming
|
45 |
45 |
/// simplex method directly for the minimum cost flow problem.
|
46 |
46 |
/// It is one of the most efficient solution methods.
|
47 |
47 |
///
|
48 |
48 |
/// In general this class is the fastest implementation available
|
49 |
49 |
/// in LEMON for the minimum cost flow problem.
|
50 |
50 |
/// Moreover it supports both directions of the supply/demand inequality
|
51 |
51 |
/// constraints. For more information see \ref SupplyType.
|
52 |
52 |
///
|
... |
... |
@@ -89,76 +89,42 @@
|
89 |
89 |
/// The problem has optimal solution (i.e. it is feasible and
|
90 |
90 |
/// bounded), and the algorithm has found optimal flow and node
|
91 |
91 |
/// potentials (primal and dual solutions).
|
92 |
92 |
OPTIMAL,
|
93 |
93 |
/// The objective function of the problem is unbounded, i.e.
|
94 |
94 |
/// there is a directed cycle having negative total cost and
|
95 |
95 |
/// infinite upper bound.
|
96 |
96 |
UNBOUNDED
|
97 |
97 |
};
|
98 |
98 |
|
99 |
99 |
/// \brief Constants for selecting the type of the supply constraints.
|
100 |
100 |
///
|
101 |
101 |
/// Enum type containing constants for selecting the supply type,
|
102 |
102 |
/// i.e. the direction of the inequalities in the supply/demand
|
103 |
103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem".
|
104 |
104 |
///
|
105 |
|
/// The default supply type is \c GEQ, since this form is supported
|
106 |
|
/// by other minimum cost flow algorithms and the \ref Circulation
|
107 |
|
/// algorithm, as well.
|
108 |
|
/// The \c LEQ problem type can be selected using the \ref supplyType()
|
109 |
|
/// function.
|
110 |
|
///
|
111 |
|
/// Note that the equality form is a special case of both supply types.
|
|
105 |
/// The default supply type is \c GEQ, the \c LEQ type can be
|
|
106 |
/// selected using \ref supplyType().
|
|
107 |
/// The equality form is a special case of both supply types.
|
112 |
108 |
enum SupplyType {
|
113 |
|
|
114 |
109 |
/// This option means that there are <em>"greater or equal"</em>
|
115 |
|
/// supply/demand constraints in the definition, i.e. the exact
|
116 |
|
/// formulation of the problem is the following.
|
117 |
|
/**
|
118 |
|
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
119 |
|
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq
|
120 |
|
sup(u) \quad \forall u\in V \f]
|
121 |
|
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
|
122 |
|
*/
|
123 |
|
/// It means that the total demand must be greater or equal to the
|
124 |
|
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
125 |
|
/// negative) and all the supplies have to be carried out from
|
126 |
|
/// the supply nodes, but there could be demands that are not
|
127 |
|
/// satisfied.
|
|
110 |
/// supply/demand constraints in the definition of the problem.
|
128 |
111 |
GEQ,
|
129 |
|
/// It is just an alias for the \c GEQ option.
|
130 |
|
CARRY_SUPPLIES = GEQ,
|
131 |
|
|
132 |
112 |
/// This option means that there are <em>"less or equal"</em>
|
133 |
|
/// supply/demand constraints in the definition, i.e. the exact
|
134 |
|
/// formulation of the problem is the following.
|
135 |
|
/**
|
136 |
|
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
|
137 |
|
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
|
138 |
|
sup(u) \quad \forall u\in V \f]
|
139 |
|
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
|
140 |
|
*/
|
141 |
|
/// It means that the total demand must be less or equal to the
|
142 |
|
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
|
143 |
|
/// positive) and all the demands have to be satisfied, but there
|
144 |
|
/// could be supplies that are not carried out from the supply
|
145 |
|
/// nodes.
|
146 |
|
LEQ,
|
147 |
|
/// It is just an alias for the \c LEQ option.
|
148 |
|
SATISFY_DEMANDS = LEQ
|
|
113 |
/// supply/demand constraints in the definition of the problem.
|
|
114 |
LEQ
|
149 |
115 |
};
|
150 |
116 |
|
151 |
117 |
/// \brief Constants for selecting the pivot rule.
|
152 |
118 |
///
|
153 |
119 |
/// Enum type containing constants for selecting the pivot rule for
|
154 |
120 |
/// the \ref run() function.
|
155 |
121 |
///
|
156 |
122 |
/// \ref NetworkSimplex provides five different pivot rule
|
157 |
123 |
/// implementations that significantly affect the running time
|
158 |
124 |
/// of the algorithm.
|
159 |
125 |
/// By default \ref BLOCK_SEARCH "Block Search" is used, which
|
160 |
126 |
/// proved to be the most efficient and the most robust on various
|
161 |
127 |
/// test inputs according to our benchmark tests.
|
162 |
128 |
/// However another pivot rule can be selected using the \ref run()
|
163 |
129 |
/// function with the proper parameter.
|
164 |
130 |
enum PivotRule {
|
... |
... |
@@ -202,32 +168,34 @@
|
202 |
168 |
typedef std::vector<Value> ValueVector;
|
203 |
169 |
typedef std::vector<Cost> CostVector;
|
204 |
170 |
|
205 |
171 |
// State constants for arcs
|
206 |
172 |
enum ArcStateEnum {
|
207 |
173 |
STATE_UPPER = -1,
|
208 |
174 |
STATE_TREE = 0,
|
209 |
175 |
STATE_LOWER = 1
|
210 |
176 |
};
|
211 |
177 |
|
212 |
178 |
private:
|
213 |
179 |
|
214 |
180 |
// Data related to the underlying digraph
|
215 |
181 |
const GR &_graph;
|
216 |
182 |
int _node_num;
|
217 |
183 |
int _arc_num;
|
|
184 |
int _all_arc_num;
|
|
185 |
int _search_arc_num;
|
218 |
186 |
|
219 |
187 |
// Parameters of the problem
|
220 |
188 |
bool _have_lower;
|
221 |
189 |
SupplyType _stype;
|
222 |
190 |
Value _sum_supply;
|
223 |
191 |
|
224 |
192 |
// Data structures for storing the digraph
|
225 |
193 |
IntNodeMap _node_id;
|
226 |
194 |
IntArcMap _arc_id;
|
227 |
195 |
IntVector _source;
|
228 |
196 |
IntVector _target;
|
229 |
197 |
|
230 |
198 |
// Node and arc data
|
231 |
199 |
ValueVector _lower;
|
232 |
200 |
ValueVector _upper;
|
233 |
201 |
ValueVector _cap;
|
... |
... |
@@ -264,50 +232,51 @@
|
264 |
232 |
const Value INF;
|
265 |
233 |
|
266 |
234 |
private:
|
267 |
235 |
|
268 |
236 |
// Implementation of the First Eligible pivot rule
|
269 |
237 |
class FirstEligiblePivotRule
|
270 |
238 |
{
|
271 |
239 |
private:
|
272 |
240 |
|
273 |
241 |
// References to the NetworkSimplex class
|
274 |
242 |
const IntVector &_source;
|
275 |
243 |
const IntVector &_target;
|
276 |
244 |
const CostVector &_cost;
|
277 |
245 |
const IntVector &_state;
|
278 |
246 |
const CostVector &_pi;
|
279 |
247 |
int &_in_arc;
|
280 |
|
int _arc_num;
|
|
248 |
int _search_arc_num;
|
281 |
249 |
|
282 |
250 |
// Pivot rule data
|
283 |
251 |
int _next_arc;
|
284 |
252 |
|
285 |
253 |
public:
|
286 |
254 |
|
287 |
255 |
// Constructor
|
288 |
256 |
FirstEligiblePivotRule(NetworkSimplex &ns) :
|
289 |
257 |
_source(ns._source), _target(ns._target),
|
290 |
258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
291 |
|
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
|
|
259 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
|
|
260 |
_next_arc(0)
|
292 |
261 |
{}
|
293 |
262 |
|
294 |
263 |
// Find next entering arc
|
295 |
264 |
bool findEnteringArc() {
|
296 |
265 |
Cost c;
|
297 |
|
for (int e = _next_arc; e < _arc_num; ++e) {
|
|
266 |
for (int e = _next_arc; e < _search_arc_num; ++e) {
|
298 |
267 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
299 |
268 |
if (c < 0) {
|
300 |
269 |
_in_arc = e;
|
301 |
270 |
_next_arc = e + 1;
|
302 |
271 |
return true;
|
303 |
272 |
}
|
304 |
273 |
}
|
305 |
274 |
for (int e = 0; e < _next_arc; ++e) {
|
306 |
275 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
307 |
276 |
if (c < 0) {
|
308 |
277 |
_in_arc = e;
|
309 |
278 |
_next_arc = e + 1;
|
310 |
279 |
return true;
|
311 |
280 |
}
|
312 |
281 |
}
|
313 |
282 |
return false;
|
... |
... |
@@ -315,100 +284,101 @@
|
315 |
284 |
|
316 |
285 |
}; //class FirstEligiblePivotRule
|
317 |
286 |
|
318 |
287 |
|
319 |
288 |
// Implementation of the Best Eligible pivot rule
|
320 |
289 |
class BestEligiblePivotRule
|
321 |
290 |
{
|
322 |
291 |
private:
|
323 |
292 |
|
324 |
293 |
// References to the NetworkSimplex class
|
325 |
294 |
const IntVector &_source;
|
326 |
295 |
const IntVector &_target;
|
327 |
296 |
const CostVector &_cost;
|
328 |
297 |
const IntVector &_state;
|
329 |
298 |
const CostVector &_pi;
|
330 |
299 |
int &_in_arc;
|
331 |
|
int _arc_num;
|
|
300 |
int _search_arc_num;
|
332 |
301 |
|
333 |
302 |
public:
|
334 |
303 |
|
335 |
304 |
// Constructor
|
336 |
305 |
BestEligiblePivotRule(NetworkSimplex &ns) :
|
337 |
306 |
_source(ns._source), _target(ns._target),
|
338 |
307 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
339 |
|
_in_arc(ns.in_arc), _arc_num(ns._arc_num)
|
|
308 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
|
340 |
309 |
{}
|
341 |
310 |
|
342 |
311 |
// Find next entering arc
|
343 |
312 |
bool findEnteringArc() {
|
344 |
313 |
Cost c, min = 0;
|
345 |
|
for (int e = 0; e < _arc_num; ++e) {
|
|
314 |
for (int e = 0; e < _search_arc_num; ++e) {
|
346 |
315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
347 |
316 |
if (c < min) {
|
348 |
317 |
min = c;
|
349 |
318 |
_in_arc = e;
|
350 |
319 |
}
|
351 |
320 |
}
|
352 |
321 |
return min < 0;
|
353 |
322 |
}
|
354 |
323 |
|
355 |
324 |
}; //class BestEligiblePivotRule
|
356 |
325 |
|
357 |
326 |
|
358 |
327 |
// Implementation of the Block Search pivot rule
|
359 |
328 |
class BlockSearchPivotRule
|
360 |
329 |
{
|
361 |
330 |
private:
|
362 |
331 |
|
363 |
332 |
// References to the NetworkSimplex class
|
364 |
333 |
const IntVector &_source;
|
365 |
334 |
const IntVector &_target;
|
366 |
335 |
const CostVector &_cost;
|
367 |
336 |
const IntVector &_state;
|
368 |
337 |
const CostVector &_pi;
|
369 |
338 |
int &_in_arc;
|
370 |
|
int _arc_num;
|
|
339 |
int _search_arc_num;
|
371 |
340 |
|
372 |
341 |
// Pivot rule data
|
373 |
342 |
int _block_size;
|
374 |
343 |
int _next_arc;
|
375 |
344 |
|
376 |
345 |
public:
|
377 |
346 |
|
378 |
347 |
// Constructor
|
379 |
348 |
BlockSearchPivotRule(NetworkSimplex &ns) :
|
380 |
349 |
_source(ns._source), _target(ns._target),
|
381 |
350 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
382 |
|
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
|
|
351 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
|
|
352 |
_next_arc(0)
|
383 |
353 |
{
|
384 |
354 |
// The main parameters of the pivot rule
|
385 |
|
const double BLOCK_SIZE_FACTOR = 2.0;
|
|
355 |
const double BLOCK_SIZE_FACTOR = 0.5;
|
386 |
356 |
const int MIN_BLOCK_SIZE = 10;
|
387 |
357 |
|
388 |
358 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR *
|
389 |
|
std::sqrt(double(_arc_num))),
|
|
359 |
std::sqrt(double(_search_arc_num))),
|
390 |
360 |
MIN_BLOCK_SIZE );
|
391 |
361 |
}
|
392 |
362 |
|
393 |
363 |
// Find next entering arc
|
394 |
364 |
bool findEnteringArc() {
|
395 |
365 |
Cost c, min = 0;
|
396 |
366 |
int cnt = _block_size;
|
397 |
367 |
int e, min_arc = _next_arc;
|
398 |
|
for (e = _next_arc; e < _arc_num; ++e) {
|
|
368 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
399 |
369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
400 |
370 |
if (c < min) {
|
401 |
371 |
min = c;
|
402 |
372 |
min_arc = e;
|
403 |
373 |
}
|
404 |
374 |
if (--cnt == 0) {
|
405 |
375 |
if (min < 0) break;
|
406 |
376 |
cnt = _block_size;
|
407 |
377 |
}
|
408 |
378 |
}
|
409 |
379 |
if (min == 0 || cnt > 0) {
|
410 |
380 |
for (e = 0; e < _next_arc; ++e) {
|
411 |
381 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
412 |
382 |
if (c < min) {
|
413 |
383 |
min = c;
|
414 |
384 |
min_arc = e;
|
... |
... |
@@ -427,56 +397,57 @@
|
427 |
397 |
|
428 |
398 |
}; //class BlockSearchPivotRule
|
429 |
399 |
|
430 |
400 |
|
431 |
401 |
// Implementation of the Candidate List pivot rule
|
432 |
402 |
class CandidateListPivotRule
|
433 |
403 |
{
|
434 |
404 |
private:
|
435 |
405 |
|
436 |
406 |
// References to the NetworkSimplex class
|
437 |
407 |
const IntVector &_source;
|
438 |
408 |
const IntVector &_target;
|
439 |
409 |
const CostVector &_cost;
|
440 |
410 |
const IntVector &_state;
|
441 |
411 |
const CostVector &_pi;
|
442 |
412 |
int &_in_arc;
|
443 |
|
int _arc_num;
|
|
413 |
int _search_arc_num;
|
444 |
414 |
|
445 |
415 |
// Pivot rule data
|
446 |
416 |
IntVector _candidates;
|
447 |
417 |
int _list_length, _minor_limit;
|
448 |
418 |
int _curr_length, _minor_count;
|
449 |
419 |
int _next_arc;
|
450 |
420 |
|
451 |
421 |
public:
|
452 |
422 |
|
453 |
423 |
/// Constructor
|
454 |
424 |
CandidateListPivotRule(NetworkSimplex &ns) :
|
455 |
425 |
_source(ns._source), _target(ns._target),
|
456 |
426 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
457 |
|
_in_arc(ns.in_arc), _arc_num(ns._arc_num), _next_arc(0)
|
|
427 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
|
|
428 |
_next_arc(0)
|
458 |
429 |
{
|
459 |
430 |
// The main parameters of the pivot rule
|
460 |
431 |
const double LIST_LENGTH_FACTOR = 1.0;
|
461 |
432 |
const int MIN_LIST_LENGTH = 10;
|
462 |
433 |
const double MINOR_LIMIT_FACTOR = 0.1;
|
463 |
434 |
const int MIN_MINOR_LIMIT = 3;
|
464 |
435 |
|
465 |
436 |
_list_length = std::max( int(LIST_LENGTH_FACTOR *
|
466 |
|
std::sqrt(double(_arc_num))),
|
|
437 |
std::sqrt(double(_search_arc_num))),
|
467 |
438 |
MIN_LIST_LENGTH );
|
468 |
439 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
|
469 |
440 |
MIN_MINOR_LIMIT );
|
470 |
441 |
_curr_length = _minor_count = 0;
|
471 |
442 |
_candidates.resize(_list_length);
|
472 |
443 |
}
|
473 |
444 |
|
474 |
445 |
/// Find next entering arc
|
475 |
446 |
bool findEnteringArc() {
|
476 |
447 |
Cost min, c;
|
477 |
448 |
int e, min_arc = _next_arc;
|
478 |
449 |
if (_curr_length > 0 && _minor_count < _minor_limit) {
|
479 |
450 |
// Minor iteration: select the best eligible arc from the
|
480 |
451 |
// current candidate list
|
481 |
452 |
++_minor_count;
|
482 |
453 |
min = 0;
|
... |
... |
@@ -487,33 +458,33 @@
|
487 |
458 |
min = c;
|
488 |
459 |
min_arc = e;
|
489 |
460 |
}
|
490 |
461 |
if (c >= 0) {
|
491 |
462 |
_candidates[i--] = _candidates[--_curr_length];
|
492 |
463 |
}
|
493 |
464 |
}
|
494 |
465 |
if (min < 0) {
|
495 |
466 |
_in_arc = min_arc;
|
496 |
467 |
return true;
|
497 |
468 |
}
|
498 |
469 |
}
|
499 |
470 |
|
500 |
471 |
// Major iteration: build a new candidate list
|
501 |
472 |
min = 0;
|
502 |
473 |
_curr_length = 0;
|
503 |
|
for (e = _next_arc; e < _arc_num; ++e) {
|
|
474 |
for (e = _next_arc; e < _search_arc_num; ++e) {
|
504 |
475 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
505 |
476 |
if (c < 0) {
|
506 |
477 |
_candidates[_curr_length++] = e;
|
507 |
478 |
if (c < min) {
|
508 |
479 |
min = c;
|
509 |
480 |
min_arc = e;
|
510 |
481 |
}
|
511 |
482 |
if (_curr_length == _list_length) break;
|
512 |
483 |
}
|
513 |
484 |
}
|
514 |
485 |
if (_curr_length < _list_length) {
|
515 |
486 |
for (e = 0; e < _next_arc; ++e) {
|
516 |
487 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
517 |
488 |
if (c < 0) {
|
518 |
489 |
_candidates[_curr_length++] = e;
|
519 |
490 |
if (c < min) {
|
... |
... |
@@ -533,97 +504,97 @@
|
533 |
504 |
|
534 |
505 |
}; //class CandidateListPivotRule
|
535 |
506 |
|
536 |
507 |
|
537 |
508 |
// Implementation of the Altering Candidate List pivot rule
|
538 |
509 |
class AlteringListPivotRule
|
539 |
510 |
{
|
540 |
511 |
private:
|
541 |
512 |
|
542 |
513 |
// References to the NetworkSimplex class
|
543 |
514 |
const IntVector &_source;
|
544 |
515 |
const IntVector &_target;
|
545 |
516 |
const CostVector &_cost;
|
546 |
517 |
const IntVector &_state;
|
547 |
518 |
const CostVector &_pi;
|
548 |
519 |
int &_in_arc;
|
549 |
|
int _arc_num;
|
|
520 |
int _search_arc_num;
|
550 |
521 |
|
551 |
522 |
// Pivot rule data
|
552 |
523 |
int _block_size, _head_length, _curr_length;
|
553 |
524 |
int _next_arc;
|
554 |
525 |
IntVector _candidates;
|
555 |
526 |
CostVector _cand_cost;
|
556 |
527 |
|
557 |
528 |
// Functor class to compare arcs during sort of the candidate list
|
558 |
529 |
class SortFunc
|
559 |
530 |
{
|
560 |
531 |
private:
|
561 |
532 |
const CostVector &_map;
|
562 |
533 |
public:
|
563 |
534 |
SortFunc(const CostVector &map) : _map(map) {}
|
564 |
535 |
bool operator()(int left, int right) {
|
565 |
536 |
return _map[left] > _map[right];
|
566 |
537 |
}
|
567 |
538 |
};
|
568 |
539 |
|
569 |
540 |
SortFunc _sort_func;
|
570 |
541 |
|
571 |
542 |
public:
|
572 |
543 |
|
573 |
544 |
// Constructor
|
574 |
545 |
AlteringListPivotRule(NetworkSimplex &ns) :
|
575 |
546 |
_source(ns._source), _target(ns._target),
|
576 |
547 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi),
|
577 |
|
_in_arc(ns.in_arc), _arc_num(ns._arc_num),
|
578 |
|
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost)
|
|
548 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
|
|
549 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
|
579 |
550 |
{
|
580 |
551 |
// The main parameters of the pivot rule
|
581 |
552 |
const double BLOCK_SIZE_FACTOR = 1.5;
|
582 |
553 |
const int MIN_BLOCK_SIZE = 10;
|
583 |
554 |
const double HEAD_LENGTH_FACTOR = 0.1;
|
584 |
555 |
const int MIN_HEAD_LENGTH = 3;
|
585 |
556 |
|
586 |
557 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR *
|
587 |
|
std::sqrt(double(_arc_num))),
|
|
558 |
std::sqrt(double(_search_arc_num))),
|
588 |
559 |
MIN_BLOCK_SIZE );
|
589 |
560 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
|
590 |
561 |
MIN_HEAD_LENGTH );
|
591 |
562 |
_candidates.resize(_head_length + _block_size);
|
592 |
563 |
_curr_length = 0;
|
593 |
564 |
}
|
594 |
565 |
|
595 |
566 |
// Find next entering arc
|
596 |
567 |
bool findEnteringArc() {
|
597 |
568 |
// Check the current candidate list
|
598 |
569 |
int e;
|
599 |
570 |
for (int i = 0; i < _curr_length; ++i) {
|
600 |
571 |
e = _candidates[i];
|
601 |
572 |
_cand_cost[e] = _state[e] *
|
602 |
573 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
603 |
574 |
if (_cand_cost[e] >= 0) {
|
604 |
575 |
_candidates[i--] = _candidates[--_curr_length];
|
605 |
576 |
}
|
606 |
577 |
}
|
607 |
578 |
|
608 |
579 |
// Extend the list
|
609 |
580 |
int cnt = _block_size;
|
610 |
581 |
int last_arc = 0;
|
611 |
582 |
int limit = _head_length;
|
612 |
583 |
|
613 |
|
for (int e = _next_arc; e < _arc_num; ++e) {
|
|
584 |
for (int e = _next_arc; e < _search_arc_num; ++e) {
|
614 |
585 |
_cand_cost[e] = _state[e] *
|
615 |
586 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
616 |
587 |
if (_cand_cost[e] < 0) {
|
617 |
588 |
_candidates[_curr_length++] = e;
|
618 |
589 |
last_arc = e;
|
619 |
590 |
}
|
620 |
591 |
if (--cnt == 0) {
|
621 |
592 |
if (_curr_length > limit) break;
|
622 |
593 |
limit = 0;
|
623 |
594 |
cnt = _block_size;
|
624 |
595 |
}
|
625 |
596 |
}
|
626 |
597 |
if (_curr_length <= limit) {
|
627 |
598 |
for (int e = 0; e < _next_arc; ++e) {
|
628 |
599 |
_cand_cost[e] = _state[e] *
|
629 |
600 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
|
... |
... |
@@ -665,53 +636,53 @@
|
665 |
636 |
NetworkSimplex(const GR& graph) :
|
666 |
637 |
_graph(graph), _node_id(graph), _arc_id(graph),
|
667 |
638 |
INF(std::numeric_limits<Value>::has_infinity ?
|
668 |
639 |
std::numeric_limits<Value>::infinity() :
|
669 |
640 |
std::numeric_limits<Value>::max())
|
670 |
641 |
{
|
671 |
642 |
// Check the value types
|
672 |
643 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
|
673 |
644 |
"The flow type of NetworkSimplex must be signed");
|
674 |
645 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
|
675 |
646 |
"The cost type of NetworkSimplex must be signed");
|
676 |
647 |
|
677 |
648 |
// Resize vectors
|
678 |
649 |
_node_num = countNodes(_graph);
|
679 |
650 |
_arc_num = countArcs(_graph);
|
680 |
651 |
int all_node_num = _node_num + 1;
|
681 |
|
int all_arc_num = _arc_num + _node_num;
|
|
652 |
int max_arc_num = _arc_num + 2 * _node_num;
|
682 |
653 |
|
683 |
|
_source.resize(all_arc_num);
|
684 |
|
_target.resize(all_arc_num);
|
|
654 |
_source.resize(max_arc_num);
|
|
655 |
_target.resize(max_arc_num);
|
685 |
656 |
|
686 |
|
_lower.resize(all_arc_num);
|
687 |
|
_upper.resize(all_arc_num);
|
688 |
|
_cap.resize(all_arc_num);
|
689 |
|
_cost.resize(all_arc_num);
|
|
657 |
_lower.resize(_arc_num);
|
|
658 |
_upper.resize(_arc_num);
|
|
659 |
_cap.resize(max_arc_num);
|
|
660 |
_cost.resize(max_arc_num);
|
690 |
661 |
_supply.resize(all_node_num);
|
691 |
|
_flow.resize(all_arc_num);
|
|
662 |
_flow.resize(max_arc_num);
|
692 |
663 |
_pi.resize(all_node_num);
|
693 |
664 |
|
694 |
665 |
_parent.resize(all_node_num);
|
695 |
666 |
_pred.resize(all_node_num);
|
696 |
667 |
_forward.resize(all_node_num);
|
697 |
668 |
_thread.resize(all_node_num);
|
698 |
669 |
_rev_thread.resize(all_node_num);
|
699 |
670 |
_succ_num.resize(all_node_num);
|
700 |
671 |
_last_succ.resize(all_node_num);
|
701 |
|
_state.resize(all_arc_num);
|
|
672 |
_state.resize(max_arc_num);
|
702 |
673 |
|
703 |
674 |
// Copy the graph (store the arcs in a mixed order)
|
704 |
675 |
int i = 0;
|
705 |
676 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
706 |
677 |
_node_id[n] = i;
|
707 |
678 |
}
|
708 |
679 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10);
|
709 |
680 |
i = 0;
|
710 |
681 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
711 |
682 |
_arc_id[a] = i;
|
712 |
683 |
_source[i] = _node_id[_graph.source(a)];
|
713 |
684 |
_target[i] = _node_id[_graph.target(a)];
|
714 |
685 |
if ((i += k) >= _arc_num) i = (i % k) + 1;
|
715 |
686 |
}
|
716 |
687 |
|
717 |
688 |
// Initialize maps
|
... |
... |
@@ -1056,79 +1027,171 @@
|
1056 |
1027 |
_cap[i] = _upper[i] < INF ? _upper[i] - c : INF;
|
1057 |
1028 |
} else {
|
1058 |
1029 |
_cap[i] = _upper[i] < INF + c ? _upper[i] - c : INF;
|
1059 |
1030 |
}
|
1060 |
1031 |
_supply[_source[i]] -= c;
|
1061 |
1032 |
_supply[_target[i]] += c;
|
1062 |
1033 |
}
|
1063 |
1034 |
} else {
|
1064 |
1035 |
for (int i = 0; i != _arc_num; ++i) {
|
1065 |
1036 |
_cap[i] = _upper[i];
|
1066 |
1037 |
}
|
1067 |
1038 |
}
|
1068 |
1039 |
|
1069 |
1040 |
// Initialize artifical cost
|
1070 |
1041 |
Cost ART_COST;
|
1071 |
1042 |
if (std::numeric_limits<Cost>::is_exact) {
|
1072 |
|
ART_COST = std::numeric_limits<Cost>::max() / 4 + 1;
|
|
1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
|
1073 |
1044 |
} else {
|
1074 |
1045 |
ART_COST = std::numeric_limits<Cost>::min();
|
1075 |
1046 |
for (int i = 0; i != _arc_num; ++i) {
|
1076 |
1047 |
if (_cost[i] > ART_COST) ART_COST = _cost[i];
|
1077 |
1048 |
}
|
1078 |
1049 |
ART_COST = (ART_COST + 1) * _node_num;
|
1079 |
1050 |
}
|
1080 |
1051 |
|
1081 |
1052 |
// Initialize arc maps
|
1082 |
1053 |
for (int i = 0; i != _arc_num; ++i) {
|
1083 |
1054 |
_flow[i] = 0;
|
1084 |
1055 |
_state[i] = STATE_LOWER;
|
1085 |
1056 |
}
|
1086 |
1057 |
|
1087 |
1058 |
// Set data for the artificial root node
|
1088 |
1059 |
_root = _node_num;
|
1089 |
1060 |
_parent[_root] = -1;
|
1090 |
1061 |
_pred[_root] = -1;
|
1091 |
1062 |
_thread[_root] = 0;
|
1092 |
1063 |
_rev_thread[0] = _root;
|
1093 |
1064 |
_succ_num[_root] = _node_num + 1;
|
1094 |
1065 |
_last_succ[_root] = _root - 1;
|
1095 |
1066 |
_supply[_root] = -_sum_supply;
|
1096 |
|
_pi[_root] = _sum_supply < 0 ? -ART_COST : ART_COST;
|
|
1067 |
_pi[_root] = 0;
|
1097 |
1068 |
|
1098 |
1069 |
// Add artificial arcs and initialize the spanning tree data structure
|
1099 |
|
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
1100 |
|
_parent[u] = _root;
|
1101 |
|
_pred[u] = e;
|
1102 |
|
_thread[u] = u + 1;
|
1103 |
|
_rev_thread[u + 1] = u;
|
1104 |
|
_succ_num[u] = 1;
|
1105 |
|
_last_succ[u] = u;
|
1106 |
|
_cost[e] = ART_COST;
|
1107 |
|
_cap[e] = INF;
|
1108 |
|
_state[e] = STATE_TREE;
|
1109 |
|
if (_supply[u] > 0 || (_supply[u] == 0 && _sum_supply <= 0)) {
|
1110 |
|
_flow[e] = _supply[u];
|
1111 |
|
_forward[u] = true;
|
1112 |
|
_pi[u] = -ART_COST + _pi[_root];
|
1113 |
|
} else {
|
1114 |
|
_flow[e] = -_supply[u];
|
1115 |
|
_forward[u] = false;
|
1116 |
|
_pi[u] = ART_COST + _pi[_root];
|
|
1070 |
if (_sum_supply == 0) {
|
|
1071 |
// EQ supply constraints
|
|
1072 |
_search_arc_num = _arc_num;
|
|
1073 |
_all_arc_num = _arc_num + _node_num;
|
|
1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
1075 |
_parent[u] = _root;
|
|
1076 |
_pred[u] = e;
|
|
1077 |
_thread[u] = u + 1;
|
|
1078 |
_rev_thread[u + 1] = u;
|
|
1079 |
_succ_num[u] = 1;
|
|
1080 |
_last_succ[u] = u;
|
|
1081 |
_cap[e] = INF;
|
|
1082 |
_state[e] = STATE_TREE;
|
|
1083 |
if (_supply[u] >= 0) {
|
|
1084 |
_forward[u] = true;
|
|
1085 |
_pi[u] = 0;
|
|
1086 |
_source[e] = u;
|
|
1087 |
_target[e] = _root;
|
|
1088 |
_flow[e] = _supply[u];
|
|
1089 |
_cost[e] = 0;
|
|
1090 |
} else {
|
|
1091 |
_forward[u] = false;
|
|
1092 |
_pi[u] = ART_COST;
|
|
1093 |
_source[e] = _root;
|
|
1094 |
_target[e] = u;
|
|
1095 |
_flow[e] = -_supply[u];
|
|
1096 |
_cost[e] = ART_COST;
|
|
1097 |
}
|
1117 |
1098 |
}
|
1118 |
1099 |
}
|
|
1100 |
else if (_sum_supply > 0) {
|
|
1101 |
// LEQ supply constraints
|
|
1102 |
_search_arc_num = _arc_num + _node_num;
|
|
1103 |
int f = _arc_num + _node_num;
|
|
1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
1105 |
_parent[u] = _root;
|
|
1106 |
_thread[u] = u + 1;
|
|
1107 |
_rev_thread[u + 1] = u;
|
|
1108 |
_succ_num[u] = 1;
|
|
1109 |
_last_succ[u] = u;
|
|
1110 |
if (_supply[u] >= 0) {
|
|
1111 |
_forward[u] = true;
|
|
1112 |
_pi[u] = 0;
|
|
1113 |
_pred[u] = e;
|
|
1114 |
_source[e] = u;
|
|
1115 |
_target[e] = _root;
|
|
1116 |
_cap[e] = INF;
|
|
1117 |
_flow[e] = _supply[u];
|
|
1118 |
_cost[e] = 0;
|
|
1119 |
_state[e] = STATE_TREE;
|
|
1120 |
} else {
|
|
1121 |
_forward[u] = false;
|
|
1122 |
_pi[u] = ART_COST;
|
|
1123 |
_pred[u] = f;
|
|
1124 |
_source[f] = _root;
|
|
1125 |
_target[f] = u;
|
|
1126 |
_cap[f] = INF;
|
|
1127 |
_flow[f] = -_supply[u];
|
|
1128 |
_cost[f] = ART_COST;
|
|
1129 |
_state[f] = STATE_TREE;
|
|
1130 |
_source[e] = u;
|
|
1131 |
_target[e] = _root;
|
|
1132 |
_cap[e] = INF;
|
|
1133 |
_flow[e] = 0;
|
|
1134 |
_cost[e] = 0;
|
|
1135 |
_state[e] = STATE_LOWER;
|
|
1136 |
++f;
|
|
1137 |
}
|
|
1138 |
}
|
|
1139 |
_all_arc_num = f;
|
|
1140 |
}
|
|
1141 |
else {
|
|
1142 |
// GEQ supply constraints
|
|
1143 |
_search_arc_num = _arc_num + _node_num;
|
|
1144 |
int f = _arc_num + _node_num;
|
|
1145 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
|
1146 |
_parent[u] = _root;
|
|
1147 |
_thread[u] = u + 1;
|
|
1148 |
_rev_thread[u + 1] = u;
|
|
1149 |
_succ_num[u] = 1;
|
|
1150 |
_last_succ[u] = u;
|
|
1151 |
if (_supply[u] <= 0) {
|
|
1152 |
_forward[u] = false;
|
|
1153 |
_pi[u] = 0;
|
|
1154 |
_pred[u] = e;
|
|
1155 |
_source[e] = _root;
|
|
1156 |
_target[e] = u;
|
|
1157 |
_cap[e] = INF;
|
|
1158 |
_flow[e] = -_supply[u];
|
|
1159 |
_cost[e] = 0;
|
|
1160 |
_state[e] = STATE_TREE;
|
|
1161 |
} else {
|
|
1162 |
_forward[u] = true;
|
|
1163 |
_pi[u] = -ART_COST;
|
|
1164 |
_pred[u] = f;
|
|
1165 |
_source[f] = u;
|
|
1166 |
_target[f] = _root;
|
|
1167 |
_cap[f] = INF;
|
|
1168 |
_flow[f] = _supply[u];
|
|
1169 |
_state[f] = STATE_TREE;
|
|
1170 |
_cost[f] = ART_COST;
|
|
1171 |
_source[e] = _root;
|
|
1172 |
_target[e] = u;
|
|
1173 |
_cap[e] = INF;
|
|
1174 |
_flow[e] = 0;
|
|
1175 |
_cost[e] = 0;
|
|
1176 |
_state[e] = STATE_LOWER;
|
|
1177 |
++f;
|
|
1178 |
}
|
|
1179 |
}
|
|
1180 |
_all_arc_num = f;
|
|
1181 |
}
|
1119 |
1182 |
|
1120 |
1183 |
return true;
|
1121 |
1184 |
}
|
1122 |
1185 |
|
1123 |
1186 |
// Find the join node
|
1124 |
1187 |
void findJoinNode() {
|
1125 |
1188 |
int u = _source[in_arc];
|
1126 |
1189 |
int v = _target[in_arc];
|
1127 |
1190 |
while (u != v) {
|
1128 |
1191 |
if (_succ_num[u] < _succ_num[v]) {
|
1129 |
1192 |
u = _parent[u];
|
1130 |
1193 |
} else {
|
1131 |
1194 |
v = _parent[v];
|
1132 |
1195 |
}
|
1133 |
1196 |
}
|
1134 |
1197 |
join = u;
|
... |
... |
@@ -1361,54 +1424,66 @@
|
1361 |
1424 |
ProblemType start() {
|
1362 |
1425 |
PivotRuleImpl pivot(*this);
|
1363 |
1426 |
|
1364 |
1427 |
// Execute the Network Simplex algorithm
|
1365 |
1428 |
while (pivot.findEnteringArc()) {
|
1366 |
1429 |
findJoinNode();
|
1367 |
1430 |
bool change = findLeavingArc();
|
1368 |
1431 |
if (delta >= INF) return UNBOUNDED;
|
1369 |
1432 |
changeFlow(change);
|
1370 |
1433 |
if (change) {
|
1371 |
1434 |
updateTreeStructure();
|
1372 |
1435 |
updatePotential();
|
1373 |
1436 |
}
|
1374 |
1437 |
}
|
1375 |
1438 |
|
1376 |
1439 |
// Check feasibility
|
1377 |
|
if (_sum_supply < 0) {
|
1378 |
|
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
1379 |
|
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE;
|
1380 |
|
}
|
1381 |
|
}
|
1382 |
|
else if (_sum_supply > 0) {
|
1383 |
|
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
1384 |
|
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE;
|
1385 |
|
}
|
1386 |
|
}
|
1387 |
|
else {
|
1388 |
|
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
1389 |
|
if (_flow[e] != 0) return INFEASIBLE;
|
1390 |
|
}
|
|
1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
|
1441 |
if (_flow[e] != 0) return INFEASIBLE;
|
1391 |
1442 |
}
|
1392 |
1443 |
|
1393 |
1444 |
// Transform the solution and the supply map to the original form
|
1394 |
1445 |
if (_have_lower) {
|
1395 |
1446 |
for (int i = 0; i != _arc_num; ++i) {
|
1396 |
1447 |
Value c = _lower[i];
|
1397 |
1448 |
if (c != 0) {
|
1398 |
1449 |
_flow[i] += c;
|
1399 |
1450 |
_supply[_source[i]] += c;
|
1400 |
1451 |
_supply[_target[i]] -= c;
|
1401 |
1452 |
}
|
1402 |
1453 |
}
|
1403 |
1454 |
}
|
|
1455 |
|
|
1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type
|
|
1457 |
// optimality conditions
|
|
1458 |
if (_sum_supply == 0) {
|
|
1459 |
if (_stype == GEQ) {
|
|
1460 |
Cost max_pot = std::numeric_limits<Cost>::min();
|
|
1461 |
for (int i = 0; i != _node_num; ++i) {
|
|
1462 |
if (_pi[i] > max_pot) max_pot = _pi[i];
|
|
1463 |
}
|
|
1464 |
if (max_pot > 0) {
|
|
1465 |
for (int i = 0; i != _node_num; ++i)
|
|
1466 |
_pi[i] -= max_pot;
|
|
1467 |
}
|
|
1468 |
} else {
|
|
1469 |
Cost min_pot = std::numeric_limits<Cost>::max();
|
|
1470 |
for (int i = 0; i != _node_num; ++i) {
|
|
1471 |
if (_pi[i] < min_pot) min_pot = _pi[i];
|
|
1472 |
}
|
|
1473 |
if (min_pot < 0) {
|
|
1474 |
for (int i = 0; i != _node_num; ++i)
|
|
1475 |
_pi[i] -= min_pot;
|
|
1476 |
}
|
|
1477 |
}
|
|
1478 |
}
|
1404 |
1479 |
|
1405 |
1480 |
return OPTIMAL;
|
1406 |
1481 |
}
|
1407 |
1482 |
|
1408 |
1483 |
}; //class NetworkSimplex
|
1409 |
1484 |
|
1410 |
1485 |
///@}
|
1411 |
1486 |
|
1412 |
1487 |
} //namespace lemon
|
1413 |
1488 |
|
1414 |
1489 |
#endif //LEMON_NETWORK_SIMPLEX_H
|