0
3
1
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
namespace lemon { |
|
20 |
|
|
21 |
/** |
|
22 |
\page min_cost_flow Minimum Cost Flow Problem |
|
23 |
|
|
24 |
\section mcf_def Definition (GEQ form) |
|
25 |
|
|
26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
28 |
in a network with capacity constraints (lower and upper bounds) |
|
29 |
and arc costs. |
|
30 |
|
|
31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, |
|
32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and |
|
33 |
upper bounds for the flow values on the arcs, for which |
|
34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow |
|
36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the |
|
37 |
signed supply values of the nodes. |
|
38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
40 |
\f$-sup(u)\f$ demand. |
|
41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution |
|
42 |
of the following optimization problem. |
|
43 |
|
|
44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
46 |
sup(u) \quad \forall u\in V \f] |
|
47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
48 |
|
|
49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
50 |
zero or negative in order to have a feasible solution (since the sum |
|
51 |
of the expressions on the left-hand side of the inequalities is zero). |
|
52 |
It means that the total demand must be greater or equal to the total |
|
53 |
supply and all the supplies have to be carried out from the supply nodes, |
|
54 |
but there could be demands that are not satisfied. |
|
55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
56 |
constraints have to be satisfied with equality, i.e. all demands |
|
57 |
have to be satisfied and all supplies have to be used. |
|
58 |
|
|
59 |
|
|
60 |
\section mcf_algs Algorithms |
|
61 |
|
|
62 |
LEMON contains several algorithms for solving this problem, for more |
|
63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
|
64 |
|
|
65 |
A feasible solution for this problem can be found using \ref Circulation. |
|
66 |
|
|
67 |
|
|
68 |
\section mcf_dual Dual Solution |
|
69 |
|
|
70 |
The dual solution of the minimum cost flow problem is represented by |
|
71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
|
72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
|
73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
|
74 |
the following \e complementary \e slackness optimality conditions hold. |
|
75 |
|
|
76 |
- For all \f$uv\in A\f$ arcs: |
|
77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
80 |
- For all \f$u\in V\f$ nodes: |
|
81 |
- \f$\pi(u)<=0\f$; |
|
82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
83 |
then \f$\pi(u)=0\f$. |
|
84 |
|
|
85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
88 |
|
|
89 |
All algorithms provide dual solution (node potentials), as well, |
|
90 |
if an optimal flow is found. |
|
91 |
|
|
92 |
|
|
93 |
\section mcf_eq Equality Form |
|
94 |
|
|
95 |
The above \ref mcf_def "definition" is actually more general than the |
|
96 |
usual formulation of the minimum cost flow problem, in which strict |
|
97 |
equalities are required in the supply/demand contraints. |
|
98 |
|
|
99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
101 |
sup(u) \quad \forall u\in V \f] |
|
102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
103 |
|
|
104 |
However if the sum of the supply values is zero, then these two problems |
|
105 |
are equivalent. |
|
106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
|
107 |
form, so if you need the equality form, you have to ensure this additional |
|
108 |
contraint manually. |
|
109 |
|
|
110 |
|
|
111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
|
112 |
|
|
113 |
Another possible definition of the minimum cost flow problem is |
|
114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
|
115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
|
116 |
|
|
117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
119 |
sup(u) \quad \forall u\in V \f] |
|
120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
121 |
|
|
122 |
It means that the total demand must be less or equal to the |
|
123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
124 |
positive) and all the demands have to be satisfied, but there |
|
125 |
could be supplies that are not carried out from the supply |
|
126 |
nodes. |
|
127 |
The equality form is also a special case of this form, of course. |
|
128 |
|
|
129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
|
130 |
of the problem by reversing the direction of the arcs and taking the |
|
131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
|
132 |
\ref NegMap adaptors). |
|
133 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
134 |
for the sake of convenience. |
|
135 |
|
|
136 |
Note that the optimality conditions for this supply constraint type are |
|
137 |
slightly differ from the conditions that are discussed for the GEQ form, |
|
138 |
namely the potentials have to be non-negative instead of non-positive. |
|
139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
|
140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
|
141 |
node potentials the following conditions hold. |
|
142 |
|
|
143 |
- For all \f$uv\in A\f$ arcs: |
|
144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
147 |
- For all \f$u\in V\f$ nodes: |
|
148 |
- \f$\pi(u)>=0\f$; |
|
149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
150 |
then \f$\pi(u)=0\f$. |
|
151 |
|
|
152 |
*/ |
|
153 |
} |
... | ... |
@@ -335,91 +335,16 @@ |
335 | 335 |
*/ |
336 | 336 |
|
337 | 337 |
/** |
338 |
@defgroup |
|
338 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
|
339 | 339 |
@ingroup algs |
340 | 340 |
|
341 | 341 |
\brief Algorithms for finding minimum cost flows and circulations. |
342 | 342 |
|
343 | 343 |
This group contains the algorithms for finding minimum cost flows and |
344 |
circulations. |
|
344 |
circulations. For more information about this problem and its dual |
|
345 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
|
345 | 346 |
|
346 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
347 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
348 |
in a network with capacity constraints (lower and upper bounds) |
|
349 |
and arc costs. |
|
350 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{Z}\f$, |
|
351 |
\f$upper: A\rightarrow\mathbf{Z}\cup\{+\infty\}\f$ denote the lower and |
|
352 |
upper bounds for the flow values on the arcs, for which |
|
353 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
|
354 |
\f$cost: A\rightarrow\mathbf{Z}\f$ denotes the cost per unit flow |
|
355 |
on the arcs and \f$sup: V\rightarrow\mathbf{Z}\f$ denotes the |
|
356 |
signed supply values of the nodes. |
|
357 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
|
358 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
|
359 |
\f$-sup(u)\f$ demand. |
|
360 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{Z}\f$ solution |
|
361 |
of the following optimization problem. |
|
362 |
|
|
363 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
364 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
365 |
sup(u) \quad \forall u\in V \f] |
|
366 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
367 |
|
|
368 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
|
369 |
zero or negative in order to have a feasible solution (since the sum |
|
370 |
of the expressions on the left-hand side of the inequalities is zero). |
|
371 |
It means that the total demand must be greater or equal to the total |
|
372 |
supply and all the supplies have to be carried out from the supply nodes, |
|
373 |
but there could be demands that are not satisfied. |
|
374 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
|
375 |
constraints have to be satisfied with equality, i.e. all demands |
|
376 |
have to be satisfied and all supplies have to be used. |
|
377 |
|
|
378 |
If you need the opposite inequalities in the supply/demand constraints |
|
379 |
(i.e. the total demand is less than the total supply and all the demands |
|
380 |
have to be satisfied while there could be supplies that are not used), |
|
381 |
then you could easily transform the problem to the above form by reversing |
|
382 |
the direction of the arcs and taking the negative of the supply values |
|
383 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
|
384 |
However \ref NetworkSimplex algorithm also supports this form directly |
|
385 |
for the sake of convenience. |
|
386 |
|
|
387 |
A feasible solution for this problem can be found using \ref Circulation. |
|
388 |
|
|
389 |
Note that the above formulation is actually more general than the usual |
|
390 |
definition of the minimum cost flow problem, in which strict equalities |
|
391 |
are required in the supply/demand contraints, i.e. |
|
392 |
|
|
393 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
|
394 |
sup(u) \quad \forall u\in V. \f] |
|
395 |
|
|
396 |
However if the sum of the supply values is zero, then these two problems |
|
397 |
are equivalent. So if you need the equality form, you have to ensure this |
|
398 |
additional contraint for the algorithms. |
|
399 |
|
|
400 |
The dual solution of the minimum cost flow problem is represented by node |
|
401 |
potentials \f$\pi: V\rightarrow\mathbf{Z}\f$. |
|
402 |
An \f$f: A\rightarrow\mathbf{Z}\f$ feasible solution of the problem |
|
403 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{Z}\f$ |
|
404 |
node potentials the following \e complementary \e slackness optimality |
|
405 |
conditions hold. |
|
406 |
|
|
407 |
- For all \f$uv\in A\f$ arcs: |
|
408 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
|
409 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
|
410 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
|
411 |
- For all \f$u\in V\f$ nodes: |
|
412 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
|
413 |
then \f$\pi(u)=0\f$. |
|
414 |
|
|
415 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
|
416 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
|
417 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
|
418 |
|
|
419 |
All algorithms provide dual solution (node potentials) as well, |
|
420 |
if an optimal flow is found. |
|
421 |
|
|
422 |
LEMON contains several algorithms for |
|
347 |
LEMON contains several algorithms for this problem. |
|
423 | 348 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
424 | 349 |
pivot strategies. |
425 | 350 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
... | ... |
@@ -429,10 +354,6 @@ |
429 | 354 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
430 | 355 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
431 | 356 |
|
432 |
Most of these implementations support the general inequality form of the |
|
433 |
minimum cost flow problem, but CancelAndTighten and CycleCanceling |
|
434 |
only support the equality form due to the primal method they use. |
|
435 |
|
|
436 | 357 |
In general NetworkSimplex is the most efficient implementation, |
437 | 358 |
but in special cases other algorithms could be faster. |
438 | 359 |
For example, if the total supply and/or capacities are rather small, |
... | ... |
@@ -19,7 +19,7 @@ |
19 | 19 |
#ifndef LEMON_NETWORK_SIMPLEX_H |
20 | 20 |
#define LEMON_NETWORK_SIMPLEX_H |
21 | 21 |
|
22 |
/// \ingroup |
|
22 |
/// \ingroup min_cost_flow_algs |
|
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Network Simplex algorithm for finding a minimum cost flow. |
... | ... |
@@ -33,7 +33,7 @@ |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 |
/// \addtogroup |
|
36 |
/// \addtogroup min_cost_flow_algs |
|
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
... | ... |
@@ -102,50 +102,16 @@ |
102 | 102 |
/// i.e. the direction of the inequalities in the supply/demand |
103 | 103 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
104 | 104 |
/// |
105 |
/// The default supply type is \c GEQ, since this form is supported |
|
106 |
/// by other minimum cost flow algorithms and the \ref Circulation |
|
107 |
/// algorithm, as well. |
|
108 |
/// The \c LEQ problem type can be selected using the \ref supplyType() |
|
109 |
/// function. |
|
110 |
/// |
|
111 |
/// |
|
105 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
|
106 |
/// selected using \ref supplyType(). |
|
107 |
/// The equality form is a special case of both supply types. |
|
112 | 108 |
enum SupplyType { |
113 |
|
|
114 | 109 |
/// This option means that there are <em>"greater or equal"</em> |
115 |
/// supply/demand constraints in the definition, i.e. the exact |
|
116 |
/// formulation of the problem is the following. |
|
117 |
/** |
|
118 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
119 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
|
120 |
sup(u) \quad \forall u\in V \f] |
|
121 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
122 |
*/ |
|
123 |
/// It means that the total demand must be greater or equal to the |
|
124 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
125 |
/// negative) and all the supplies have to be carried out from |
|
126 |
/// the supply nodes, but there could be demands that are not |
|
127 |
/// |
|
110 |
/// supply/demand constraints in the definition of the problem. |
|
128 | 111 |
GEQ, |
129 |
/// It is just an alias for the \c GEQ option. |
|
130 |
CARRY_SUPPLIES = GEQ, |
|
131 |
|
|
132 | 112 |
/// This option means that there are <em>"less or equal"</em> |
133 |
/// supply/demand constraints in the definition, i.e. the exact |
|
134 |
/// formulation of the problem is the following. |
|
135 |
/** |
|
136 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
|
137 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
|
138 |
sup(u) \quad \forall u\in V \f] |
|
139 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
|
140 |
*/ |
|
141 |
/// It means that the total demand must be less or equal to the |
|
142 |
/// total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
|
143 |
/// positive) and all the demands have to be satisfied, but there |
|
144 |
/// could be supplies that are not carried out from the supply |
|
145 |
/// nodes. |
|
146 |
LEQ, |
|
147 |
/// It is just an alias for the \c LEQ option. |
|
148 |
SATISFY_DEMANDS = LEQ |
|
113 |
/// supply/demand constraints in the definition of the problem. |
|
114 |
LEQ |
|
149 | 115 |
}; |
150 | 116 |
|
151 | 117 |
/// \brief Constants for selecting the pivot rule. |
... | ... |
@@ -215,6 +181,8 @@ |
215 | 181 |
const GR &_graph; |
216 | 182 |
int _node_num; |
217 | 183 |
int _arc_num; |
184 |
int _all_arc_num; |
|
185 |
int _search_arc_num; |
|
218 | 186 |
|
219 | 187 |
// Parameters of the problem |
220 | 188 |
bool _have_lower; |
... | ... |
@@ -277,7 +245,7 @@ |
277 | 245 |
const IntVector &_state; |
278 | 246 |
const CostVector &_pi; |
279 | 247 |
int &_in_arc; |
280 |
int |
|
248 |
int _search_arc_num; |
|
281 | 249 |
|
282 | 250 |
// Pivot rule data |
283 | 251 |
int _next_arc; |
... | ... |
@@ -288,13 +256,14 @@ |
288 | 256 |
FirstEligiblePivotRule(NetworkSimplex &ns) : |
289 | 257 |
_source(ns._source), _target(ns._target), |
290 | 258 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
291 |
_in_arc(ns.in_arc), |
|
259 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
260 |
_next_arc(0) |
|
292 | 261 |
{} |
293 | 262 |
|
294 | 263 |
// Find next entering arc |
295 | 264 |
bool findEnteringArc() { |
296 | 265 |
Cost c; |
297 |
for (int e = _next_arc; e < |
|
266 |
for (int e = _next_arc; e < _search_arc_num; ++e) { |
|
298 | 267 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
299 | 268 |
if (c < 0) { |
300 | 269 |
_in_arc = e; |
... | ... |
@@ -328,7 +297,7 @@ |
328 | 297 |
const IntVector &_state; |
329 | 298 |
const CostVector &_pi; |
330 | 299 |
int &_in_arc; |
331 |
int |
|
300 |
int _search_arc_num; |
|
332 | 301 |
|
333 | 302 |
public: |
334 | 303 |
|
... | ... |
@@ -336,13 +305,13 @@ |
336 | 305 |
BestEligiblePivotRule(NetworkSimplex &ns) : |
337 | 306 |
_source(ns._source), _target(ns._target), |
338 | 307 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
339 |
_in_arc(ns.in_arc), |
|
308 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num) |
|
340 | 309 |
{} |
341 | 310 |
|
342 | 311 |
// Find next entering arc |
343 | 312 |
bool findEnteringArc() { |
344 | 313 |
Cost c, min = 0; |
345 |
for (int e = 0; e < |
|
314 |
for (int e = 0; e < _search_arc_num; ++e) { |
|
346 | 315 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
347 | 316 |
if (c < min) { |
348 | 317 |
min = c; |
... | ... |
@@ -367,7 +336,7 @@ |
367 | 336 |
const IntVector &_state; |
368 | 337 |
const CostVector &_pi; |
369 | 338 |
int &_in_arc; |
370 |
int |
|
339 |
int _search_arc_num; |
|
371 | 340 |
|
372 | 341 |
// Pivot rule data |
373 | 342 |
int _block_size; |
... | ... |
@@ -379,14 +348,15 @@ |
379 | 348 |
BlockSearchPivotRule(NetworkSimplex &ns) : |
380 | 349 |
_source(ns._source), _target(ns._target), |
381 | 350 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
382 |
_in_arc(ns.in_arc), |
|
351 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
352 |
_next_arc(0) |
|
383 | 353 |
{ |
384 | 354 |
// The main parameters of the pivot rule |
385 |
const double BLOCK_SIZE_FACTOR = |
|
355 |
const double BLOCK_SIZE_FACTOR = 0.5; |
|
386 | 356 |
const int MIN_BLOCK_SIZE = 10; |
387 | 357 |
|
388 | 358 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
389 |
std::sqrt(double( |
|
359 |
std::sqrt(double(_search_arc_num))), |
|
390 | 360 |
MIN_BLOCK_SIZE ); |
391 | 361 |
} |
392 | 362 |
|
... | ... |
@@ -395,7 +365,7 @@ |
395 | 365 |
Cost c, min = 0; |
396 | 366 |
int cnt = _block_size; |
397 | 367 |
int e, min_arc = _next_arc; |
398 |
for (e = _next_arc; e < |
|
368 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
|
399 | 369 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
400 | 370 |
if (c < min) { |
401 | 371 |
min = c; |
... | ... |
@@ -440,7 +410,7 @@ |
440 | 410 |
const IntVector &_state; |
441 | 411 |
const CostVector &_pi; |
442 | 412 |
int &_in_arc; |
443 |
int |
|
413 |
int _search_arc_num; |
|
444 | 414 |
|
445 | 415 |
// Pivot rule data |
446 | 416 |
IntVector _candidates; |
... | ... |
@@ -454,7 +424,8 @@ |
454 | 424 |
CandidateListPivotRule(NetworkSimplex &ns) : |
455 | 425 |
_source(ns._source), _target(ns._target), |
456 | 426 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
457 |
_in_arc(ns.in_arc), |
|
427 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
428 |
_next_arc(0) |
|
458 | 429 |
{ |
459 | 430 |
// The main parameters of the pivot rule |
460 | 431 |
const double LIST_LENGTH_FACTOR = 1.0; |
... | ... |
@@ -463,7 +434,7 @@ |
463 | 434 |
const int MIN_MINOR_LIMIT = 3; |
464 | 435 |
|
465 | 436 |
_list_length = std::max( int(LIST_LENGTH_FACTOR * |
466 |
std::sqrt(double( |
|
437 |
std::sqrt(double(_search_arc_num))), |
|
467 | 438 |
MIN_LIST_LENGTH ); |
468 | 439 |
_minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), |
469 | 440 |
MIN_MINOR_LIMIT ); |
... | ... |
@@ -500,7 +471,7 @@ |
500 | 471 |
// Major iteration: build a new candidate list |
501 | 472 |
min = 0; |
502 | 473 |
_curr_length = 0; |
503 |
for (e = _next_arc; e < |
|
474 |
for (e = _next_arc; e < _search_arc_num; ++e) { |
|
504 | 475 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
505 | 476 |
if (c < 0) { |
506 | 477 |
_candidates[_curr_length++] = e; |
... | ... |
@@ -546,7 +517,7 @@ |
546 | 517 |
const IntVector &_state; |
547 | 518 |
const CostVector &_pi; |
548 | 519 |
int &_in_arc; |
549 |
int |
|
520 |
int _search_arc_num; |
|
550 | 521 |
|
551 | 522 |
// Pivot rule data |
552 | 523 |
int _block_size, _head_length, _curr_length; |
... | ... |
@@ -574,8 +545,8 @@ |
574 | 545 |
AlteringListPivotRule(NetworkSimplex &ns) : |
575 | 546 |
_source(ns._source), _target(ns._target), |
576 | 547 |
_cost(ns._cost), _state(ns._state), _pi(ns._pi), |
577 |
_in_arc(ns.in_arc), _arc_num(ns._arc_num), |
|
578 |
_next_arc(0), _cand_cost(ns._arc_num), _sort_func(_cand_cost) |
|
548 |
_in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num), |
|
549 |
_next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost) |
|
579 | 550 |
{ |
580 | 551 |
// The main parameters of the pivot rule |
581 | 552 |
const double BLOCK_SIZE_FACTOR = 1.5; |
... | ... |
@@ -584,7 +555,7 @@ |
584 | 555 |
const int MIN_HEAD_LENGTH = 3; |
585 | 556 |
|
586 | 557 |
_block_size = std::max( int(BLOCK_SIZE_FACTOR * |
587 |
std::sqrt(double( |
|
558 |
std::sqrt(double(_search_arc_num))), |
|
588 | 559 |
MIN_BLOCK_SIZE ); |
589 | 560 |
_head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), |
590 | 561 |
MIN_HEAD_LENGTH ); |
... | ... |
@@ -610,7 +581,7 @@ |
610 | 581 |
int last_arc = 0; |
611 | 582 |
int limit = _head_length; |
612 | 583 |
|
613 |
for (int e = _next_arc; e < |
|
584 |
for (int e = _next_arc; e < _search_arc_num; ++e) { |
|
614 | 585 |
_cand_cost[e] = _state[e] * |
615 | 586 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
616 | 587 |
if (_cand_cost[e] < 0) { |
... | ... |
@@ -678,17 +649,17 @@ |
678 | 649 |
_node_num = countNodes(_graph); |
679 | 650 |
_arc_num = countArcs(_graph); |
680 | 651 |
int all_node_num = _node_num + 1; |
681 |
int |
|
652 |
int max_arc_num = _arc_num + 2 * _node_num; |
|
682 | 653 |
|
683 |
_source.resize(all_arc_num); |
|
684 |
_target.resize(all_arc_num); |
|
654 |
_source.resize(max_arc_num); |
|
655 |
_target.resize(max_arc_num); |
|
685 | 656 |
|
686 |
_lower.resize(all_arc_num); |
|
687 |
_upper.resize(all_arc_num); |
|
688 |
_cap.resize(all_arc_num); |
|
689 |
_cost.resize(all_arc_num); |
|
657 |
_lower.resize(_arc_num); |
|
658 |
_upper.resize(_arc_num); |
|
659 |
_cap.resize(max_arc_num); |
|
660 |
_cost.resize(max_arc_num); |
|
690 | 661 |
_supply.resize(all_node_num); |
691 |
_flow.resize( |
|
662 |
_flow.resize(max_arc_num); |
|
692 | 663 |
_pi.resize(all_node_num); |
693 | 664 |
|
694 | 665 |
_parent.resize(all_node_num); |
... | ... |
@@ -698,7 +669,7 @@ |
698 | 669 |
_rev_thread.resize(all_node_num); |
699 | 670 |
_succ_num.resize(all_node_num); |
700 | 671 |
_last_succ.resize(all_node_num); |
701 |
_state.resize( |
|
672 |
_state.resize(max_arc_num); |
|
702 | 673 |
|
703 | 674 |
// Copy the graph (store the arcs in a mixed order) |
704 | 675 |
int i = 0; |
... | ... |
@@ -1069,7 +1040,7 @@ |
1069 | 1040 |
// Initialize artifical cost |
1070 | 1041 |
Cost ART_COST; |
1071 | 1042 |
if (std::numeric_limits<Cost>::is_exact) { |
1072 |
ART_COST = std::numeric_limits<Cost>::max() / |
|
1043 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
|
1073 | 1044 |
} else { |
1074 | 1045 |
ART_COST = std::numeric_limits<Cost>::min(); |
1075 | 1046 |
for (int i = 0; i != _arc_num; ++i) { |
... | ... |
@@ -1093,9 +1064,13 @@ |
1093 | 1064 |
_succ_num[_root] = _node_num + 1; |
1094 | 1065 |
_last_succ[_root] = _root - 1; |
1095 | 1066 |
_supply[_root] = -_sum_supply; |
1096 |
_pi[_root] = |
|
1067 |
_pi[_root] = 0; |
|
1097 | 1068 |
|
1098 | 1069 |
// Add artificial arcs and initialize the spanning tree data structure |
1070 |
if (_sum_supply == 0) { |
|
1071 |
// EQ supply constraints |
|
1072 |
_search_arc_num = _arc_num; |
|
1073 |
_all_arc_num = _arc_num + _node_num; |
|
1099 | 1074 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
1100 | 1075 |
_parent[u] = _root; |
1101 | 1076 |
_pred[u] = e; |
... | ... |
@@ -1103,19 +1078,107 @@ |
1103 | 1078 |
_rev_thread[u + 1] = u; |
1104 | 1079 |
_succ_num[u] = 1; |
1105 | 1080 |
_last_succ[u] = u; |
1106 |
_cost[e] = ART_COST; |
|
1107 | 1081 |
_cap[e] = INF; |
1108 | 1082 |
_state[e] = STATE_TREE; |
1109 |
if (_supply[u] > |
|
1083 |
if (_supply[u] >= 0) { |
|
1084 |
_forward[u] = true; |
|
1085 |
_pi[u] = 0; |
|
1086 |
_source[e] = u; |
|
1087 |
_target[e] = _root; |
|
1110 | 1088 |
_flow[e] = _supply[u]; |
1089 |
_cost[e] = 0; |
|
1090 |
} else { |
|
1091 |
_forward[u] = false; |
|
1092 |
_pi[u] = ART_COST; |
|
1093 |
_source[e] = _root; |
|
1094 |
_target[e] = u; |
|
1095 |
_flow[e] = -_supply[u]; |
|
1096 |
_cost[e] = ART_COST; |
|
1097 |
} |
|
1098 |
} |
|
1099 |
} |
|
1100 |
else if (_sum_supply > 0) { |
|
1101 |
// LEQ supply constraints |
|
1102 |
_search_arc_num = _arc_num + _node_num; |
|
1103 |
int f = _arc_num + _node_num; |
|
1104 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1105 |
_parent[u] = _root; |
|
1106 |
_thread[u] = u + 1; |
|
1107 |
_rev_thread[u + 1] = u; |
|
1108 |
_succ_num[u] = 1; |
|
1109 |
_last_succ[u] = u; |
|
1110 |
if (_supply[u] >= 0) { |
|
1111 | 1111 |
_forward[u] = true; |
1112 |
_pi[u] = |
|
1112 |
_pi[u] = 0; |
|
1113 |
_pred[u] = e; |
|
1114 |
_source[e] = u; |
|
1115 |
_target[e] = _root; |
|
1116 |
_cap[e] = INF; |
|
1117 |
_flow[e] = _supply[u]; |
|
1118 |
_cost[e] = 0; |
|
1119 |
_state[e] = STATE_TREE; |
|
1113 | 1120 |
} else { |
1121 |
_forward[u] = false; |
|
1122 |
_pi[u] = ART_COST; |
|
1123 |
_pred[u] = f; |
|
1124 |
_source[f] = _root; |
|
1125 |
_target[f] = u; |
|
1126 |
_cap[f] = INF; |
|
1127 |
_flow[f] = -_supply[u]; |
|
1128 |
_cost[f] = ART_COST; |
|
1129 |
_state[f] = STATE_TREE; |
|
1130 |
_source[e] = u; |
|
1131 |
_target[e] = _root; |
|
1132 |
_cap[e] = INF; |
|
1133 |
_flow[e] = 0; |
|
1134 |
_cost[e] = 0; |
|
1135 |
_state[e] = STATE_LOWER; |
|
1136 |
++f; |
|
1137 |
} |
|
1138 |
} |
|
1139 |
_all_arc_num = f; |
|
1140 |
} |
|
1141 |
else { |
|
1142 |
// GEQ supply constraints |
|
1143 |
_search_arc_num = _arc_num + _node_num; |
|
1144 |
int f = _arc_num + _node_num; |
|
1145 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1146 |
_parent[u] = _root; |
|
1147 |
_thread[u] = u + 1; |
|
1148 |
_rev_thread[u + 1] = u; |
|
1149 |
_succ_num[u] = 1; |
|
1150 |
_last_succ[u] = u; |
|
1151 |
if (_supply[u] <= 0) { |
|
1152 |
_forward[u] = false; |
|
1153 |
_pi[u] = 0; |
|
1154 |
_pred[u] = e; |
|
1155 |
_source[e] = _root; |
|
1156 |
_target[e] = u; |
|
1157 |
_cap[e] = INF; |
|
1114 | 1158 |
_flow[e] = -_supply[u]; |
1115 |
_forward[u] = false; |
|
1116 |
_pi[u] = ART_COST + _pi[_root]; |
|
1159 |
_cost[e] = 0; |
|
1160 |
_state[e] = STATE_TREE; |
|
1161 |
} else { |
|
1162 |
_forward[u] = true; |
|
1163 |
_pi[u] = -ART_COST; |
|
1164 |
_pred[u] = f; |
|
1165 |
_source[f] = u; |
|
1166 |
_target[f] = _root; |
|
1167 |
_cap[f] = INF; |
|
1168 |
_flow[f] = _supply[u]; |
|
1169 |
_state[f] = STATE_TREE; |
|
1170 |
_cost[f] = ART_COST; |
|
1171 |
_source[e] = _root; |
|
1172 |
_target[e] = u; |
|
1173 |
_cap[e] = INF; |
|
1174 |
_flow[e] = 0; |
|
1175 |
_cost[e] = 0; |
|
1176 |
_state[e] = STATE_LOWER; |
|
1177 |
++f; |
|
1117 | 1178 |
} |
1118 | 1179 |
} |
1180 |
_all_arc_num = f; |
|
1181 |
} |
|
1119 | 1182 |
|
1120 | 1183 |
return true; |
1121 | 1184 |
} |
... | ... |
@@ -1374,21 +1437,9 @@ |
1374 | 1437 |
} |
1375 | 1438 |
|
1376 | 1439 |
// Check feasibility |
1377 |
if (_sum_supply < 0) { |
|
1378 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1379 |
if (_supply[u] >= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1380 |
} |
|
1381 |
} |
|
1382 |
else if (_sum_supply > 0) { |
|
1383 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1384 |
if (_supply[u] <= 0 && _flow[e] != 0) return INFEASIBLE; |
|
1385 |
} |
|
1386 |
} |
|
1387 |
else { |
|
1388 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) { |
|
1440 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
|
1389 | 1441 |
if (_flow[e] != 0) return INFEASIBLE; |
1390 | 1442 |
} |
1391 |
} |
|
1392 | 1443 |
|
1393 | 1444 |
// Transform the solution and the supply map to the original form |
1394 | 1445 |
if (_have_lower) { |
... | ... |
@@ -1402,6 +1453,30 @@ |
1402 | 1453 |
} |
1403 | 1454 |
} |
1404 | 1455 |
|
1456 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
|
1457 |
// optimality conditions |
|
1458 |
if (_sum_supply == 0) { |
|
1459 |
if (_stype == GEQ) { |
|
1460 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
|
1461 |
for (int i = 0; i != _node_num; ++i) { |
|
1462 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
|
1463 |
} |
|
1464 |
if (max_pot > 0) { |
|
1465 |
for (int i = 0; i != _node_num; ++i) |
|
1466 |
_pi[i] -= max_pot; |
|
1467 |
} |
|
1468 |
} else { |
|
1469 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
|
1470 |
for (int i = 0; i != _node_num; ++i) { |
|
1471 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
|
1472 |
} |
|
1473 |
if (min_pot < 0) { |
|
1474 |
for (int i = 0; i != _node_num; ++i) |
|
1475 |
_pi[i] -= min_pot; |
|
1476 |
} |
|
1477 |
} |
|
1478 |
} |
|
1479 |
|
|
1405 | 1480 |
return OPTIMAL; |
1406 | 1481 |
} |
1407 | 1482 |
|
0 comments (0 inline)