0
4
0
... | ... |
@@ -105,344 +105,343 @@ |
105 | 105 |
///\param g is the digraph, to which we would like to define the |
106 | 106 |
///\ref DistMap. |
107 | 107 |
static DistMap *createDistMap(const Digraph &g) |
108 | 108 |
{ |
109 | 109 |
return new DistMap(g); |
110 | 110 |
} |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
///%BFS algorithm class. |
114 | 114 |
|
115 | 115 |
///\ingroup search |
116 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
117 | 117 |
/// |
118 | 118 |
///There is also a \ref bfs() "function type interface" for the BFS |
119 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 120 |
///used easier. |
121 | 121 |
/// |
122 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 123 |
///The default value is \ref ListDigraph. The value of GR is not used |
124 | 124 |
///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits. |
125 | 125 |
///\tparam TR Traits class to set various data types used by the algorithm. |
126 | 126 |
///The default traits class is |
127 | 127 |
///\ref BfsDefaultTraits "BfsDefaultTraits<GR>". |
128 | 128 |
///See \ref BfsDefaultTraits for the documentation of |
129 | 129 |
///a Bfs traits class. |
130 | 130 |
#ifdef DOXYGEN |
131 | 131 |
template <typename GR, |
132 | 132 |
typename TR> |
133 | 133 |
#else |
134 | 134 |
template <typename GR=ListDigraph, |
135 | 135 |
typename TR=BfsDefaultTraits<GR> > |
136 | 136 |
#endif |
137 | 137 |
class Bfs { |
138 | 138 |
public: |
139 | 139 |
///\ref Exception for uninitialized parameters. |
140 | 140 |
|
141 | 141 |
///This error represents problems in the initialization of the |
142 | 142 |
///parameters of the algorithm. |
143 | 143 |
class UninitializedParameter : public lemon::UninitializedParameter { |
144 | 144 |
public: |
145 | 145 |
virtual const char* what() const throw() { |
146 | 146 |
return "lemon::Bfs::UninitializedParameter"; |
147 | 147 |
} |
148 | 148 |
}; |
149 | 149 |
|
150 | 150 |
///The type of the digraph the algorithm runs on. |
151 | 151 |
typedef typename TR::Digraph Digraph; |
152 | 152 |
|
153 | 153 |
///\brief The type of the map that stores the predecessor arcs of the |
154 | 154 |
///shortest paths. |
155 | 155 |
typedef typename TR::PredMap PredMap; |
156 | 156 |
///The type of the map that stores the distances of the nodes. |
157 | 157 |
typedef typename TR::DistMap DistMap; |
158 | 158 |
///The type of the map that indicates which nodes are reached. |
159 | 159 |
typedef typename TR::ReachedMap ReachedMap; |
160 | 160 |
///The type of the map that indicates which nodes are processed. |
161 | 161 |
typedef typename TR::ProcessedMap ProcessedMap; |
162 | 162 |
///The type of the paths. |
163 | 163 |
typedef PredMapPath<Digraph, PredMap> Path; |
164 | 164 |
|
165 | 165 |
///The traits class. |
166 | 166 |
typedef TR Traits; |
167 | 167 |
|
168 | 168 |
private: |
169 | 169 |
|
170 | 170 |
typedef typename Digraph::Node Node; |
171 | 171 |
typedef typename Digraph::NodeIt NodeIt; |
172 | 172 |
typedef typename Digraph::Arc Arc; |
173 | 173 |
typedef typename Digraph::OutArcIt OutArcIt; |
174 | 174 |
|
175 | 175 |
//Pointer to the underlying digraph. |
176 | 176 |
const Digraph *G; |
177 | 177 |
//Pointer to the map of predecessor arcs. |
178 | 178 |
PredMap *_pred; |
179 | 179 |
//Indicates if _pred is locally allocated (true) or not. |
180 | 180 |
bool local_pred; |
181 | 181 |
//Pointer to the map of distances. |
182 | 182 |
DistMap *_dist; |
183 | 183 |
//Indicates if _dist is locally allocated (true) or not. |
184 | 184 |
bool local_dist; |
185 | 185 |
//Pointer to the map of reached status of the nodes. |
186 | 186 |
ReachedMap *_reached; |
187 | 187 |
//Indicates if _reached is locally allocated (true) or not. |
188 | 188 |
bool local_reached; |
189 | 189 |
//Pointer to the map of processed status of the nodes. |
190 | 190 |
ProcessedMap *_processed; |
191 | 191 |
//Indicates if _processed is locally allocated (true) or not. |
192 | 192 |
bool local_processed; |
193 | 193 |
|
194 | 194 |
std::vector<typename Digraph::Node> _queue; |
195 | 195 |
int _queue_head,_queue_tail,_queue_next_dist; |
196 | 196 |
int _curr_dist; |
197 | 197 |
|
198 | 198 |
///Creates the maps if necessary. |
199 | 199 |
///\todo Better memory allocation (instead of new). |
200 | 200 |
void create_maps() |
201 | 201 |
{ |
202 | 202 |
if(!_pred) { |
203 | 203 |
local_pred = true; |
204 | 204 |
_pred = Traits::createPredMap(*G); |
205 | 205 |
} |
206 | 206 |
if(!_dist) { |
207 | 207 |
local_dist = true; |
208 | 208 |
_dist = Traits::createDistMap(*G); |
209 | 209 |
} |
210 | 210 |
if(!_reached) { |
211 | 211 |
local_reached = true; |
212 | 212 |
_reached = Traits::createReachedMap(*G); |
213 | 213 |
} |
214 | 214 |
if(!_processed) { |
215 | 215 |
local_processed = true; |
216 | 216 |
_processed = Traits::createProcessedMap(*G); |
217 | 217 |
} |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
protected: |
221 | 221 |
|
222 | 222 |
Bfs() {} |
223 | 223 |
|
224 | 224 |
public: |
225 | 225 |
|
226 | 226 |
typedef Bfs Create; |
227 | 227 |
|
228 | 228 |
///\name Named template parameters |
229 | 229 |
|
230 | 230 |
///@{ |
231 | 231 |
|
232 | 232 |
template <class T> |
233 |
struct |
|
233 |
struct SetPredMapTraits : public Traits { |
|
234 | 234 |
typedef T PredMap; |
235 | 235 |
static PredMap *createPredMap(const Digraph &) |
236 | 236 |
{ |
237 | 237 |
throw UninitializedParameter(); |
238 | 238 |
} |
239 | 239 |
}; |
240 | 240 |
///\brief \ref named-templ-param "Named parameter" for setting |
241 | 241 |
///\ref PredMap type. |
242 | 242 |
/// |
243 | 243 |
///\ref named-templ-param "Named parameter" for setting |
244 | 244 |
///\ref PredMap type. |
245 | 245 |
template <class T> |
246 |
struct DefPredMap : public Bfs< Digraph, DefPredMapTraits<T> > { |
|
247 |
typedef Bfs< Digraph, DefPredMapTraits<T> > Create; |
|
246 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
|
247 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
|
248 | 248 |
}; |
249 | 249 |
|
250 | 250 |
template <class T> |
251 |
struct |
|
251 |
struct SetDistMapTraits : public Traits { |
|
252 | 252 |
typedef T DistMap; |
253 | 253 |
static DistMap *createDistMap(const Digraph &) |
254 | 254 |
{ |
255 | 255 |
throw UninitializedParameter(); |
256 | 256 |
} |
257 | 257 |
}; |
258 | 258 |
///\brief \ref named-templ-param "Named parameter" for setting |
259 | 259 |
///\ref DistMap type. |
260 | 260 |
/// |
261 | 261 |
///\ref named-templ-param "Named parameter" for setting |
262 | 262 |
///\ref DistMap type. |
263 | 263 |
template <class T> |
264 |
struct DefDistMap : public Bfs< Digraph, DefDistMapTraits<T> > { |
|
265 |
typedef Bfs< Digraph, DefDistMapTraits<T> > Create; |
|
264 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
|
265 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
|
266 | 266 |
}; |
267 | 267 |
|
268 | 268 |
template <class T> |
269 |
struct |
|
269 |
struct SetReachedMapTraits : public Traits { |
|
270 | 270 |
typedef T ReachedMap; |
271 | 271 |
static ReachedMap *createReachedMap(const Digraph &) |
272 | 272 |
{ |
273 | 273 |
throw UninitializedParameter(); |
274 | 274 |
} |
275 | 275 |
}; |
276 | 276 |
///\brief \ref named-templ-param "Named parameter" for setting |
277 | 277 |
///\ref ReachedMap type. |
278 | 278 |
/// |
279 | 279 |
///\ref named-templ-param "Named parameter" for setting |
280 | 280 |
///\ref ReachedMap type. |
281 | 281 |
template <class T> |
282 |
struct DefReachedMap : public Bfs< Digraph, DefReachedMapTraits<T> > { |
|
283 |
typedef Bfs< Digraph, DefReachedMapTraits<T> > Create; |
|
282 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
|
283 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
|
284 | 284 |
}; |
285 | 285 |
|
286 | 286 |
template <class T> |
287 |
struct |
|
287 |
struct SetProcessedMapTraits : public Traits { |
|
288 | 288 |
typedef T ProcessedMap; |
289 | 289 |
static ProcessedMap *createProcessedMap(const Digraph &) |
290 | 290 |
{ |
291 | 291 |
throw UninitializedParameter(); |
292 | 292 |
} |
293 | 293 |
}; |
294 | 294 |
///\brief \ref named-templ-param "Named parameter" for setting |
295 | 295 |
///\ref ProcessedMap type. |
296 | 296 |
/// |
297 | 297 |
///\ref named-templ-param "Named parameter" for setting |
298 | 298 |
///\ref ProcessedMap type. |
299 | 299 |
template <class T> |
300 |
struct DefProcessedMap : public Bfs< Digraph, DefProcessedMapTraits<T> > { |
|
301 |
typedef Bfs< Digraph, DefProcessedMapTraits<T> > Create; |
|
300 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
|
301 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
|
302 | 302 |
}; |
303 | 303 |
|
304 |
struct |
|
304 |
struct SetStandardProcessedMapTraits : public Traits { |
|
305 | 305 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
306 | 306 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
307 | 307 |
{ |
308 | 308 |
return new ProcessedMap(g); |
309 | 309 |
} |
310 | 310 |
}; |
311 | 311 |
///\brief \ref named-templ-param "Named parameter" for setting |
312 | 312 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
313 | 313 |
/// |
314 | 314 |
///\ref named-templ-param "Named parameter" for setting |
315 | 315 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
316 | 316 |
///If you don't set it explicitly, it will be automatically allocated. |
317 |
template <class T> |
|
318 |
struct DefProcessedMapToBeDefaultMap : |
|
319 |
public Bfs< Digraph, DefDigraphProcessedMapTraits> { |
|
320 |
typedef Bfs< Digraph, DefDigraphProcessedMapTraits> Create; |
|
317 |
struct SetStandardProcessedMap : |
|
318 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
|
319 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
|
321 | 320 |
}; |
322 | 321 |
|
323 | 322 |
///@} |
324 | 323 |
|
325 | 324 |
public: |
326 | 325 |
|
327 | 326 |
///Constructor. |
328 | 327 |
|
329 | 328 |
///Constructor. |
330 | 329 |
///\param g The digraph the algorithm runs on. |
331 | 330 |
Bfs(const Digraph &g) : |
332 | 331 |
G(&g), |
333 | 332 |
_pred(NULL), local_pred(false), |
334 | 333 |
_dist(NULL), local_dist(false), |
335 | 334 |
_reached(NULL), local_reached(false), |
336 | 335 |
_processed(NULL), local_processed(false) |
337 | 336 |
{ } |
338 | 337 |
|
339 | 338 |
///Destructor. |
340 | 339 |
~Bfs() |
341 | 340 |
{ |
342 | 341 |
if(local_pred) delete _pred; |
343 | 342 |
if(local_dist) delete _dist; |
344 | 343 |
if(local_reached) delete _reached; |
345 | 344 |
if(local_processed) delete _processed; |
346 | 345 |
} |
347 | 346 |
|
348 | 347 |
///Sets the map that stores the predecessor arcs. |
349 | 348 |
|
350 | 349 |
///Sets the map that stores the predecessor arcs. |
351 | 350 |
///If you don't use this function before calling \ref run(), |
352 | 351 |
///it will allocate one. The destructor deallocates this |
353 | 352 |
///automatically allocated map, of course. |
354 | 353 |
///\return <tt> (*this) </tt> |
355 | 354 |
Bfs &predMap(PredMap &m) |
356 | 355 |
{ |
357 | 356 |
if(local_pred) { |
358 | 357 |
delete _pred; |
359 | 358 |
local_pred=false; |
360 | 359 |
} |
361 | 360 |
_pred = &m; |
362 | 361 |
return *this; |
363 | 362 |
} |
364 | 363 |
|
365 | 364 |
///Sets the map that indicates which nodes are reached. |
366 | 365 |
|
367 | 366 |
///Sets the map that indicates which nodes are reached. |
368 | 367 |
///If you don't use this function before calling \ref run(), |
369 | 368 |
///it will allocate one. The destructor deallocates this |
370 | 369 |
///automatically allocated map, of course. |
371 | 370 |
///\return <tt> (*this) </tt> |
372 | 371 |
Bfs &reachedMap(ReachedMap &m) |
373 | 372 |
{ |
374 | 373 |
if(local_reached) { |
375 | 374 |
delete _reached; |
376 | 375 |
local_reached=false; |
377 | 376 |
} |
378 | 377 |
_reached = &m; |
379 | 378 |
return *this; |
380 | 379 |
} |
381 | 380 |
|
382 | 381 |
///Sets the map that indicates which nodes are processed. |
383 | 382 |
|
384 | 383 |
///Sets the map that indicates which nodes are processed. |
385 | 384 |
///If you don't use this function before calling \ref run(), |
386 | 385 |
///it will allocate one. The destructor deallocates this |
387 | 386 |
///automatically allocated map, of course. |
388 | 387 |
///\return <tt> (*this) </tt> |
389 | 388 |
Bfs &processedMap(ProcessedMap &m) |
390 | 389 |
{ |
391 | 390 |
if(local_processed) { |
392 | 391 |
delete _processed; |
393 | 392 |
local_processed=false; |
394 | 393 |
} |
395 | 394 |
_processed = &m; |
396 | 395 |
return *this; |
397 | 396 |
} |
398 | 397 |
|
399 | 398 |
///Sets the map that stores the distances of the nodes. |
400 | 399 |
|
401 | 400 |
///Sets the map that stores the distances of the nodes calculated by |
402 | 401 |
///the algorithm. |
403 | 402 |
///If you don't use this function before calling \ref run(), |
404 | 403 |
///it will allocate one. The destructor deallocates this |
405 | 404 |
///automatically allocated map, of course. |
406 | 405 |
///\return <tt> (*this) </tt> |
407 | 406 |
Bfs &distMap(DistMap &m) |
408 | 407 |
{ |
409 | 408 |
if(local_dist) { |
410 | 409 |
delete _dist; |
411 | 410 |
local_dist=false; |
412 | 411 |
} |
413 | 412 |
_dist = &m; |
414 | 413 |
return *this; |
415 | 414 |
} |
416 | 415 |
|
417 | 416 |
public: |
418 | 417 |
|
419 | 418 |
///\name Execution control |
420 | 419 |
///The simplest way to execute the algorithm is to use |
421 | 420 |
///one of the member functions called \ref lemon::Bfs::run() "run()". |
422 | 421 |
///\n |
423 | 422 |
///If you need more control on the execution, first you must call |
424 | 423 |
///\ref lemon::Bfs::init() "init()", then you can add several source |
425 | 424 |
///nodes with \ref lemon::Bfs::addSource() "addSource()". |
426 | 425 |
///Finally \ref lemon::Bfs::start() "start()" will perform the |
427 | 426 |
///actual path computation. |
428 | 427 |
|
429 | 428 |
///@{ |
430 | 429 |
|
431 | 430 |
///Initializes the internal data structures. |
432 | 431 |
|
433 | 432 |
///Initializes the internal data structures. |
434 | 433 |
/// |
435 | 434 |
void init() |
436 | 435 |
{ |
437 | 436 |
create_maps(); |
438 | 437 |
_queue.resize(countNodes(*G)); |
439 | 438 |
_queue_head=_queue_tail=0; |
440 | 439 |
_curr_dist=1; |
441 | 440 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
442 | 441 |
_pred->set(u,INVALID); |
443 | 442 |
_reached->set(u,false); |
444 | 443 |
_processed->set(u,false); |
445 | 444 |
} |
446 | 445 |
} |
447 | 446 |
|
448 | 447 |
///Adds a new source node. |
... | ... |
@@ -940,554 +939,554 @@ |
940 | 939 |
void *_pred; |
941 | 940 |
//Pointer to the map of distances. |
942 | 941 |
void *_dist; |
943 | 942 |
//Pointer to the source node. |
944 | 943 |
Node _source; |
945 | 944 |
|
946 | 945 |
public: |
947 | 946 |
/// Constructor. |
948 | 947 |
|
949 | 948 |
/// This constructor does not require parameters, therefore it initiates |
950 | 949 |
/// all of the attributes to default values (0, INVALID). |
951 | 950 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
952 | 951 |
_dist(0), _source(INVALID) {} |
953 | 952 |
|
954 | 953 |
/// Constructor. |
955 | 954 |
|
956 | 955 |
/// This constructor requires some parameters, |
957 | 956 |
/// listed in the parameters list. |
958 | 957 |
/// Others are initiated to 0. |
959 | 958 |
/// \param g The digraph the algorithm runs on. |
960 | 959 |
/// \param s The source node. |
961 | 960 |
BfsWizardBase(const GR &g, Node s=INVALID) : |
962 | 961 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
963 | 962 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} |
964 | 963 |
|
965 | 964 |
}; |
966 | 965 |
|
967 | 966 |
/// Auxiliary class for the function type interface of BFS algorithm. |
968 | 967 |
|
969 | 968 |
/// This auxiliary class is created to implement the function type |
970 | 969 |
/// interface of \ref Bfs algorithm. It uses the functions and features |
971 | 970 |
/// of the plain \ref Bfs, but it is much simpler to use it. |
972 | 971 |
/// It should only be used through the \ref bfs() function, which makes |
973 | 972 |
/// it easier to use the algorithm. |
974 | 973 |
/// |
975 | 974 |
/// Simplicity means that the way to change the types defined |
976 | 975 |
/// in the traits class is based on functions that returns the new class |
977 | 976 |
/// and not on templatable built-in classes. |
978 | 977 |
/// When using the plain \ref Bfs |
979 | 978 |
/// the new class with the modified type comes from |
980 | 979 |
/// the original class by using the :: |
981 | 980 |
/// operator. In the case of \ref BfsWizard only |
982 | 981 |
/// a function have to be called, and it will |
983 | 982 |
/// return the needed class. |
984 | 983 |
/// |
985 | 984 |
/// It does not have own \ref run() method. When its \ref run() method |
986 | 985 |
/// is called, it initiates a plain \ref Bfs object, and calls the |
987 | 986 |
/// \ref Bfs::run() method of it. |
988 | 987 |
template<class TR> |
989 | 988 |
class BfsWizard : public TR |
990 | 989 |
{ |
991 | 990 |
typedef TR Base; |
992 | 991 |
|
993 | 992 |
///The type of the digraph the algorithm runs on. |
994 | 993 |
typedef typename TR::Digraph Digraph; |
995 | 994 |
|
996 | 995 |
typedef typename Digraph::Node Node; |
997 | 996 |
typedef typename Digraph::NodeIt NodeIt; |
998 | 997 |
typedef typename Digraph::Arc Arc; |
999 | 998 |
typedef typename Digraph::OutArcIt OutArcIt; |
1000 | 999 |
|
1001 | 1000 |
///\brief The type of the map that stores the predecessor |
1002 | 1001 |
///arcs of the shortest paths. |
1003 | 1002 |
typedef typename TR::PredMap PredMap; |
1004 | 1003 |
///\brief The type of the map that stores the distances of the nodes. |
1005 | 1004 |
typedef typename TR::DistMap DistMap; |
1006 | 1005 |
///\brief The type of the map that indicates which nodes are reached. |
1007 | 1006 |
typedef typename TR::ReachedMap ReachedMap; |
1008 | 1007 |
///\brief The type of the map that indicates which nodes are processed. |
1009 | 1008 |
typedef typename TR::ProcessedMap ProcessedMap; |
1010 | 1009 |
|
1011 | 1010 |
public: |
1012 | 1011 |
|
1013 | 1012 |
/// Constructor. |
1014 | 1013 |
BfsWizard() : TR() {} |
1015 | 1014 |
|
1016 | 1015 |
/// Constructor that requires parameters. |
1017 | 1016 |
|
1018 | 1017 |
/// Constructor that requires parameters. |
1019 | 1018 |
/// These parameters will be the default values for the traits class. |
1020 | 1019 |
BfsWizard(const Digraph &g, Node s=INVALID) : |
1021 | 1020 |
TR(g,s) {} |
1022 | 1021 |
|
1023 | 1022 |
///Copy constructor |
1024 | 1023 |
BfsWizard(const TR &b) : TR(b) {} |
1025 | 1024 |
|
1026 | 1025 |
~BfsWizard() {} |
1027 | 1026 |
|
1028 | 1027 |
///Runs BFS algorithm from a source node. |
1029 | 1028 |
|
1030 | 1029 |
///Runs BFS algorithm from a source node. |
1031 | 1030 |
///The node can be given with the \ref source() function. |
1032 | 1031 |
void run() |
1033 | 1032 |
{ |
1034 | 1033 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
1035 | 1034 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1036 | 1035 |
if(Base::_reached) |
1037 | 1036 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1038 | 1037 |
if(Base::_processed) |
1039 | 1038 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1040 | 1039 |
if(Base::_pred) |
1041 | 1040 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1042 | 1041 |
if(Base::_dist) |
1043 | 1042 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1044 | 1043 |
alg.run(Base::_source); |
1045 | 1044 |
} |
1046 | 1045 |
|
1047 | 1046 |
///Runs BFS algorithm from the given node. |
1048 | 1047 |
|
1049 | 1048 |
///Runs BFS algorithm from the given node. |
1050 | 1049 |
///\param s is the given source. |
1051 | 1050 |
void run(Node s) |
1052 | 1051 |
{ |
1053 | 1052 |
Base::_source=s; |
1054 | 1053 |
run(); |
1055 | 1054 |
} |
1056 | 1055 |
|
1057 | 1056 |
/// Sets the source node, from which the Bfs algorithm runs. |
1058 | 1057 |
|
1059 | 1058 |
/// Sets the source node, from which the Bfs algorithm runs. |
1060 | 1059 |
/// \param s is the source node. |
1061 | 1060 |
BfsWizard<TR> &source(Node s) |
1062 | 1061 |
{ |
1063 | 1062 |
Base::_source=s; |
1064 | 1063 |
return *this; |
1065 | 1064 |
} |
1066 | 1065 |
|
1067 | 1066 |
template<class T> |
1068 |
struct |
|
1067 |
struct SetPredMapBase : public Base { |
|
1069 | 1068 |
typedef T PredMap; |
1070 | 1069 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1071 |
|
|
1070 |
SetPredMapBase(const TR &b) : TR(b) {} |
|
1072 | 1071 |
}; |
1073 | 1072 |
///\brief \ref named-templ-param "Named parameter" |
1074 | 1073 |
///for setting \ref PredMap object. |
1075 | 1074 |
/// |
1076 | 1075 |
/// \ref named-templ-param "Named parameter" |
1077 | 1076 |
///for setting \ref PredMap object. |
1078 | 1077 |
template<class T> |
1079 |
BfsWizard< |
|
1078 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
|
1080 | 1079 |
{ |
1081 | 1080 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1082 |
return BfsWizard< |
|
1081 |
return BfsWizard<SetPredMapBase<T> >(*this); |
|
1083 | 1082 |
} |
1084 | 1083 |
|
1085 | 1084 |
template<class T> |
1086 |
struct |
|
1085 |
struct SetReachedMapBase : public Base { |
|
1087 | 1086 |
typedef T ReachedMap; |
1088 | 1087 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1089 |
|
|
1088 |
SetReachedMapBase(const TR &b) : TR(b) {} |
|
1090 | 1089 |
}; |
1091 | 1090 |
///\brief \ref named-templ-param "Named parameter" |
1092 | 1091 |
///for setting \ref ReachedMap object. |
1093 | 1092 |
/// |
1094 | 1093 |
/// \ref named-templ-param "Named parameter" |
1095 | 1094 |
///for setting \ref ReachedMap object. |
1096 | 1095 |
template<class T> |
1097 |
BfsWizard< |
|
1096 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
|
1098 | 1097 |
{ |
1099 | 1098 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1100 |
return BfsWizard< |
|
1099 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
|
1101 | 1100 |
} |
1102 | 1101 |
|
1103 | 1102 |
template<class T> |
1104 |
struct |
|
1103 |
struct SetProcessedMapBase : public Base { |
|
1105 | 1104 |
typedef T ProcessedMap; |
1106 | 1105 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1107 |
|
|
1106 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
|
1108 | 1107 |
}; |
1109 | 1108 |
///\brief \ref named-templ-param "Named parameter" |
1110 | 1109 |
///for setting \ref ProcessedMap object. |
1111 | 1110 |
/// |
1112 | 1111 |
/// \ref named-templ-param "Named parameter" |
1113 | 1112 |
///for setting \ref ProcessedMap object. |
1114 | 1113 |
template<class T> |
1115 |
BfsWizard< |
|
1114 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
|
1116 | 1115 |
{ |
1117 | 1116 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1118 |
return BfsWizard< |
|
1117 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
|
1119 | 1118 |
} |
1120 | 1119 |
|
1121 | 1120 |
template<class T> |
1122 |
struct |
|
1121 |
struct SetDistMapBase : public Base { |
|
1123 | 1122 |
typedef T DistMap; |
1124 | 1123 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1125 |
|
|
1124 |
SetDistMapBase(const TR &b) : TR(b) {} |
|
1126 | 1125 |
}; |
1127 | 1126 |
///\brief \ref named-templ-param "Named parameter" |
1128 | 1127 |
///for setting \ref DistMap object. |
1129 | 1128 |
/// |
1130 | 1129 |
/// \ref named-templ-param "Named parameter" |
1131 | 1130 |
///for setting \ref DistMap object. |
1132 | 1131 |
template<class T> |
1133 |
BfsWizard< |
|
1132 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
|
1134 | 1133 |
{ |
1135 | 1134 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1136 |
return BfsWizard< |
|
1135 |
return BfsWizard<SetDistMapBase<T> >(*this); |
|
1137 | 1136 |
} |
1138 | 1137 |
|
1139 | 1138 |
}; |
1140 | 1139 |
|
1141 | 1140 |
///Function type interface for Bfs algorithm. |
1142 | 1141 |
|
1143 | 1142 |
/// \ingroup search |
1144 | 1143 |
///Function type interface for Bfs algorithm. |
1145 | 1144 |
/// |
1146 | 1145 |
///This function also has several |
1147 | 1146 |
///\ref named-templ-func-param "named parameters", |
1148 | 1147 |
///they are declared as the members of class \ref BfsWizard. |
1149 | 1148 |
///The following |
1150 | 1149 |
///example shows how to use these parameters. |
1151 | 1150 |
///\code |
1152 | 1151 |
/// bfs(g,source).predMap(preds).run(); |
1153 | 1152 |
///\endcode |
1154 | 1153 |
///\warning Don't forget to put the \ref BfsWizard::run() "run()" |
1155 | 1154 |
///to the end of the parameter list. |
1156 | 1155 |
///\sa BfsWizard |
1157 | 1156 |
///\sa Bfs |
1158 | 1157 |
template<class GR> |
1159 | 1158 |
BfsWizard<BfsWizardBase<GR> > |
1160 | 1159 |
bfs(const GR &g,typename GR::Node s=INVALID) |
1161 | 1160 |
{ |
1162 | 1161 |
return BfsWizard<BfsWizardBase<GR> >(g,s); |
1163 | 1162 |
} |
1164 | 1163 |
|
1165 | 1164 |
#ifdef DOXYGEN |
1166 | 1165 |
/// \brief Visitor class for BFS. |
1167 | 1166 |
/// |
1168 | 1167 |
/// This class defines the interface of the BfsVisit events, and |
1169 | 1168 |
/// it could be the base of a real visitor class. |
1170 | 1169 |
template <typename _Digraph> |
1171 | 1170 |
struct BfsVisitor { |
1172 | 1171 |
typedef _Digraph Digraph; |
1173 | 1172 |
typedef typename Digraph::Arc Arc; |
1174 | 1173 |
typedef typename Digraph::Node Node; |
1175 | 1174 |
/// \brief Called for the source node(s) of the BFS. |
1176 | 1175 |
/// |
1177 | 1176 |
/// This function is called for the source node(s) of the BFS. |
1178 | 1177 |
void start(const Node& node) {} |
1179 | 1178 |
/// \brief Called when a node is reached first time. |
1180 | 1179 |
/// |
1181 | 1180 |
/// This function is called when a node is reached first time. |
1182 | 1181 |
void reach(const Node& node) {} |
1183 | 1182 |
/// \brief Called when a node is processed. |
1184 | 1183 |
/// |
1185 | 1184 |
/// This function is called when a node is processed. |
1186 | 1185 |
void process(const Node& node) {} |
1187 | 1186 |
/// \brief Called when an arc reaches a new node. |
1188 | 1187 |
/// |
1189 | 1188 |
/// This function is called when the BFS finds an arc whose target node |
1190 | 1189 |
/// is not reached yet. |
1191 | 1190 |
void discover(const Arc& arc) {} |
1192 | 1191 |
/// \brief Called when an arc is examined but its target node is |
1193 | 1192 |
/// already discovered. |
1194 | 1193 |
/// |
1195 | 1194 |
/// This function is called when an arc is examined but its target node is |
1196 | 1195 |
/// already discovered. |
1197 | 1196 |
void examine(const Arc& arc) {} |
1198 | 1197 |
}; |
1199 | 1198 |
#else |
1200 | 1199 |
template <typename _Digraph> |
1201 | 1200 |
struct BfsVisitor { |
1202 | 1201 |
typedef _Digraph Digraph; |
1203 | 1202 |
typedef typename Digraph::Arc Arc; |
1204 | 1203 |
typedef typename Digraph::Node Node; |
1205 | 1204 |
void start(const Node&) {} |
1206 | 1205 |
void reach(const Node&) {} |
1207 | 1206 |
void process(const Node&) {} |
1208 | 1207 |
void discover(const Arc&) {} |
1209 | 1208 |
void examine(const Arc&) {} |
1210 | 1209 |
|
1211 | 1210 |
template <typename _Visitor> |
1212 | 1211 |
struct Constraints { |
1213 | 1212 |
void constraints() { |
1214 | 1213 |
Arc arc; |
1215 | 1214 |
Node node; |
1216 | 1215 |
visitor.start(node); |
1217 | 1216 |
visitor.reach(node); |
1218 | 1217 |
visitor.process(node); |
1219 | 1218 |
visitor.discover(arc); |
1220 | 1219 |
visitor.examine(arc); |
1221 | 1220 |
} |
1222 | 1221 |
_Visitor& visitor; |
1223 | 1222 |
}; |
1224 | 1223 |
}; |
1225 | 1224 |
#endif |
1226 | 1225 |
|
1227 | 1226 |
/// \brief Default traits class of BfsVisit class. |
1228 | 1227 |
/// |
1229 | 1228 |
/// Default traits class of BfsVisit class. |
1230 | 1229 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1231 | 1230 |
template<class _Digraph> |
1232 | 1231 |
struct BfsVisitDefaultTraits { |
1233 | 1232 |
|
1234 | 1233 |
/// \brief The type of the digraph the algorithm runs on. |
1235 | 1234 |
typedef _Digraph Digraph; |
1236 | 1235 |
|
1237 | 1236 |
/// \brief The type of the map that indicates which nodes are reached. |
1238 | 1237 |
/// |
1239 | 1238 |
/// The type of the map that indicates which nodes are reached. |
1240 | 1239 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1241 | 1240 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1242 | 1241 |
|
1243 | 1242 |
/// \brief Instantiates a \ref ReachedMap. |
1244 | 1243 |
/// |
1245 | 1244 |
/// This function instantiates a \ref ReachedMap. |
1246 | 1245 |
/// \param digraph is the digraph, to which |
1247 | 1246 |
/// we would like to define the \ref ReachedMap. |
1248 | 1247 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1249 | 1248 |
return new ReachedMap(digraph); |
1250 | 1249 |
} |
1251 | 1250 |
|
1252 | 1251 |
}; |
1253 | 1252 |
|
1254 | 1253 |
/// \ingroup search |
1255 | 1254 |
/// |
1256 | 1255 |
/// \brief %BFS algorithm class with visitor interface. |
1257 | 1256 |
/// |
1258 | 1257 |
/// This class provides an efficient implementation of the %BFS algorithm |
1259 | 1258 |
/// with visitor interface. |
1260 | 1259 |
/// |
1261 | 1260 |
/// The %BfsVisit class provides an alternative interface to the Bfs |
1262 | 1261 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1263 | 1262 |
/// the member functions of the \c Visitor class on every BFS event. |
1264 | 1263 |
/// |
1265 | 1264 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1266 | 1265 |
/// The default value is |
1267 | 1266 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1268 | 1267 |
/// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits. |
1269 | 1268 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1270 | 1269 |
/// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which |
1271 | 1270 |
/// does not observe the BFS events. If you want to observe the BFS |
1272 | 1271 |
/// events, you should implement your own visitor class. |
1273 | 1272 |
/// \tparam _Traits Traits class to set various data types used by the |
1274 | 1273 |
/// algorithm. The default traits class is |
1275 | 1274 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>". |
1276 | 1275 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1277 | 1276 |
/// a BFS visit traits class. |
1278 | 1277 |
#ifdef DOXYGEN |
1279 | 1278 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1280 | 1279 |
#else |
1281 | 1280 |
template <typename _Digraph = ListDigraph, |
1282 | 1281 |
typename _Visitor = BfsVisitor<_Digraph>, |
1283 | 1282 |
typename _Traits = BfsDefaultTraits<_Digraph> > |
1284 | 1283 |
#endif |
1285 | 1284 |
class BfsVisit { |
1286 | 1285 |
public: |
1287 | 1286 |
|
1288 | 1287 |
/// \brief \ref Exception for uninitialized parameters. |
1289 | 1288 |
/// |
1290 | 1289 |
/// This error represents problems in the initialization |
1291 | 1290 |
/// of the parameters of the algorithm. |
1292 | 1291 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1293 | 1292 |
public: |
1294 | 1293 |
virtual const char* what() const throw() |
1295 | 1294 |
{ |
1296 | 1295 |
return "lemon::BfsVisit::UninitializedParameter"; |
1297 | 1296 |
} |
1298 | 1297 |
}; |
1299 | 1298 |
|
1300 | 1299 |
///The traits class. |
1301 | 1300 |
typedef _Traits Traits; |
1302 | 1301 |
|
1303 | 1302 |
///The type of the digraph the algorithm runs on. |
1304 | 1303 |
typedef typename Traits::Digraph Digraph; |
1305 | 1304 |
|
1306 | 1305 |
///The visitor type used by the algorithm. |
1307 | 1306 |
typedef _Visitor Visitor; |
1308 | 1307 |
|
1309 | 1308 |
///The type of the map that indicates which nodes are reached. |
1310 | 1309 |
typedef typename Traits::ReachedMap ReachedMap; |
1311 | 1310 |
|
1312 | 1311 |
private: |
1313 | 1312 |
|
1314 | 1313 |
typedef typename Digraph::Node Node; |
1315 | 1314 |
typedef typename Digraph::NodeIt NodeIt; |
1316 | 1315 |
typedef typename Digraph::Arc Arc; |
1317 | 1316 |
typedef typename Digraph::OutArcIt OutArcIt; |
1318 | 1317 |
|
1319 | 1318 |
//Pointer to the underlying digraph. |
1320 | 1319 |
const Digraph *_digraph; |
1321 | 1320 |
//Pointer to the visitor object. |
1322 | 1321 |
Visitor *_visitor; |
1323 | 1322 |
//Pointer to the map of reached status of the nodes. |
1324 | 1323 |
ReachedMap *_reached; |
1325 | 1324 |
//Indicates if _reached is locally allocated (true) or not. |
1326 | 1325 |
bool local_reached; |
1327 | 1326 |
|
1328 | 1327 |
std::vector<typename Digraph::Node> _list; |
1329 | 1328 |
int _list_front, _list_back; |
1330 | 1329 |
|
1331 | 1330 |
///Creates the maps if necessary. |
1332 | 1331 |
///\todo Better memory allocation (instead of new). |
1333 | 1332 |
void create_maps() { |
1334 | 1333 |
if(!_reached) { |
1335 | 1334 |
local_reached = true; |
1336 | 1335 |
_reached = Traits::createReachedMap(*_digraph); |
1337 | 1336 |
} |
1338 | 1337 |
} |
1339 | 1338 |
|
1340 | 1339 |
protected: |
1341 | 1340 |
|
1342 | 1341 |
BfsVisit() {} |
1343 | 1342 |
|
1344 | 1343 |
public: |
1345 | 1344 |
|
1346 | 1345 |
typedef BfsVisit Create; |
1347 | 1346 |
|
1348 | 1347 |
/// \name Named template parameters |
1349 | 1348 |
|
1350 | 1349 |
///@{ |
1351 | 1350 |
template <class T> |
1352 |
struct |
|
1351 |
struct SetReachedMapTraits : public Traits { |
|
1353 | 1352 |
typedef T ReachedMap; |
1354 | 1353 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1355 | 1354 |
throw UninitializedParameter(); |
1356 | 1355 |
} |
1357 | 1356 |
}; |
1358 | 1357 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1359 | 1358 |
/// ReachedMap type. |
1360 | 1359 |
/// |
1361 | 1360 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1362 | 1361 |
template <class T> |
1363 |
struct DefReachedMap : public BfsVisit< Digraph, Visitor, |
|
1364 |
DefReachedMapTraits<T> > { |
|
1365 |
|
|
1362 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
|
1363 |
SetReachedMapTraits<T> > { |
|
1364 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
|
1366 | 1365 |
}; |
1367 | 1366 |
///@} |
1368 | 1367 |
|
1369 | 1368 |
public: |
1370 | 1369 |
|
1371 | 1370 |
/// \brief Constructor. |
1372 | 1371 |
/// |
1373 | 1372 |
/// Constructor. |
1374 | 1373 |
/// |
1375 | 1374 |
/// \param digraph The digraph the algorithm runs on. |
1376 | 1375 |
/// \param visitor The visitor object of the algorithm. |
1377 | 1376 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1378 | 1377 |
: _digraph(&digraph), _visitor(&visitor), |
1379 | 1378 |
_reached(0), local_reached(false) {} |
1380 | 1379 |
|
1381 | 1380 |
/// \brief Destructor. |
1382 | 1381 |
~BfsVisit() { |
1383 | 1382 |
if(local_reached) delete _reached; |
1384 | 1383 |
} |
1385 | 1384 |
|
1386 | 1385 |
/// \brief Sets the map that indicates which nodes are reached. |
1387 | 1386 |
/// |
1388 | 1387 |
/// Sets the map that indicates which nodes are reached. |
1389 | 1388 |
/// If you don't use this function before calling \ref run(), |
1390 | 1389 |
/// it will allocate one. The destructor deallocates this |
1391 | 1390 |
/// automatically allocated map, of course. |
1392 | 1391 |
/// \return <tt> (*this) </tt> |
1393 | 1392 |
BfsVisit &reachedMap(ReachedMap &m) { |
1394 | 1393 |
if(local_reached) { |
1395 | 1394 |
delete _reached; |
1396 | 1395 |
local_reached = false; |
1397 | 1396 |
} |
1398 | 1397 |
_reached = &m; |
1399 | 1398 |
return *this; |
1400 | 1399 |
} |
1401 | 1400 |
|
1402 | 1401 |
public: |
1403 | 1402 |
|
1404 | 1403 |
/// \name Execution control |
1405 | 1404 |
/// The simplest way to execute the algorithm is to use |
1406 | 1405 |
/// one of the member functions called \ref lemon::BfsVisit::run() |
1407 | 1406 |
/// "run()". |
1408 | 1407 |
/// \n |
1409 | 1408 |
/// If you need more control on the execution, first you must call |
1410 | 1409 |
/// \ref lemon::BfsVisit::init() "init()", then you can add several |
1411 | 1410 |
/// source nodes with \ref lemon::BfsVisit::addSource() "addSource()". |
1412 | 1411 |
/// Finally \ref lemon::BfsVisit::start() "start()" will perform the |
1413 | 1412 |
/// actual path computation. |
1414 | 1413 |
|
1415 | 1414 |
/// @{ |
1416 | 1415 |
|
1417 | 1416 |
/// \brief Initializes the internal data structures. |
1418 | 1417 |
/// |
1419 | 1418 |
/// Initializes the internal data structures. |
1420 | 1419 |
void init() { |
1421 | 1420 |
create_maps(); |
1422 | 1421 |
_list.resize(countNodes(*_digraph)); |
1423 | 1422 |
_list_front = _list_back = -1; |
1424 | 1423 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1425 | 1424 |
_reached->set(u, false); |
1426 | 1425 |
} |
1427 | 1426 |
} |
1428 | 1427 |
|
1429 | 1428 |
/// \brief Adds a new source node. |
1430 | 1429 |
/// |
1431 | 1430 |
/// Adds a new source node to the set of nodes to be processed. |
1432 | 1431 |
void addSource(Node s) { |
1433 | 1432 |
if(!(*_reached)[s]) { |
1434 | 1433 |
_reached->set(s,true); |
1435 | 1434 |
_visitor->start(s); |
1436 | 1435 |
_visitor->reach(s); |
1437 | 1436 |
_list[++_list_back] = s; |
1438 | 1437 |
} |
1439 | 1438 |
} |
1440 | 1439 |
|
1441 | 1440 |
/// \brief Processes the next node. |
1442 | 1441 |
/// |
1443 | 1442 |
/// Processes the next node. |
1444 | 1443 |
/// |
1445 | 1444 |
/// \return The processed node. |
1446 | 1445 |
/// |
1447 | 1446 |
/// \pre The queue must not be empty. |
1448 | 1447 |
Node processNextNode() { |
1449 | 1448 |
Node n = _list[++_list_front]; |
1450 | 1449 |
_visitor->process(n); |
1451 | 1450 |
Arc e; |
1452 | 1451 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1453 | 1452 |
Node m = _digraph->target(e); |
1454 | 1453 |
if (!(*_reached)[m]) { |
1455 | 1454 |
_visitor->discover(e); |
1456 | 1455 |
_visitor->reach(m); |
1457 | 1456 |
_reached->set(m, true); |
1458 | 1457 |
_list[++_list_back] = m; |
1459 | 1458 |
} else { |
1460 | 1459 |
_visitor->examine(e); |
1461 | 1460 |
} |
1462 | 1461 |
} |
1463 | 1462 |
return n; |
1464 | 1463 |
} |
1465 | 1464 |
|
1466 | 1465 |
/// \brief Processes the next node. |
1467 | 1466 |
/// |
1468 | 1467 |
/// Processes the next node and checks if the given target node |
1469 | 1468 |
/// is reached. If the target node is reachable from the processed |
1470 | 1469 |
/// node, then the \c reach parameter will be set to \c true. |
1471 | 1470 |
/// |
1472 | 1471 |
/// \param target The target node. |
1473 | 1472 |
/// \retval reach Indicates if the target node is reached. |
1474 | 1473 |
/// It should be initially \c false. |
1475 | 1474 |
/// |
1476 | 1475 |
/// \return The processed node. |
1477 | 1476 |
/// |
1478 | 1477 |
/// \pre The queue must not be empty. |
1479 | 1478 |
Node processNextNode(Node target, bool& reach) { |
1480 | 1479 |
Node n = _list[++_list_front]; |
1481 | 1480 |
_visitor->process(n); |
1482 | 1481 |
Arc e; |
1483 | 1482 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1484 | 1483 |
Node m = _digraph->target(e); |
1485 | 1484 |
if (!(*_reached)[m]) { |
1486 | 1485 |
_visitor->discover(e); |
1487 | 1486 |
_visitor->reach(m); |
1488 | 1487 |
_reached->set(m, true); |
1489 | 1488 |
_list[++_list_back] = m; |
1490 | 1489 |
reach = reach || (target == m); |
1491 | 1490 |
} else { |
1492 | 1491 |
_visitor->examine(e); |
1493 | 1492 |
} |
... | ... |
@@ -105,344 +105,343 @@ |
105 | 105 |
///This function instantiates a \ref DistMap. |
106 | 106 |
///\param g is the digraph, to which we would like to define the |
107 | 107 |
///\ref DistMap. |
108 | 108 |
static DistMap *createDistMap(const Digraph &g) |
109 | 109 |
{ |
110 | 110 |
return new DistMap(g); |
111 | 111 |
} |
112 | 112 |
}; |
113 | 113 |
|
114 | 114 |
///%DFS algorithm class. |
115 | 115 |
|
116 | 116 |
///\ingroup search |
117 | 117 |
///This class provides an efficient implementation of the %DFS algorithm. |
118 | 118 |
/// |
119 | 119 |
///There is also a \ref dfs() "function type interface" for the DFS |
120 | 120 |
///algorithm, which is convenient in the simplier cases and it can be |
121 | 121 |
///used easier. |
122 | 122 |
/// |
123 | 123 |
///\tparam GR The type of the digraph the algorithm runs on. |
124 | 124 |
///The default value is \ref ListDigraph. The value of GR is not used |
125 | 125 |
///directly by \ref Dfs, it is only passed to \ref DfsDefaultTraits. |
126 | 126 |
///\tparam TR Traits class to set various data types used by the algorithm. |
127 | 127 |
///The default traits class is |
128 | 128 |
///\ref DfsDefaultTraits "DfsDefaultTraits<GR>". |
129 | 129 |
///See \ref DfsDefaultTraits for the documentation of |
130 | 130 |
///a Dfs traits class. |
131 | 131 |
#ifdef DOXYGEN |
132 | 132 |
template <typename GR, |
133 | 133 |
typename TR> |
134 | 134 |
#else |
135 | 135 |
template <typename GR=ListDigraph, |
136 | 136 |
typename TR=DfsDefaultTraits<GR> > |
137 | 137 |
#endif |
138 | 138 |
class Dfs { |
139 | 139 |
public: |
140 | 140 |
///\ref Exception for uninitialized parameters. |
141 | 141 |
|
142 | 142 |
///This error represents problems in the initialization of the |
143 | 143 |
///parameters of the algorithm. |
144 | 144 |
class UninitializedParameter : public lemon::UninitializedParameter { |
145 | 145 |
public: |
146 | 146 |
virtual const char* what() const throw() { |
147 | 147 |
return "lemon::Dfs::UninitializedParameter"; |
148 | 148 |
} |
149 | 149 |
}; |
150 | 150 |
|
151 | 151 |
///The type of the digraph the algorithm runs on. |
152 | 152 |
typedef typename TR::Digraph Digraph; |
153 | 153 |
|
154 | 154 |
///\brief The type of the map that stores the predecessor arcs of the |
155 | 155 |
///DFS paths. |
156 | 156 |
typedef typename TR::PredMap PredMap; |
157 | 157 |
///The type of the map that stores the distances of the nodes. |
158 | 158 |
typedef typename TR::DistMap DistMap; |
159 | 159 |
///The type of the map that indicates which nodes are reached. |
160 | 160 |
typedef typename TR::ReachedMap ReachedMap; |
161 | 161 |
///The type of the map that indicates which nodes are processed. |
162 | 162 |
typedef typename TR::ProcessedMap ProcessedMap; |
163 | 163 |
///The type of the paths. |
164 | 164 |
typedef PredMapPath<Digraph, PredMap> Path; |
165 | 165 |
|
166 | 166 |
///The traits class. |
167 | 167 |
typedef TR Traits; |
168 | 168 |
|
169 | 169 |
private: |
170 | 170 |
|
171 | 171 |
typedef typename Digraph::Node Node; |
172 | 172 |
typedef typename Digraph::NodeIt NodeIt; |
173 | 173 |
typedef typename Digraph::Arc Arc; |
174 | 174 |
typedef typename Digraph::OutArcIt OutArcIt; |
175 | 175 |
|
176 | 176 |
//Pointer to the underlying digraph. |
177 | 177 |
const Digraph *G; |
178 | 178 |
//Pointer to the map of predecessor arcs. |
179 | 179 |
PredMap *_pred; |
180 | 180 |
//Indicates if _pred is locally allocated (true) or not. |
181 | 181 |
bool local_pred; |
182 | 182 |
//Pointer to the map of distances. |
183 | 183 |
DistMap *_dist; |
184 | 184 |
//Indicates if _dist is locally allocated (true) or not. |
185 | 185 |
bool local_dist; |
186 | 186 |
//Pointer to the map of reached status of the nodes. |
187 | 187 |
ReachedMap *_reached; |
188 | 188 |
//Indicates if _reached is locally allocated (true) or not. |
189 | 189 |
bool local_reached; |
190 | 190 |
//Pointer to the map of processed status of the nodes. |
191 | 191 |
ProcessedMap *_processed; |
192 | 192 |
//Indicates if _processed is locally allocated (true) or not. |
193 | 193 |
bool local_processed; |
194 | 194 |
|
195 | 195 |
std::vector<typename Digraph::OutArcIt> _stack; |
196 | 196 |
int _stack_head; |
197 | 197 |
|
198 | 198 |
///Creates the maps if necessary. |
199 | 199 |
///\todo Better memory allocation (instead of new). |
200 | 200 |
void create_maps() |
201 | 201 |
{ |
202 | 202 |
if(!_pred) { |
203 | 203 |
local_pred = true; |
204 | 204 |
_pred = Traits::createPredMap(*G); |
205 | 205 |
} |
206 | 206 |
if(!_dist) { |
207 | 207 |
local_dist = true; |
208 | 208 |
_dist = Traits::createDistMap(*G); |
209 | 209 |
} |
210 | 210 |
if(!_reached) { |
211 | 211 |
local_reached = true; |
212 | 212 |
_reached = Traits::createReachedMap(*G); |
213 | 213 |
} |
214 | 214 |
if(!_processed) { |
215 | 215 |
local_processed = true; |
216 | 216 |
_processed = Traits::createProcessedMap(*G); |
217 | 217 |
} |
218 | 218 |
} |
219 | 219 |
|
220 | 220 |
protected: |
221 | 221 |
|
222 | 222 |
Dfs() {} |
223 | 223 |
|
224 | 224 |
public: |
225 | 225 |
|
226 | 226 |
typedef Dfs Create; |
227 | 227 |
|
228 | 228 |
///\name Named template parameters |
229 | 229 |
|
230 | 230 |
///@{ |
231 | 231 |
|
232 | 232 |
template <class T> |
233 |
struct |
|
233 |
struct SetPredMapTraits : public Traits { |
|
234 | 234 |
typedef T PredMap; |
235 | 235 |
static PredMap *createPredMap(const Digraph &) |
236 | 236 |
{ |
237 | 237 |
throw UninitializedParameter(); |
238 | 238 |
} |
239 | 239 |
}; |
240 | 240 |
///\brief \ref named-templ-param "Named parameter" for setting |
241 | 241 |
///\ref PredMap type. |
242 | 242 |
/// |
243 | 243 |
///\ref named-templ-param "Named parameter" for setting |
244 | 244 |
///\ref PredMap type. |
245 | 245 |
template <class T> |
246 |
struct DefPredMap : public Dfs<Digraph, DefPredMapTraits<T> > { |
|
247 |
typedef Dfs<Digraph, DefPredMapTraits<T> > Create; |
|
246 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
|
247 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
|
248 | 248 |
}; |
249 | 249 |
|
250 | 250 |
template <class T> |
251 |
struct |
|
251 |
struct SetDistMapTraits : public Traits { |
|
252 | 252 |
typedef T DistMap; |
253 | 253 |
static DistMap *createDistMap(const Digraph &) |
254 | 254 |
{ |
255 | 255 |
throw UninitializedParameter(); |
256 | 256 |
} |
257 | 257 |
}; |
258 | 258 |
///\brief \ref named-templ-param "Named parameter" for setting |
259 | 259 |
///\ref DistMap type. |
260 | 260 |
/// |
261 | 261 |
///\ref named-templ-param "Named parameter" for setting |
262 | 262 |
///\ref DistMap type. |
263 | 263 |
template <class T> |
264 |
struct DefDistMap : public Dfs< Digraph, DefDistMapTraits<T> > { |
|
265 |
typedef Dfs<Digraph, DefDistMapTraits<T> > Create; |
|
264 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
|
265 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
|
266 | 266 |
}; |
267 | 267 |
|
268 | 268 |
template <class T> |
269 |
struct |
|
269 |
struct SetReachedMapTraits : public Traits { |
|
270 | 270 |
typedef T ReachedMap; |
271 | 271 |
static ReachedMap *createReachedMap(const Digraph &) |
272 | 272 |
{ |
273 | 273 |
throw UninitializedParameter(); |
274 | 274 |
} |
275 | 275 |
}; |
276 | 276 |
///\brief \ref named-templ-param "Named parameter" for setting |
277 | 277 |
///\ref ReachedMap type. |
278 | 278 |
/// |
279 | 279 |
///\ref named-templ-param "Named parameter" for setting |
280 | 280 |
///\ref ReachedMap type. |
281 | 281 |
template <class T> |
282 |
struct DefReachedMap : public Dfs< Digraph, DefReachedMapTraits<T> > { |
|
283 |
typedef Dfs< Digraph, DefReachedMapTraits<T> > Create; |
|
282 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
|
283 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
|
284 | 284 |
}; |
285 | 285 |
|
286 | 286 |
template <class T> |
287 |
struct |
|
287 |
struct SetProcessedMapTraits : public Traits { |
|
288 | 288 |
typedef T ProcessedMap; |
289 | 289 |
static ProcessedMap *createProcessedMap(const Digraph &) |
290 | 290 |
{ |
291 | 291 |
throw UninitializedParameter(); |
292 | 292 |
} |
293 | 293 |
}; |
294 | 294 |
///\brief \ref named-templ-param "Named parameter" for setting |
295 | 295 |
///\ref ProcessedMap type. |
296 | 296 |
/// |
297 | 297 |
///\ref named-templ-param "Named parameter" for setting |
298 | 298 |
///\ref ProcessedMap type. |
299 | 299 |
template <class T> |
300 |
struct DefProcessedMap : public Dfs< Digraph, DefProcessedMapTraits<T> > { |
|
301 |
typedef Dfs< Digraph, DefProcessedMapTraits<T> > Create; |
|
300 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
|
301 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
|
302 | 302 |
}; |
303 | 303 |
|
304 |
struct |
|
304 |
struct SetStandardProcessedMapTraits : public Traits { |
|
305 | 305 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
306 | 306 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
307 | 307 |
{ |
308 | 308 |
return new ProcessedMap(g); |
309 | 309 |
} |
310 | 310 |
}; |
311 | 311 |
///\brief \ref named-templ-param "Named parameter" for setting |
312 | 312 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
313 | 313 |
/// |
314 | 314 |
///\ref named-templ-param "Named parameter" for setting |
315 | 315 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
316 | 316 |
///If you don't set it explicitly, it will be automatically allocated. |
317 |
template <class T> |
|
318 |
struct DefProcessedMapToBeDefaultMap : |
|
319 |
public Dfs< Digraph, DefDigraphProcessedMapTraits> { |
|
320 |
typedef Dfs< Digraph, DefDigraphProcessedMapTraits> Create; |
|
317 |
struct SetStandardProcessedMap : |
|
318 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
|
319 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
|
321 | 320 |
}; |
322 | 321 |
|
323 | 322 |
///@} |
324 | 323 |
|
325 | 324 |
public: |
326 | 325 |
|
327 | 326 |
///Constructor. |
328 | 327 |
|
329 | 328 |
///Constructor. |
330 | 329 |
///\param g The digraph the algorithm runs on. |
331 | 330 |
Dfs(const Digraph &g) : |
332 | 331 |
G(&g), |
333 | 332 |
_pred(NULL), local_pred(false), |
334 | 333 |
_dist(NULL), local_dist(false), |
335 | 334 |
_reached(NULL), local_reached(false), |
336 | 335 |
_processed(NULL), local_processed(false) |
337 | 336 |
{ } |
338 | 337 |
|
339 | 338 |
///Destructor. |
340 | 339 |
~Dfs() |
341 | 340 |
{ |
342 | 341 |
if(local_pred) delete _pred; |
343 | 342 |
if(local_dist) delete _dist; |
344 | 343 |
if(local_reached) delete _reached; |
345 | 344 |
if(local_processed) delete _processed; |
346 | 345 |
} |
347 | 346 |
|
348 | 347 |
///Sets the map that stores the predecessor arcs. |
349 | 348 |
|
350 | 349 |
///Sets the map that stores the predecessor arcs. |
351 | 350 |
///If you don't use this function before calling \ref run(), |
352 | 351 |
///it will allocate one. The destructor deallocates this |
353 | 352 |
///automatically allocated map, of course. |
354 | 353 |
///\return <tt> (*this) </tt> |
355 | 354 |
Dfs &predMap(PredMap &m) |
356 | 355 |
{ |
357 | 356 |
if(local_pred) { |
358 | 357 |
delete _pred; |
359 | 358 |
local_pred=false; |
360 | 359 |
} |
361 | 360 |
_pred = &m; |
362 | 361 |
return *this; |
363 | 362 |
} |
364 | 363 |
|
365 | 364 |
///Sets the map that indicates which nodes are reached. |
366 | 365 |
|
367 | 366 |
///Sets the map that indicates which nodes are reached. |
368 | 367 |
///If you don't use this function before calling \ref run(), |
369 | 368 |
///it will allocate one. The destructor deallocates this |
370 | 369 |
///automatically allocated map, of course. |
371 | 370 |
///\return <tt> (*this) </tt> |
372 | 371 |
Dfs &reachedMap(ReachedMap &m) |
373 | 372 |
{ |
374 | 373 |
if(local_reached) { |
375 | 374 |
delete _reached; |
376 | 375 |
local_reached=false; |
377 | 376 |
} |
378 | 377 |
_reached = &m; |
379 | 378 |
return *this; |
380 | 379 |
} |
381 | 380 |
|
382 | 381 |
///Sets the map that indicates which nodes are processed. |
383 | 382 |
|
384 | 383 |
///Sets the map that indicates which nodes are processed. |
385 | 384 |
///If you don't use this function before calling \ref run(), |
386 | 385 |
///it will allocate one. The destructor deallocates this |
387 | 386 |
///automatically allocated map, of course. |
388 | 387 |
///\return <tt> (*this) </tt> |
389 | 388 |
Dfs &processedMap(ProcessedMap &m) |
390 | 389 |
{ |
391 | 390 |
if(local_processed) { |
392 | 391 |
delete _processed; |
393 | 392 |
local_processed=false; |
394 | 393 |
} |
395 | 394 |
_processed = &m; |
396 | 395 |
return *this; |
397 | 396 |
} |
398 | 397 |
|
399 | 398 |
///Sets the map that stores the distances of the nodes. |
400 | 399 |
|
401 | 400 |
///Sets the map that stores the distances of the nodes calculated by |
402 | 401 |
///the algorithm. |
403 | 402 |
///If you don't use this function before calling \ref run(), |
404 | 403 |
///it will allocate one. The destructor deallocates this |
405 | 404 |
///automatically allocated map, of course. |
406 | 405 |
///\return <tt> (*this) </tt> |
407 | 406 |
Dfs &distMap(DistMap &m) |
408 | 407 |
{ |
409 | 408 |
if(local_dist) { |
410 | 409 |
delete _dist; |
411 | 410 |
local_dist=false; |
412 | 411 |
} |
413 | 412 |
_dist = &m; |
414 | 413 |
return *this; |
415 | 414 |
} |
416 | 415 |
|
417 | 416 |
public: |
418 | 417 |
|
419 | 418 |
///\name Execution control |
420 | 419 |
///The simplest way to execute the algorithm is to use |
421 | 420 |
///one of the member functions called \ref lemon::Dfs::run() "run()". |
422 | 421 |
///\n |
423 | 422 |
///If you need more control on the execution, first you must call |
424 | 423 |
///\ref lemon::Dfs::init() "init()", then you can add a source node |
425 | 424 |
///with \ref lemon::Dfs::addSource() "addSource()". |
426 | 425 |
///Finally \ref lemon::Dfs::start() "start()" will perform the |
427 | 426 |
///actual path computation. |
428 | 427 |
|
429 | 428 |
///@{ |
430 | 429 |
|
431 | 430 |
///Initializes the internal data structures. |
432 | 431 |
|
433 | 432 |
///Initializes the internal data structures. |
434 | 433 |
/// |
435 | 434 |
void init() |
436 | 435 |
{ |
437 | 436 |
create_maps(); |
438 | 437 |
_stack.resize(countNodes(*G)); |
439 | 438 |
_stack_head=-1; |
440 | 439 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
441 | 440 |
_pred->set(u,INVALID); |
442 | 441 |
_reached->set(u,false); |
443 | 442 |
_processed->set(u,false); |
444 | 443 |
} |
445 | 444 |
} |
446 | 445 |
|
447 | 446 |
///Adds a new source node. |
448 | 447 |
|
... | ... |
@@ -875,566 +874,566 @@ |
875 | 874 |
void *_pred; |
876 | 875 |
//Pointer to the map of distances. |
877 | 876 |
void *_dist; |
878 | 877 |
//Pointer to the source node. |
879 | 878 |
Node _source; |
880 | 879 |
|
881 | 880 |
public: |
882 | 881 |
/// Constructor. |
883 | 882 |
|
884 | 883 |
/// This constructor does not require parameters, therefore it initiates |
885 | 884 |
/// all of the attributes to default values (0, INVALID). |
886 | 885 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
887 | 886 |
_dist(0), _source(INVALID) {} |
888 | 887 |
|
889 | 888 |
/// Constructor. |
890 | 889 |
|
891 | 890 |
/// This constructor requires some parameters, |
892 | 891 |
/// listed in the parameters list. |
893 | 892 |
/// Others are initiated to 0. |
894 | 893 |
/// \param g The digraph the algorithm runs on. |
895 | 894 |
/// \param s The source node. |
896 | 895 |
DfsWizardBase(const GR &g, Node s=INVALID) : |
897 | 896 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
898 | 897 |
_reached(0), _processed(0), _pred(0), _dist(0), _source(s) {} |
899 | 898 |
|
900 | 899 |
}; |
901 | 900 |
|
902 | 901 |
/// Auxiliary class for the function type interface of DFS algorithm. |
903 | 902 |
|
904 | 903 |
/// This auxiliary class is created to implement the function type |
905 | 904 |
/// interface of \ref Dfs algorithm. It uses the functions and features |
906 | 905 |
/// of the plain \ref Dfs, but it is much simpler to use it. |
907 | 906 |
/// It should only be used through the \ref dfs() function, which makes |
908 | 907 |
/// it easier to use the algorithm. |
909 | 908 |
/// |
910 | 909 |
/// Simplicity means that the way to change the types defined |
911 | 910 |
/// in the traits class is based on functions that returns the new class |
912 | 911 |
/// and not on templatable built-in classes. |
913 | 912 |
/// When using the plain \ref Dfs |
914 | 913 |
/// the new class with the modified type comes from |
915 | 914 |
/// the original class by using the :: |
916 | 915 |
/// operator. In the case of \ref DfsWizard only |
917 | 916 |
/// a function have to be called, and it will |
918 | 917 |
/// return the needed class. |
919 | 918 |
/// |
920 | 919 |
/// It does not have own \ref run() method. When its \ref run() method |
921 | 920 |
/// is called, it initiates a plain \ref Dfs object, and calls the |
922 | 921 |
/// \ref Dfs::run() method of it. |
923 | 922 |
template<class TR> |
924 | 923 |
class DfsWizard : public TR |
925 | 924 |
{ |
926 | 925 |
typedef TR Base; |
927 | 926 |
|
928 | 927 |
///The type of the digraph the algorithm runs on. |
929 | 928 |
typedef typename TR::Digraph Digraph; |
930 | 929 |
|
931 | 930 |
typedef typename Digraph::Node Node; |
932 | 931 |
typedef typename Digraph::NodeIt NodeIt; |
933 | 932 |
typedef typename Digraph::Arc Arc; |
934 | 933 |
typedef typename Digraph::OutArcIt OutArcIt; |
935 | 934 |
|
936 | 935 |
///\brief The type of the map that stores the predecessor |
937 | 936 |
///arcs of the shortest paths. |
938 | 937 |
typedef typename TR::PredMap PredMap; |
939 | 938 |
///\brief The type of the map that stores the distances of the nodes. |
940 | 939 |
typedef typename TR::DistMap DistMap; |
941 | 940 |
///\brief The type of the map that indicates which nodes are reached. |
942 | 941 |
typedef typename TR::ReachedMap ReachedMap; |
943 | 942 |
///\brief The type of the map that indicates which nodes are processed. |
944 | 943 |
typedef typename TR::ProcessedMap ProcessedMap; |
945 | 944 |
|
946 | 945 |
public: |
947 | 946 |
|
948 | 947 |
/// Constructor. |
949 | 948 |
DfsWizard() : TR() {} |
950 | 949 |
|
951 | 950 |
/// Constructor that requires parameters. |
952 | 951 |
|
953 | 952 |
/// Constructor that requires parameters. |
954 | 953 |
/// These parameters will be the default values for the traits class. |
955 | 954 |
DfsWizard(const Digraph &g, Node s=INVALID) : |
956 | 955 |
TR(g,s) {} |
957 | 956 |
|
958 | 957 |
///Copy constructor |
959 | 958 |
DfsWizard(const TR &b) : TR(b) {} |
960 | 959 |
|
961 | 960 |
~DfsWizard() {} |
962 | 961 |
|
963 | 962 |
///Runs DFS algorithm from a source node. |
964 | 963 |
|
965 | 964 |
///Runs DFS algorithm from a source node. |
966 | 965 |
///The node can be given with the \ref source() function. |
967 | 966 |
void run() |
968 | 967 |
{ |
969 | 968 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
970 | 969 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
971 | 970 |
if(Base::_reached) |
972 | 971 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
973 | 972 |
if(Base::_processed) |
974 | 973 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
975 | 974 |
if(Base::_pred) |
976 | 975 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
977 | 976 |
if(Base::_dist) |
978 | 977 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
979 | 978 |
alg.run(Base::_source); |
980 | 979 |
} |
981 | 980 |
|
982 | 981 |
///Runs DFS algorithm from the given node. |
983 | 982 |
|
984 | 983 |
///Runs DFS algorithm from the given node. |
985 | 984 |
///\param s is the given source. |
986 | 985 |
void run(Node s) |
987 | 986 |
{ |
988 | 987 |
Base::_source=s; |
989 | 988 |
run(); |
990 | 989 |
} |
991 | 990 |
|
992 | 991 |
/// Sets the source node, from which the Dfs algorithm runs. |
993 | 992 |
|
994 | 993 |
/// Sets the source node, from which the Dfs algorithm runs. |
995 | 994 |
/// \param s is the source node. |
996 | 995 |
DfsWizard<TR> &source(Node s) |
997 | 996 |
{ |
998 | 997 |
Base::_source=s; |
999 | 998 |
return *this; |
1000 | 999 |
} |
1001 | 1000 |
|
1002 | 1001 |
template<class T> |
1003 |
struct |
|
1002 |
struct SetPredMapBase : public Base { |
|
1004 | 1003 |
typedef T PredMap; |
1005 | 1004 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1006 |
|
|
1005 |
SetPredMapBase(const TR &b) : TR(b) {} |
|
1007 | 1006 |
}; |
1008 | 1007 |
///\brief \ref named-templ-param "Named parameter" |
1009 | 1008 |
///for setting \ref PredMap object. |
1010 | 1009 |
/// |
1011 | 1010 |
///\ref named-templ-param "Named parameter" |
1012 | 1011 |
///for setting \ref PredMap object. |
1013 | 1012 |
template<class T> |
1014 |
DfsWizard< |
|
1013 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
|
1015 | 1014 |
{ |
1016 | 1015 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1017 |
return DfsWizard< |
|
1016 |
return DfsWizard<SetPredMapBase<T> >(*this); |
|
1018 | 1017 |
} |
1019 | 1018 |
|
1020 | 1019 |
template<class T> |
1021 |
struct |
|
1020 |
struct SetReachedMapBase : public Base { |
|
1022 | 1021 |
typedef T ReachedMap; |
1023 | 1022 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1024 |
|
|
1023 |
SetReachedMapBase(const TR &b) : TR(b) {} |
|
1025 | 1024 |
}; |
1026 | 1025 |
///\brief \ref named-templ-param "Named parameter" |
1027 | 1026 |
///for setting \ref ReachedMap object. |
1028 | 1027 |
/// |
1029 | 1028 |
/// \ref named-templ-param "Named parameter" |
1030 | 1029 |
///for setting \ref ReachedMap object. |
1031 | 1030 |
template<class T> |
1032 |
DfsWizard< |
|
1031 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
|
1033 | 1032 |
{ |
1034 | 1033 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1035 |
return DfsWizard< |
|
1034 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
|
1036 | 1035 |
} |
1037 | 1036 |
|
1038 | 1037 |
template<class T> |
1039 |
struct |
|
1038 |
struct SetProcessedMapBase : public Base { |
|
1040 | 1039 |
typedef T ProcessedMap; |
1041 | 1040 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1042 |
|
|
1041 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
|
1043 | 1042 |
}; |
1044 | 1043 |
///\brief \ref named-templ-param "Named parameter" |
1045 | 1044 |
///for setting \ref ProcessedMap object. |
1046 | 1045 |
/// |
1047 | 1046 |
/// \ref named-templ-param "Named parameter" |
1048 | 1047 |
///for setting \ref ProcessedMap object. |
1049 | 1048 |
template<class T> |
1050 |
DfsWizard< |
|
1049 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
|
1051 | 1050 |
{ |
1052 | 1051 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1053 |
return DfsWizard< |
|
1052 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
|
1054 | 1053 |
} |
1055 | 1054 |
|
1056 | 1055 |
template<class T> |
1057 |
struct |
|
1056 |
struct SetDistMapBase : public Base { |
|
1058 | 1057 |
typedef T DistMap; |
1059 | 1058 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1060 |
|
|
1059 |
SetDistMapBase(const TR &b) : TR(b) {} |
|
1061 | 1060 |
}; |
1062 | 1061 |
///\brief \ref named-templ-param "Named parameter" |
1063 | 1062 |
///for setting \ref DistMap object. |
1064 | 1063 |
/// |
1065 | 1064 |
///\ref named-templ-param "Named parameter" |
1066 | 1065 |
///for setting \ref DistMap object. |
1067 | 1066 |
template<class T> |
1068 |
DfsWizard< |
|
1067 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
|
1069 | 1068 |
{ |
1070 | 1069 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1071 |
return DfsWizard< |
|
1070 |
return DfsWizard<SetDistMapBase<T> >(*this); |
|
1072 | 1071 |
} |
1073 | 1072 |
|
1074 | 1073 |
}; |
1075 | 1074 |
|
1076 | 1075 |
///Function type interface for Dfs algorithm. |
1077 | 1076 |
|
1078 | 1077 |
///\ingroup search |
1079 | 1078 |
///Function type interface for Dfs algorithm. |
1080 | 1079 |
/// |
1081 | 1080 |
///This function also has several |
1082 | 1081 |
///\ref named-templ-func-param "named parameters", |
1083 | 1082 |
///they are declared as the members of class \ref DfsWizard. |
1084 | 1083 |
///The following |
1085 | 1084 |
///example shows how to use these parameters. |
1086 | 1085 |
///\code |
1087 | 1086 |
/// dfs(g,source).predMap(preds).run(); |
1088 | 1087 |
///\endcode |
1089 | 1088 |
///\warning Don't forget to put the \ref DfsWizard::run() "run()" |
1090 | 1089 |
///to the end of the parameter list. |
1091 | 1090 |
///\sa DfsWizard |
1092 | 1091 |
///\sa Dfs |
1093 | 1092 |
template<class GR> |
1094 | 1093 |
DfsWizard<DfsWizardBase<GR> > |
1095 | 1094 |
dfs(const GR &g,typename GR::Node s=INVALID) |
1096 | 1095 |
{ |
1097 | 1096 |
return DfsWizard<DfsWizardBase<GR> >(g,s); |
1098 | 1097 |
} |
1099 | 1098 |
|
1100 | 1099 |
#ifdef DOXYGEN |
1101 | 1100 |
/// \brief Visitor class for DFS. |
1102 | 1101 |
/// |
1103 | 1102 |
/// This class defines the interface of the DfsVisit events, and |
1104 | 1103 |
/// it could be the base of a real visitor class. |
1105 | 1104 |
template <typename _Digraph> |
1106 | 1105 |
struct DfsVisitor { |
1107 | 1106 |
typedef _Digraph Digraph; |
1108 | 1107 |
typedef typename Digraph::Arc Arc; |
1109 | 1108 |
typedef typename Digraph::Node Node; |
1110 | 1109 |
/// \brief Called for the source node of the DFS. |
1111 | 1110 |
/// |
1112 | 1111 |
/// This function is called for the source node of the DFS. |
1113 | 1112 |
void start(const Node& node) {} |
1114 | 1113 |
/// \brief Called when the source node is leaved. |
1115 | 1114 |
/// |
1116 | 1115 |
/// This function is called when the source node is leaved. |
1117 | 1116 |
void stop(const Node& node) {} |
1118 | 1117 |
/// \brief Called when a node is reached first time. |
1119 | 1118 |
/// |
1120 | 1119 |
/// This function is called when a node is reached first time. |
1121 | 1120 |
void reach(const Node& node) {} |
1122 | 1121 |
/// \brief Called when an arc reaches a new node. |
1123 | 1122 |
/// |
1124 | 1123 |
/// This function is called when the DFS finds an arc whose target node |
1125 | 1124 |
/// is not reached yet. |
1126 | 1125 |
void discover(const Arc& arc) {} |
1127 | 1126 |
/// \brief Called when an arc is examined but its target node is |
1128 | 1127 |
/// already discovered. |
1129 | 1128 |
/// |
1130 | 1129 |
/// This function is called when an arc is examined but its target node is |
1131 | 1130 |
/// already discovered. |
1132 | 1131 |
void examine(const Arc& arc) {} |
1133 | 1132 |
/// \brief Called when the DFS steps back from a node. |
1134 | 1133 |
/// |
1135 | 1134 |
/// This function is called when the DFS steps back from a node. |
1136 | 1135 |
void leave(const Node& node) {} |
1137 | 1136 |
/// \brief Called when the DFS steps back on an arc. |
1138 | 1137 |
/// |
1139 | 1138 |
/// This function is called when the DFS steps back on an arc. |
1140 | 1139 |
void backtrack(const Arc& arc) {} |
1141 | 1140 |
}; |
1142 | 1141 |
#else |
1143 | 1142 |
template <typename _Digraph> |
1144 | 1143 |
struct DfsVisitor { |
1145 | 1144 |
typedef _Digraph Digraph; |
1146 | 1145 |
typedef typename Digraph::Arc Arc; |
1147 | 1146 |
typedef typename Digraph::Node Node; |
1148 | 1147 |
void start(const Node&) {} |
1149 | 1148 |
void stop(const Node&) {} |
1150 | 1149 |
void reach(const Node&) {} |
1151 | 1150 |
void discover(const Arc&) {} |
1152 | 1151 |
void examine(const Arc&) {} |
1153 | 1152 |
void leave(const Node&) {} |
1154 | 1153 |
void backtrack(const Arc&) {} |
1155 | 1154 |
|
1156 | 1155 |
template <typename _Visitor> |
1157 | 1156 |
struct Constraints { |
1158 | 1157 |
void constraints() { |
1159 | 1158 |
Arc arc; |
1160 | 1159 |
Node node; |
1161 | 1160 |
visitor.start(node); |
1162 | 1161 |
visitor.stop(arc); |
1163 | 1162 |
visitor.reach(node); |
1164 | 1163 |
visitor.discover(arc); |
1165 | 1164 |
visitor.examine(arc); |
1166 | 1165 |
visitor.leave(node); |
1167 | 1166 |
visitor.backtrack(arc); |
1168 | 1167 |
} |
1169 | 1168 |
_Visitor& visitor; |
1170 | 1169 |
}; |
1171 | 1170 |
}; |
1172 | 1171 |
#endif |
1173 | 1172 |
|
1174 | 1173 |
/// \brief Default traits class of DfsVisit class. |
1175 | 1174 |
/// |
1176 | 1175 |
/// Default traits class of DfsVisit class. |
1177 | 1176 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1178 | 1177 |
template<class _Digraph> |
1179 | 1178 |
struct DfsVisitDefaultTraits { |
1180 | 1179 |
|
1181 | 1180 |
/// \brief The type of the digraph the algorithm runs on. |
1182 | 1181 |
typedef _Digraph Digraph; |
1183 | 1182 |
|
1184 | 1183 |
/// \brief The type of the map that indicates which nodes are reached. |
1185 | 1184 |
/// |
1186 | 1185 |
/// The type of the map that indicates which nodes are reached. |
1187 | 1186 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1188 | 1187 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1189 | 1188 |
|
1190 | 1189 |
/// \brief Instantiates a \ref ReachedMap. |
1191 | 1190 |
/// |
1192 | 1191 |
/// This function instantiates a \ref ReachedMap. |
1193 | 1192 |
/// \param digraph is the digraph, to which |
1194 | 1193 |
/// we would like to define the \ref ReachedMap. |
1195 | 1194 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1196 | 1195 |
return new ReachedMap(digraph); |
1197 | 1196 |
} |
1198 | 1197 |
|
1199 | 1198 |
}; |
1200 | 1199 |
|
1201 | 1200 |
/// \ingroup search |
1202 | 1201 |
/// |
1203 | 1202 |
/// \brief %DFS algorithm class with visitor interface. |
1204 | 1203 |
/// |
1205 | 1204 |
/// This class provides an efficient implementation of the %DFS algorithm |
1206 | 1205 |
/// with visitor interface. |
1207 | 1206 |
/// |
1208 | 1207 |
/// The %DfsVisit class provides an alternative interface to the Dfs |
1209 | 1208 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1210 | 1209 |
/// the member functions of the \c Visitor class on every DFS event. |
1211 | 1210 |
/// |
1212 | 1211 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1213 | 1212 |
/// The default value is |
1214 | 1213 |
/// \ref ListDigraph. The value of _Digraph is not used directly by |
1215 | 1214 |
/// \ref DfsVisit, it is only passed to \ref DfsVisitDefaultTraits. |
1216 | 1215 |
/// \tparam _Visitor The Visitor type that is used by the algorithm. |
1217 | 1216 |
/// \ref DfsVisitor "DfsVisitor<_Digraph>" is an empty visitor, which |
1218 | 1217 |
/// does not observe the DFS events. If you want to observe the DFS |
1219 | 1218 |
/// events, you should implement your own visitor class. |
1220 | 1219 |
/// \tparam _Traits Traits class to set various data types used by the |
1221 | 1220 |
/// algorithm. The default traits class is |
1222 | 1221 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<_Digraph>". |
1223 | 1222 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1224 | 1223 |
/// a DFS visit traits class. |
1225 | 1224 |
#ifdef DOXYGEN |
1226 | 1225 |
template <typename _Digraph, typename _Visitor, typename _Traits> |
1227 | 1226 |
#else |
1228 | 1227 |
template <typename _Digraph = ListDigraph, |
1229 | 1228 |
typename _Visitor = DfsVisitor<_Digraph>, |
1230 | 1229 |
typename _Traits = DfsDefaultTraits<_Digraph> > |
1231 | 1230 |
#endif |
1232 | 1231 |
class DfsVisit { |
1233 | 1232 |
public: |
1234 | 1233 |
|
1235 | 1234 |
/// \brief \ref Exception for uninitialized parameters. |
1236 | 1235 |
/// |
1237 | 1236 |
/// This error represents problems in the initialization |
1238 | 1237 |
/// of the parameters of the algorithm. |
1239 | 1238 |
class UninitializedParameter : public lemon::UninitializedParameter { |
1240 | 1239 |
public: |
1241 | 1240 |
virtual const char* what() const throw() |
1242 | 1241 |
{ |
1243 | 1242 |
return "lemon::DfsVisit::UninitializedParameter"; |
1244 | 1243 |
} |
1245 | 1244 |
}; |
1246 | 1245 |
|
1247 | 1246 |
///The traits class. |
1248 | 1247 |
typedef _Traits Traits; |
1249 | 1248 |
|
1250 | 1249 |
///The type of the digraph the algorithm runs on. |
1251 | 1250 |
typedef typename Traits::Digraph Digraph; |
1252 | 1251 |
|
1253 | 1252 |
///The visitor type used by the algorithm. |
1254 | 1253 |
typedef _Visitor Visitor; |
1255 | 1254 |
|
1256 | 1255 |
///The type of the map that indicates which nodes are reached. |
1257 | 1256 |
typedef typename Traits::ReachedMap ReachedMap; |
1258 | 1257 |
|
1259 | 1258 |
private: |
1260 | 1259 |
|
1261 | 1260 |
typedef typename Digraph::Node Node; |
1262 | 1261 |
typedef typename Digraph::NodeIt NodeIt; |
1263 | 1262 |
typedef typename Digraph::Arc Arc; |
1264 | 1263 |
typedef typename Digraph::OutArcIt OutArcIt; |
1265 | 1264 |
|
1266 | 1265 |
//Pointer to the underlying digraph. |
1267 | 1266 |
const Digraph *_digraph; |
1268 | 1267 |
//Pointer to the visitor object. |
1269 | 1268 |
Visitor *_visitor; |
1270 | 1269 |
//Pointer to the map of reached status of the nodes. |
1271 | 1270 |
ReachedMap *_reached; |
1272 | 1271 |
//Indicates if _reached is locally allocated (true) or not. |
1273 | 1272 |
bool local_reached; |
1274 | 1273 |
|
1275 | 1274 |
std::vector<typename Digraph::Arc> _stack; |
1276 | 1275 |
int _stack_head; |
1277 | 1276 |
|
1278 | 1277 |
///Creates the maps if necessary. |
1279 | 1278 |
///\todo Better memory allocation (instead of new). |
1280 | 1279 |
void create_maps() { |
1281 | 1280 |
if(!_reached) { |
1282 | 1281 |
local_reached = true; |
1283 | 1282 |
_reached = Traits::createReachedMap(*_digraph); |
1284 | 1283 |
} |
1285 | 1284 |
} |
1286 | 1285 |
|
1287 | 1286 |
protected: |
1288 | 1287 |
|
1289 | 1288 |
DfsVisit() {} |
1290 | 1289 |
|
1291 | 1290 |
public: |
1292 | 1291 |
|
1293 | 1292 |
typedef DfsVisit Create; |
1294 | 1293 |
|
1295 | 1294 |
/// \name Named template parameters |
1296 | 1295 |
|
1297 | 1296 |
///@{ |
1298 | 1297 |
template <class T> |
1299 |
struct |
|
1298 |
struct SetReachedMapTraits : public Traits { |
|
1300 | 1299 |
typedef T ReachedMap; |
1301 | 1300 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1302 | 1301 |
throw UninitializedParameter(); |
1303 | 1302 |
} |
1304 | 1303 |
}; |
1305 | 1304 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1306 | 1305 |
/// ReachedMap type. |
1307 | 1306 |
/// |
1308 | 1307 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1309 | 1308 |
template <class T> |
1310 |
struct DefReachedMap : public DfsVisit< Digraph, Visitor, |
|
1311 |
DefReachedMapTraits<T> > { |
|
1312 |
|
|
1309 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
|
1310 |
SetReachedMapTraits<T> > { |
|
1311 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
|
1313 | 1312 |
}; |
1314 | 1313 |
///@} |
1315 | 1314 |
|
1316 | 1315 |
public: |
1317 | 1316 |
|
1318 | 1317 |
/// \brief Constructor. |
1319 | 1318 |
/// |
1320 | 1319 |
/// Constructor. |
1321 | 1320 |
/// |
1322 | 1321 |
/// \param digraph The digraph the algorithm runs on. |
1323 | 1322 |
/// \param visitor The visitor object of the algorithm. |
1324 | 1323 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1325 | 1324 |
: _digraph(&digraph), _visitor(&visitor), |
1326 | 1325 |
_reached(0), local_reached(false) {} |
1327 | 1326 |
|
1328 | 1327 |
/// \brief Destructor. |
1329 | 1328 |
~DfsVisit() { |
1330 | 1329 |
if(local_reached) delete _reached; |
1331 | 1330 |
} |
1332 | 1331 |
|
1333 | 1332 |
/// \brief Sets the map that indicates which nodes are reached. |
1334 | 1333 |
/// |
1335 | 1334 |
/// Sets the map that indicates which nodes are reached. |
1336 | 1335 |
/// If you don't use this function before calling \ref run(), |
1337 | 1336 |
/// it will allocate one. The destructor deallocates this |
1338 | 1337 |
/// automatically allocated map, of course. |
1339 | 1338 |
/// \return <tt> (*this) </tt> |
1340 | 1339 |
DfsVisit &reachedMap(ReachedMap &m) { |
1341 | 1340 |
if(local_reached) { |
1342 | 1341 |
delete _reached; |
1343 | 1342 |
local_reached=false; |
1344 | 1343 |
} |
1345 | 1344 |
_reached = &m; |
1346 | 1345 |
return *this; |
1347 | 1346 |
} |
1348 | 1347 |
|
1349 | 1348 |
public: |
1350 | 1349 |
|
1351 | 1350 |
/// \name Execution control |
1352 | 1351 |
/// The simplest way to execute the algorithm is to use |
1353 | 1352 |
/// one of the member functions called \ref lemon::DfsVisit::run() |
1354 | 1353 |
/// "run()". |
1355 | 1354 |
/// \n |
1356 | 1355 |
/// If you need more control on the execution, first you must call |
1357 | 1356 |
/// \ref lemon::DfsVisit::init() "init()", then you can add several |
1358 | 1357 |
/// source nodes with \ref lemon::DfsVisit::addSource() "addSource()". |
1359 | 1358 |
/// Finally \ref lemon::DfsVisit::start() "start()" will perform the |
1360 | 1359 |
/// actual path computation. |
1361 | 1360 |
|
1362 | 1361 |
/// @{ |
1363 | 1362 |
|
1364 | 1363 |
/// \brief Initializes the internal data structures. |
1365 | 1364 |
/// |
1366 | 1365 |
/// Initializes the internal data structures. |
1367 | 1366 |
void init() { |
1368 | 1367 |
create_maps(); |
1369 | 1368 |
_stack.resize(countNodes(*_digraph)); |
1370 | 1369 |
_stack_head = -1; |
1371 | 1370 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1372 | 1371 |
_reached->set(u, false); |
1373 | 1372 |
} |
1374 | 1373 |
} |
1375 | 1374 |
|
1376 | 1375 |
///Adds a new source node. |
1377 | 1376 |
|
1378 | 1377 |
///Adds a new source node to the set of nodes to be processed. |
1379 | 1378 |
/// |
1380 | 1379 |
///\pre The stack must be empty. (Otherwise the algorithm gives |
1381 | 1380 |
///false results.) |
1382 | 1381 |
/// |
1383 | 1382 |
///\warning Distances will be wrong (or at least strange) in case of |
1384 | 1383 |
///multiple sources. |
1385 | 1384 |
void addSource(Node s) |
1386 | 1385 |
{ |
1387 | 1386 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1388 | 1387 |
if(!(*_reached)[s]) { |
1389 | 1388 |
_reached->set(s,true); |
1390 | 1389 |
_visitor->start(s); |
1391 | 1390 |
_visitor->reach(s); |
1392 | 1391 |
Arc e; |
1393 | 1392 |
_digraph->firstOut(e, s); |
1394 | 1393 |
if (e != INVALID) { |
1395 | 1394 |
_stack[++_stack_head] = e; |
1396 | 1395 |
} else { |
1397 | 1396 |
_visitor->leave(s); |
1398 | 1397 |
} |
1399 | 1398 |
} |
1400 | 1399 |
} |
1401 | 1400 |
|
1402 | 1401 |
/// \brief Processes the next arc. |
1403 | 1402 |
/// |
1404 | 1403 |
/// Processes the next arc. |
1405 | 1404 |
/// |
1406 | 1405 |
/// \return The processed arc. |
1407 | 1406 |
/// |
1408 | 1407 |
/// \pre The stack must not be empty. |
1409 | 1408 |
Arc processNextArc() { |
1410 | 1409 |
Arc e = _stack[_stack_head]; |
1411 | 1410 |
Node m = _digraph->target(e); |
1412 | 1411 |
if(!(*_reached)[m]) { |
1413 | 1412 |
_visitor->discover(e); |
1414 | 1413 |
_visitor->reach(m); |
1415 | 1414 |
_reached->set(m, true); |
1416 | 1415 |
_digraph->firstOut(_stack[++_stack_head], m); |
1417 | 1416 |
} else { |
1418 | 1417 |
_visitor->examine(e); |
1419 | 1418 |
m = _digraph->source(e); |
1420 | 1419 |
_digraph->nextOut(_stack[_stack_head]); |
1421 | 1420 |
} |
1422 | 1421 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1423 | 1422 |
_visitor->leave(m); |
1424 | 1423 |
--_stack_head; |
1425 | 1424 |
if (_stack_head >= 0) { |
1426 | 1425 |
_visitor->backtrack(_stack[_stack_head]); |
1427 | 1426 |
m = _digraph->source(_stack[_stack_head]); |
1428 | 1427 |
_digraph->nextOut(_stack[_stack_head]); |
1429 | 1428 |
} else { |
1430 | 1429 |
_visitor->stop(m); |
1431 | 1430 |
} |
1432 | 1431 |
} |
1433 | 1432 |
return e; |
1434 | 1433 |
} |
1435 | 1434 |
|
1436 | 1435 |
/// \brief Next arc to be processed. |
1437 | 1436 |
/// |
1438 | 1437 |
/// Next arc to be processed. |
1439 | 1438 |
/// |
1440 | 1439 |
/// \return The next arc to be processed or INVALID if the stack is |
... | ... |
@@ -206,395 +206,394 @@ |
206 | 206 |
///\tparam GR The type of the digraph the algorithm runs on. |
207 | 207 |
///The default value is \ref ListDigraph. |
208 | 208 |
///The value of GR is not used directly by \ref Dijkstra, it is only |
209 | 209 |
///passed to \ref DijkstraDefaultTraits. |
210 | 210 |
///\tparam LM A readable arc map that determines the lengths of the |
211 | 211 |
///arcs. It is read once for each arc, so the map may involve in |
212 | 212 |
///relatively time consuming process to compute the arc lengths if |
213 | 213 |
///it is necessary. The default map type is \ref |
214 | 214 |
///concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
215 | 215 |
///The value of LM is not used directly by \ref Dijkstra, it is only |
216 | 216 |
///passed to \ref DijkstraDefaultTraits. |
217 | 217 |
///\tparam TR Traits class to set various data types used by the algorithm. |
218 | 218 |
///The default traits class is \ref DijkstraDefaultTraits |
219 | 219 |
///"DijkstraDefaultTraits<GR,LM>". See \ref DijkstraDefaultTraits |
220 | 220 |
///for the documentation of a Dijkstra traits class. |
221 | 221 |
#ifdef DOXYGEN |
222 | 222 |
template <typename GR, typename LM, typename TR> |
223 | 223 |
#else |
224 | 224 |
template <typename GR=ListDigraph, |
225 | 225 |
typename LM=typename GR::template ArcMap<int>, |
226 | 226 |
typename TR=DijkstraDefaultTraits<GR,LM> > |
227 | 227 |
#endif |
228 | 228 |
class Dijkstra { |
229 | 229 |
public: |
230 | 230 |
///\ref Exception for uninitialized parameters. |
231 | 231 |
|
232 | 232 |
///This error represents problems in the initialization of the |
233 | 233 |
///parameters of the algorithm. |
234 | 234 |
class UninitializedParameter : public lemon::UninitializedParameter { |
235 | 235 |
public: |
236 | 236 |
virtual const char* what() const throw() { |
237 | 237 |
return "lemon::Dijkstra::UninitializedParameter"; |
238 | 238 |
} |
239 | 239 |
}; |
240 | 240 |
|
241 | 241 |
///The type of the digraph the algorithm runs on. |
242 | 242 |
typedef typename TR::Digraph Digraph; |
243 | 243 |
|
244 | 244 |
///The type of the length of the arcs. |
245 | 245 |
typedef typename TR::LengthMap::Value Value; |
246 | 246 |
///The type of the map that stores the arc lengths. |
247 | 247 |
typedef typename TR::LengthMap LengthMap; |
248 | 248 |
///\brief The type of the map that stores the predecessor arcs of the |
249 | 249 |
///shortest paths. |
250 | 250 |
typedef typename TR::PredMap PredMap; |
251 | 251 |
///The type of the map that stores the distances of the nodes. |
252 | 252 |
typedef typename TR::DistMap DistMap; |
253 | 253 |
///The type of the map that indicates which nodes are processed. |
254 | 254 |
typedef typename TR::ProcessedMap ProcessedMap; |
255 | 255 |
///The type of the paths. |
256 | 256 |
typedef PredMapPath<Digraph, PredMap> Path; |
257 | 257 |
///The cross reference type used for the current heap. |
258 | 258 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
259 | 259 |
///The heap type used by the algorithm. |
260 | 260 |
typedef typename TR::Heap Heap; |
261 | 261 |
///The operation traits class. |
262 | 262 |
typedef typename TR::OperationTraits OperationTraits; |
263 | 263 |
|
264 | 264 |
///The traits class. |
265 | 265 |
typedef TR Traits; |
266 | 266 |
|
267 | 267 |
private: |
268 | 268 |
|
269 | 269 |
typedef typename Digraph::Node Node; |
270 | 270 |
typedef typename Digraph::NodeIt NodeIt; |
271 | 271 |
typedef typename Digraph::Arc Arc; |
272 | 272 |
typedef typename Digraph::OutArcIt OutArcIt; |
273 | 273 |
|
274 | 274 |
//Pointer to the underlying digraph. |
275 | 275 |
const Digraph *G; |
276 | 276 |
//Pointer to the length map. |
277 | 277 |
const LengthMap *length; |
278 | 278 |
//Pointer to the map of predecessors arcs. |
279 | 279 |
PredMap *_pred; |
280 | 280 |
//Indicates if _pred is locally allocated (true) or not. |
281 | 281 |
bool local_pred; |
282 | 282 |
//Pointer to the map of distances. |
283 | 283 |
DistMap *_dist; |
284 | 284 |
//Indicates if _dist is locally allocated (true) or not. |
285 | 285 |
bool local_dist; |
286 | 286 |
//Pointer to the map of processed status of the nodes. |
287 | 287 |
ProcessedMap *_processed; |
288 | 288 |
//Indicates if _processed is locally allocated (true) or not. |
289 | 289 |
bool local_processed; |
290 | 290 |
//Pointer to the heap cross references. |
291 | 291 |
HeapCrossRef *_heap_cross_ref; |
292 | 292 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
293 | 293 |
bool local_heap_cross_ref; |
294 | 294 |
//Pointer to the heap. |
295 | 295 |
Heap *_heap; |
296 | 296 |
//Indicates if _heap is locally allocated (true) or not. |
297 | 297 |
bool local_heap; |
298 | 298 |
|
299 | 299 |
///Creates the maps if necessary. |
300 | 300 |
///\todo Better memory allocation (instead of new). |
301 | 301 |
void create_maps() |
302 | 302 |
{ |
303 | 303 |
if(!_pred) { |
304 | 304 |
local_pred = true; |
305 | 305 |
_pred = Traits::createPredMap(*G); |
306 | 306 |
} |
307 | 307 |
if(!_dist) { |
308 | 308 |
local_dist = true; |
309 | 309 |
_dist = Traits::createDistMap(*G); |
310 | 310 |
} |
311 | 311 |
if(!_processed) { |
312 | 312 |
local_processed = true; |
313 | 313 |
_processed = Traits::createProcessedMap(*G); |
314 | 314 |
} |
315 | 315 |
if (!_heap_cross_ref) { |
316 | 316 |
local_heap_cross_ref = true; |
317 | 317 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
318 | 318 |
} |
319 | 319 |
if (!_heap) { |
320 | 320 |
local_heap = true; |
321 | 321 |
_heap = Traits::createHeap(*_heap_cross_ref); |
322 | 322 |
} |
323 | 323 |
} |
324 | 324 |
|
325 | 325 |
public: |
326 | 326 |
|
327 | 327 |
typedef Dijkstra Create; |
328 | 328 |
|
329 | 329 |
///\name Named template parameters |
330 | 330 |
|
331 | 331 |
///@{ |
332 | 332 |
|
333 | 333 |
template <class T> |
334 |
struct |
|
334 |
struct SetPredMapTraits : public Traits { |
|
335 | 335 |
typedef T PredMap; |
336 | 336 |
static PredMap *createPredMap(const Digraph &) |
337 | 337 |
{ |
338 | 338 |
throw UninitializedParameter(); |
339 | 339 |
} |
340 | 340 |
}; |
341 | 341 |
///\brief \ref named-templ-param "Named parameter" for setting |
342 | 342 |
///\ref PredMap type. |
343 | 343 |
/// |
344 | 344 |
///\ref named-templ-param "Named parameter" for setting |
345 | 345 |
///\ref PredMap type. |
346 | 346 |
template <class T> |
347 |
struct DefPredMap |
|
348 |
: public Dijkstra< Digraph, LengthMap, DefPredMapTraits<T> > { |
|
349 |
|
|
347 |
struct SetPredMap |
|
348 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
|
349 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
|
350 | 350 |
}; |
351 | 351 |
|
352 | 352 |
template <class T> |
353 |
struct |
|
353 |
struct SetDistMapTraits : public Traits { |
|
354 | 354 |
typedef T DistMap; |
355 | 355 |
static DistMap *createDistMap(const Digraph &) |
356 | 356 |
{ |
357 | 357 |
throw UninitializedParameter(); |
358 | 358 |
} |
359 | 359 |
}; |
360 | 360 |
///\brief \ref named-templ-param "Named parameter" for setting |
361 | 361 |
///\ref DistMap type. |
362 | 362 |
/// |
363 | 363 |
///\ref named-templ-param "Named parameter" for setting |
364 | 364 |
///\ref DistMap type. |
365 | 365 |
template <class T> |
366 |
struct DefDistMap |
|
367 |
: public Dijkstra< Digraph, LengthMap, DefDistMapTraits<T> > { |
|
368 |
|
|
366 |
struct SetDistMap |
|
367 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
|
368 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
|
369 | 369 |
}; |
370 | 370 |
|
371 | 371 |
template <class T> |
372 |
struct |
|
372 |
struct SetProcessedMapTraits : public Traits { |
|
373 | 373 |
typedef T ProcessedMap; |
374 | 374 |
static ProcessedMap *createProcessedMap(const Digraph &) |
375 | 375 |
{ |
376 | 376 |
throw UninitializedParameter(); |
377 | 377 |
} |
378 | 378 |
}; |
379 | 379 |
///\brief \ref named-templ-param "Named parameter" for setting |
380 | 380 |
///\ref ProcessedMap type. |
381 | 381 |
/// |
382 | 382 |
///\ref named-templ-param "Named parameter" for setting |
383 | 383 |
///\ref ProcessedMap type. |
384 | 384 |
template <class T> |
385 |
struct DefProcessedMap |
|
386 |
: public Dijkstra< Digraph, LengthMap, DefProcessedMapTraits<T> > { |
|
387 |
|
|
385 |
struct SetProcessedMap |
|
386 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
|
387 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
|
388 | 388 |
}; |
389 | 389 |
|
390 |
struct |
|
390 |
struct SetStandardProcessedMapTraits : public Traits { |
|
391 | 391 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
392 | 392 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
393 | 393 |
{ |
394 | 394 |
return new ProcessedMap(g); |
395 | 395 |
} |
396 | 396 |
}; |
397 | 397 |
///\brief \ref named-templ-param "Named parameter" for setting |
398 | 398 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
399 | 399 |
/// |
400 | 400 |
///\ref named-templ-param "Named parameter" for setting |
401 | 401 |
///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
402 | 402 |
///If you don't set it explicitly, it will be automatically allocated. |
403 |
template <class T> |
|
404 |
struct DefProcessedMapToBeDefaultMap |
|
405 |
: public Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> { |
|
406 |
typedef Dijkstra< Digraph, LengthMap, DefDigraphProcessedMapTraits> |
|
403 |
struct SetStandardProcessedMap |
|
404 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
|
405 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
|
407 | 406 |
Create; |
408 | 407 |
}; |
409 | 408 |
|
410 | 409 |
template <class H, class CR> |
411 |
struct |
|
410 |
struct SetHeapTraits : public Traits { |
|
412 | 411 |
typedef CR HeapCrossRef; |
413 | 412 |
typedef H Heap; |
414 | 413 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
415 | 414 |
throw UninitializedParameter(); |
416 | 415 |
} |
417 | 416 |
static Heap *createHeap(HeapCrossRef &) |
418 | 417 |
{ |
419 | 418 |
throw UninitializedParameter(); |
420 | 419 |
} |
421 | 420 |
}; |
422 | 421 |
///\brief \ref named-templ-param "Named parameter" for setting |
423 | 422 |
///heap and cross reference type |
424 | 423 |
/// |
425 | 424 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
426 | 425 |
///reference type. |
427 | 426 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
428 |
struct DefHeap |
|
429 |
: public Dijkstra< Digraph, LengthMap, DefHeapTraits<H, CR> > { |
|
430 |
|
|
427 |
struct SetHeap |
|
428 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
|
429 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
|
431 | 430 |
}; |
432 | 431 |
|
433 | 432 |
template <class H, class CR> |
434 |
struct |
|
433 |
struct SetStandardHeapTraits : public Traits { |
|
435 | 434 |
typedef CR HeapCrossRef; |
436 | 435 |
typedef H Heap; |
437 | 436 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
438 | 437 |
return new HeapCrossRef(G); |
439 | 438 |
} |
440 | 439 |
static Heap *createHeap(HeapCrossRef &R) |
441 | 440 |
{ |
442 | 441 |
return new Heap(R); |
443 | 442 |
} |
444 | 443 |
}; |
445 | 444 |
///\brief \ref named-templ-param "Named parameter" for setting |
446 | 445 |
///heap and cross reference type with automatic allocation |
447 | 446 |
/// |
448 | 447 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
449 | 448 |
///reference type. It can allocate the heap and the cross reference |
450 | 449 |
///object if the cross reference's constructor waits for the digraph as |
451 | 450 |
///parameter and the heap's constructor waits for the cross reference. |
452 | 451 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
453 |
struct DefStandardHeap |
|
454 |
: public Dijkstra< Digraph, LengthMap, DefStandardHeapTraits<H, CR> > { |
|
455 |
|
|
452 |
struct SetStandardHeap |
|
453 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
|
454 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
|
456 | 455 |
Create; |
457 | 456 |
}; |
458 | 457 |
|
459 | 458 |
template <class T> |
460 |
struct |
|
459 |
struct SetOperationTraitsTraits : public Traits { |
|
461 | 460 |
typedef T OperationTraits; |
462 | 461 |
}; |
463 | 462 |
|
464 | 463 |
/// \brief \ref named-templ-param "Named parameter" for setting |
465 | 464 |
///\ref OperationTraits type |
466 | 465 |
/// |
467 | 466 |
///\ref named-templ-param "Named parameter" for setting |
468 | 467 |
///\ref OperationTraits type. |
469 | 468 |
template <class T> |
470 |
struct DefOperationTraits |
|
471 |
: public Dijkstra<Digraph, LengthMap, DefOperationTraitsTraits<T> > { |
|
472 |
|
|
469 |
struct SetOperationTraits |
|
470 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
|
471 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
|
473 | 472 |
Create; |
474 | 473 |
}; |
475 | 474 |
|
476 | 475 |
///@} |
477 | 476 |
|
478 | 477 |
protected: |
479 | 478 |
|
480 | 479 |
Dijkstra() {} |
481 | 480 |
|
482 | 481 |
public: |
483 | 482 |
|
484 | 483 |
///Constructor. |
485 | 484 |
|
486 | 485 |
///Constructor. |
487 | 486 |
///\param _g The digraph the algorithm runs on. |
488 | 487 |
///\param _length The length map used by the algorithm. |
489 | 488 |
Dijkstra(const Digraph& _g, const LengthMap& _length) : |
490 | 489 |
G(&_g), length(&_length), |
491 | 490 |
_pred(NULL), local_pred(false), |
492 | 491 |
_dist(NULL), local_dist(false), |
493 | 492 |
_processed(NULL), local_processed(false), |
494 | 493 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
495 | 494 |
_heap(NULL), local_heap(false) |
496 | 495 |
{ } |
497 | 496 |
|
498 | 497 |
///Destructor. |
499 | 498 |
~Dijkstra() |
500 | 499 |
{ |
501 | 500 |
if(local_pred) delete _pred; |
502 | 501 |
if(local_dist) delete _dist; |
503 | 502 |
if(local_processed) delete _processed; |
504 | 503 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
505 | 504 |
if(local_heap) delete _heap; |
506 | 505 |
} |
507 | 506 |
|
508 | 507 |
///Sets the length map. |
509 | 508 |
|
510 | 509 |
///Sets the length map. |
511 | 510 |
///\return <tt> (*this) </tt> |
512 | 511 |
Dijkstra &lengthMap(const LengthMap &m) |
513 | 512 |
{ |
514 | 513 |
length = &m; |
515 | 514 |
return *this; |
516 | 515 |
} |
517 | 516 |
|
518 | 517 |
///Sets the map that stores the predecessor arcs. |
519 | 518 |
|
520 | 519 |
///Sets the map that stores the predecessor arcs. |
521 | 520 |
///If you don't use this function before calling \ref run(), |
522 | 521 |
///it will allocate one. The destructor deallocates this |
523 | 522 |
///automatically allocated map, of course. |
524 | 523 |
///\return <tt> (*this) </tt> |
525 | 524 |
Dijkstra &predMap(PredMap &m) |
526 | 525 |
{ |
527 | 526 |
if(local_pred) { |
528 | 527 |
delete _pred; |
529 | 528 |
local_pred=false; |
530 | 529 |
} |
531 | 530 |
_pred = &m; |
532 | 531 |
return *this; |
533 | 532 |
} |
534 | 533 |
|
535 | 534 |
///Sets the map that indicates which nodes are processed. |
536 | 535 |
|
537 | 536 |
///Sets the map that indicates which nodes are processed. |
538 | 537 |
///If you don't use this function before calling \ref run(), |
539 | 538 |
///it will allocate one. The destructor deallocates this |
540 | 539 |
///automatically allocated map, of course. |
541 | 540 |
///\return <tt> (*this) </tt> |
542 | 541 |
Dijkstra &processedMap(ProcessedMap &m) |
543 | 542 |
{ |
544 | 543 |
if(local_processed) { |
545 | 544 |
delete _processed; |
546 | 545 |
local_processed=false; |
547 | 546 |
} |
548 | 547 |
_processed = &m; |
549 | 548 |
return *this; |
550 | 549 |
} |
551 | 550 |
|
552 | 551 |
///Sets the map that stores the distances of the nodes. |
553 | 552 |
|
554 | 553 |
///Sets the map that stores the distances of the nodes calculated by the |
555 | 554 |
///algorithm. |
556 | 555 |
///If you don't use this function before calling \ref run(), |
557 | 556 |
///it will allocate one. The destructor deallocates this |
558 | 557 |
///automatically allocated map, of course. |
559 | 558 |
///\return <tt> (*this) </tt> |
560 | 559 |
Dijkstra &distMap(DistMap &m) |
561 | 560 |
{ |
562 | 561 |
if(local_dist) { |
563 | 562 |
delete _dist; |
564 | 563 |
local_dist=false; |
565 | 564 |
} |
566 | 565 |
_dist = &m; |
567 | 566 |
return *this; |
568 | 567 |
} |
569 | 568 |
|
570 | 569 |
///Sets the heap and the cross reference used by algorithm. |
571 | 570 |
|
572 | 571 |
///Sets the heap and the cross reference used by algorithm. |
573 | 572 |
///If you don't use this function before calling \ref run(), |
574 | 573 |
///it will allocate one. The destructor deallocates this |
575 | 574 |
///automatically allocated heap and cross reference, of course. |
576 | 575 |
///\return <tt> (*this) </tt> |
577 | 576 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
578 | 577 |
{ |
579 | 578 |
if(local_heap_cross_ref) { |
580 | 579 |
delete _heap_cross_ref; |
581 | 580 |
local_heap_cross_ref=false; |
582 | 581 |
} |
583 | 582 |
_heap_cross_ref = &cr; |
584 | 583 |
if(local_heap) { |
585 | 584 |
delete _heap; |
586 | 585 |
local_heap=false; |
587 | 586 |
} |
588 | 587 |
_heap = &hp; |
589 | 588 |
return *this; |
590 | 589 |
} |
591 | 590 |
|
592 | 591 |
private: |
593 | 592 |
|
594 | 593 |
void finalizeNodeData(Node v,Value dst) |
595 | 594 |
{ |
596 | 595 |
_processed->set(v,true); |
597 | 596 |
_dist->set(v, dst); |
598 | 597 |
} |
599 | 598 |
|
600 | 599 |
public: |
... | ... |
@@ -1074,210 +1073,210 @@ |
1074 | 1073 |
void *_dist; |
1075 | 1074 |
//Pointer to the source node. |
1076 | 1075 |
Node _source; |
1077 | 1076 |
|
1078 | 1077 |
public: |
1079 | 1078 |
/// Constructor. |
1080 | 1079 |
|
1081 | 1080 |
/// This constructor does not require parameters, therefore it initiates |
1082 | 1081 |
/// all of the attributes to default values (0, INVALID). |
1083 | 1082 |
DijkstraWizardBase() : _g(0), _length(0), _pred(0), |
1084 | 1083 |
_dist(0), _source(INVALID) {} |
1085 | 1084 |
|
1086 | 1085 |
/// Constructor. |
1087 | 1086 |
|
1088 | 1087 |
/// This constructor requires some parameters, |
1089 | 1088 |
/// listed in the parameters list. |
1090 | 1089 |
/// Others are initiated to 0. |
1091 | 1090 |
/// \param g The digraph the algorithm runs on. |
1092 | 1091 |
/// \param l The length map. |
1093 | 1092 |
/// \param s The source node. |
1094 | 1093 |
DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) : |
1095 | 1094 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1096 | 1095 |
_length(reinterpret_cast<void*>(const_cast<LM*>(&l))), |
1097 | 1096 |
_pred(0), _dist(0), _source(s) {} |
1098 | 1097 |
|
1099 | 1098 |
}; |
1100 | 1099 |
|
1101 | 1100 |
/// Auxiliary class for the function type interface of Dijkstra algorithm. |
1102 | 1101 |
|
1103 | 1102 |
/// This auxiliary class is created to implement the function type |
1104 | 1103 |
/// interface of \ref Dijkstra algorithm. It uses the functions and features |
1105 | 1104 |
/// of the plain \ref Dijkstra, but it is much simpler to use it. |
1106 | 1105 |
/// It should only be used through the \ref dijkstra() function, which makes |
1107 | 1106 |
/// it easier to use the algorithm. |
1108 | 1107 |
/// |
1109 | 1108 |
/// Simplicity means that the way to change the types defined |
1110 | 1109 |
/// in the traits class is based on functions that returns the new class |
1111 | 1110 |
/// and not on templatable built-in classes. |
1112 | 1111 |
/// When using the plain \ref Dijkstra |
1113 | 1112 |
/// the new class with the modified type comes from |
1114 | 1113 |
/// the original class by using the :: |
1115 | 1114 |
/// operator. In the case of \ref DijkstraWizard only |
1116 | 1115 |
/// a function have to be called, and it will |
1117 | 1116 |
/// return the needed class. |
1118 | 1117 |
/// |
1119 | 1118 |
/// It does not have own \ref run() method. When its \ref run() method |
1120 | 1119 |
/// is called, it initiates a plain \ref Dijkstra object, and calls the |
1121 | 1120 |
/// \ref Dijkstra::run() method of it. |
1122 | 1121 |
template<class TR> |
1123 | 1122 |
class DijkstraWizard : public TR |
1124 | 1123 |
{ |
1125 | 1124 |
typedef TR Base; |
1126 | 1125 |
|
1127 | 1126 |
///The type of the digraph the algorithm runs on. |
1128 | 1127 |
typedef typename TR::Digraph Digraph; |
1129 | 1128 |
|
1130 | 1129 |
typedef typename Digraph::Node Node; |
1131 | 1130 |
typedef typename Digraph::NodeIt NodeIt; |
1132 | 1131 |
typedef typename Digraph::Arc Arc; |
1133 | 1132 |
typedef typename Digraph::OutArcIt OutArcIt; |
1134 | 1133 |
|
1135 | 1134 |
///The type of the map that stores the arc lengths. |
1136 | 1135 |
typedef typename TR::LengthMap LengthMap; |
1137 | 1136 |
///The type of the length of the arcs. |
1138 | 1137 |
typedef typename LengthMap::Value Value; |
1139 | 1138 |
///\brief The type of the map that stores the predecessor |
1140 | 1139 |
///arcs of the shortest paths. |
1141 | 1140 |
typedef typename TR::PredMap PredMap; |
1142 | 1141 |
///The type of the map that stores the distances of the nodes. |
1143 | 1142 |
typedef typename TR::DistMap DistMap; |
1144 | 1143 |
///The type of the map that indicates which nodes are processed. |
1145 | 1144 |
typedef typename TR::ProcessedMap ProcessedMap; |
1146 | 1145 |
///The heap type used by the dijkstra algorithm. |
1147 | 1146 |
typedef typename TR::Heap Heap; |
1148 | 1147 |
|
1149 | 1148 |
public: |
1150 | 1149 |
|
1151 | 1150 |
/// Constructor. |
1152 | 1151 |
DijkstraWizard() : TR() {} |
1153 | 1152 |
|
1154 | 1153 |
/// Constructor that requires parameters. |
1155 | 1154 |
|
1156 | 1155 |
/// Constructor that requires parameters. |
1157 | 1156 |
/// These parameters will be the default values for the traits class. |
1158 | 1157 |
DijkstraWizard(const Digraph &g,const LengthMap &l, Node s=INVALID) : |
1159 | 1158 |
TR(g,l,s) {} |
1160 | 1159 |
|
1161 | 1160 |
///Copy constructor |
1162 | 1161 |
DijkstraWizard(const TR &b) : TR(b) {} |
1163 | 1162 |
|
1164 | 1163 |
~DijkstraWizard() {} |
1165 | 1164 |
|
1166 | 1165 |
///Runs Dijkstra algorithm from a source node. |
1167 | 1166 |
|
1168 | 1167 |
///Runs Dijkstra algorithm from a source node. |
1169 | 1168 |
///The node can be given with the \ref source() function. |
1170 | 1169 |
void run() |
1171 | 1170 |
{ |
1172 | 1171 |
if(Base::_source==INVALID) throw UninitializedParameter(); |
1173 | 1172 |
Dijkstra<Digraph,LengthMap,TR> |
1174 | 1173 |
dij(*reinterpret_cast<const Digraph*>(Base::_g), |
1175 | 1174 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1176 | 1175 |
if(Base::_pred) dij.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1177 | 1176 |
if(Base::_dist) dij.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1178 | 1177 |
dij.run(Base::_source); |
1179 | 1178 |
} |
1180 | 1179 |
|
1181 | 1180 |
///Runs Dijkstra algorithm from the given node. |
1182 | 1181 |
|
1183 | 1182 |
///Runs Dijkstra algorithm from the given node. |
1184 | 1183 |
///\param s is the given source. |
1185 | 1184 |
void run(Node s) |
1186 | 1185 |
{ |
1187 | 1186 |
Base::_source=s; |
1188 | 1187 |
run(); |
1189 | 1188 |
} |
1190 | 1189 |
|
1191 | 1190 |
/// Sets the source node, from which the Dijkstra algorithm runs. |
1192 | 1191 |
|
1193 | 1192 |
/// Sets the source node, from which the Dijkstra algorithm runs. |
1194 | 1193 |
/// \param s is the source node. |
1195 | 1194 |
DijkstraWizard<TR> &source(Node s) |
1196 | 1195 |
{ |
1197 | 1196 |
Base::_source=s; |
1198 | 1197 |
return *this; |
1199 | 1198 |
} |
1200 | 1199 |
|
1201 | 1200 |
template<class T> |
1202 |
struct |
|
1201 |
struct SetPredMapBase : public Base { |
|
1203 | 1202 |
typedef T PredMap; |
1204 | 1203 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1205 |
|
|
1204 |
SetPredMapBase(const TR &b) : TR(b) {} |
|
1206 | 1205 |
}; |
1207 | 1206 |
///\brief \ref named-templ-param "Named parameter" |
1208 | 1207 |
///for setting \ref PredMap object. |
1209 | 1208 |
/// |
1210 | 1209 |
///\ref named-templ-param "Named parameter" |
1211 | 1210 |
///for setting \ref PredMap object. |
1212 | 1211 |
template<class T> |
1213 |
DijkstraWizard< |
|
1212 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
|
1214 | 1213 |
{ |
1215 | 1214 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1216 |
return DijkstraWizard< |
|
1215 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
|
1217 | 1216 |
} |
1218 | 1217 |
|
1219 | 1218 |
template<class T> |
1220 |
struct |
|
1219 |
struct SetProcessedMapBase : public Base { |
|
1221 | 1220 |
typedef T ProcessedMap; |
1222 | 1221 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1223 |
|
|
1222 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
|
1224 | 1223 |
}; |
1225 | 1224 |
///\brief \ref named-templ-param "Named parameter" |
1226 | 1225 |
///for setting \ref ProcessedMap object. |
1227 | 1226 |
/// |
1228 | 1227 |
/// \ref named-templ-param "Named parameter" |
1229 | 1228 |
///for setting \ref ProcessedMap object. |
1230 | 1229 |
template<class T> |
1231 |
DijkstraWizard< |
|
1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
|
1232 | 1231 |
{ |
1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1234 |
return DijkstraWizard< |
|
1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
|
1235 | 1234 |
} |
1236 | 1235 |
|
1237 | 1236 |
template<class T> |
1238 |
struct |
|
1237 |
struct SetDistMapBase : public Base { |
|
1239 | 1238 |
typedef T DistMap; |
1240 | 1239 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1241 |
|
|
1240 |
SetDistMapBase(const TR &b) : TR(b) {} |
|
1242 | 1241 |
}; |
1243 | 1242 |
///\brief \ref named-templ-param "Named parameter" |
1244 | 1243 |
///for setting \ref DistMap object. |
1245 | 1244 |
/// |
1246 | 1245 |
///\ref named-templ-param "Named parameter" |
1247 | 1246 |
///for setting \ref DistMap object. |
1248 | 1247 |
template<class T> |
1249 |
DijkstraWizard< |
|
1248 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
|
1250 | 1249 |
{ |
1251 | 1250 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1252 |
return DijkstraWizard< |
|
1251 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
|
1253 | 1252 |
} |
1254 | 1253 |
|
1255 | 1254 |
}; |
1256 | 1255 |
|
1257 | 1256 |
///Function type interface for Dijkstra algorithm. |
1258 | 1257 |
|
1259 | 1258 |
/// \ingroup shortest_path |
1260 | 1259 |
///Function type interface for Dijkstra algorithm. |
1261 | 1260 |
/// |
1262 | 1261 |
///This function also has several |
1263 | 1262 |
///\ref named-templ-func-param "named parameters", |
1264 | 1263 |
///they are declared as the members of class \ref DijkstraWizard. |
1265 | 1264 |
///The following |
1266 | 1265 |
///example shows how to use these parameters. |
1267 | 1266 |
///\code |
1268 | 1267 |
/// dijkstra(g,length,source).predMap(preds).run(); |
1269 | 1268 |
///\endcode |
1270 | 1269 |
///\warning Don't forget to put the \ref DijkstraWizard::run() "run()" |
1271 | 1270 |
///to the end of the parameter list. |
1272 | 1271 |
///\sa DijkstraWizard |
1273 | 1272 |
///\sa Dijkstra |
1274 | 1273 |
template<class GR, class LM> |
1275 | 1274 |
DijkstraWizard<DijkstraWizardBase<GR,LM> > |
1276 | 1275 |
dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID) |
1277 | 1276 |
{ |
1278 | 1277 |
return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s); |
1279 | 1278 |
} |
1280 | 1279 |
|
1281 | 1280 |
} //END OF NAMESPACE LEMON |
1282 | 1281 |
|
1283 | 1282 |
#endif |
... | ... |
@@ -6,182 +6,182 @@ |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <fstream> |
21 | 21 |
#include <string> |
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
#include <lemon/concept_check.h> |
25 | 25 |
#include <lemon/concepts/heap.h> |
26 | 26 |
|
27 | 27 |
#include <lemon/smart_graph.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/lgf_reader.h> |
30 | 30 |
#include <lemon/dijkstra.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
|
33 | 33 |
#include <lemon/bin_heap.h> |
34 | 34 |
|
35 | 35 |
#include "test_tools.h" |
36 | 36 |
|
37 | 37 |
using namespace lemon; |
38 | 38 |
using namespace lemon::concepts; |
39 | 39 |
|
40 | 40 |
typedef ListDigraph Digraph; |
41 | 41 |
DIGRAPH_TYPEDEFS(Digraph); |
42 | 42 |
|
43 | 43 |
char test_lgf[] = |
44 | 44 |
"@nodes\n" |
45 | 45 |
"label\n" |
46 | 46 |
"0\n" |
47 | 47 |
"1\n" |
48 | 48 |
"2\n" |
49 | 49 |
"3\n" |
50 | 50 |
"4\n" |
51 | 51 |
"5\n" |
52 | 52 |
"6\n" |
53 | 53 |
"7\n" |
54 | 54 |
"8\n" |
55 | 55 |
"9\n" |
56 | 56 |
"@arcs\n" |
57 | 57 |
" label capacity\n" |
58 | 58 |
"0 5 0 94\n" |
59 | 59 |
"3 9 1 11\n" |
60 | 60 |
"8 7 2 83\n" |
61 | 61 |
"1 2 3 94\n" |
62 | 62 |
"5 7 4 35\n" |
63 | 63 |
"7 4 5 84\n" |
64 | 64 |
"9 5 6 38\n" |
65 | 65 |
"0 4 7 96\n" |
66 | 66 |
"6 7 8 6\n" |
67 | 67 |
"3 1 9 27\n" |
68 | 68 |
"5 2 10 77\n" |
69 | 69 |
"5 6 11 69\n" |
70 | 70 |
"6 5 12 41\n" |
71 | 71 |
"4 6 13 70\n" |
72 | 72 |
"3 2 14 45\n" |
73 | 73 |
"7 9 15 93\n" |
74 | 74 |
"5 9 16 50\n" |
75 | 75 |
"9 0 17 94\n" |
76 | 76 |
"9 6 18 67\n" |
77 | 77 |
"0 9 19 86\n" |
78 | 78 |
"@attributes\n" |
79 | 79 |
"source 3\n"; |
80 | 80 |
|
81 | 81 |
int test_seq[] = { 2, 28, 19, 27, 33, 25, 13, 41, 10, 26, 1, 9, 4, 34}; |
82 | 82 |
int test_inc[] = {20, 28, 34, 16, 0, 46, 44, 0, 42, 32, 14, 8, 6, 37}; |
83 | 83 |
|
84 | 84 |
int test_len = sizeof(test_seq) / sizeof(test_seq[0]); |
85 | 85 |
|
86 | 86 |
template <typename Heap> |
87 | 87 |
void heapSortTest() { |
88 | 88 |
RangeMap<int> map(test_len, -1); |
89 | 89 |
|
90 | 90 |
Heap heap(map); |
91 | 91 |
|
92 | 92 |
std::vector<int> v(test_len); |
93 | 93 |
|
94 | 94 |
for (int i = 0; i < test_len; ++i) { |
95 | 95 |
v[i] = test_seq[i]; |
96 | 96 |
heap.push(i, v[i]); |
97 | 97 |
} |
98 | 98 |
std::sort(v.begin(), v.end()); |
99 | 99 |
for (int i = 0; i < test_len; ++i) { |
100 | 100 |
check(v[i] == heap.prio() ,"Wrong order in heap sort."); |
101 | 101 |
heap.pop(); |
102 | 102 |
} |
103 | 103 |
} |
104 | 104 |
|
105 | 105 |
template <typename Heap> |
106 | 106 |
void heapIncreaseTest() { |
107 | 107 |
RangeMap<int> map(test_len, -1); |
108 | 108 |
|
109 | 109 |
Heap heap(map); |
110 | 110 |
|
111 | 111 |
std::vector<int> v(test_len); |
112 | 112 |
|
113 | 113 |
for (int i = 0; i < test_len; ++i) { |
114 | 114 |
v[i] = test_seq[i]; |
115 | 115 |
heap.push(i, v[i]); |
116 | 116 |
} |
117 | 117 |
for (int i = 0; i < test_len; ++i) { |
118 | 118 |
v[i] += test_inc[i]; |
119 | 119 |
heap.increase(i, v[i]); |
120 | 120 |
} |
121 | 121 |
std::sort(v.begin(), v.end()); |
122 | 122 |
for (int i = 0; i < test_len; ++i) { |
123 | 123 |
check(v[i] == heap.prio() ,"Wrong order in heap increase test."); |
124 | 124 |
heap.pop(); |
125 | 125 |
} |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
|
129 | 129 |
|
130 | 130 |
template <typename Heap> |
131 | 131 |
void dijkstraHeapTest(const Digraph& digraph, const IntArcMap& length, |
132 | 132 |
Node source) { |
133 | 133 |
|
134 |
typename Dijkstra<Digraph, IntArcMap>::template |
|
134 |
typename Dijkstra<Digraph, IntArcMap>::template SetStandardHeap<Heap>:: |
|
135 | 135 |
Create dijkstra(digraph, length); |
136 | 136 |
|
137 | 137 |
dijkstra.run(source); |
138 | 138 |
|
139 | 139 |
for(ArcIt a(digraph); a != INVALID; ++a) { |
140 | 140 |
Node s = digraph.source(a); |
141 | 141 |
Node t = digraph.target(a); |
142 | 142 |
if (dijkstra.reached(s)) { |
143 | 143 |
check( dijkstra.dist(t) - dijkstra.dist(s) <= length[a], |
144 | 144 |
"Error in a shortest path tree!"); |
145 | 145 |
} |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
for(NodeIt n(digraph); n != INVALID; ++n) { |
149 | 149 |
if ( dijkstra.reached(n) && dijkstra.predArc(n) != INVALID ) { |
150 | 150 |
Arc a = dijkstra.predArc(n); |
151 | 151 |
Node s = digraph.source(a); |
152 | 152 |
check( dijkstra.dist(n) - dijkstra.dist(s) == length[a], |
153 | 153 |
"Error in a shortest path tree!"); |
154 | 154 |
} |
155 | 155 |
} |
156 | 156 |
|
157 | 157 |
} |
158 | 158 |
|
159 | 159 |
int main() { |
160 | 160 |
|
161 | 161 |
typedef int Item; |
162 | 162 |
typedef int Prio; |
163 | 163 |
typedef RangeMap<int> ItemIntMap; |
164 | 164 |
|
165 | 165 |
Digraph digraph; |
166 | 166 |
IntArcMap length(digraph); |
167 | 167 |
Node source; |
168 | 168 |
|
169 | 169 |
std::istringstream input(test_lgf); |
170 | 170 |
digraphReader(input, digraph). |
171 | 171 |
arcMap("capacity", length). |
172 | 172 |
node("source", source). |
173 | 173 |
run(); |
174 | 174 |
|
175 | 175 |
{ |
176 | 176 |
typedef BinHeap<Prio, ItemIntMap> IntHeap; |
177 | 177 |
checkConcept<Heap<Prio, ItemIntMap>, IntHeap>(); |
178 | 178 |
heapSortTest<IntHeap>(); |
179 | 179 |
heapIncreaseTest<IntHeap>(); |
180 | 180 |
|
181 | 181 |
typedef BinHeap<Prio, IntNodeMap > NodeHeap; |
182 | 182 |
checkConcept<Heap<Prio, IntNodeMap >, NodeHeap>(); |
183 | 183 |
dijkstraHeapTest<NodeHeap>(digraph, length, source); |
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
return 0; |
187 | 187 |
} |
0 comments (0 inline)