↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/*!
20 20

	
21 21
\page coding_style LEMON Coding Style
22 22

	
23 23
\section naming_conv Naming Conventions
24 24

	
25 25
In order to make development easier we have made some conventions
26 26
according to coding style. These include names of types, classes,
27 27
functions, variables, constants and exceptions. If these conventions
28 28
are met in one's code then it is easier to read and maintain
29 29
it. Please comply with these conventions if you want to contribute
30 30
developing LEMON library.
31 31

	
32 32
\note When the coding style requires the capitalization of an abbreviation,
33 33
only the first letter should be upper case.
34 34

	
35 35
\code
36 36
XmlReader
37 37
\endcode
38 38

	
39 39

	
40 40
\warning In some cases we diverge from these rules.
41 41
This is primary done because STL uses different naming convention and
42 42
in certain cases
43 43
it is beneficial to provide STL compatible interface.
44 44

	
45 45
\subsection cs-files File Names
46 46

	
47 47
The header file names should look like the following.
48 48

	
49 49
\code
50 50
header_file.h
51 51
\endcode
52 52

	
53 53
Note that all standard LEMON headers are located in the \c lemon subdirectory,
54 54
so you should include them from C++ source like this:
55 55

	
56 56
\code
57 57
#include <lemon/header_file.h>
58 58
\endcode
59 59

	
60 60
The source code files use the same style and they have '.cc' extension.
61 61

	
62 62
\code
63 63
source_code.cc
64 64
\endcode
65 65

	
66 66
\subsection cs-class Classes and other types
67 67

	
68 68
The name of a class or any type should look like the following.
69 69

	
70 70
\code
71 71
AllWordsCapitalizedWithoutUnderscores
72 72
\endcode
73 73

	
74 74
\subsection cs-func Methods and other functions
75 75

	
76 76
The name of a function should look like the following.
77 77

	
78 78
\code
79 79
firstWordLowerCaseRestCapitalizedWithoutUnderscores
80 80
\endcode
81 81

	
82 82
\subsection cs-funcs Constants, Macros
83 83

	
84 84
The names of constants and macros should look like the following.
85 85

	
86 86
\code
87 87
ALL_UPPER_CASE_WITH_UNDERSCORES
88 88
\endcode
89 89

	
90 90
\subsection cs-loc-var Class and instance member variables, auto variables
91 91

	
92 92
The names of class and instance member variables and auto variables
93 93
(=variables used locally in methods) should look like the following.
94 94

	
95 95
\code
96 96
all_lower_case_with_underscores
97 97
\endcode
98 98

	
99 99
\subsection pri-loc-var Private member variables
100 100

	
101
Private member variables should start with underscore
101
Private member variables should start with underscore.
102 102

	
103 103
\code
104
_start_with_underscores
104
_start_with_underscore
105 105
\endcode
106 106

	
107 107
\subsection cs-excep Exceptions
108 108

	
109 109
When writing exceptions please comply the following naming conventions.
110 110

	
111 111
\code
112 112
ClassNameEndsWithException
113 113
\endcode
114 114

	
115 115
or
116 116

	
117 117
\code
118 118
ClassNameEndsWithError
119 119
\endcode
120 120

	
121 121
\section header-template Template Header File
122 122

	
123 123
Each LEMON header file should look like this:
124 124

	
125 125
\include template.h
126 126

	
127 127
*/
Ignore white space 6 line context
... ...
@@ -25,742 +25,742 @@
25 25

	
26 26
/**
27 27
@defgroup graphs Graph Structures
28 28
@ingroup datas
29 29
\brief Graph structures implemented in LEMON.
30 30

	
31 31
The implementation of combinatorial algorithms heavily relies on
32 32
efficient graph implementations. LEMON offers data structures which are
33 33
planned to be easily used in an experimental phase of implementation studies,
34 34
and thereafter the program code can be made efficient by small modifications.
35 35

	
36 36
The most efficient implementation of diverse applications require the
37 37
usage of different physical graph implementations. These differences
38 38
appear in the size of graph we require to handle, memory or time usage
39 39
limitations or in the set of operations through which the graph can be
40 40
accessed.  LEMON provides several physical graph structures to meet
41 41
the diverging requirements of the possible users.  In order to save on
42 42
running time or on memory usage, some structures may fail to provide
43 43
some graph features like arc/edge or node deletion.
44 44

	
45 45
Alteration of standard containers need a very limited number of
46 46
operations, these together satisfy the everyday requirements.
47 47
In the case of graph structures, different operations are needed which do
48 48
not alter the physical graph, but gives another view. If some nodes or
49 49
arcs have to be hidden or the reverse oriented graph have to be used, then
50 50
this is the case. It also may happen that in a flow implementation
51 51
the residual graph can be accessed by another algorithm, or a node-set
52 52
is to be shrunk for another algorithm.
53 53
LEMON also provides a variety of graphs for these requirements called
54 54
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
55 55
in conjunction with other graph representations.
56 56

	
57 57
You are free to use the graph structure that fit your requirements
58 58
the best, most graph algorithms and auxiliary data structures can be used
59 59
with any graph structure.
60 60

	
61 61
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
62 62
*/
63 63

	
64 64
/**
65 65
@defgroup graph_adaptors Adaptor Classes for Graphs
66 66
@ingroup graphs
67 67
\brief Adaptor classes for digraphs and graphs
68 68

	
69 69
This group contains several useful adaptor classes for digraphs and graphs.
70 70

	
71 71
The main parts of LEMON are the different graph structures, generic
72 72
graph algorithms, graph concepts, which couple them, and graph
73 73
adaptors. While the previous notions are more or less clear, the
74 74
latter one needs further explanation. Graph adaptors are graph classes
75 75
which serve for considering graph structures in different ways.
76 76

	
77 77
A short example makes this much clearer.  Suppose that we have an
78 78
instance \c g of a directed graph type, say ListDigraph and an algorithm
79 79
\code
80 80
template <typename Digraph>
81 81
int algorithm(const Digraph&);
82 82
\endcode
83 83
is needed to run on the reverse oriented graph.  It may be expensive
84 84
(in time or in memory usage) to copy \c g with the reversed
85 85
arcs.  In this case, an adaptor class is used, which (according
86 86
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
87 87
The adaptor uses the original digraph structure and digraph operations when
88 88
methods of the reversed oriented graph are called.  This means that the adaptor
89 89
have minor memory usage, and do not perform sophisticated algorithmic
90 90
actions.  The purpose of it is to give a tool for the cases when a
91 91
graph have to be used in a specific alteration.  If this alteration is
92 92
obtained by a usual construction like filtering the node or the arc set or
93 93
considering a new orientation, then an adaptor is worthwhile to use.
94 94
To come back to the reverse oriented graph, in this situation
95 95
\code
96 96
template<typename Digraph> class ReverseDigraph;
97 97
\endcode
98 98
template class can be used. The code looks as follows
99 99
\code
100 100
ListDigraph g;
101 101
ReverseDigraph<ListDigraph> rg(g);
102 102
int result = algorithm(rg);
103 103
\endcode
104 104
During running the algorithm, the original digraph \c g is untouched.
105 105
This techniques give rise to an elegant code, and based on stable
106 106
graph adaptors, complex algorithms can be implemented easily.
107 107

	
108 108
In flow, circulation and matching problems, the residual
109 109
graph is of particular importance. Combining an adaptor implementing
110 110
this with shortest path algorithms or minimum mean cycle algorithms,
111 111
a range of weighted and cardinality optimization algorithms can be
112 112
obtained. For other examples, the interested user is referred to the
113 113
detailed documentation of particular adaptors.
114 114

	
115 115
The behavior of graph adaptors can be very different. Some of them keep
116 116
capabilities of the original graph while in other cases this would be
117 117
meaningless. This means that the concepts that they meet depend
118 118
on the graph adaptor, and the wrapped graph.
119 119
For example, if an arc of a reversed digraph is deleted, this is carried
120 120
out by deleting the corresponding arc of the original digraph, thus the
121 121
adaptor modifies the original digraph.
122 122
However in case of a residual digraph, this operation has no sense.
123 123

	
124 124
Let us stand one more example here to simplify your work.
125 125
ReverseDigraph has constructor
126 126
\code
127 127
ReverseDigraph(Digraph& digraph);
128 128
\endcode
129 129
This means that in a situation, when a <tt>const %ListDigraph&</tt>
130 130
reference to a graph is given, then it have to be instantiated with
131 131
<tt>Digraph=const %ListDigraph</tt>.
132 132
\code
133 133
int algorithm1(const ListDigraph& g) {
134 134
  ReverseDigraph<const ListDigraph> rg(g);
135 135
  return algorithm2(rg);
136 136
}
137 137
\endcode
138 138
*/
139 139

	
140 140
/**
141 141
@defgroup maps Maps
142 142
@ingroup datas
143 143
\brief Map structures implemented in LEMON.
144 144

	
145 145
This group contains the map structures implemented in LEMON.
146 146

	
147 147
LEMON provides several special purpose maps and map adaptors that e.g. combine
148 148
new maps from existing ones.
149 149

	
150 150
<b>See also:</b> \ref map_concepts "Map Concepts".
151 151
*/
152 152

	
153 153
/**
154 154
@defgroup graph_maps Graph Maps
155 155
@ingroup maps
156 156
\brief Special graph-related maps.
157 157

	
158 158
This group contains maps that are specifically designed to assign
159 159
values to the nodes and arcs/edges of graphs.
160 160

	
161 161
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
162 162
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
163 163
*/
164 164

	
165 165
/**
166 166
\defgroup map_adaptors Map Adaptors
167 167
\ingroup maps
168 168
\brief Tools to create new maps from existing ones
169 169

	
170 170
This group contains map adaptors that are used to create "implicit"
171 171
maps from other maps.
172 172

	
173 173
Most of them are \ref concepts::ReadMap "read-only maps".
174 174
They can make arithmetic and logical operations between one or two maps
175 175
(negation, shifting, addition, multiplication, logical 'and', 'or',
176 176
'not' etc.) or e.g. convert a map to another one of different Value type.
177 177

	
178 178
The typical usage of this classes is passing implicit maps to
179 179
algorithms.  If a function type algorithm is called then the function
180 180
type map adaptors can be used comfortable. For example let's see the
181 181
usage of map adaptors with the \c graphToEps() function.
182 182
\code
183 183
  Color nodeColor(int deg) {
184 184
    if (deg >= 2) {
185 185
      return Color(0.5, 0.0, 0.5);
186 186
    } else if (deg == 1) {
187 187
      return Color(1.0, 0.5, 1.0);
188 188
    } else {
189 189
      return Color(0.0, 0.0, 0.0);
190 190
    }
191 191
  }
192 192

	
193 193
  Digraph::NodeMap<int> degree_map(graph);
194 194

	
195 195
  graphToEps(graph, "graph.eps")
196 196
    .coords(coords).scaleToA4().undirected()
197 197
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
198 198
    .run();
199 199
\endcode
200 200
The \c functorToMap() function makes an \c int to \c Color map from the
201 201
\c nodeColor() function. The \c composeMap() compose the \c degree_map
202 202
and the previously created map. The composed map is a proper function to
203 203
get the color of each node.
204 204

	
205 205
The usage with class type algorithms is little bit harder. In this
206 206
case the function type map adaptors can not be used, because the
207 207
function map adaptors give back temporary objects.
208 208
\code
209 209
  Digraph graph;
210 210

	
211 211
  typedef Digraph::ArcMap<double> DoubleArcMap;
212 212
  DoubleArcMap length(graph);
213 213
  DoubleArcMap speed(graph);
214 214

	
215 215
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
216 216
  TimeMap time(length, speed);
217 217

	
218 218
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
219 219
  dijkstra.run(source, target);
220 220
\endcode
221 221
We have a length map and a maximum speed map on the arcs of a digraph.
222 222
The minimum time to pass the arc can be calculated as the division of
223 223
the two maps which can be done implicitly with the \c DivMap template
224 224
class. We use the implicit minimum time map as the length map of the
225 225
\c Dijkstra algorithm.
226 226
*/
227 227

	
228 228
/**
229 229
@defgroup paths Path Structures
230 230
@ingroup datas
231 231
\brief %Path structures implemented in LEMON.
232 232

	
233 233
This group contains the path structures implemented in LEMON.
234 234

	
235 235
LEMON provides flexible data structures to work with paths.
236 236
All of them have similar interfaces and they can be copied easily with
237 237
assignment operators and copy constructors. This makes it easy and
238 238
efficient to have e.g. the Dijkstra algorithm to store its result in
239 239
any kind of path structure.
240 240

	
241 241
\sa \ref concepts::Path "Path concept"
242 242
*/
243 243

	
244 244
/**
245 245
@defgroup heaps Heap Structures
246 246
@ingroup datas
247 247
\brief %Heap structures implemented in LEMON.
248 248

	
249 249
This group contains the heap structures implemented in LEMON.
250 250

	
251 251
LEMON provides several heap classes. They are efficient implementations
252 252
of the abstract data type \e priority \e queue. They store items with
253 253
specified values called \e priorities in such a way that finding and
254 254
removing the item with minimum priority are efficient.
255 255
The basic operations are adding and erasing items, changing the priority
256 256
of an item, etc.
257 257

	
258 258
Heaps are crucial in several algorithms, such as Dijkstra and Prim.
259 259
The heap implementations have the same interface, thus any of them can be
260 260
used easily in such algorithms.
261 261

	
262 262
\sa \ref concepts::Heap "Heap concept"
263 263
*/
264 264

	
265 265
/**
266 266
@defgroup auxdat Auxiliary Data Structures
267 267
@ingroup datas
268 268
\brief Auxiliary data structures implemented in LEMON.
269 269

	
270 270
This group contains some data structures implemented in LEMON in
271 271
order to make it easier to implement combinatorial algorithms.
272 272
*/
273 273

	
274 274
/**
275 275
@defgroup geomdat Geometric Data Structures
276 276
@ingroup auxdat
277 277
\brief Geometric data structures implemented in LEMON.
278 278

	
279 279
This group contains geometric data structures implemented in LEMON.
280 280

	
281 281
 - \ref lemon::dim2::Point "dim2::Point" implements a two dimensional
282 282
   vector with the usual operations.
283 283
 - \ref lemon::dim2::Box "dim2::Box" can be used to determine the
284 284
   rectangular bounding box of a set of \ref lemon::dim2::Point
285 285
   "dim2::Point"'s.
286 286
*/
287 287

	
288 288
/**
289 289
@defgroup matrices Matrices
290 290
@ingroup auxdat
291 291
\brief Two dimensional data storages implemented in LEMON.
292 292

	
293 293
This group contains two dimensional data storages implemented in LEMON.
294 294
*/
295 295

	
296 296
/**
297 297
@defgroup algs Algorithms
298 298
\brief This group contains the several algorithms
299 299
implemented in LEMON.
300 300

	
301 301
This group contains the several algorithms
302 302
implemented in LEMON.
303 303
*/
304 304

	
305 305
/**
306 306
@defgroup search Graph Search
307 307
@ingroup algs
308 308
\brief Common graph search algorithms.
309 309

	
310 310
This group contains the common graph search algorithms, namely
311 311
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS)
312 312
\ref clrs01algorithms.
313 313
*/
314 314

	
315 315
/**
316 316
@defgroup shortest_path Shortest Path Algorithms
317 317
@ingroup algs
318 318
\brief Algorithms for finding shortest paths.
319 319

	
320 320
This group contains the algorithms for finding shortest paths in digraphs
321 321
\ref clrs01algorithms.
322 322

	
323 323
 - \ref Dijkstra algorithm for finding shortest paths from a source node
324 324
   when all arc lengths are non-negative.
325 325
 - \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
326 326
   from a source node when arc lenghts can be either positive or negative,
327 327
   but the digraph should not contain directed cycles with negative total
328 328
   length.
329 329
 - \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
330 330
   for solving the \e all-pairs \e shortest \e paths \e problem when arc
331 331
   lenghts can be either positive or negative, but the digraph should
332 332
   not contain directed cycles with negative total length.
333 333
 - \ref Suurballe A successive shortest path algorithm for finding
334 334
   arc-disjoint paths between two nodes having minimum total length.
335 335
*/
336 336

	
337 337
/**
338 338
@defgroup spantree Minimum Spanning Tree Algorithms
339 339
@ingroup algs
340 340
\brief Algorithms for finding minimum cost spanning trees and arborescences.
341 341

	
342 342
This group contains the algorithms for finding minimum cost spanning
343 343
trees and arborescences \ref clrs01algorithms.
344 344
*/
345 345

	
346 346
/**
347 347
@defgroup max_flow Maximum Flow Algorithms
348 348
@ingroup algs
349 349
\brief Algorithms for finding maximum flows.
350 350

	
351 351
This group contains the algorithms for finding maximum flows and
352 352
feasible circulations \ref clrs01algorithms, \ref amo93networkflows.
353 353

	
354 354
The \e maximum \e flow \e problem is to find a flow of maximum value between
355 355
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
356 356
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and
357 357
\f$s, t \in V\f$ source and target nodes.
358 358
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the
359 359
following optimization problem.
360 360

	
361 361
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f]
362 362
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu)
363 363
    \quad \forall u\in V\setminus\{s,t\} \f]
364 364
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f]
365 365

	
366 366
LEMON contains several algorithms for solving maximum flow problems:
367 367
- \ref EdmondsKarp Edmonds-Karp algorithm
368 368
  \ref edmondskarp72theoretical.
369 369
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm
370 370
  \ref goldberg88newapproach.
371 371
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees
372 372
  \ref dinic70algorithm, \ref sleator83dynamic.
373 373
- \ref GoldbergTarjan !Preflow push-relabel algorithm with dynamic trees
374 374
  \ref goldberg88newapproach, \ref sleator83dynamic.
375 375

	
376 376
In most cases the \ref Preflow algorithm provides the
377 377
fastest method for computing a maximum flow. All implementations
378 378
also provide functions to query the minimum cut, which is the dual
379 379
problem of maximum flow.
380 380

	
381 381
\ref Circulation is a preflow push-relabel algorithm implemented directly
382 382
for finding feasible circulations, which is a somewhat different problem,
383 383
but it is strongly related to maximum flow.
384 384
For more information, see \ref Circulation.
385 385
*/
386 386

	
387 387
/**
388 388
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms
389 389
@ingroup algs
390 390

	
391 391
\brief Algorithms for finding minimum cost flows and circulations.
392 392

	
393 393
This group contains the algorithms for finding minimum cost flows and
394 394
circulations \ref amo93networkflows. For more information about this
395 395
problem and its dual solution, see \ref min_cost_flow
396 396
"Minimum Cost Flow Problem".
397 397

	
398 398
LEMON contains several algorithms for this problem.
399 399
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
400 400
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
401 401
 - \ref CostScaling Cost Scaling algorithm based on push/augment and
402 402
   relabel operations \ref goldberg90approximation, \ref goldberg97efficient,
403 403
   \ref bunnagel98efficient.
404 404
 - \ref CapacityScaling Capacity Scaling algorithm based on the successive
405 405
   shortest path method \ref edmondskarp72theoretical.
406 406
 - \ref CycleCanceling Cycle-Canceling algorithms, two of which are
407 407
   strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling.
408 408

	
409
In general NetworkSimplex is the most efficient implementation,
410
but in special cases other algorithms could be faster.
409
In general, \ref NetworkSimplex and \ref CostScaling are the most efficient
410
implementations, but the other two algorithms could be faster in special cases.
411 411
For example, if the total supply and/or capacities are rather small,
412
CapacityScaling is usually the fastest algorithm (without effective scaling).
412
\ref CapacityScaling is usually the fastest algorithm (without effective scaling).
413 413
*/
414 414

	
415 415
/**
416 416
@defgroup min_cut Minimum Cut Algorithms
417 417
@ingroup algs
418 418

	
419 419
\brief Algorithms for finding minimum cut in graphs.
420 420

	
421 421
This group contains the algorithms for finding minimum cut in graphs.
422 422

	
423 423
The \e minimum \e cut \e problem is to find a non-empty and non-complete
424 424
\f$X\f$ subset of the nodes with minimum overall capacity on
425 425
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
426 426
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
427 427
cut is the \f$X\f$ solution of the next optimization problem:
428 428

	
429 429
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
430 430
    \sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f]
431 431

	
432 432
LEMON contains several algorithms related to minimum cut problems:
433 433

	
434 434
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
435 435
  in directed graphs.
436 436
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
437 437
  calculating minimum cut in undirected graphs.
438 438
- \ref GomoryHu "Gomory-Hu tree computation" for calculating
439 439
  all-pairs minimum cut in undirected graphs.
440 440

	
441 441
If you want to find minimum cut just between two distinict nodes,
442 442
see the \ref max_flow "maximum flow problem".
443 443
*/
444 444

	
445 445
/**
446 446
@defgroup min_mean_cycle Minimum Mean Cycle Algorithms
447 447
@ingroup algs
448 448
\brief Algorithms for finding minimum mean cycles.
449 449

	
450 450
This group contains the algorithms for finding minimum mean cycles
451 451
\ref clrs01algorithms, \ref amo93networkflows.
452 452

	
453 453
The \e minimum \e mean \e cycle \e problem is to find a directed cycle
454 454
of minimum mean length (cost) in a digraph.
455 455
The mean length of a cycle is the average length of its arcs, i.e. the
456 456
ratio between the total length of the cycle and the number of arcs on it.
457 457

	
458 458
This problem has an important connection to \e conservative \e length
459 459
\e functions, too. A length function on the arcs of a digraph is called
460 460
conservative if and only if there is no directed cycle of negative total
461 461
length. For an arbitrary length function, the negative of the minimum
462 462
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
463 463
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
464 464
function.
465 465

	
466 466
LEMON contains three algorithms for solving the minimum mean cycle problem:
467 467
- \ref KarpMmc Karp's original algorithm \ref amo93networkflows,
468 468
  \ref dasdan98minmeancycle.
469 469
- \ref HartmannOrlinMmc Hartmann-Orlin's algorithm, which is an improved
470 470
  version of Karp's algorithm \ref dasdan98minmeancycle.
471 471
- \ref HowardMmc Howard's policy iteration algorithm
472 472
  \ref dasdan98minmeancycle.
473 473

	
474
In practice, the \ref HowardMmc "Howard" algorithm proved to be by far the
474
In practice, the \ref HowardMmc "Howard" algorithm turned out to be by far the
475 475
most efficient one, though the best known theoretical bound on its running
476 476
time is exponential.
477 477
Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms
478 478
run in time O(ne) and use space O(n<sup>2</sup>+e), but the latter one is
479 479
typically faster due to the applied early termination scheme.
480 480
*/
481 481

	
482 482
/**
483 483
@defgroup matching Matching Algorithms
484 484
@ingroup algs
485 485
\brief Algorithms for finding matchings in graphs and bipartite graphs.
486 486

	
487 487
This group contains the algorithms for calculating
488 488
matchings in graphs and bipartite graphs. The general matching problem is
489 489
finding a subset of the edges for which each node has at most one incident
490 490
edge.
491 491

	
492 492
There are several different algorithms for calculate matchings in
493 493
graphs.  The matching problems in bipartite graphs are generally
494 494
easier than in general graphs. The goal of the matching optimization
495 495
can be finding maximum cardinality, maximum weight or minimum cost
496 496
matching. The search can be constrained to find perfect or
497 497
maximum cardinality matching.
498 498

	
499 499
The matching algorithms implemented in LEMON:
500 500
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
501 501
  for calculating maximum cardinality matching in bipartite graphs.
502 502
- \ref PrBipartiteMatching Push-relabel algorithm
503 503
  for calculating maximum cardinality matching in bipartite graphs.
504 504
- \ref MaxWeightedBipartiteMatching
505 505
  Successive shortest path algorithm for calculating maximum weighted
506 506
  matching and maximum weighted bipartite matching in bipartite graphs.
507 507
- \ref MinCostMaxBipartiteMatching
508 508
  Successive shortest path algorithm for calculating minimum cost maximum
509 509
  matching in bipartite graphs.
510 510
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
511 511
  maximum cardinality matching in general graphs.
512 512
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
513 513
  maximum weighted matching in general graphs.
514 514
- \ref MaxWeightedPerfectMatching
515 515
  Edmond's blossom shrinking algorithm for calculating maximum weighted
516 516
  perfect matching in general graphs.
517 517
- \ref MaxFractionalMatching Push-relabel algorithm for calculating
518 518
  maximum cardinality fractional matching in general graphs.
519 519
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating
520 520
  maximum weighted fractional matching in general graphs.
521 521
- \ref MaxWeightedPerfectFractionalMatching
522 522
  Augmenting path algorithm for calculating maximum weighted
523 523
  perfect fractional matching in general graphs.
524 524

	
525 525
\image html matching.png
526 526
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth
527 527
*/
528 528

	
529 529
/**
530 530
@defgroup graph_properties Connectivity and Other Graph Properties
531 531
@ingroup algs
532 532
\brief Algorithms for discovering the graph properties
533 533

	
534 534
This group contains the algorithms for discovering the graph properties
535 535
like connectivity, bipartiteness, euler property, simplicity etc.
536 536

	
537 537
\image html connected_components.png
538 538
\image latex connected_components.eps "Connected components" width=\textwidth
539 539
*/
540 540

	
541 541
/**
542
@defgroup planar Planarity Embedding and Drawing
542
@defgroup planar Planar Embedding and Drawing
543 543
@ingroup algs
544 544
\brief Algorithms for planarity checking, embedding and drawing
545 545

	
546 546
This group contains the algorithms for planarity checking,
547 547
embedding and drawing.
548 548

	
549 549
\image html planar.png
550 550
\image latex planar.eps "Plane graph" width=\textwidth
551 551
*/
552 552

	
553 553
/**
554 554
@defgroup approx_algs Approximation Algorithms
555 555
@ingroup algs
556 556
\brief Approximation algorithms.
557 557

	
558 558
This group contains the approximation and heuristic algorithms
559 559
implemented in LEMON.
560 560

	
561 561
<b>Maximum Clique Problem</b>
562 562
  - \ref GrossoLocatelliPullanMc An efficient heuristic algorithm of
563 563
    Grosso, Locatelli, and Pullan.
564 564
*/
565 565

	
566 566
/**
567 567
@defgroup auxalg Auxiliary Algorithms
568 568
@ingroup algs
569 569
\brief Auxiliary algorithms implemented in LEMON.
570 570

	
571 571
This group contains some algorithms implemented in LEMON
572 572
in order to make it easier to implement complex algorithms.
573 573
*/
574 574

	
575 575
/**
576 576
@defgroup gen_opt_group General Optimization Tools
577 577
\brief This group contains some general optimization frameworks
578 578
implemented in LEMON.
579 579

	
580 580
This group contains some general optimization frameworks
581 581
implemented in LEMON.
582 582
*/
583 583

	
584 584
/**
585 585
@defgroup lp_group LP and MIP Solvers
586 586
@ingroup gen_opt_group
587 587
\brief LP and MIP solver interfaces for LEMON.
588 588

	
589 589
This group contains LP and MIP solver interfaces for LEMON.
590 590
Various LP solvers could be used in the same manner with this
591 591
high-level interface.
592 592

	
593 593
The currently supported solvers are \ref glpk, \ref clp, \ref cbc,
594 594
\ref cplex, \ref soplex.
595 595
*/
596 596

	
597 597
/**
598 598
@defgroup lp_utils Tools for Lp and Mip Solvers
599 599
@ingroup lp_group
600 600
\brief Helper tools to the Lp and Mip solvers.
601 601

	
602 602
This group adds some helper tools to general optimization framework
603 603
implemented in LEMON.
604 604
*/
605 605

	
606 606
/**
607 607
@defgroup metah Metaheuristics
608 608
@ingroup gen_opt_group
609 609
\brief Metaheuristics for LEMON library.
610 610

	
611 611
This group contains some metaheuristic optimization tools.
612 612
*/
613 613

	
614 614
/**
615 615
@defgroup utils Tools and Utilities
616 616
\brief Tools and utilities for programming in LEMON
617 617

	
618 618
Tools and utilities for programming in LEMON.
619 619
*/
620 620

	
621 621
/**
622 622
@defgroup gutils Basic Graph Utilities
623 623
@ingroup utils
624 624
\brief Simple basic graph utilities.
625 625

	
626 626
This group contains some simple basic graph utilities.
627 627
*/
628 628

	
629 629
/**
630 630
@defgroup misc Miscellaneous Tools
631 631
@ingroup utils
632 632
\brief Tools for development, debugging and testing.
633 633

	
634 634
This group contains several useful tools for development,
635 635
debugging and testing.
636 636
*/
637 637

	
638 638
/**
639 639
@defgroup timecount Time Measuring and Counting
640 640
@ingroup misc
641 641
\brief Simple tools for measuring the performance of algorithms.
642 642

	
643 643
This group contains simple tools for measuring the performance
644 644
of algorithms.
645 645
*/
646 646

	
647 647
/**
648 648
@defgroup exceptions Exceptions
649 649
@ingroup utils
650 650
\brief Exceptions defined in LEMON.
651 651

	
652 652
This group contains the exceptions defined in LEMON.
653 653
*/
654 654

	
655 655
/**
656 656
@defgroup io_group Input-Output
657 657
\brief Graph Input-Output methods
658 658

	
659 659
This group contains the tools for importing and exporting graphs
660 660
and graph related data. Now it supports the \ref lgf-format
661 661
"LEMON Graph Format", the \c DIMACS format and the encapsulated
662 662
postscript (EPS) format.
663 663
*/
664 664

	
665 665
/**
666 666
@defgroup lemon_io LEMON Graph Format
667 667
@ingroup io_group
668 668
\brief Reading and writing LEMON Graph Format.
669 669

	
670 670
This group contains methods for reading and writing
671 671
\ref lgf-format "LEMON Graph Format".
672 672
*/
673 673

	
674 674
/**
675 675
@defgroup eps_io Postscript Exporting
676 676
@ingroup io_group
677 677
\brief General \c EPS drawer and graph exporter
678 678

	
679 679
This group contains general \c EPS drawing methods and special
680 680
graph exporting tools.
681 681
*/
682 682

	
683 683
/**
684 684
@defgroup dimacs_group DIMACS Format
685 685
@ingroup io_group
686 686
\brief Read and write files in DIMACS format
687 687

	
688 688
Tools to read a digraph from or write it to a file in DIMACS format data.
689 689
*/
690 690

	
691 691
/**
692 692
@defgroup nauty_group NAUTY Format
693 693
@ingroup io_group
694 694
\brief Read \e Nauty format
695 695

	
696 696
Tool to read graphs from \e Nauty format data.
697 697
*/
698 698

	
699 699
/**
700 700
@defgroup concept Concepts
701 701
\brief Skeleton classes and concept checking classes
702 702

	
703 703
This group contains the data/algorithm skeletons and concept checking
704 704
classes implemented in LEMON.
705 705

	
706 706
The purpose of the classes in this group is fourfold.
707 707

	
708 708
- These classes contain the documentations of the %concepts. In order
709 709
  to avoid document multiplications, an implementation of a concept
710 710
  simply refers to the corresponding concept class.
711 711

	
712 712
- These classes declare every functions, <tt>typedef</tt>s etc. an
713 713
  implementation of the %concepts should provide, however completely
714 714
  without implementations and real data structures behind the
715 715
  interface. On the other hand they should provide nothing else. All
716 716
  the algorithms working on a data structure meeting a certain concept
717 717
  should compile with these classes. (Though it will not run properly,
718 718
  of course.) In this way it is easily to check if an algorithm
719 719
  doesn't use any extra feature of a certain implementation.
720 720

	
721 721
- The concept descriptor classes also provide a <em>checker class</em>
722 722
  that makes it possible to check whether a certain implementation of a
723 723
  concept indeed provides all the required features.
724 724

	
725 725
- Finally, They can serve as a skeleton of a new implementation of a concept.
726 726
*/
727 727

	
728 728
/**
729 729
@defgroup graph_concepts Graph Structure Concepts
730 730
@ingroup concept
731 731
\brief Skeleton and concept checking classes for graph structures
732 732

	
733 733
This group contains the skeletons and concept checking classes of
734 734
graph structures.
735 735
*/
736 736

	
737 737
/**
738 738
@defgroup map_concepts Map Concepts
739 739
@ingroup concept
740 740
\brief Skeleton and concept checking classes for maps
741 741

	
742 742
This group contains the skeletons and concept checking classes of maps.
743 743
*/
744 744

	
745 745
/**
746 746
@defgroup tools Standalone Utility Applications
747 747

	
748 748
Some utility applications are listed here.
749 749

	
750 750
The standard compilation procedure (<tt>./configure;make</tt>) will compile
751 751
them, as well.
752 752
*/
753 753

	
754 754
/**
755 755
\anchor demoprograms
756 756

	
757 757
@defgroup demos Demo Programs
758 758

	
759 759
Some demo programs are listed here. Their full source codes can be found in
760 760
the \c demo subdirectory of the source tree.
761 761

	
762 762
In order to compile them, use the <tt>make demo</tt> or the
763 763
<tt>make check</tt> commands.
764 764
*/
765 765

	
766 766
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CAPACITY_SCALING_H
20 20
#define LEMON_CAPACITY_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25 25
/// \brief Capacity Scaling algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <lemon/core.h>
30 30
#include <lemon/bin_heap.h>
31 31

	
32 32
namespace lemon {
33 33

	
34 34
  /// \brief Default traits class of CapacityScaling algorithm.
35 35
  ///
36 36
  /// Default traits class of CapacityScaling algorithm.
37 37
  /// \tparam GR Digraph type.
38 38
  /// \tparam V The number type used for flow amounts, capacity bounds
39 39
  /// and supply values. By default it is \c int.
40 40
  /// \tparam C The number type used for costs and potentials.
41 41
  /// By default it is the same as \c V.
42 42
  template <typename GR, typename V = int, typename C = V>
43 43
  struct CapacityScalingDefaultTraits
44 44
  {
45 45
    /// The type of the digraph
46 46
    typedef GR Digraph;
47 47
    /// The type of the flow amounts, capacity bounds and supply values
48 48
    typedef V Value;
49 49
    /// The type of the arc costs
50 50
    typedef C Cost;
51 51

	
52 52
    /// \brief The type of the heap used for internal Dijkstra computations.
53 53
    ///
54 54
    /// The type of the heap used for internal Dijkstra computations.
55 55
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
56 56
    /// its priority type must be \c Cost and its cross reference type
57 57
    /// must be \ref RangeMap "RangeMap<int>".
58 58
    typedef BinHeap<Cost, RangeMap<int> > Heap;
59 59
  };
60 60

	
61 61
  /// \addtogroup min_cost_flow_algs
62 62
  /// @{
63 63

	
64 64
  /// \brief Implementation of the Capacity Scaling algorithm for
65 65
  /// finding a \ref min_cost_flow "minimum cost flow".
66 66
  ///
67 67
  /// \ref CapacityScaling implements the capacity scaling version
68 68
  /// of the successive shortest path algorithm for finding a
69 69
  /// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows,
70 70
  /// \ref edmondskarp72theoretical. It is an efficient dual
71 71
  /// solution method.
72 72
  ///
73 73
  /// Most of the parameters of the problem (except for the digraph)
74 74
  /// can be given using separate functions, and the algorithm can be
75 75
  /// executed using the \ref run() function. If some parameters are not
76 76
  /// specified, then default values will be used.
77 77
  ///
78 78
  /// \tparam GR The digraph type the algorithm runs on.
79 79
  /// \tparam V The number type used for flow amounts, capacity bounds
80 80
  /// and supply values in the algorithm. By default, it is \c int.
81 81
  /// \tparam C The number type used for costs and potentials in the
82 82
  /// algorithm. By default, it is the same as \c V.
83 83
  /// \tparam TR The traits class that defines various types used by the
84 84
  /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
85 85
  /// "CapacityScalingDefaultTraits<GR, V, C>".
86 86
  /// In most cases, this parameter should not be set directly,
87 87
  /// consider to use the named template parameters instead.
88 88
  ///
89 89
  /// \warning Both \c V and \c C must be signed number types.
90 90
  /// \warning All input data (capacities, supply values, and costs) must
91 91
  /// be integer.
92
  /// \warning This algorithm does not support negative costs for such
93
  /// arcs that have infinite upper bound.
92
  /// \warning This algorithm does not support negative costs for
93
  /// arcs having infinite upper bound.
94 94
#ifdef DOXYGEN
95 95
  template <typename GR, typename V, typename C, typename TR>
96 96
#else
97 97
  template < typename GR, typename V = int, typename C = V,
98 98
             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
99 99
#endif
100 100
  class CapacityScaling
101 101
  {
102 102
  public:
103 103

	
104 104
    /// The type of the digraph
105 105
    typedef typename TR::Digraph Digraph;
106 106
    /// The type of the flow amounts, capacity bounds and supply values
107 107
    typedef typename TR::Value Value;
108 108
    /// The type of the arc costs
109 109
    typedef typename TR::Cost Cost;
110 110

	
111 111
    /// The type of the heap used for internal Dijkstra computations
112 112
    typedef typename TR::Heap Heap;
113 113

	
114 114
    /// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm
115 115
    typedef TR Traits;
116 116

	
117 117
  public:
118 118

	
119 119
    /// \brief Problem type constants for the \c run() function.
120 120
    ///
121 121
    /// Enum type containing the problem type constants that can be
122 122
    /// returned by the \ref run() function of the algorithm.
123 123
    enum ProblemType {
124 124
      /// The problem has no feasible solution (flow).
125 125
      INFEASIBLE,
126 126
      /// The problem has optimal solution (i.e. it is feasible and
127 127
      /// bounded), and the algorithm has found optimal flow and node
128 128
      /// potentials (primal and dual solutions).
129 129
      OPTIMAL,
130 130
      /// The digraph contains an arc of negative cost and infinite
131 131
      /// upper bound. It means that the objective function is unbounded
132 132
      /// on that arc, however, note that it could actually be bounded
133 133
      /// over the feasible flows, but this algroithm cannot handle
134 134
      /// these cases.
135 135
      UNBOUNDED
136 136
    };
137 137

	
138 138
  private:
139 139

	
140 140
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
141 141

	
142 142
    typedef std::vector<int> IntVector;
143 143
    typedef std::vector<Value> ValueVector;
144 144
    typedef std::vector<Cost> CostVector;
145 145
    typedef std::vector<char> BoolVector;
146 146
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
147 147

	
148 148
  private:
149 149

	
150 150
    // Data related to the underlying digraph
151 151
    const GR &_graph;
152 152
    int _node_num;
153 153
    int _arc_num;
154 154
    int _res_arc_num;
155 155
    int _root;
156 156

	
157 157
    // Parameters of the problem
158 158
    bool _have_lower;
159 159
    Value _sum_supply;
160 160

	
161 161
    // Data structures for storing the digraph
162 162
    IntNodeMap _node_id;
163 163
    IntArcMap _arc_idf;
164 164
    IntArcMap _arc_idb;
165 165
    IntVector _first_out;
166 166
    BoolVector _forward;
167 167
    IntVector _source;
168 168
    IntVector _target;
169 169
    IntVector _reverse;
170 170

	
171 171
    // Node and arc data
172 172
    ValueVector _lower;
173 173
    ValueVector _upper;
174 174
    CostVector _cost;
175 175
    ValueVector _supply;
176 176

	
177 177
    ValueVector _res_cap;
178 178
    CostVector _pi;
179 179
    ValueVector _excess;
180 180
    IntVector _excess_nodes;
181 181
    IntVector _deficit_nodes;
182 182

	
183 183
    Value _delta;
184 184
    int _factor;
185 185
    IntVector _pred;
186 186

	
187 187
  public:
188 188

	
189 189
    /// \brief Constant for infinite upper bounds (capacities).
190 190
    ///
191 191
    /// Constant for infinite upper bounds (capacities).
192 192
    /// It is \c std::numeric_limits<Value>::infinity() if available,
193 193
    /// \c std::numeric_limits<Value>::max() otherwise.
194 194
    const Value INF;
195 195

	
196 196
  private:
197 197

	
198 198
    // Special implementation of the Dijkstra algorithm for finding
199 199
    // shortest paths in the residual network of the digraph with
200 200
    // respect to the reduced arc costs and modifying the node
201 201
    // potentials according to the found distance labels.
202 202
    class ResidualDijkstra
203 203
    {
204 204
    private:
205 205

	
206 206
      int _node_num;
207 207
      bool _geq;
208 208
      const IntVector &_first_out;
209 209
      const IntVector &_target;
210 210
      const CostVector &_cost;
211 211
      const ValueVector &_res_cap;
212 212
      const ValueVector &_excess;
213 213
      CostVector &_pi;
214 214
      IntVector &_pred;
215 215

	
216 216
      IntVector _proc_nodes;
217 217
      CostVector _dist;
218 218

	
219 219
    public:
220 220

	
221 221
      ResidualDijkstra(CapacityScaling& cs) :
222 222
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
223 223
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
224 224
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
225 225
        _pred(cs._pred), _dist(cs._node_num)
226 226
      {}
227 227

	
228 228
      int run(int s, Value delta = 1) {
229 229
        RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP);
230 230
        Heap heap(heap_cross_ref);
231 231
        heap.push(s, 0);
232 232
        _pred[s] = -1;
233 233
        _proc_nodes.clear();
234 234

	
235 235
        // Process nodes
236 236
        while (!heap.empty() && _excess[heap.top()] > -delta) {
237 237
          int u = heap.top(), v;
238 238
          Cost d = heap.prio() + _pi[u], dn;
239 239
          _dist[u] = heap.prio();
240 240
          _proc_nodes.push_back(u);
241 241
          heap.pop();
242 242

	
243 243
          // Traverse outgoing residual arcs
244 244
          int last_out = _geq ? _first_out[u+1] : _first_out[u+1] - 1;
245 245
          for (int a = _first_out[u]; a != last_out; ++a) {
246 246
            if (_res_cap[a] < delta) continue;
247 247
            v = _target[a];
248 248
            switch (heap.state(v)) {
249 249
              case Heap::PRE_HEAP:
250 250
                heap.push(v, d + _cost[a] - _pi[v]);
251 251
                _pred[v] = a;
252 252
                break;
253 253
              case Heap::IN_HEAP:
254 254
                dn = d + _cost[a] - _pi[v];
255 255
                if (dn < heap[v]) {
256 256
                  heap.decrease(v, dn);
257 257
                  _pred[v] = a;
258 258
                }
259 259
                break;
260 260
              case Heap::POST_HEAP:
261 261
                break;
262 262
            }
263 263
          }
264 264
        }
265 265
        if (heap.empty()) return -1;
266 266

	
267 267
        // Update potentials of processed nodes
268 268
        int t = heap.top();
269 269
        Cost dt = heap.prio();
270 270
        for (int i = 0; i < int(_proc_nodes.size()); ++i) {
271 271
          _pi[_proc_nodes[i]] += _dist[_proc_nodes[i]] - dt;
272 272
        }
273 273

	
274 274
        return t;
275 275
      }
276 276

	
277 277
    }; //class ResidualDijkstra
278 278

	
279 279
  public:
280 280

	
281 281
    /// \name Named Template Parameters
282 282
    /// @{
283 283

	
284 284
    template <typename T>
285 285
    struct SetHeapTraits : public Traits {
286 286
      typedef T Heap;
287 287
    };
288 288

	
289 289
    /// \brief \ref named-templ-param "Named parameter" for setting
290 290
    /// \c Heap type.
291 291
    ///
292 292
    /// \ref named-templ-param "Named parameter" for setting \c Heap
293 293
    /// type, which is used for internal Dijkstra computations.
294 294
    /// It must conform to the \ref lemon::concepts::Heap "Heap" concept,
295 295
    /// its priority type must be \c Cost and its cross reference type
296 296
    /// must be \ref RangeMap "RangeMap<int>".
297 297
    template <typename T>
298 298
    struct SetHeap
299 299
      : public CapacityScaling<GR, V, C, SetHeapTraits<T> > {
300 300
      typedef  CapacityScaling<GR, V, C, SetHeapTraits<T> > Create;
301 301
    };
302 302

	
303 303
    /// @}
304 304

	
305 305
  protected:
306 306

	
307 307
    CapacityScaling() {}
308 308

	
309 309
  public:
310 310

	
311 311
    /// \brief Constructor.
312 312
    ///
313 313
    /// The constructor of the class.
314 314
    ///
315 315
    /// \param graph The digraph the algorithm runs on.
316 316
    CapacityScaling(const GR& graph) :
317 317
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
318 318
      INF(std::numeric_limits<Value>::has_infinity ?
319 319
          std::numeric_limits<Value>::infinity() :
320 320
          std::numeric_limits<Value>::max())
321 321
    {
322 322
      // Check the number types
323 323
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
324 324
        "The flow type of CapacityScaling must be signed");
325 325
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
326 326
        "The cost type of CapacityScaling must be signed");
327 327

	
328 328
      // Reset data structures
329 329
      reset();
330 330
    }
331 331

	
332 332
    /// \name Parameters
333 333
    /// The parameters of the algorithm can be specified using these
334 334
    /// functions.
335 335

	
336 336
    /// @{
337 337

	
338 338
    /// \brief Set the lower bounds on the arcs.
339 339
    ///
340 340
    /// This function sets the lower bounds on the arcs.
341 341
    /// If it is not used before calling \ref run(), the lower bounds
342 342
    /// will be set to zero on all arcs.
343 343
    ///
344 344
    /// \param map An arc map storing the lower bounds.
345 345
    /// Its \c Value type must be convertible to the \c Value type
346 346
    /// of the algorithm.
347 347
    ///
348 348
    /// \return <tt>(*this)</tt>
349 349
    template <typename LowerMap>
350 350
    CapacityScaling& lowerMap(const LowerMap& map) {
351 351
      _have_lower = true;
352 352
      for (ArcIt a(_graph); a != INVALID; ++a) {
353 353
        _lower[_arc_idf[a]] = map[a];
354 354
        _lower[_arc_idb[a]] = map[a];
355 355
      }
356 356
      return *this;
357 357
    }
358 358

	
359 359
    /// \brief Set the upper bounds (capacities) on the arcs.
360 360
    ///
361 361
    /// This function sets the upper bounds (capacities) on the arcs.
362 362
    /// If it is not used before calling \ref run(), the upper bounds
363 363
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
364 364
    /// unbounded from above).
365 365
    ///
366 366
    /// \param map An arc map storing the upper bounds.
367 367
    /// Its \c Value type must be convertible to the \c Value type
368 368
    /// of the algorithm.
369 369
    ///
370 370
    /// \return <tt>(*this)</tt>
371 371
    template<typename UpperMap>
372 372
    CapacityScaling& upperMap(const UpperMap& map) {
373 373
      for (ArcIt a(_graph); a != INVALID; ++a) {
374 374
        _upper[_arc_idf[a]] = map[a];
375 375
      }
376 376
      return *this;
377 377
    }
378 378

	
379 379
    /// \brief Set the costs of the arcs.
380 380
    ///
381 381
    /// This function sets the costs of the arcs.
382 382
    /// If it is not used before calling \ref run(), the costs
383 383
    /// will be set to \c 1 on all arcs.
384 384
    ///
385 385
    /// \param map An arc map storing the costs.
386 386
    /// Its \c Value type must be convertible to the \c Cost type
387 387
    /// of the algorithm.
388 388
    ///
389 389
    /// \return <tt>(*this)</tt>
390 390
    template<typename CostMap>
391 391
    CapacityScaling& costMap(const CostMap& map) {
392 392
      for (ArcIt a(_graph); a != INVALID; ++a) {
393 393
        _cost[_arc_idf[a]] =  map[a];
394 394
        _cost[_arc_idb[a]] = -map[a];
395 395
      }
396 396
      return *this;
397 397
    }
398 398

	
399 399
    /// \brief Set the supply values of the nodes.
400 400
    ///
401 401
    /// This function sets the supply values of the nodes.
402 402
    /// If neither this function nor \ref stSupply() is used before
403 403
    /// calling \ref run(), the supply of each node will be set to zero.
404 404
    ///
405 405
    /// \param map A node map storing the supply values.
406 406
    /// Its \c Value type must be convertible to the \c Value type
407 407
    /// of the algorithm.
408 408
    ///
409 409
    /// \return <tt>(*this)</tt>
410 410
    template<typename SupplyMap>
411 411
    CapacityScaling& supplyMap(const SupplyMap& map) {
412 412
      for (NodeIt n(_graph); n != INVALID; ++n) {
413 413
        _supply[_node_id[n]] = map[n];
414 414
      }
415 415
      return *this;
416 416
    }
417 417

	
418 418
    /// \brief Set single source and target nodes and a supply value.
419 419
    ///
420 420
    /// This function sets a single source node and a single target node
421 421
    /// and the required flow value.
422 422
    /// If neither this function nor \ref supplyMap() is used before
423 423
    /// calling \ref run(), the supply of each node will be set to zero.
424 424
    ///
425 425
    /// Using this function has the same effect as using \ref supplyMap()
426
    /// with such a map in which \c k is assigned to \c s, \c -k is
426
    /// with a map in which \c k is assigned to \c s, \c -k is
427 427
    /// assigned to \c t and all other nodes have zero supply value.
428 428
    ///
429 429
    /// \param s The source node.
430 430
    /// \param t The target node.
431 431
    /// \param k The required amount of flow from node \c s to node \c t
432 432
    /// (i.e. the supply of \c s and the demand of \c t).
433 433
    ///
434 434
    /// \return <tt>(*this)</tt>
435 435
    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
436 436
      for (int i = 0; i != _node_num; ++i) {
437 437
        _supply[i] = 0;
438 438
      }
439 439
      _supply[_node_id[s]] =  k;
440 440
      _supply[_node_id[t]] = -k;
441 441
      return *this;
442 442
    }
443 443

	
444 444
    /// @}
445 445

	
446 446
    /// \name Execution control
447 447
    /// The algorithm can be executed using \ref run().
448 448

	
449 449
    /// @{
450 450

	
451 451
    /// \brief Run the algorithm.
452 452
    ///
453 453
    /// This function runs the algorithm.
454 454
    /// The paramters can be specified using functions \ref lowerMap(),
455 455
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
456 456
    /// For example,
457 457
    /// \code
458 458
    ///   CapacityScaling<ListDigraph> cs(graph);
459 459
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
460 460
    ///     .supplyMap(sup).run();
461 461
    /// \endcode
462 462
    ///
463 463
    /// This function can be called more than once. All the given parameters
464 464
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
465 465
    /// is used, thus only the modified parameters have to be set again.
466 466
    /// If the underlying digraph was also modified after the construction
467 467
    /// of the class (or the last \ref reset() call), then the \ref reset()
468 468
    /// function must be called.
469 469
    ///
470 470
    /// \param factor The capacity scaling factor. It must be larger than
471 471
    /// one to use scaling. If it is less or equal to one, then scaling
472 472
    /// will be disabled.
473 473
    ///
474 474
    /// \return \c INFEASIBLE if no feasible flow exists,
475 475
    /// \n \c OPTIMAL if the problem has optimal solution
476 476
    /// (i.e. it is feasible and bounded), and the algorithm has found
477 477
    /// optimal flow and node potentials (primal and dual solutions),
478 478
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
479 479
    /// and infinite upper bound. It means that the objective function
480 480
    /// is unbounded on that arc, however, note that it could actually be
481 481
    /// bounded over the feasible flows, but this algroithm cannot handle
482 482
    /// these cases.
483 483
    ///
484 484
    /// \see ProblemType
485 485
    /// \see resetParams(), reset()
486 486
    ProblemType run(int factor = 4) {
487 487
      _factor = factor;
488 488
      ProblemType pt = init();
489 489
      if (pt != OPTIMAL) return pt;
490 490
      return start();
491 491
    }
492 492

	
493 493
    /// \brief Reset all the parameters that have been given before.
494 494
    ///
495 495
    /// This function resets all the paramaters that have been given
496 496
    /// before using functions \ref lowerMap(), \ref upperMap(),
497 497
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
498 498
    ///
499 499
    /// It is useful for multiple \ref run() calls. Basically, all the given
500 500
    /// parameters are kept for the next \ref run() call, unless
501 501
    /// \ref resetParams() or \ref reset() is used.
502 502
    /// If the underlying digraph was also modified after the construction
503 503
    /// of the class or the last \ref reset() call, then the \ref reset()
504 504
    /// function must be used, otherwise \ref resetParams() is sufficient.
505 505
    ///
506 506
    /// For example,
507 507
    /// \code
508 508
    ///   CapacityScaling<ListDigraph> cs(graph);
509 509
    ///
510 510
    ///   // First run
511 511
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
512 512
    ///     .supplyMap(sup).run();
513 513
    ///
514 514
    ///   // Run again with modified cost map (resetParams() is not called,
515 515
    ///   // so only the cost map have to be set again)
516 516
    ///   cost[e] += 100;
517 517
    ///   cs.costMap(cost).run();
518 518
    ///
519 519
    ///   // Run again from scratch using resetParams()
520 520
    ///   // (the lower bounds will be set to zero on all arcs)
521 521
    ///   cs.resetParams();
522 522
    ///   cs.upperMap(capacity).costMap(cost)
523 523
    ///     .supplyMap(sup).run();
524 524
    /// \endcode
525 525
    ///
526 526
    /// \return <tt>(*this)</tt>
527 527
    ///
528 528
    /// \see reset(), run()
529 529
    CapacityScaling& resetParams() {
530 530
      for (int i = 0; i != _node_num; ++i) {
531 531
        _supply[i] = 0;
532 532
      }
533 533
      for (int j = 0; j != _res_arc_num; ++j) {
534 534
        _lower[j] = 0;
535 535
        _upper[j] = INF;
536 536
        _cost[j] = _forward[j] ? 1 : -1;
537 537
      }
538 538
      _have_lower = false;
539 539
      return *this;
540 540
    }
541 541

	
542 542
    /// \brief Reset the internal data structures and all the parameters
543 543
    /// that have been given before.
544 544
    ///
545 545
    /// This function resets the internal data structures and all the
546 546
    /// paramaters that have been given before using functions \ref lowerMap(),
547 547
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
548 548
    ///
549 549
    /// It is useful for multiple \ref run() calls. Basically, all the given
550 550
    /// parameters are kept for the next \ref run() call, unless
551 551
    /// \ref resetParams() or \ref reset() is used.
552 552
    /// If the underlying digraph was also modified after the construction
553 553
    /// of the class or the last \ref reset() call, then the \ref reset()
554 554
    /// function must be used, otherwise \ref resetParams() is sufficient.
555 555
    ///
556 556
    /// See \ref resetParams() for examples.
557 557
    ///
558 558
    /// \return <tt>(*this)</tt>
559 559
    ///
560 560
    /// \see resetParams(), run()
561 561
    CapacityScaling& reset() {
562 562
      // Resize vectors
563 563
      _node_num = countNodes(_graph);
564 564
      _arc_num = countArcs(_graph);
565 565
      _res_arc_num = 2 * (_arc_num + _node_num);
566 566
      _root = _node_num;
567 567
      ++_node_num;
568 568

	
569 569
      _first_out.resize(_node_num + 1);
570 570
      _forward.resize(_res_arc_num);
571 571
      _source.resize(_res_arc_num);
572 572
      _target.resize(_res_arc_num);
573 573
      _reverse.resize(_res_arc_num);
574 574

	
575 575
      _lower.resize(_res_arc_num);
576 576
      _upper.resize(_res_arc_num);
577 577
      _cost.resize(_res_arc_num);
578 578
      _supply.resize(_node_num);
579 579

	
580 580
      _res_cap.resize(_res_arc_num);
581 581
      _pi.resize(_node_num);
582 582
      _excess.resize(_node_num);
583 583
      _pred.resize(_node_num);
584 584

	
585 585
      // Copy the graph
586 586
      int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1;
587 587
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
588 588
        _node_id[n] = i;
589 589
      }
590 590
      i = 0;
591 591
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
592 592
        _first_out[i] = j;
593 593
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
594 594
          _arc_idf[a] = j;
595 595
          _forward[j] = true;
596 596
          _source[j] = i;
597 597
          _target[j] = _node_id[_graph.runningNode(a)];
598 598
        }
599 599
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
600 600
          _arc_idb[a] = j;
601 601
          _forward[j] = false;
602 602
          _source[j] = i;
603 603
          _target[j] = _node_id[_graph.runningNode(a)];
604 604
        }
605 605
        _forward[j] = false;
606 606
        _source[j] = i;
607 607
        _target[j] = _root;
608 608
        _reverse[j] = k;
609 609
        _forward[k] = true;
610 610
        _source[k] = _root;
611 611
        _target[k] = i;
612 612
        _reverse[k] = j;
613 613
        ++j; ++k;
614 614
      }
615 615
      _first_out[i] = j;
616 616
      _first_out[_node_num] = k;
617 617
      for (ArcIt a(_graph); a != INVALID; ++a) {
618 618
        int fi = _arc_idf[a];
619 619
        int bi = _arc_idb[a];
620 620
        _reverse[fi] = bi;
621 621
        _reverse[bi] = fi;
622 622
      }
623 623

	
624 624
      // Reset parameters
625 625
      resetParams();
626 626
      return *this;
627 627
    }
628 628

	
629 629
    /// @}
630 630

	
631 631
    /// \name Query Functions
632 632
    /// The results of the algorithm can be obtained using these
633 633
    /// functions.\n
634 634
    /// The \ref run() function must be called before using them.
635 635

	
636 636
    /// @{
637 637

	
638 638
    /// \brief Return the total cost of the found flow.
639 639
    ///
640 640
    /// This function returns the total cost of the found flow.
641 641
    /// Its complexity is O(e).
642 642
    ///
643 643
    /// \note The return type of the function can be specified as a
644 644
    /// template parameter. For example,
645 645
    /// \code
646 646
    ///   cs.totalCost<double>();
647 647
    /// \endcode
648 648
    /// It is useful if the total cost cannot be stored in the \c Cost
649 649
    /// type of the algorithm, which is the default return type of the
650 650
    /// function.
651 651
    ///
652 652
    /// \pre \ref run() must be called before using this function.
653 653
    template <typename Number>
654 654
    Number totalCost() const {
655 655
      Number c = 0;
656 656
      for (ArcIt a(_graph); a != INVALID; ++a) {
657 657
        int i = _arc_idb[a];
658 658
        c += static_cast<Number>(_res_cap[i]) *
659 659
             (-static_cast<Number>(_cost[i]));
660 660
      }
661 661
      return c;
662 662
    }
663 663

	
664 664
#ifndef DOXYGEN
665 665
    Cost totalCost() const {
666 666
      return totalCost<Cost>();
667 667
    }
668 668
#endif
669 669

	
670 670
    /// \brief Return the flow on the given arc.
671 671
    ///
672 672
    /// This function returns the flow on the given arc.
673 673
    ///
674 674
    /// \pre \ref run() must be called before using this function.
675 675
    Value flow(const Arc& a) const {
676 676
      return _res_cap[_arc_idb[a]];
677 677
    }
678 678

	
679 679
    /// \brief Return the flow map (the primal solution).
680 680
    ///
681 681
    /// This function copies the flow value on each arc into the given
682 682
    /// map. The \c Value type of the algorithm must be convertible to
683 683
    /// the \c Value type of the map.
684 684
    ///
685 685
    /// \pre \ref run() must be called before using this function.
686 686
    template <typename FlowMap>
687 687
    void flowMap(FlowMap &map) const {
688 688
      for (ArcIt a(_graph); a != INVALID; ++a) {
689 689
        map.set(a, _res_cap[_arc_idb[a]]);
690 690
      }
691 691
    }
692 692

	
693 693
    /// \brief Return the potential (dual value) of the given node.
694 694
    ///
695 695
    /// This function returns the potential (dual value) of the
696 696
    /// given node.
697 697
    ///
698 698
    /// \pre \ref run() must be called before using this function.
699 699
    Cost potential(const Node& n) const {
700 700
      return _pi[_node_id[n]];
701 701
    }
702 702

	
703 703
    /// \brief Return the potential map (the dual solution).
704 704
    ///
705 705
    /// This function copies the potential (dual value) of each node
706 706
    /// into the given map.
707 707
    /// The \c Cost type of the algorithm must be convertible to the
708 708
    /// \c Value type of the map.
709 709
    ///
710 710
    /// \pre \ref run() must be called before using this function.
711 711
    template <typename PotentialMap>
712 712
    void potentialMap(PotentialMap &map) const {
713 713
      for (NodeIt n(_graph); n != INVALID; ++n) {
714 714
        map.set(n, _pi[_node_id[n]]);
715 715
      }
716 716
    }
717 717

	
718 718
    /// @}
719 719

	
720 720
  private:
721 721

	
722 722
    // Initialize the algorithm
723 723
    ProblemType init() {
724 724
      if (_node_num <= 1) return INFEASIBLE;
725 725

	
726 726
      // Check the sum of supply values
727 727
      _sum_supply = 0;
728 728
      for (int i = 0; i != _root; ++i) {
729 729
        _sum_supply += _supply[i];
730 730
      }
731 731
      if (_sum_supply > 0) return INFEASIBLE;
732 732

	
733 733
      // Initialize vectors
734 734
      for (int i = 0; i != _root; ++i) {
735 735
        _pi[i] = 0;
736 736
        _excess[i] = _supply[i];
737 737
      }
738 738

	
739 739
      // Remove non-zero lower bounds
740 740
      const Value MAX = std::numeric_limits<Value>::max();
741 741
      int last_out;
742 742
      if (_have_lower) {
743 743
        for (int i = 0; i != _root; ++i) {
744 744
          last_out = _first_out[i+1];
745 745
          for (int j = _first_out[i]; j != last_out; ++j) {
746 746
            if (_forward[j]) {
747 747
              Value c = _lower[j];
748 748
              if (c >= 0) {
749 749
                _res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF;
750 750
              } else {
751 751
                _res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF;
752 752
              }
753 753
              _excess[i] -= c;
754 754
              _excess[_target[j]] += c;
755 755
            } else {
756 756
              _res_cap[j] = 0;
757 757
            }
758 758
          }
759 759
        }
760 760
      } else {
761 761
        for (int j = 0; j != _res_arc_num; ++j) {
762 762
          _res_cap[j] = _forward[j] ? _upper[j] : 0;
763 763
        }
764 764
      }
765 765

	
766 766
      // Handle negative costs
767 767
      for (int i = 0; i != _root; ++i) {
768 768
        last_out = _first_out[i+1] - 1;
769 769
        for (int j = _first_out[i]; j != last_out; ++j) {
770 770
          Value rc = _res_cap[j];
771 771
          if (_cost[j] < 0 && rc > 0) {
772 772
            if (rc >= MAX) return UNBOUNDED;
773 773
            _excess[i] -= rc;
774 774
            _excess[_target[j]] += rc;
775 775
            _res_cap[j] = 0;
776 776
            _res_cap[_reverse[j]] += rc;
777 777
          }
778 778
        }
779 779
      }
780 780

	
781 781
      // Handle GEQ supply type
782 782
      if (_sum_supply < 0) {
783 783
        _pi[_root] = 0;
784 784
        _excess[_root] = -_sum_supply;
785 785
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
786 786
          int ra = _reverse[a];
787 787
          _res_cap[a] = -_sum_supply + 1;
788 788
          _res_cap[ra] = 0;
789 789
          _cost[a] = 0;
790 790
          _cost[ra] = 0;
791 791
        }
792 792
      } else {
793 793
        _pi[_root] = 0;
794 794
        _excess[_root] = 0;
795 795
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
796 796
          int ra = _reverse[a];
797 797
          _res_cap[a] = 1;
798 798
          _res_cap[ra] = 0;
799 799
          _cost[a] = 0;
800 800
          _cost[ra] = 0;
801 801
        }
802 802
      }
803 803

	
804 804
      // Initialize delta value
805 805
      if (_factor > 1) {
806 806
        // With scaling
807 807
        Value max_sup = 0, max_dem = 0, max_cap = 0;
808 808
        for (int i = 0; i != _root; ++i) {
809 809
          Value ex = _excess[i];
810 810
          if ( ex > max_sup) max_sup =  ex;
Ignore white space 6 line context
... ...
@@ -66,769 +66,769 @@
66 66
#else
67 67
  extern const Invalid INVALID;
68 68
#endif
69 69

	
70 70
  /// \addtogroup gutils
71 71
  /// @{
72 72

	
73 73
  ///Create convenience typedefs for the digraph types and iterators
74 74

	
75 75
  ///This \c \#define creates convenient type definitions for the following
76 76
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
77 77
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
78 78
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
79 79
  ///
80 80
  ///\note If the graph type is a dependent type, ie. the graph type depend
81 81
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
82 82
  ///macro.
83 83
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
84 84
  typedef Digraph::Node Node;                                           \
85 85
  typedef Digraph::NodeIt NodeIt;                                       \
86 86
  typedef Digraph::Arc Arc;                                             \
87 87
  typedef Digraph::ArcIt ArcIt;                                         \
88 88
  typedef Digraph::InArcIt InArcIt;                                     \
89 89
  typedef Digraph::OutArcIt OutArcIt;                                   \
90 90
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
91 91
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
92 92
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
93 93
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
94 94
  typedef Digraph::ArcMap<int> IntArcMap;                               \
95 95
  typedef Digraph::ArcMap<double> DoubleArcMap
96 96

	
97 97
  ///Create convenience typedefs for the digraph types and iterators
98 98

	
99 99
  ///\see DIGRAPH_TYPEDEFS
100 100
  ///
101 101
  ///\note Use this macro, if the graph type is a dependent type,
102 102
  ///ie. the graph type depend on a template parameter.
103 103
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
104 104
  typedef typename Digraph::Node Node;                                  \
105 105
  typedef typename Digraph::NodeIt NodeIt;                              \
106 106
  typedef typename Digraph::Arc Arc;                                    \
107 107
  typedef typename Digraph::ArcIt ArcIt;                                \
108 108
  typedef typename Digraph::InArcIt InArcIt;                            \
109 109
  typedef typename Digraph::OutArcIt OutArcIt;                          \
110 110
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
111 111
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
112 112
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
113 113
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
114 114
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
115 115
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
116 116

	
117 117
  ///Create convenience typedefs for the graph types and iterators
118 118

	
119 119
  ///This \c \#define creates the same convenient type definitions as defined
120 120
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
121 121
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
122 122
  ///\c DoubleEdgeMap.
123 123
  ///
124 124
  ///\note If the graph type is a dependent type, ie. the graph type depend
125 125
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
126 126
  ///macro.
127 127
#define GRAPH_TYPEDEFS(Graph)                                           \
128 128
  DIGRAPH_TYPEDEFS(Graph);                                              \
129 129
  typedef Graph::Edge Edge;                                             \
130 130
  typedef Graph::EdgeIt EdgeIt;                                         \
131 131
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
132 132
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
133 133
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
134 134
  typedef Graph::EdgeMap<double> DoubleEdgeMap
135 135

	
136 136
  ///Create convenience typedefs for the graph types and iterators
137 137

	
138 138
  ///\see GRAPH_TYPEDEFS
139 139
  ///
140 140
  ///\note Use this macro, if the graph type is a dependent type,
141 141
  ///ie. the graph type depend on a template parameter.
142 142
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
143 143
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
144 144
  typedef typename Graph::Edge Edge;                                    \
145 145
  typedef typename Graph::EdgeIt EdgeIt;                                \
146 146
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
147 147
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
148 148
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
149 149
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
150 150

	
151 151
  /// \brief Function to count the items in a graph.
152 152
  ///
153 153
  /// This function counts the items (nodes, arcs etc.) in a graph.
154 154
  /// The complexity of the function is linear because
155 155
  /// it iterates on all of the items.
156 156
  template <typename Graph, typename Item>
157 157
  inline int countItems(const Graph& g) {
158 158
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
159 159
    int num = 0;
160 160
    for (ItemIt it(g); it != INVALID; ++it) {
161 161
      ++num;
162 162
    }
163 163
    return num;
164 164
  }
165 165

	
166 166
  // Node counting:
167 167

	
168 168
  namespace _core_bits {
169 169

	
170 170
    template <typename Graph, typename Enable = void>
171 171
    struct CountNodesSelector {
172 172
      static int count(const Graph &g) {
173 173
        return countItems<Graph, typename Graph::Node>(g);
174 174
      }
175 175
    };
176 176

	
177 177
    template <typename Graph>
178 178
    struct CountNodesSelector<
179 179
      Graph, typename
180 180
      enable_if<typename Graph::NodeNumTag, void>::type>
181 181
    {
182 182
      static int count(const Graph &g) {
183 183
        return g.nodeNum();
184 184
      }
185 185
    };
186 186
  }
187 187

	
188 188
  /// \brief Function to count the nodes in the graph.
189 189
  ///
190 190
  /// This function counts the nodes in the graph.
191 191
  /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
192 192
  /// graph structures it is specialized to run in <em>O</em>(1).
193 193
  ///
194 194
  /// \note If the graph contains a \c nodeNum() member function and a
195 195
  /// \c NodeNumTag tag then this function calls directly the member
196 196
  /// function to query the cardinality of the node set.
197 197
  template <typename Graph>
198 198
  inline int countNodes(const Graph& g) {
199 199
    return _core_bits::CountNodesSelector<Graph>::count(g);
200 200
  }
201 201

	
202 202
  // Arc counting:
203 203

	
204 204
  namespace _core_bits {
205 205

	
206 206
    template <typename Graph, typename Enable = void>
207 207
    struct CountArcsSelector {
208 208
      static int count(const Graph &g) {
209 209
        return countItems<Graph, typename Graph::Arc>(g);
210 210
      }
211 211
    };
212 212

	
213 213
    template <typename Graph>
214 214
    struct CountArcsSelector<
215 215
      Graph,
216 216
      typename enable_if<typename Graph::ArcNumTag, void>::type>
217 217
    {
218 218
      static int count(const Graph &g) {
219 219
        return g.arcNum();
220 220
      }
221 221
    };
222 222
  }
223 223

	
224 224
  /// \brief Function to count the arcs in the graph.
225 225
  ///
226 226
  /// This function counts the arcs in the graph.
227 227
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
228 228
  /// graph structures it is specialized to run in <em>O</em>(1).
229 229
  ///
230 230
  /// \note If the graph contains a \c arcNum() member function and a
231 231
  /// \c ArcNumTag tag then this function calls directly the member
232 232
  /// function to query the cardinality of the arc set.
233 233
  template <typename Graph>
234 234
  inline int countArcs(const Graph& g) {
235 235
    return _core_bits::CountArcsSelector<Graph>::count(g);
236 236
  }
237 237

	
238 238
  // Edge counting:
239 239

	
240 240
  namespace _core_bits {
241 241

	
242 242
    template <typename Graph, typename Enable = void>
243 243
    struct CountEdgesSelector {
244 244
      static int count(const Graph &g) {
245 245
        return countItems<Graph, typename Graph::Edge>(g);
246 246
      }
247 247
    };
248 248

	
249 249
    template <typename Graph>
250 250
    struct CountEdgesSelector<
251 251
      Graph,
252 252
      typename enable_if<typename Graph::EdgeNumTag, void>::type>
253 253
    {
254 254
      static int count(const Graph &g) {
255 255
        return g.edgeNum();
256 256
      }
257 257
    };
258 258
  }
259 259

	
260 260
  /// \brief Function to count the edges in the graph.
261 261
  ///
262 262
  /// This function counts the edges in the graph.
263 263
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
264 264
  /// graph structures it is specialized to run in <em>O</em>(1).
265 265
  ///
266 266
  /// \note If the graph contains a \c edgeNum() member function and a
267 267
  /// \c EdgeNumTag tag then this function calls directly the member
268 268
  /// function to query the cardinality of the edge set.
269 269
  template <typename Graph>
270 270
  inline int countEdges(const Graph& g) {
271 271
    return _core_bits::CountEdgesSelector<Graph>::count(g);
272 272

	
273 273
  }
274 274

	
275 275

	
276 276
  template <typename Graph, typename DegIt>
277 277
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
278 278
    int num = 0;
279 279
    for (DegIt it(_g, _n); it != INVALID; ++it) {
280 280
      ++num;
281 281
    }
282 282
    return num;
283 283
  }
284 284

	
285 285
  /// \brief Function to count the number of the out-arcs from node \c n.
286 286
  ///
287 287
  /// This function counts the number of the out-arcs from node \c n
288 288
  /// in the graph \c g.
289 289
  template <typename Graph>
290 290
  inline int countOutArcs(const Graph& g,  const typename Graph::Node& n) {
291 291
    return countNodeDegree<Graph, typename Graph::OutArcIt>(g, n);
292 292
  }
293 293

	
294 294
  /// \brief Function to count the number of the in-arcs to node \c n.
295 295
  ///
296 296
  /// This function counts the number of the in-arcs to node \c n
297 297
  /// in the graph \c g.
298 298
  template <typename Graph>
299 299
  inline int countInArcs(const Graph& g,  const typename Graph::Node& n) {
300 300
    return countNodeDegree<Graph, typename Graph::InArcIt>(g, n);
301 301
  }
302 302

	
303 303
  /// \brief Function to count the number of the inc-edges to node \c n.
304 304
  ///
305 305
  /// This function counts the number of the inc-edges to node \c n
306 306
  /// in the undirected graph \c g.
307 307
  template <typename Graph>
308 308
  inline int countIncEdges(const Graph& g,  const typename Graph::Node& n) {
309 309
    return countNodeDegree<Graph, typename Graph::IncEdgeIt>(g, n);
310 310
  }
311 311

	
312 312
  namespace _core_bits {
313 313

	
314 314
    template <typename Digraph, typename Item, typename RefMap>
315 315
    class MapCopyBase {
316 316
    public:
317 317
      virtual void copy(const Digraph& from, const RefMap& refMap) = 0;
318 318

	
319 319
      virtual ~MapCopyBase() {}
320 320
    };
321 321

	
322 322
    template <typename Digraph, typename Item, typename RefMap,
323 323
              typename FromMap, typename ToMap>
324 324
    class MapCopy : public MapCopyBase<Digraph, Item, RefMap> {
325 325
    public:
326 326

	
327 327
      MapCopy(const FromMap& map, ToMap& tmap)
328 328
        : _map(map), _tmap(tmap) {}
329 329

	
330 330
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
331 331
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
332 332
        for (ItemIt it(digraph); it != INVALID; ++it) {
333 333
          _tmap.set(refMap[it], _map[it]);
334 334
        }
335 335
      }
336 336

	
337 337
    private:
338 338
      const FromMap& _map;
339 339
      ToMap& _tmap;
340 340
    };
341 341

	
342 342
    template <typename Digraph, typename Item, typename RefMap, typename It>
343 343
    class ItemCopy : public MapCopyBase<Digraph, Item, RefMap> {
344 344
    public:
345 345

	
346 346
      ItemCopy(const Item& item, It& it) : _item(item), _it(it) {}
347 347

	
348 348
      virtual void copy(const Digraph&, const RefMap& refMap) {
349 349
        _it = refMap[_item];
350 350
      }
351 351

	
352 352
    private:
353 353
      Item _item;
354 354
      It& _it;
355 355
    };
356 356

	
357 357
    template <typename Digraph, typename Item, typename RefMap, typename Ref>
358 358
    class RefCopy : public MapCopyBase<Digraph, Item, RefMap> {
359 359
    public:
360 360

	
361 361
      RefCopy(Ref& map) : _map(map) {}
362 362

	
363 363
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
364 364
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
365 365
        for (ItemIt it(digraph); it != INVALID; ++it) {
366 366
          _map.set(it, refMap[it]);
367 367
        }
368 368
      }
369 369

	
370 370
    private:
371 371
      Ref& _map;
372 372
    };
373 373

	
374 374
    template <typename Digraph, typename Item, typename RefMap,
375 375
              typename CrossRef>
376 376
    class CrossRefCopy : public MapCopyBase<Digraph, Item, RefMap> {
377 377
    public:
378 378

	
379 379
      CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
380 380

	
381 381
      virtual void copy(const Digraph& digraph, const RefMap& refMap) {
382 382
        typedef typename ItemSetTraits<Digraph, Item>::ItemIt ItemIt;
383 383
        for (ItemIt it(digraph); it != INVALID; ++it) {
384 384
          _cmap.set(refMap[it], it);
385 385
        }
386 386
      }
387 387

	
388 388
    private:
389 389
      CrossRef& _cmap;
390 390
    };
391 391

	
392 392
    template <typename Digraph, typename Enable = void>
393 393
    struct DigraphCopySelector {
394 394
      template <typename From, typename NodeRefMap, typename ArcRefMap>
395 395
      static void copy(const From& from, Digraph &to,
396 396
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
397 397
        to.clear();
398 398
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
399 399
          nodeRefMap[it] = to.addNode();
400 400
        }
401 401
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
402 402
          arcRefMap[it] = to.addArc(nodeRefMap[from.source(it)],
403 403
                                    nodeRefMap[from.target(it)]);
404 404
        }
405 405
      }
406 406
    };
407 407

	
408 408
    template <typename Digraph>
409 409
    struct DigraphCopySelector<
410 410
      Digraph,
411 411
      typename enable_if<typename Digraph::BuildTag, void>::type>
412 412
    {
413 413
      template <typename From, typename NodeRefMap, typename ArcRefMap>
414 414
      static void copy(const From& from, Digraph &to,
415 415
                       NodeRefMap& nodeRefMap, ArcRefMap& arcRefMap) {
416 416
        to.build(from, nodeRefMap, arcRefMap);
417 417
      }
418 418
    };
419 419

	
420 420
    template <typename Graph, typename Enable = void>
421 421
    struct GraphCopySelector {
422 422
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
423 423
      static void copy(const From& from, Graph &to,
424 424
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
425 425
        to.clear();
426 426
        for (typename From::NodeIt it(from); it != INVALID; ++it) {
427 427
          nodeRefMap[it] = to.addNode();
428 428
        }
429 429
        for (typename From::EdgeIt it(from); it != INVALID; ++it) {
430 430
          edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)],
431 431
                                      nodeRefMap[from.v(it)]);
432 432
        }
433 433
      }
434 434
    };
435 435

	
436 436
    template <typename Graph>
437 437
    struct GraphCopySelector<
438 438
      Graph,
439 439
      typename enable_if<typename Graph::BuildTag, void>::type>
440 440
    {
441 441
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
442 442
      static void copy(const From& from, Graph &to,
443 443
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
444 444
        to.build(from, nodeRefMap, edgeRefMap);
445 445
      }
446 446
    };
447 447

	
448 448
  }
449 449

	
450
  /// Check whether a graph is undirected.
450
  /// \brief Check whether a graph is undirected.
451 451
  ///
452 452
  /// This function returns \c true if the given graph is undirected.
453 453
#ifdef DOXYGEN
454 454
  template <typename GR>
455 455
  bool undirected(const GR& g) { return false; }
456 456
#else
457 457
  template <typename GR>
458 458
  typename enable_if<UndirectedTagIndicator<GR>, bool>::type
459 459
  undirected(const GR&) {
460 460
    return true;
461 461
  }
462 462
  template <typename GR>
463 463
  typename disable_if<UndirectedTagIndicator<GR>, bool>::type
464 464
  undirected(const GR&) {
465 465
    return false;
466 466
  }
467 467
#endif
468 468

	
469 469
  /// \brief Class to copy a digraph.
470 470
  ///
471 471
  /// Class to copy a digraph to another digraph (duplicate a digraph). The
472 472
  /// simplest way of using it is through the \c digraphCopy() function.
473 473
  ///
474 474
  /// This class not only make a copy of a digraph, but it can create
475 475
  /// references and cross references between the nodes and arcs of
476 476
  /// the two digraphs, and it can copy maps to use with the newly created
477 477
  /// digraph.
478 478
  ///
479 479
  /// To make a copy from a digraph, first an instance of DigraphCopy
480 480
  /// should be created, then the data belongs to the digraph should
481 481
  /// assigned to copy. In the end, the \c run() member should be
482 482
  /// called.
483 483
  ///
484 484
  /// The next code copies a digraph with several data:
485 485
  ///\code
486 486
  ///  DigraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
487 487
  ///  // Create references for the nodes
488 488
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
489 489
  ///  cg.nodeRef(nr);
490 490
  ///  // Create cross references (inverse) for the arcs
491 491
  ///  NewGraph::ArcMap<OrigGraph::Arc> acr(new_graph);
492 492
  ///  cg.arcCrossRef(acr);
493 493
  ///  // Copy an arc map
494 494
  ///  OrigGraph::ArcMap<double> oamap(orig_graph);
495 495
  ///  NewGraph::ArcMap<double> namap(new_graph);
496 496
  ///  cg.arcMap(oamap, namap);
497 497
  ///  // Copy a node
498 498
  ///  OrigGraph::Node on;
499 499
  ///  NewGraph::Node nn;
500 500
  ///  cg.node(on, nn);
501 501
  ///  // Execute copying
502 502
  ///  cg.run();
503 503
  ///\endcode
504 504
  template <typename From, typename To>
505 505
  class DigraphCopy {
506 506
  private:
507 507

	
508 508
    typedef typename From::Node Node;
509 509
    typedef typename From::NodeIt NodeIt;
510 510
    typedef typename From::Arc Arc;
511 511
    typedef typename From::ArcIt ArcIt;
512 512

	
513 513
    typedef typename To::Node TNode;
514 514
    typedef typename To::Arc TArc;
515 515

	
516 516
    typedef typename From::template NodeMap<TNode> NodeRefMap;
517 517
    typedef typename From::template ArcMap<TArc> ArcRefMap;
518 518

	
519 519
  public:
520 520

	
521 521
    /// \brief Constructor of DigraphCopy.
522 522
    ///
523 523
    /// Constructor of DigraphCopy for copying the content of the
524 524
    /// \c from digraph into the \c to digraph.
525 525
    DigraphCopy(const From& from, To& to)
526 526
      : _from(from), _to(to) {}
527 527

	
528 528
    /// \brief Destructor of DigraphCopy
529 529
    ///
530 530
    /// Destructor of DigraphCopy.
531 531
    ~DigraphCopy() {
532 532
      for (int i = 0; i < int(_node_maps.size()); ++i) {
533 533
        delete _node_maps[i];
534 534
      }
535 535
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
536 536
        delete _arc_maps[i];
537 537
      }
538 538

	
539 539
    }
540 540

	
541 541
    /// \brief Copy the node references into the given map.
542 542
    ///
543 543
    /// This function copies the node references into the given map.
544 544
    /// The parameter should be a map, whose key type is the Node type of
545 545
    /// the source digraph, while the value type is the Node type of the
546 546
    /// destination digraph.
547 547
    template <typename NodeRef>
548 548
    DigraphCopy& nodeRef(NodeRef& map) {
549 549
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
550 550
                           NodeRefMap, NodeRef>(map));
551 551
      return *this;
552 552
    }
553 553

	
554 554
    /// \brief Copy the node cross references into the given map.
555 555
    ///
556 556
    /// This function copies the node cross references (reverse references)
557 557
    /// into the given map. The parameter should be a map, whose key type
558 558
    /// is the Node type of the destination digraph, while the value type is
559 559
    /// the Node type of the source digraph.
560 560
    template <typename NodeCrossRef>
561 561
    DigraphCopy& nodeCrossRef(NodeCrossRef& map) {
562 562
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
563 563
                           NodeRefMap, NodeCrossRef>(map));
564 564
      return *this;
565 565
    }
566 566

	
567 567
    /// \brief Make a copy of the given node map.
568 568
    ///
569 569
    /// This function makes a copy of the given node map for the newly
570 570
    /// created digraph.
571 571
    /// The key type of the new map \c tmap should be the Node type of the
572 572
    /// destination digraph, and the key type of the original map \c map
573 573
    /// should be the Node type of the source digraph.
574 574
    template <typename FromMap, typename ToMap>
575 575
    DigraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
576 576
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
577 577
                           NodeRefMap, FromMap, ToMap>(map, tmap));
578 578
      return *this;
579 579
    }
580 580

	
581 581
    /// \brief Make a copy of the given node.
582 582
    ///
583 583
    /// This function makes a copy of the given node.
584 584
    DigraphCopy& node(const Node& node, TNode& tnode) {
585 585
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
586 586
                           NodeRefMap, TNode>(node, tnode));
587 587
      return *this;
588 588
    }
589 589

	
590 590
    /// \brief Copy the arc references into the given map.
591 591
    ///
592 592
    /// This function copies the arc references into the given map.
593 593
    /// The parameter should be a map, whose key type is the Arc type of
594 594
    /// the source digraph, while the value type is the Arc type of the
595 595
    /// destination digraph.
596 596
    template <typename ArcRef>
597 597
    DigraphCopy& arcRef(ArcRef& map) {
598 598
      _arc_maps.push_back(new _core_bits::RefCopy<From, Arc,
599 599
                          ArcRefMap, ArcRef>(map));
600 600
      return *this;
601 601
    }
602 602

	
603 603
    /// \brief Copy the arc cross references into the given map.
604 604
    ///
605 605
    /// This function copies the arc cross references (reverse references)
606 606
    /// into the given map. The parameter should be a map, whose key type
607 607
    /// is the Arc type of the destination digraph, while the value type is
608 608
    /// the Arc type of the source digraph.
609 609
    template <typename ArcCrossRef>
610 610
    DigraphCopy& arcCrossRef(ArcCrossRef& map) {
611 611
      _arc_maps.push_back(new _core_bits::CrossRefCopy<From, Arc,
612 612
                          ArcRefMap, ArcCrossRef>(map));
613 613
      return *this;
614 614
    }
615 615

	
616 616
    /// \brief Make a copy of the given arc map.
617 617
    ///
618 618
    /// This function makes a copy of the given arc map for the newly
619 619
    /// created digraph.
620 620
    /// The key type of the new map \c tmap should be the Arc type of the
621 621
    /// destination digraph, and the key type of the original map \c map
622 622
    /// should be the Arc type of the source digraph.
623 623
    template <typename FromMap, typename ToMap>
624 624
    DigraphCopy& arcMap(const FromMap& map, ToMap& tmap) {
625 625
      _arc_maps.push_back(new _core_bits::MapCopy<From, Arc,
626 626
                          ArcRefMap, FromMap, ToMap>(map, tmap));
627 627
      return *this;
628 628
    }
629 629

	
630 630
    /// \brief Make a copy of the given arc.
631 631
    ///
632 632
    /// This function makes a copy of the given arc.
633 633
    DigraphCopy& arc(const Arc& arc, TArc& tarc) {
634 634
      _arc_maps.push_back(new _core_bits::ItemCopy<From, Arc,
635 635
                          ArcRefMap, TArc>(arc, tarc));
636 636
      return *this;
637 637
    }
638 638

	
639 639
    /// \brief Execute copying.
640 640
    ///
641 641
    /// This function executes the copying of the digraph along with the
642 642
    /// copying of the assigned data.
643 643
    void run() {
644 644
      NodeRefMap nodeRefMap(_from);
645 645
      ArcRefMap arcRefMap(_from);
646 646
      _core_bits::DigraphCopySelector<To>::
647 647
        copy(_from, _to, nodeRefMap, arcRefMap);
648 648
      for (int i = 0; i < int(_node_maps.size()); ++i) {
649 649
        _node_maps[i]->copy(_from, nodeRefMap);
650 650
      }
651 651
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
652 652
        _arc_maps[i]->copy(_from, arcRefMap);
653 653
      }
654 654
    }
655 655

	
656 656
  protected:
657 657

	
658 658
    const From& _from;
659 659
    To& _to;
660 660

	
661 661
    std::vector<_core_bits::MapCopyBase<From, Node, NodeRefMap>* >
662 662
      _node_maps;
663 663

	
664 664
    std::vector<_core_bits::MapCopyBase<From, Arc, ArcRefMap>* >
665 665
      _arc_maps;
666 666

	
667 667
  };
668 668

	
669 669
  /// \brief Copy a digraph to another digraph.
670 670
  ///
671 671
  /// This function copies a digraph to another digraph.
672 672
  /// The complete usage of it is detailed in the DigraphCopy class, but
673 673
  /// a short example shows a basic work:
674 674
  ///\code
675 675
  /// digraphCopy(src, trg).nodeRef(nr).arcCrossRef(acr).run();
676 676
  ///\endcode
677 677
  ///
678 678
  /// After the copy the \c nr map will contain the mapping from the
679 679
  /// nodes of the \c from digraph to the nodes of the \c to digraph and
680 680
  /// \c acr will contain the mapping from the arcs of the \c to digraph
681 681
  /// to the arcs of the \c from digraph.
682 682
  ///
683 683
  /// \see DigraphCopy
684 684
  template <typename From, typename To>
685 685
  DigraphCopy<From, To> digraphCopy(const From& from, To& to) {
686 686
    return DigraphCopy<From, To>(from, to);
687 687
  }
688 688

	
689 689
  /// \brief Class to copy a graph.
690 690
  ///
691 691
  /// Class to copy a graph to another graph (duplicate a graph). The
692 692
  /// simplest way of using it is through the \c graphCopy() function.
693 693
  ///
694 694
  /// This class not only make a copy of a graph, but it can create
695 695
  /// references and cross references between the nodes, edges and arcs of
696 696
  /// the two graphs, and it can copy maps for using with the newly created
697 697
  /// graph.
698 698
  ///
699 699
  /// To make a copy from a graph, first an instance of GraphCopy
700 700
  /// should be created, then the data belongs to the graph should
701 701
  /// assigned to copy. In the end, the \c run() member should be
702 702
  /// called.
703 703
  ///
704 704
  /// The next code copies a graph with several data:
705 705
  ///\code
706 706
  ///  GraphCopy<OrigGraph, NewGraph> cg(orig_graph, new_graph);
707 707
  ///  // Create references for the nodes
708 708
  ///  OrigGraph::NodeMap<NewGraph::Node> nr(orig_graph);
709 709
  ///  cg.nodeRef(nr);
710 710
  ///  // Create cross references (inverse) for the edges
711 711
  ///  NewGraph::EdgeMap<OrigGraph::Edge> ecr(new_graph);
712 712
  ///  cg.edgeCrossRef(ecr);
713 713
  ///  // Copy an edge map
714 714
  ///  OrigGraph::EdgeMap<double> oemap(orig_graph);
715 715
  ///  NewGraph::EdgeMap<double> nemap(new_graph);
716 716
  ///  cg.edgeMap(oemap, nemap);
717 717
  ///  // Copy a node
718 718
  ///  OrigGraph::Node on;
719 719
  ///  NewGraph::Node nn;
720 720
  ///  cg.node(on, nn);
721 721
  ///  // Execute copying
722 722
  ///  cg.run();
723 723
  ///\endcode
724 724
  template <typename From, typename To>
725 725
  class GraphCopy {
726 726
  private:
727 727

	
728 728
    typedef typename From::Node Node;
729 729
    typedef typename From::NodeIt NodeIt;
730 730
    typedef typename From::Arc Arc;
731 731
    typedef typename From::ArcIt ArcIt;
732 732
    typedef typename From::Edge Edge;
733 733
    typedef typename From::EdgeIt EdgeIt;
734 734

	
735 735
    typedef typename To::Node TNode;
736 736
    typedef typename To::Arc TArc;
737 737
    typedef typename To::Edge TEdge;
738 738

	
739 739
    typedef typename From::template NodeMap<TNode> NodeRefMap;
740 740
    typedef typename From::template EdgeMap<TEdge> EdgeRefMap;
741 741

	
742 742
    struct ArcRefMap {
743 743
      ArcRefMap(const From& from, const To& to,
744 744
                const EdgeRefMap& edge_ref, const NodeRefMap& node_ref)
745 745
        : _from(from), _to(to),
746 746
          _edge_ref(edge_ref), _node_ref(node_ref) {}
747 747

	
748 748
      typedef typename From::Arc Key;
749 749
      typedef typename To::Arc Value;
750 750

	
751 751
      Value operator[](const Key& key) const {
752 752
        bool forward = _from.u(key) != _from.v(key) ?
753 753
          _node_ref[_from.source(key)] ==
754 754
          _to.source(_to.direct(_edge_ref[key], true)) :
755 755
          _from.direction(key);
756 756
        return _to.direct(_edge_ref[key], forward);
757 757
      }
758 758

	
759 759
      const From& _from;
760 760
      const To& _to;
761 761
      const EdgeRefMap& _edge_ref;
762 762
      const NodeRefMap& _node_ref;
763 763
    };
764 764

	
765 765
  public:
766 766

	
767 767
    /// \brief Constructor of GraphCopy.
768 768
    ///
769 769
    /// Constructor of GraphCopy for copying the content of the
770 770
    /// \c from graph into the \c to graph.
771 771
    GraphCopy(const From& from, To& to)
772 772
      : _from(from), _to(to) {}
773 773

	
774 774
    /// \brief Destructor of GraphCopy
775 775
    ///
776 776
    /// Destructor of GraphCopy.
777 777
    ~GraphCopy() {
778 778
      for (int i = 0; i < int(_node_maps.size()); ++i) {
779 779
        delete _node_maps[i];
780 780
      }
781 781
      for (int i = 0; i < int(_arc_maps.size()); ++i) {
782 782
        delete _arc_maps[i];
783 783
      }
784 784
      for (int i = 0; i < int(_edge_maps.size()); ++i) {
785 785
        delete _edge_maps[i];
786 786
      }
787 787
    }
788 788

	
789 789
    /// \brief Copy the node references into the given map.
790 790
    ///
791 791
    /// This function copies the node references into the given map.
792 792
    /// The parameter should be a map, whose key type is the Node type of
793 793
    /// the source graph, while the value type is the Node type of the
794 794
    /// destination graph.
795 795
    template <typename NodeRef>
796 796
    GraphCopy& nodeRef(NodeRef& map) {
797 797
      _node_maps.push_back(new _core_bits::RefCopy<From, Node,
798 798
                           NodeRefMap, NodeRef>(map));
799 799
      return *this;
800 800
    }
801 801

	
802 802
    /// \brief Copy the node cross references into the given map.
803 803
    ///
804 804
    /// This function copies the node cross references (reverse references)
805 805
    /// into the given map. The parameter should be a map, whose key type
806 806
    /// is the Node type of the destination graph, while the value type is
807 807
    /// the Node type of the source graph.
808 808
    template <typename NodeCrossRef>
809 809
    GraphCopy& nodeCrossRef(NodeCrossRef& map) {
810 810
      _node_maps.push_back(new _core_bits::CrossRefCopy<From, Node,
811 811
                           NodeRefMap, NodeCrossRef>(map));
812 812
      return *this;
813 813
    }
814 814

	
815 815
    /// \brief Make a copy of the given node map.
816 816
    ///
817 817
    /// This function makes a copy of the given node map for the newly
818 818
    /// created graph.
819 819
    /// The key type of the new map \c tmap should be the Node type of the
820 820
    /// destination graph, and the key type of the original map \c map
821 821
    /// should be the Node type of the source graph.
822 822
    template <typename FromMap, typename ToMap>
823 823
    GraphCopy& nodeMap(const FromMap& map, ToMap& tmap) {
824 824
      _node_maps.push_back(new _core_bits::MapCopy<From, Node,
825 825
                           NodeRefMap, FromMap, ToMap>(map, tmap));
826 826
      return *this;
827 827
    }
828 828

	
829 829
    /// \brief Make a copy of the given node.
830 830
    ///
831 831
    /// This function makes a copy of the given node.
832 832
    GraphCopy& node(const Node& node, TNode& tnode) {
833 833
      _node_maps.push_back(new _core_bits::ItemCopy<From, Node,
834 834
                           NodeRefMap, TNode>(node, tnode));
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_COST_SCALING_H
20 20
#define LEMON_COST_SCALING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
/// \file
24 24
/// \brief Cost scaling algorithm for finding a minimum cost flow.
25 25

	
26 26
#include <vector>
27 27
#include <deque>
28 28
#include <limits>
29 29

	
30 30
#include <lemon/core.h>
31 31
#include <lemon/maps.h>
32 32
#include <lemon/math.h>
33 33
#include <lemon/static_graph.h>
34 34
#include <lemon/circulation.h>
35 35
#include <lemon/bellman_ford.h>
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \brief Default traits class of CostScaling algorithm.
40 40
  ///
41 41
  /// Default traits class of CostScaling algorithm.
42 42
  /// \tparam GR Digraph type.
43 43
  /// \tparam V The number type used for flow amounts, capacity bounds
44 44
  /// and supply values. By default it is \c int.
45 45
  /// \tparam C The number type used for costs and potentials.
46 46
  /// By default it is the same as \c V.
47 47
#ifdef DOXYGEN
48 48
  template <typename GR, typename V = int, typename C = V>
49 49
#else
50 50
  template < typename GR, typename V = int, typename C = V,
51 51
             bool integer = std::numeric_limits<C>::is_integer >
52 52
#endif
53 53
  struct CostScalingDefaultTraits
54 54
  {
55 55
    /// The type of the digraph
56 56
    typedef GR Digraph;
57 57
    /// The type of the flow amounts, capacity bounds and supply values
58 58
    typedef V Value;
59 59
    /// The type of the arc costs
60 60
    typedef C Cost;
61 61

	
62 62
    /// \brief The large cost type used for internal computations
63 63
    ///
64 64
    /// The large cost type used for internal computations.
65 65
    /// It is \c long \c long if the \c Cost type is integer,
66 66
    /// otherwise it is \c double.
67 67
    /// \c Cost must be convertible to \c LargeCost.
68 68
    typedef double LargeCost;
69 69
  };
70 70

	
71 71
  // Default traits class for integer cost types
72 72
  template <typename GR, typename V, typename C>
73 73
  struct CostScalingDefaultTraits<GR, V, C, true>
74 74
  {
75 75
    typedef GR Digraph;
76 76
    typedef V Value;
77 77
    typedef C Cost;
78 78
#ifdef LEMON_HAVE_LONG_LONG
79 79
    typedef long long LargeCost;
80 80
#else
81 81
    typedef long LargeCost;
82 82
#endif
83 83
  };
84 84

	
85 85

	
86 86
  /// \addtogroup min_cost_flow_algs
87 87
  /// @{
88 88

	
89 89
  /// \brief Implementation of the Cost Scaling algorithm for
90 90
  /// finding a \ref min_cost_flow "minimum cost flow".
91 91
  ///
92 92
  /// \ref CostScaling implements a cost scaling algorithm that performs
93 93
  /// push/augment and relabel operations for finding a \ref min_cost_flow
94 94
  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 95
  /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 96
  /// It is a highly efficient primal-dual solution method, which
97 97
  /// can be viewed as the generalization of the \ref Preflow
98 98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
99 99
  ///
100
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
101
  /// implementations available in LEMON for this problem.
102
  ///
100 103
  /// Most of the parameters of the problem (except for the digraph)
101 104
  /// can be given using separate functions, and the algorithm can be
102 105
  /// executed using the \ref run() function. If some parameters are not
103 106
  /// specified, then default values will be used.
104 107
  ///
105 108
  /// \tparam GR The digraph type the algorithm runs on.
106 109
  /// \tparam V The number type used for flow amounts, capacity bounds
107 110
  /// and supply values in the algorithm. By default, it is \c int.
108 111
  /// \tparam C The number type used for costs and potentials in the
109 112
  /// algorithm. By default, it is the same as \c V.
110 113
  /// \tparam TR The traits class that defines various types used by the
111 114
  /// algorithm. By default, it is \ref CostScalingDefaultTraits
112 115
  /// "CostScalingDefaultTraits<GR, V, C>".
113 116
  /// In most cases, this parameter should not be set directly,
114 117
  /// consider to use the named template parameters instead.
115 118
  ///
116 119
  /// \warning Both \c V and \c C must be signed number types.
117 120
  /// \warning All input data (capacities, supply values, and costs) must
118 121
  /// be integer.
119
  /// \warning This algorithm does not support negative costs for such
120
  /// arcs that have infinite upper bound.
122
  /// \warning This algorithm does not support negative costs for
123
  /// arcs having infinite upper bound.
121 124
  ///
122 125
  /// \note %CostScaling provides three different internal methods,
123 126
  /// from which the most efficient one is used by default.
124 127
  /// For more information, see \ref Method.
125 128
#ifdef DOXYGEN
126 129
  template <typename GR, typename V, typename C, typename TR>
127 130
#else
128 131
  template < typename GR, typename V = int, typename C = V,
129 132
             typename TR = CostScalingDefaultTraits<GR, V, C> >
130 133
#endif
131 134
  class CostScaling
132 135
  {
133 136
  public:
134 137

	
135 138
    /// The type of the digraph
136 139
    typedef typename TR::Digraph Digraph;
137 140
    /// The type of the flow amounts, capacity bounds and supply values
138 141
    typedef typename TR::Value Value;
139 142
    /// The type of the arc costs
140 143
    typedef typename TR::Cost Cost;
141 144

	
142 145
    /// \brief The large cost type
143 146
    ///
144 147
    /// The large cost type used for internal computations.
145 148
    /// By default, it is \c long \c long if the \c Cost type is integer,
146 149
    /// otherwise it is \c double.
147 150
    typedef typename TR::LargeCost LargeCost;
148 151

	
149 152
    /// The \ref CostScalingDefaultTraits "traits class" of the algorithm
150 153
    typedef TR Traits;
151 154

	
152 155
  public:
153 156

	
154 157
    /// \brief Problem type constants for the \c run() function.
155 158
    ///
156 159
    /// Enum type containing the problem type constants that can be
157 160
    /// returned by the \ref run() function of the algorithm.
158 161
    enum ProblemType {
159 162
      /// The problem has no feasible solution (flow).
160 163
      INFEASIBLE,
161 164
      /// The problem has optimal solution (i.e. it is feasible and
162 165
      /// bounded), and the algorithm has found optimal flow and node
163 166
      /// potentials (primal and dual solutions).
164 167
      OPTIMAL,
165 168
      /// The digraph contains an arc of negative cost and infinite
166 169
      /// upper bound. It means that the objective function is unbounded
167 170
      /// on that arc, however, note that it could actually be bounded
168 171
      /// over the feasible flows, but this algroithm cannot handle
169 172
      /// these cases.
170 173
      UNBOUNDED
171 174
    };
172 175

	
173 176
    /// \brief Constants for selecting the internal method.
174 177
    ///
175 178
    /// Enum type containing constants for selecting the internal method
176 179
    /// for the \ref run() function.
177 180
    ///
178 181
    /// \ref CostScaling provides three internal methods that differ mainly
179 182
    /// in their base operations, which are used in conjunction with the
180 183
    /// relabel operation.
181 184
    /// By default, the so called \ref PARTIAL_AUGMENT
182
    /// "Partial Augment-Relabel" method is used, which proved to be
185
    /// "Partial Augment-Relabel" method is used, which turned out to be
183 186
    /// the most efficient and the most robust on various test inputs.
184 187
    /// However, the other methods can be selected using the \ref run()
185 188
    /// function with the proper parameter.
186 189
    enum Method {
187 190
      /// Local push operations are used, i.e. flow is moved only on one
188 191
      /// admissible arc at once.
189 192
      PUSH,
190 193
      /// Augment operations are used, i.e. flow is moved on admissible
191 194
      /// paths from a node with excess to a node with deficit.
192 195
      AUGMENT,
193 196
      /// Partial augment operations are used, i.e. flow is moved on
194 197
      /// admissible paths started from a node with excess, but the
195 198
      /// lengths of these paths are limited. This method can be viewed
196 199
      /// as a combined version of the previous two operations.
197 200
      PARTIAL_AUGMENT
198 201
    };
199 202

	
200 203
  private:
201 204

	
202 205
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
203 206

	
204 207
    typedef std::vector<int> IntVector;
205 208
    typedef std::vector<Value> ValueVector;
206 209
    typedef std::vector<Cost> CostVector;
207 210
    typedef std::vector<LargeCost> LargeCostVector;
208 211
    typedef std::vector<char> BoolVector;
209 212
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
210 213

	
211 214
  private:
212 215

	
213 216
    template <typename KT, typename VT>
214 217
    class StaticVectorMap {
215 218
    public:
216 219
      typedef KT Key;
217 220
      typedef VT Value;
218 221

	
219 222
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
220 223

	
221 224
      const Value& operator[](const Key& key) const {
222 225
        return _v[StaticDigraph::id(key)];
223 226
      }
224 227

	
225 228
      Value& operator[](const Key& key) {
226 229
        return _v[StaticDigraph::id(key)];
227 230
      }
228 231

	
229 232
      void set(const Key& key, const Value& val) {
230 233
        _v[StaticDigraph::id(key)] = val;
231 234
      }
232 235

	
233 236
    private:
234 237
      std::vector<Value>& _v;
235 238
    };
236 239

	
237 240
    typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap;
238 241
    typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap;
239 242

	
240 243
  private:
241 244

	
242 245
    // Data related to the underlying digraph
243 246
    const GR &_graph;
244 247
    int _node_num;
245 248
    int _arc_num;
246 249
    int _res_node_num;
247 250
    int _res_arc_num;
248 251
    int _root;
249 252

	
250 253
    // Parameters of the problem
251 254
    bool _have_lower;
252 255
    Value _sum_supply;
253 256
    int _sup_node_num;
254 257

	
255 258
    // Data structures for storing the digraph
256 259
    IntNodeMap _node_id;
257 260
    IntArcMap _arc_idf;
258 261
    IntArcMap _arc_idb;
259 262
    IntVector _first_out;
260 263
    BoolVector _forward;
261 264
    IntVector _source;
262 265
    IntVector _target;
263 266
    IntVector _reverse;
264 267

	
265 268
    // Node and arc data
266 269
    ValueVector _lower;
267 270
    ValueVector _upper;
268 271
    CostVector _scost;
269 272
    ValueVector _supply;
270 273

	
271 274
    ValueVector _res_cap;
272 275
    LargeCostVector _cost;
273 276
    LargeCostVector _pi;
274 277
    ValueVector _excess;
275 278
    IntVector _next_out;
276 279
    std::deque<int> _active_nodes;
277 280

	
278 281
    // Data for scaling
279 282
    LargeCost _epsilon;
280 283
    int _alpha;
281 284

	
282 285
    IntVector _buckets;
283 286
    IntVector _bucket_next;
284 287
    IntVector _bucket_prev;
285 288
    IntVector _rank;
286 289
    int _max_rank;
287 290

	
288 291
    // Data for a StaticDigraph structure
289 292
    typedef std::pair<int, int> IntPair;
290 293
    StaticDigraph _sgr;
291 294
    std::vector<IntPair> _arc_vec;
292 295
    std::vector<LargeCost> _cost_vec;
293 296
    LargeCostArcMap _cost_map;
294 297
    LargeCostNodeMap _pi_map;
295 298

	
296 299
  public:
297 300

	
298 301
    /// \brief Constant for infinite upper bounds (capacities).
299 302
    ///
300 303
    /// Constant for infinite upper bounds (capacities).
301 304
    /// It is \c std::numeric_limits<Value>::infinity() if available,
302 305
    /// \c std::numeric_limits<Value>::max() otherwise.
303 306
    const Value INF;
304 307

	
305 308
  public:
306 309

	
307 310
    /// \name Named Template Parameters
308 311
    /// @{
309 312

	
310 313
    template <typename T>
311 314
    struct SetLargeCostTraits : public Traits {
312 315
      typedef T LargeCost;
313 316
    };
314 317

	
315 318
    /// \brief \ref named-templ-param "Named parameter" for setting
316 319
    /// \c LargeCost type.
317 320
    ///
318 321
    /// \ref named-templ-param "Named parameter" for setting \c LargeCost
319 322
    /// type, which is used for internal computations in the algorithm.
320 323
    /// \c Cost must be convertible to \c LargeCost.
321 324
    template <typename T>
322 325
    struct SetLargeCost
323 326
      : public CostScaling<GR, V, C, SetLargeCostTraits<T> > {
324 327
      typedef  CostScaling<GR, V, C, SetLargeCostTraits<T> > Create;
325 328
    };
326 329

	
327 330
    /// @}
328 331

	
329 332
  protected:
330 333

	
331 334
    CostScaling() {}
332 335

	
333 336
  public:
334 337

	
335 338
    /// \brief Constructor.
336 339
    ///
337 340
    /// The constructor of the class.
338 341
    ///
339 342
    /// \param graph The digraph the algorithm runs on.
340 343
    CostScaling(const GR& graph) :
341 344
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
342 345
      _cost_map(_cost_vec), _pi_map(_pi),
343 346
      INF(std::numeric_limits<Value>::has_infinity ?
344 347
          std::numeric_limits<Value>::infinity() :
345 348
          std::numeric_limits<Value>::max())
346 349
    {
347 350
      // Check the number types
348 351
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
349 352
        "The flow type of CostScaling must be signed");
350 353
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
351 354
        "The cost type of CostScaling must be signed");
352 355

	
353 356
      // Reset data structures
354 357
      reset();
355 358
    }
356 359

	
357 360
    /// \name Parameters
358 361
    /// The parameters of the algorithm can be specified using these
359 362
    /// functions.
360 363

	
361 364
    /// @{
362 365

	
363 366
    /// \brief Set the lower bounds on the arcs.
364 367
    ///
365 368
    /// This function sets the lower bounds on the arcs.
366 369
    /// If it is not used before calling \ref run(), the lower bounds
367 370
    /// will be set to zero on all arcs.
368 371
    ///
369 372
    /// \param map An arc map storing the lower bounds.
370 373
    /// Its \c Value type must be convertible to the \c Value type
371 374
    /// of the algorithm.
372 375
    ///
373 376
    /// \return <tt>(*this)</tt>
374 377
    template <typename LowerMap>
375 378
    CostScaling& lowerMap(const LowerMap& map) {
376 379
      _have_lower = true;
377 380
      for (ArcIt a(_graph); a != INVALID; ++a) {
378 381
        _lower[_arc_idf[a]] = map[a];
379 382
        _lower[_arc_idb[a]] = map[a];
380 383
      }
381 384
      return *this;
382 385
    }
383 386

	
384 387
    /// \brief Set the upper bounds (capacities) on the arcs.
385 388
    ///
386 389
    /// This function sets the upper bounds (capacities) on the arcs.
387 390
    /// If it is not used before calling \ref run(), the upper bounds
388 391
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
389 392
    /// unbounded from above).
390 393
    ///
391 394
    /// \param map An arc map storing the upper bounds.
392 395
    /// Its \c Value type must be convertible to the \c Value type
393 396
    /// of the algorithm.
394 397
    ///
395 398
    /// \return <tt>(*this)</tt>
396 399
    template<typename UpperMap>
397 400
    CostScaling& upperMap(const UpperMap& map) {
398 401
      for (ArcIt a(_graph); a != INVALID; ++a) {
399 402
        _upper[_arc_idf[a]] = map[a];
400 403
      }
401 404
      return *this;
402 405
    }
403 406

	
404 407
    /// \brief Set the costs of the arcs.
405 408
    ///
406 409
    /// This function sets the costs of the arcs.
407 410
    /// If it is not used before calling \ref run(), the costs
408 411
    /// will be set to \c 1 on all arcs.
409 412
    ///
410 413
    /// \param map An arc map storing the costs.
411 414
    /// Its \c Value type must be convertible to the \c Cost type
412 415
    /// of the algorithm.
413 416
    ///
414 417
    /// \return <tt>(*this)</tt>
415 418
    template<typename CostMap>
416 419
    CostScaling& costMap(const CostMap& map) {
417 420
      for (ArcIt a(_graph); a != INVALID; ++a) {
418 421
        _scost[_arc_idf[a]] =  map[a];
419 422
        _scost[_arc_idb[a]] = -map[a];
420 423
      }
421 424
      return *this;
422 425
    }
423 426

	
424 427
    /// \brief Set the supply values of the nodes.
425 428
    ///
426 429
    /// This function sets the supply values of the nodes.
427 430
    /// If neither this function nor \ref stSupply() is used before
428 431
    /// calling \ref run(), the supply of each node will be set to zero.
429 432
    ///
430 433
    /// \param map A node map storing the supply values.
431 434
    /// Its \c Value type must be convertible to the \c Value type
432 435
    /// of the algorithm.
433 436
    ///
434 437
    /// \return <tt>(*this)</tt>
435 438
    template<typename SupplyMap>
436 439
    CostScaling& supplyMap(const SupplyMap& map) {
437 440
      for (NodeIt n(_graph); n != INVALID; ++n) {
438 441
        _supply[_node_id[n]] = map[n];
439 442
      }
440 443
      return *this;
441 444
    }
442 445

	
443 446
    /// \brief Set single source and target nodes and a supply value.
444 447
    ///
445 448
    /// This function sets a single source node and a single target node
446 449
    /// and the required flow value.
447 450
    /// If neither this function nor \ref supplyMap() is used before
448 451
    /// calling \ref run(), the supply of each node will be set to zero.
449 452
    ///
450 453
    /// Using this function has the same effect as using \ref supplyMap()
451
    /// with such a map in which \c k is assigned to \c s, \c -k is
454
    /// with a map in which \c k is assigned to \c s, \c -k is
452 455
    /// assigned to \c t and all other nodes have zero supply value.
453 456
    ///
454 457
    /// \param s The source node.
455 458
    /// \param t The target node.
456 459
    /// \param k The required amount of flow from node \c s to node \c t
457 460
    /// (i.e. the supply of \c s and the demand of \c t).
458 461
    ///
459 462
    /// \return <tt>(*this)</tt>
460 463
    CostScaling& stSupply(const Node& s, const Node& t, Value k) {
461 464
      for (int i = 0; i != _res_node_num; ++i) {
462 465
        _supply[i] = 0;
463 466
      }
464 467
      _supply[_node_id[s]] =  k;
465 468
      _supply[_node_id[t]] = -k;
466 469
      return *this;
467 470
    }
468 471

	
469 472
    /// @}
470 473

	
471 474
    /// \name Execution control
472 475
    /// The algorithm can be executed using \ref run().
473 476

	
474 477
    /// @{
475 478

	
476 479
    /// \brief Run the algorithm.
477 480
    ///
478 481
    /// This function runs the algorithm.
479 482
    /// The paramters can be specified using functions \ref lowerMap(),
480 483
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
481 484
    /// For example,
482 485
    /// \code
483 486
    ///   CostScaling<ListDigraph> cs(graph);
484 487
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
485 488
    ///     .supplyMap(sup).run();
486 489
    /// \endcode
487 490
    ///
488 491
    /// This function can be called more than once. All the given parameters
489 492
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
490 493
    /// is used, thus only the modified parameters have to be set again.
491 494
    /// If the underlying digraph was also modified after the construction
492 495
    /// of the class (or the last \ref reset() call), then the \ref reset()
493 496
    /// function must be called.
494 497
    ///
495 498
    /// \param method The internal method that will be used in the
496 499
    /// algorithm. For more information, see \ref Method.
497 500
    /// \param factor The cost scaling factor. It must be larger than one.
498 501
    ///
499 502
    /// \return \c INFEASIBLE if no feasible flow exists,
500 503
    /// \n \c OPTIMAL if the problem has optimal solution
501 504
    /// (i.e. it is feasible and bounded), and the algorithm has found
502 505
    /// optimal flow and node potentials (primal and dual solutions),
503 506
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
504 507
    /// and infinite upper bound. It means that the objective function
505 508
    /// is unbounded on that arc, however, note that it could actually be
506 509
    /// bounded over the feasible flows, but this algroithm cannot handle
507 510
    /// these cases.
508 511
    ///
509 512
    /// \see ProblemType, Method
510 513
    /// \see resetParams(), reset()
511 514
    ProblemType run(Method method = PARTIAL_AUGMENT, int factor = 8) {
512 515
      _alpha = factor;
513 516
      ProblemType pt = init();
514 517
      if (pt != OPTIMAL) return pt;
515 518
      start(method);
516 519
      return OPTIMAL;
517 520
    }
518 521

	
519 522
    /// \brief Reset all the parameters that have been given before.
520 523
    ///
521 524
    /// This function resets all the paramaters that have been given
522 525
    /// before using functions \ref lowerMap(), \ref upperMap(),
523 526
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
524 527
    ///
525 528
    /// It is useful for multiple \ref run() calls. Basically, all the given
526 529
    /// parameters are kept for the next \ref run() call, unless
527 530
    /// \ref resetParams() or \ref reset() is used.
528 531
    /// If the underlying digraph was also modified after the construction
529 532
    /// of the class or the last \ref reset() call, then the \ref reset()
530 533
    /// function must be used, otherwise \ref resetParams() is sufficient.
531 534
    ///
532 535
    /// For example,
533 536
    /// \code
534 537
    ///   CostScaling<ListDigraph> cs(graph);
535 538
    ///
536 539
    ///   // First run
537 540
    ///   cs.lowerMap(lower).upperMap(upper).costMap(cost)
538 541
    ///     .supplyMap(sup).run();
539 542
    ///
540 543
    ///   // Run again with modified cost map (resetParams() is not called,
541 544
    ///   // so only the cost map have to be set again)
542 545
    ///   cost[e] += 100;
543 546
    ///   cs.costMap(cost).run();
544 547
    ///
545 548
    ///   // Run again from scratch using resetParams()
546 549
    ///   // (the lower bounds will be set to zero on all arcs)
547 550
    ///   cs.resetParams();
548 551
    ///   cs.upperMap(capacity).costMap(cost)
549 552
    ///     .supplyMap(sup).run();
550 553
    /// \endcode
551 554
    ///
552 555
    /// \return <tt>(*this)</tt>
553 556
    ///
554 557
    /// \see reset(), run()
555 558
    CostScaling& resetParams() {
556 559
      for (int i = 0; i != _res_node_num; ++i) {
557 560
        _supply[i] = 0;
558 561
      }
559 562
      int limit = _first_out[_root];
560 563
      for (int j = 0; j != limit; ++j) {
561 564
        _lower[j] = 0;
562 565
        _upper[j] = INF;
563 566
        _scost[j] = _forward[j] ? 1 : -1;
564 567
      }
565 568
      for (int j = limit; j != _res_arc_num; ++j) {
566 569
        _lower[j] = 0;
567 570
        _upper[j] = INF;
568 571
        _scost[j] = 0;
569 572
        _scost[_reverse[j]] = 0;
570 573
      }
571 574
      _have_lower = false;
572 575
      return *this;
573 576
    }
574 577

	
575 578
    /// \brief Reset all the parameters that have been given before.
576 579
    ///
577 580
    /// This function resets all the paramaters that have been given
578 581
    /// before using functions \ref lowerMap(), \ref upperMap(),
579 582
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
580 583
    ///
581 584
    /// It is useful for multiple run() calls. If this function is not
582 585
    /// used, all the parameters given before are kept for the next
583 586
    /// \ref run() call.
584 587
    /// However, the underlying digraph must not be modified after this
585 588
    /// class have been constructed, since it copies and extends the graph.
586 589
    /// \return <tt>(*this)</tt>
587 590
    CostScaling& reset() {
588 591
      // Resize vectors
589 592
      _node_num = countNodes(_graph);
590 593
      _arc_num = countArcs(_graph);
591 594
      _res_node_num = _node_num + 1;
592 595
      _res_arc_num = 2 * (_arc_num + _node_num);
593 596
      _root = _node_num;
594 597

	
595 598
      _first_out.resize(_res_node_num + 1);
596 599
      _forward.resize(_res_arc_num);
597 600
      _source.resize(_res_arc_num);
598 601
      _target.resize(_res_arc_num);
599 602
      _reverse.resize(_res_arc_num);
600 603

	
601 604
      _lower.resize(_res_arc_num);
602 605
      _upper.resize(_res_arc_num);
603 606
      _scost.resize(_res_arc_num);
604 607
      _supply.resize(_res_node_num);
605 608

	
606 609
      _res_cap.resize(_res_arc_num);
607 610
      _cost.resize(_res_arc_num);
608 611
      _pi.resize(_res_node_num);
609 612
      _excess.resize(_res_node_num);
610 613
      _next_out.resize(_res_node_num);
611 614

	
612 615
      _arc_vec.reserve(_res_arc_num);
613 616
      _cost_vec.reserve(_res_arc_num);
614 617

	
615 618
      // Copy the graph
616 619
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
617 620
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
618 621
        _node_id[n] = i;
619 622
      }
620 623
      i = 0;
621 624
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
622 625
        _first_out[i] = j;
623 626
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
624 627
          _arc_idf[a] = j;
625 628
          _forward[j] = true;
626 629
          _source[j] = i;
627 630
          _target[j] = _node_id[_graph.runningNode(a)];
628 631
        }
629 632
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
630 633
          _arc_idb[a] = j;
631 634
          _forward[j] = false;
632 635
          _source[j] = i;
633 636
          _target[j] = _node_id[_graph.runningNode(a)];
634 637
        }
635 638
        _forward[j] = false;
636 639
        _source[j] = i;
637 640
        _target[j] = _root;
638 641
        _reverse[j] = k;
639 642
        _forward[k] = true;
640 643
        _source[k] = _root;
641 644
        _target[k] = i;
642 645
        _reverse[k] = j;
643 646
        ++j; ++k;
644 647
      }
645 648
      _first_out[i] = j;
646 649
      _first_out[_res_node_num] = k;
647 650
      for (ArcIt a(_graph); a != INVALID; ++a) {
648 651
        int fi = _arc_idf[a];
649 652
        int bi = _arc_idb[a];
650 653
        _reverse[fi] = bi;
651 654
        _reverse[bi] = fi;
652 655
      }
653 656

	
654 657
      // Reset parameters
655 658
      resetParams();
656 659
      return *this;
657 660
    }
658 661

	
659 662
    /// @}
660 663

	
661 664
    /// \name Query Functions
662 665
    /// The results of the algorithm can be obtained using these
663 666
    /// functions.\n
664 667
    /// The \ref run() function must be called before using them.
665 668

	
666 669
    /// @{
667 670

	
668 671
    /// \brief Return the total cost of the found flow.
669 672
    ///
670 673
    /// This function returns the total cost of the found flow.
671 674
    /// Its complexity is O(e).
672 675
    ///
673 676
    /// \note The return type of the function can be specified as a
674 677
    /// template parameter. For example,
675 678
    /// \code
676 679
    ///   cs.totalCost<double>();
677 680
    /// \endcode
678 681
    /// It is useful if the total cost cannot be stored in the \c Cost
679 682
    /// type of the algorithm, which is the default return type of the
680 683
    /// function.
681 684
    ///
682 685
    /// \pre \ref run() must be called before using this function.
683 686
    template <typename Number>
684 687
    Number totalCost() const {
685 688
      Number c = 0;
686 689
      for (ArcIt a(_graph); a != INVALID; ++a) {
687 690
        int i = _arc_idb[a];
688 691
        c += static_cast<Number>(_res_cap[i]) *
689 692
             (-static_cast<Number>(_scost[i]));
690 693
      }
691 694
      return c;
692 695
    }
693 696

	
694 697
#ifndef DOXYGEN
695 698
    Cost totalCost() const {
696 699
      return totalCost<Cost>();
697 700
    }
698 701
#endif
699 702

	
700 703
    /// \brief Return the flow on the given arc.
701 704
    ///
702 705
    /// This function returns the flow on the given arc.
703 706
    ///
704 707
    /// \pre \ref run() must be called before using this function.
705 708
    Value flow(const Arc& a) const {
706 709
      return _res_cap[_arc_idb[a]];
707 710
    }
708 711

	
709 712
    /// \brief Return the flow map (the primal solution).
710 713
    ///
711 714
    /// This function copies the flow value on each arc into the given
712 715
    /// map. The \c Value type of the algorithm must be convertible to
713 716
    /// the \c Value type of the map.
714 717
    ///
715 718
    /// \pre \ref run() must be called before using this function.
716 719
    template <typename FlowMap>
717 720
    void flowMap(FlowMap &map) const {
718 721
      for (ArcIt a(_graph); a != INVALID; ++a) {
719 722
        map.set(a, _res_cap[_arc_idb[a]]);
720 723
      }
721 724
    }
722 725

	
723 726
    /// \brief Return the potential (dual value) of the given node.
724 727
    ///
725 728
    /// This function returns the potential (dual value) of the
726 729
    /// given node.
727 730
    ///
728 731
    /// \pre \ref run() must be called before using this function.
729 732
    Cost potential(const Node& n) const {
730 733
      return static_cast<Cost>(_pi[_node_id[n]]);
731 734
    }
732 735

	
733 736
    /// \brief Return the potential map (the dual solution).
734 737
    ///
735 738
    /// This function copies the potential (dual value) of each node
736 739
    /// into the given map.
737 740
    /// The \c Cost type of the algorithm must be convertible to the
738 741
    /// \c Value type of the map.
739 742
    ///
740 743
    /// \pre \ref run() must be called before using this function.
741 744
    template <typename PotentialMap>
742 745
    void potentialMap(PotentialMap &map) const {
743 746
      for (NodeIt n(_graph); n != INVALID; ++n) {
744 747
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
745 748
      }
746 749
    }
747 750

	
748 751
    /// @}
749 752

	
750 753
  private:
751 754

	
752 755
    // Initialize the algorithm
753 756
    ProblemType init() {
754 757
      if (_res_node_num <= 1) return INFEASIBLE;
755 758

	
756 759
      // Check the sum of supply values
757 760
      _sum_supply = 0;
758 761
      for (int i = 0; i != _root; ++i) {
759 762
        _sum_supply += _supply[i];
760 763
      }
761 764
      if (_sum_supply > 0) return INFEASIBLE;
762 765

	
763 766

	
764 767
      // Initialize vectors
765 768
      for (int i = 0; i != _res_node_num; ++i) {
766 769
        _pi[i] = 0;
767 770
        _excess[i] = _supply[i];
768 771
      }
769 772

	
770 773
      // Remove infinite upper bounds and check negative arcs
771 774
      const Value MAX = std::numeric_limits<Value>::max();
772 775
      int last_out;
773 776
      if (_have_lower) {
774 777
        for (int i = 0; i != _root; ++i) {
775 778
          last_out = _first_out[i+1];
776 779
          for (int j = _first_out[i]; j != last_out; ++j) {
777 780
            if (_forward[j]) {
778 781
              Value c = _scost[j] < 0 ? _upper[j] : _lower[j];
779 782
              if (c >= MAX) return UNBOUNDED;
780 783
              _excess[i] -= c;
781 784
              _excess[_target[j]] += c;
782 785
            }
783 786
          }
784 787
        }
785 788
      } else {
786 789
        for (int i = 0; i != _root; ++i) {
787 790
          last_out = _first_out[i+1];
788 791
          for (int j = _first_out[i]; j != last_out; ++j) {
789 792
            if (_forward[j] && _scost[j] < 0) {
790 793
              Value c = _upper[j];
791 794
              if (c >= MAX) return UNBOUNDED;
792 795
              _excess[i] -= c;
793 796
              _excess[_target[j]] += c;
794 797
            }
795 798
          }
796 799
        }
797 800
      }
798 801
      Value ex, max_cap = 0;
799 802
      for (int i = 0; i != _res_node_num; ++i) {
800 803
        ex = _excess[i];
801 804
        _excess[i] = 0;
802 805
        if (ex < 0) max_cap -= ex;
803 806
      }
804 807
      for (int j = 0; j != _res_arc_num; ++j) {
805 808
        if (_upper[j] >= MAX) _upper[j] = max_cap;
806 809
      }
807 810

	
808 811
      // Initialize the large cost vector and the epsilon parameter
809 812
      _epsilon = 0;
810 813
      LargeCost lc;
811 814
      for (int i = 0; i != _root; ++i) {
812 815
        last_out = _first_out[i+1];
813 816
        for (int j = _first_out[i]; j != last_out; ++j) {
814 817
          lc = static_cast<LargeCost>(_scost[j]) * _res_node_num * _alpha;
815 818
          _cost[j] = lc;
816 819
          if (lc > _epsilon) _epsilon = lc;
817 820
        }
818 821
      }
819 822
      _epsilon /= _alpha;
820 823

	
821 824
      // Initialize maps for Circulation and remove non-zero lower bounds
822 825
      ConstMap<Arc, Value> low(0);
823 826
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
824 827
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
825 828
      ValueArcMap cap(_graph), flow(_graph);
826 829
      ValueNodeMap sup(_graph);
827 830
      for (NodeIt n(_graph); n != INVALID; ++n) {
828 831
        sup[n] = _supply[_node_id[n]];
829 832
      }
830 833
      if (_have_lower) {
831 834
        for (ArcIt a(_graph); a != INVALID; ++a) {
832 835
          int j = _arc_idf[a];
833 836
          Value c = _lower[j];
834 837
          cap[a] = _upper[j] - c;
835 838
          sup[_graph.source(a)] -= c;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CYCLE_CANCELING_H
20 20
#define LEMON_CYCLE_CANCELING_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
/// \file
24 24
/// \brief Cycle-canceling algorithms for finding a minimum cost flow.
25 25

	
26 26
#include <vector>
27 27
#include <limits>
28 28

	
29 29
#include <lemon/core.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32
#include <lemon/math.h>
33 33
#include <lemon/static_graph.h>
34 34
#include <lemon/adaptors.h>
35 35
#include <lemon/circulation.h>
36 36
#include <lemon/bellman_ford.h>
37 37
#include <lemon/howard_mmc.h>
38 38

	
39 39
namespace lemon {
40 40

	
41 41
  /// \addtogroup min_cost_flow_algs
42 42
  /// @{
43 43

	
44 44
  /// \brief Implementation of cycle-canceling algorithms for
45 45
  /// finding a \ref min_cost_flow "minimum cost flow".
46 46
  ///
47 47
  /// \ref CycleCanceling implements three different cycle-canceling
48 48
  /// algorithms for finding a \ref min_cost_flow "minimum cost flow"
49 49
  /// \ref amo93networkflows, \ref klein67primal,
50 50
  /// \ref goldberg89cyclecanceling.
51 51
  /// The most efficent one (both theoretically and practically)
52 52
  /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm,
53 53
  /// thus it is the default method.
54 54
  /// It is strongly polynomial, but in practice, it is typically much
55 55
  /// slower than the scaling algorithms and NetworkSimplex.
56 56
  ///
57 57
  /// Most of the parameters of the problem (except for the digraph)
58 58
  /// can be given using separate functions, and the algorithm can be
59 59
  /// executed using the \ref run() function. If some parameters are not
60 60
  /// specified, then default values will be used.
61 61
  ///
62 62
  /// \tparam GR The digraph type the algorithm runs on.
63 63
  /// \tparam V The number type used for flow amounts, capacity bounds
64 64
  /// and supply values in the algorithm. By default, it is \c int.
65 65
  /// \tparam C The number type used for costs and potentials in the
66 66
  /// algorithm. By default, it is the same as \c V.
67 67
  ///
68 68
  /// \warning Both \c V and \c C must be signed number types.
69 69
  /// \warning All input data (capacities, supply values, and costs) must
70 70
  /// be integer.
71
  /// \warning This algorithm does not support negative costs for such
72
  /// arcs that have infinite upper bound.
71
  /// \warning This algorithm does not support negative costs for
72
  /// arcs having infinite upper bound.
73 73
  ///
74 74
  /// \note For more information about the three available methods,
75 75
  /// see \ref Method.
76 76
#ifdef DOXYGEN
77 77
  template <typename GR, typename V, typename C>
78 78
#else
79 79
  template <typename GR, typename V = int, typename C = V>
80 80
#endif
81 81
  class CycleCanceling
82 82
  {
83 83
  public:
84 84

	
85 85
    /// The type of the digraph
86 86
    typedef GR Digraph;
87 87
    /// The type of the flow amounts, capacity bounds and supply values
88 88
    typedef V Value;
89 89
    /// The type of the arc costs
90 90
    typedef C Cost;
91 91

	
92 92
  public:
93 93

	
94 94
    /// \brief Problem type constants for the \c run() function.
95 95
    ///
96 96
    /// Enum type containing the problem type constants that can be
97 97
    /// returned by the \ref run() function of the algorithm.
98 98
    enum ProblemType {
99 99
      /// The problem has no feasible solution (flow).
100 100
      INFEASIBLE,
101 101
      /// The problem has optimal solution (i.e. it is feasible and
102 102
      /// bounded), and the algorithm has found optimal flow and node
103 103
      /// potentials (primal and dual solutions).
104 104
      OPTIMAL,
105 105
      /// The digraph contains an arc of negative cost and infinite
106 106
      /// upper bound. It means that the objective function is unbounded
107 107
      /// on that arc, however, note that it could actually be bounded
108 108
      /// over the feasible flows, but this algroithm cannot handle
109 109
      /// these cases.
110 110
      UNBOUNDED
111 111
    };
112 112

	
113 113
    /// \brief Constants for selecting the used method.
114 114
    ///
115 115
    /// Enum type containing constants for selecting the used method
116 116
    /// for the \ref run() function.
117 117
    ///
118 118
    /// \ref CycleCanceling provides three different cycle-canceling
119 119
    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
120
    /// is used, which proved to be the most efficient and the most robust
121
    /// on various test inputs.
120
    /// is used, which is by far the most efficient and the most robust.
122 121
    /// However, the other methods can be selected using the \ref run()
123 122
    /// function with the proper parameter.
124 123
    enum Method {
125 124
      /// A simple cycle-canceling method, which uses the
126 125
      /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
127 126
      /// number for detecting negative cycles in the residual network.
128 127
      SIMPLE_CYCLE_CANCELING,
129 128
      /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
130 129
      /// well-known strongly polynomial method
131 130
      /// \ref goldberg89cyclecanceling. It improves along a
132 131
      /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
133 132
      /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
134 133
      MINIMUM_MEAN_CYCLE_CANCELING,
135 134
      /// The "Cancel And Tighten" algorithm, which can be viewed as an
136 135
      /// improved version of the previous method
137 136
      /// \ref goldberg89cyclecanceling.
138 137
      /// It is faster both in theory and in practice, its running time
139 138
      /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
140 139
      CANCEL_AND_TIGHTEN
141 140
    };
142 141

	
143 142
  private:
144 143

	
145 144
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
146 145

	
147 146
    typedef std::vector<int> IntVector;
148 147
    typedef std::vector<double> DoubleVector;
149 148
    typedef std::vector<Value> ValueVector;
150 149
    typedef std::vector<Cost> CostVector;
151 150
    typedef std::vector<char> BoolVector;
152 151
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
153 152

	
154 153
  private:
155 154

	
156 155
    template <typename KT, typename VT>
157 156
    class StaticVectorMap {
158 157
    public:
159 158
      typedef KT Key;
160 159
      typedef VT Value;
161 160

	
162 161
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
163 162

	
164 163
      const Value& operator[](const Key& key) const {
165 164
        return _v[StaticDigraph::id(key)];
166 165
      }
167 166

	
168 167
      Value& operator[](const Key& key) {
169 168
        return _v[StaticDigraph::id(key)];
170 169
      }
171 170

	
172 171
      void set(const Key& key, const Value& val) {
173 172
        _v[StaticDigraph::id(key)] = val;
174 173
      }
175 174

	
176 175
    private:
177 176
      std::vector<Value>& _v;
178 177
    };
179 178

	
180 179
    typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap;
181 180
    typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap;
182 181

	
183 182
  private:
184 183

	
185 184

	
186 185
    // Data related to the underlying digraph
187 186
    const GR &_graph;
188 187
    int _node_num;
189 188
    int _arc_num;
190 189
    int _res_node_num;
191 190
    int _res_arc_num;
192 191
    int _root;
193 192

	
194 193
    // Parameters of the problem
195 194
    bool _have_lower;
196 195
    Value _sum_supply;
197 196

	
198 197
    // Data structures for storing the digraph
199 198
    IntNodeMap _node_id;
200 199
    IntArcMap _arc_idf;
201 200
    IntArcMap _arc_idb;
202 201
    IntVector _first_out;
203 202
    BoolVector _forward;
204 203
    IntVector _source;
205 204
    IntVector _target;
206 205
    IntVector _reverse;
207 206

	
208 207
    // Node and arc data
209 208
    ValueVector _lower;
210 209
    ValueVector _upper;
211 210
    CostVector _cost;
212 211
    ValueVector _supply;
213 212

	
214 213
    ValueVector _res_cap;
215 214
    CostVector _pi;
216 215

	
217 216
    // Data for a StaticDigraph structure
218 217
    typedef std::pair<int, int> IntPair;
219 218
    StaticDigraph _sgr;
220 219
    std::vector<IntPair> _arc_vec;
221 220
    std::vector<Cost> _cost_vec;
222 221
    IntVector _id_vec;
223 222
    CostArcMap _cost_map;
224 223
    CostNodeMap _pi_map;
225 224

	
226 225
  public:
227 226

	
228 227
    /// \brief Constant for infinite upper bounds (capacities).
229 228
    ///
230 229
    /// Constant for infinite upper bounds (capacities).
231 230
    /// It is \c std::numeric_limits<Value>::infinity() if available,
232 231
    /// \c std::numeric_limits<Value>::max() otherwise.
233 232
    const Value INF;
234 233

	
235 234
  public:
236 235

	
237 236
    /// \brief Constructor.
238 237
    ///
239 238
    /// The constructor of the class.
240 239
    ///
241 240
    /// \param graph The digraph the algorithm runs on.
242 241
    CycleCanceling(const GR& graph) :
243 242
      _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph),
244 243
      _cost_map(_cost_vec), _pi_map(_pi),
245 244
      INF(std::numeric_limits<Value>::has_infinity ?
246 245
          std::numeric_limits<Value>::infinity() :
247 246
          std::numeric_limits<Value>::max())
248 247
    {
249 248
      // Check the number types
250 249
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
251 250
        "The flow type of CycleCanceling must be signed");
252 251
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
253 252
        "The cost type of CycleCanceling must be signed");
254 253

	
255 254
      // Reset data structures
256 255
      reset();
257 256
    }
258 257

	
259 258
    /// \name Parameters
260 259
    /// The parameters of the algorithm can be specified using these
261 260
    /// functions.
262 261

	
263 262
    /// @{
264 263

	
265 264
    /// \brief Set the lower bounds on the arcs.
266 265
    ///
267 266
    /// This function sets the lower bounds on the arcs.
268 267
    /// If it is not used before calling \ref run(), the lower bounds
269 268
    /// will be set to zero on all arcs.
270 269
    ///
271 270
    /// \param map An arc map storing the lower bounds.
272 271
    /// Its \c Value type must be convertible to the \c Value type
273 272
    /// of the algorithm.
274 273
    ///
275 274
    /// \return <tt>(*this)</tt>
276 275
    template <typename LowerMap>
277 276
    CycleCanceling& lowerMap(const LowerMap& map) {
278 277
      _have_lower = true;
279 278
      for (ArcIt a(_graph); a != INVALID; ++a) {
280 279
        _lower[_arc_idf[a]] = map[a];
281 280
        _lower[_arc_idb[a]] = map[a];
282 281
      }
283 282
      return *this;
284 283
    }
285 284

	
286 285
    /// \brief Set the upper bounds (capacities) on the arcs.
287 286
    ///
288 287
    /// This function sets the upper bounds (capacities) on the arcs.
289 288
    /// If it is not used before calling \ref run(), the upper bounds
290 289
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
291 290
    /// unbounded from above).
292 291
    ///
293 292
    /// \param map An arc map storing the upper bounds.
294 293
    /// Its \c Value type must be convertible to the \c Value type
295 294
    /// of the algorithm.
296 295
    ///
297 296
    /// \return <tt>(*this)</tt>
298 297
    template<typename UpperMap>
299 298
    CycleCanceling& upperMap(const UpperMap& map) {
300 299
      for (ArcIt a(_graph); a != INVALID; ++a) {
301 300
        _upper[_arc_idf[a]] = map[a];
302 301
      }
303 302
      return *this;
304 303
    }
305 304

	
306 305
    /// \brief Set the costs of the arcs.
307 306
    ///
308 307
    /// This function sets the costs of the arcs.
309 308
    /// If it is not used before calling \ref run(), the costs
310 309
    /// will be set to \c 1 on all arcs.
311 310
    ///
312 311
    /// \param map An arc map storing the costs.
313 312
    /// Its \c Value type must be convertible to the \c Cost type
314 313
    /// of the algorithm.
315 314
    ///
316 315
    /// \return <tt>(*this)</tt>
317 316
    template<typename CostMap>
318 317
    CycleCanceling& costMap(const CostMap& map) {
319 318
      for (ArcIt a(_graph); a != INVALID; ++a) {
320 319
        _cost[_arc_idf[a]] =  map[a];
321 320
        _cost[_arc_idb[a]] = -map[a];
322 321
      }
323 322
      return *this;
324 323
    }
325 324

	
326 325
    /// \brief Set the supply values of the nodes.
327 326
    ///
328 327
    /// This function sets the supply values of the nodes.
329 328
    /// If neither this function nor \ref stSupply() is used before
330 329
    /// calling \ref run(), the supply of each node will be set to zero.
331 330
    ///
332 331
    /// \param map A node map storing the supply values.
333 332
    /// Its \c Value type must be convertible to the \c Value type
334 333
    /// of the algorithm.
335 334
    ///
336 335
    /// \return <tt>(*this)</tt>
337 336
    template<typename SupplyMap>
338 337
    CycleCanceling& supplyMap(const SupplyMap& map) {
339 338
      for (NodeIt n(_graph); n != INVALID; ++n) {
340 339
        _supply[_node_id[n]] = map[n];
341 340
      }
342 341
      return *this;
343 342
    }
344 343

	
345 344
    /// \brief Set single source and target nodes and a supply value.
346 345
    ///
347 346
    /// This function sets a single source node and a single target node
348 347
    /// and the required flow value.
349 348
    /// If neither this function nor \ref supplyMap() is used before
350 349
    /// calling \ref run(), the supply of each node will be set to zero.
351 350
    ///
352 351
    /// Using this function has the same effect as using \ref supplyMap()
353
    /// with such a map in which \c k is assigned to \c s, \c -k is
352
    /// with a map in which \c k is assigned to \c s, \c -k is
354 353
    /// assigned to \c t and all other nodes have zero supply value.
355 354
    ///
356 355
    /// \param s The source node.
357 356
    /// \param t The target node.
358 357
    /// \param k The required amount of flow from node \c s to node \c t
359 358
    /// (i.e. the supply of \c s and the demand of \c t).
360 359
    ///
361 360
    /// \return <tt>(*this)</tt>
362 361
    CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
363 362
      for (int i = 0; i != _res_node_num; ++i) {
364 363
        _supply[i] = 0;
365 364
      }
366 365
      _supply[_node_id[s]] =  k;
367 366
      _supply[_node_id[t]] = -k;
368 367
      return *this;
369 368
    }
370 369

	
371 370
    /// @}
372 371

	
373 372
    /// \name Execution control
374 373
    /// The algorithm can be executed using \ref run().
375 374

	
376 375
    /// @{
377 376

	
378 377
    /// \brief Run the algorithm.
379 378
    ///
380 379
    /// This function runs the algorithm.
381 380
    /// The paramters can be specified using functions \ref lowerMap(),
382 381
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
383 382
    /// For example,
384 383
    /// \code
385 384
    ///   CycleCanceling<ListDigraph> cc(graph);
386 385
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
387 386
    ///     .supplyMap(sup).run();
388 387
    /// \endcode
389 388
    ///
390 389
    /// This function can be called more than once. All the given parameters
391 390
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
392 391
    /// is used, thus only the modified parameters have to be set again.
393 392
    /// If the underlying digraph was also modified after the construction
394 393
    /// of the class (or the last \ref reset() call), then the \ref reset()
395 394
    /// function must be called.
396 395
    ///
397 396
    /// \param method The cycle-canceling method that will be used.
398 397
    /// For more information, see \ref Method.
399 398
    ///
400 399
    /// \return \c INFEASIBLE if no feasible flow exists,
401 400
    /// \n \c OPTIMAL if the problem has optimal solution
402 401
    /// (i.e. it is feasible and bounded), and the algorithm has found
403 402
    /// optimal flow and node potentials (primal and dual solutions),
404 403
    /// \n \c UNBOUNDED if the digraph contains an arc of negative cost
405 404
    /// and infinite upper bound. It means that the objective function
406 405
    /// is unbounded on that arc, however, note that it could actually be
407 406
    /// bounded over the feasible flows, but this algroithm cannot handle
408 407
    /// these cases.
409 408
    ///
410 409
    /// \see ProblemType, Method
411 410
    /// \see resetParams(), reset()
412 411
    ProblemType run(Method method = CANCEL_AND_TIGHTEN) {
413 412
      ProblemType pt = init();
414 413
      if (pt != OPTIMAL) return pt;
415 414
      start(method);
416 415
      return OPTIMAL;
417 416
    }
418 417

	
419 418
    /// \brief Reset all the parameters that have been given before.
420 419
    ///
421 420
    /// This function resets all the paramaters that have been given
422 421
    /// before using functions \ref lowerMap(), \ref upperMap(),
423 422
    /// \ref costMap(), \ref supplyMap(), \ref stSupply().
424 423
    ///
425 424
    /// It is useful for multiple \ref run() calls. Basically, all the given
426 425
    /// parameters are kept for the next \ref run() call, unless
427 426
    /// \ref resetParams() or \ref reset() is used.
428 427
    /// If the underlying digraph was also modified after the construction
429 428
    /// of the class or the last \ref reset() call, then the \ref reset()
430 429
    /// function must be used, otherwise \ref resetParams() is sufficient.
431 430
    ///
432 431
    /// For example,
433 432
    /// \code
434 433
    ///   CycleCanceling<ListDigraph> cs(graph);
435 434
    ///
436 435
    ///   // First run
437 436
    ///   cc.lowerMap(lower).upperMap(upper).costMap(cost)
438 437
    ///     .supplyMap(sup).run();
439 438
    ///
440 439
    ///   // Run again with modified cost map (resetParams() is not called,
441 440
    ///   // so only the cost map have to be set again)
442 441
    ///   cost[e] += 100;
443 442
    ///   cc.costMap(cost).run();
444 443
    ///
445 444
    ///   // Run again from scratch using resetParams()
446 445
    ///   // (the lower bounds will be set to zero on all arcs)
447 446
    ///   cc.resetParams();
448 447
    ///   cc.upperMap(capacity).costMap(cost)
449 448
    ///     .supplyMap(sup).run();
450 449
    /// \endcode
451 450
    ///
452 451
    /// \return <tt>(*this)</tt>
453 452
    ///
454 453
    /// \see reset(), run()
455 454
    CycleCanceling& resetParams() {
456 455
      for (int i = 0; i != _res_node_num; ++i) {
457 456
        _supply[i] = 0;
458 457
      }
459 458
      int limit = _first_out[_root];
460 459
      for (int j = 0; j != limit; ++j) {
461 460
        _lower[j] = 0;
462 461
        _upper[j] = INF;
463 462
        _cost[j] = _forward[j] ? 1 : -1;
464 463
      }
465 464
      for (int j = limit; j != _res_arc_num; ++j) {
466 465
        _lower[j] = 0;
467 466
        _upper[j] = INF;
468 467
        _cost[j] = 0;
469 468
        _cost[_reverse[j]] = 0;
470 469
      }
471 470
      _have_lower = false;
472 471
      return *this;
473 472
    }
474 473

	
475 474
    /// \brief Reset the internal data structures and all the parameters
476 475
    /// that have been given before.
477 476
    ///
478 477
    /// This function resets the internal data structures and all the
479 478
    /// paramaters that have been given before using functions \ref lowerMap(),
480 479
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply().
481 480
    ///
482 481
    /// It is useful for multiple \ref run() calls. Basically, all the given
483 482
    /// parameters are kept for the next \ref run() call, unless
484 483
    /// \ref resetParams() or \ref reset() is used.
485 484
    /// If the underlying digraph was also modified after the construction
486 485
    /// of the class or the last \ref reset() call, then the \ref reset()
487 486
    /// function must be used, otherwise \ref resetParams() is sufficient.
488 487
    ///
489 488
    /// See \ref resetParams() for examples.
490 489
    ///
491 490
    /// \return <tt>(*this)</tt>
492 491
    ///
493 492
    /// \see resetParams(), run()
494 493
    CycleCanceling& reset() {
495 494
      // Resize vectors
496 495
      _node_num = countNodes(_graph);
497 496
      _arc_num = countArcs(_graph);
498 497
      _res_node_num = _node_num + 1;
499 498
      _res_arc_num = 2 * (_arc_num + _node_num);
500 499
      _root = _node_num;
501 500

	
502 501
      _first_out.resize(_res_node_num + 1);
503 502
      _forward.resize(_res_arc_num);
504 503
      _source.resize(_res_arc_num);
505 504
      _target.resize(_res_arc_num);
506 505
      _reverse.resize(_res_arc_num);
507 506

	
508 507
      _lower.resize(_res_arc_num);
509 508
      _upper.resize(_res_arc_num);
510 509
      _cost.resize(_res_arc_num);
511 510
      _supply.resize(_res_node_num);
512 511

	
513 512
      _res_cap.resize(_res_arc_num);
514 513
      _pi.resize(_res_node_num);
515 514

	
516 515
      _arc_vec.reserve(_res_arc_num);
517 516
      _cost_vec.reserve(_res_arc_num);
518 517
      _id_vec.reserve(_res_arc_num);
519 518

	
520 519
      // Copy the graph
521 520
      int i = 0, j = 0, k = 2 * _arc_num + _node_num;
522 521
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
523 522
        _node_id[n] = i;
524 523
      }
525 524
      i = 0;
526 525
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
527 526
        _first_out[i] = j;
528 527
        for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) {
529 528
          _arc_idf[a] = j;
530 529
          _forward[j] = true;
531 530
          _source[j] = i;
532 531
          _target[j] = _node_id[_graph.runningNode(a)];
533 532
        }
534 533
        for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) {
535 534
          _arc_idb[a] = j;
536 535
          _forward[j] = false;
537 536
          _source[j] = i;
538 537
          _target[j] = _node_id[_graph.runningNode(a)];
539 538
        }
540 539
        _forward[j] = false;
541 540
        _source[j] = i;
542 541
        _target[j] = _root;
543 542
        _reverse[j] = k;
544 543
        _forward[k] = true;
545 544
        _source[k] = _root;
546 545
        _target[k] = i;
547 546
        _reverse[k] = j;
548 547
        ++j; ++k;
549 548
      }
550 549
      _first_out[i] = j;
551 550
      _first_out[_res_node_num] = k;
552 551
      for (ArcIt a(_graph); a != INVALID; ++a) {
553 552
        int fi = _arc_idf[a];
554 553
        int bi = _arc_idb[a];
555 554
        _reverse[fi] = bi;
556 555
        _reverse[bi] = fi;
557 556
      }
558 557

	
559 558
      // Reset parameters
560 559
      resetParams();
561 560
      return *this;
562 561
    }
563 562

	
564 563
    /// @}
565 564

	
566 565
    /// \name Query Functions
567 566
    /// The results of the algorithm can be obtained using these
568 567
    /// functions.\n
569 568
    /// The \ref run() function must be called before using them.
570 569

	
571 570
    /// @{
572 571

	
573 572
    /// \brief Return the total cost of the found flow.
574 573
    ///
575 574
    /// This function returns the total cost of the found flow.
576 575
    /// Its complexity is O(e).
577 576
    ///
578 577
    /// \note The return type of the function can be specified as a
579 578
    /// template parameter. For example,
580 579
    /// \code
581 580
    ///   cc.totalCost<double>();
582 581
    /// \endcode
583 582
    /// It is useful if the total cost cannot be stored in the \c Cost
584 583
    /// type of the algorithm, which is the default return type of the
585 584
    /// function.
586 585
    ///
587 586
    /// \pre \ref run() must be called before using this function.
588 587
    template <typename Number>
589 588
    Number totalCost() const {
590 589
      Number c = 0;
591 590
      for (ArcIt a(_graph); a != INVALID; ++a) {
592 591
        int i = _arc_idb[a];
593 592
        c += static_cast<Number>(_res_cap[i]) *
594 593
             (-static_cast<Number>(_cost[i]));
595 594
      }
596 595
      return c;
597 596
    }
598 597

	
599 598
#ifndef DOXYGEN
600 599
    Cost totalCost() const {
601 600
      return totalCost<Cost>();
602 601
    }
603 602
#endif
604 603

	
605 604
    /// \brief Return the flow on the given arc.
606 605
    ///
607 606
    /// This function returns the flow on the given arc.
608 607
    ///
609 608
    /// \pre \ref run() must be called before using this function.
610 609
    Value flow(const Arc& a) const {
611 610
      return _res_cap[_arc_idb[a]];
612 611
    }
613 612

	
614 613
    /// \brief Return the flow map (the primal solution).
615 614
    ///
616 615
    /// This function copies the flow value on each arc into the given
617 616
    /// map. The \c Value type of the algorithm must be convertible to
618 617
    /// the \c Value type of the map.
619 618
    ///
620 619
    /// \pre \ref run() must be called before using this function.
621 620
    template <typename FlowMap>
622 621
    void flowMap(FlowMap &map) const {
623 622
      for (ArcIt a(_graph); a != INVALID; ++a) {
624 623
        map.set(a, _res_cap[_arc_idb[a]]);
625 624
      }
626 625
    }
627 626

	
628 627
    /// \brief Return the potential (dual value) of the given node.
629 628
    ///
630 629
    /// This function returns the potential (dual value) of the
631 630
    /// given node.
632 631
    ///
633 632
    /// \pre \ref run() must be called before using this function.
634 633
    Cost potential(const Node& n) const {
635 634
      return static_cast<Cost>(_pi[_node_id[n]]);
636 635
    }
637 636

	
638 637
    /// \brief Return the potential map (the dual solution).
639 638
    ///
640 639
    /// This function copies the potential (dual value) of each node
641 640
    /// into the given map.
642 641
    /// The \c Cost type of the algorithm must be convertible to the
643 642
    /// \c Value type of the map.
644 643
    ///
645 644
    /// \pre \ref run() must be called before using this function.
646 645
    template <typename PotentialMap>
647 646
    void potentialMap(PotentialMap &map) const {
648 647
      for (NodeIt n(_graph); n != INVALID; ++n) {
649 648
        map.set(n, static_cast<Cost>(_pi[_node_id[n]]));
650 649
      }
651 650
    }
652 651

	
653 652
    /// @}
654 653

	
655 654
  private:
656 655

	
657 656
    // Initialize the algorithm
658 657
    ProblemType init() {
659 658
      if (_res_node_num <= 1) return INFEASIBLE;
660 659

	
661 660
      // Check the sum of supply values
662 661
      _sum_supply = 0;
663 662
      for (int i = 0; i != _root; ++i) {
664 663
        _sum_supply += _supply[i];
665 664
      }
666 665
      if (_sum_supply > 0) return INFEASIBLE;
667 666

	
668 667

	
669 668
      // Initialize vectors
670 669
      for (int i = 0; i != _res_node_num; ++i) {
671 670
        _pi[i] = 0;
672 671
      }
673 672
      ValueVector excess(_supply);
674 673

	
675 674
      // Remove infinite upper bounds and check negative arcs
676 675
      const Value MAX = std::numeric_limits<Value>::max();
677 676
      int last_out;
678 677
      if (_have_lower) {
679 678
        for (int i = 0; i != _root; ++i) {
680 679
          last_out = _first_out[i+1];
681 680
          for (int j = _first_out[i]; j != last_out; ++j) {
682 681
            if (_forward[j]) {
683 682
              Value c = _cost[j] < 0 ? _upper[j] : _lower[j];
684 683
              if (c >= MAX) return UNBOUNDED;
685 684
              excess[i] -= c;
686 685
              excess[_target[j]] += c;
687 686
            }
688 687
          }
689 688
        }
690 689
      } else {
691 690
        for (int i = 0; i != _root; ++i) {
692 691
          last_out = _first_out[i+1];
693 692
          for (int j = _first_out[i]; j != last_out; ++j) {
694 693
            if (_forward[j] && _cost[j] < 0) {
695 694
              Value c = _upper[j];
696 695
              if (c >= MAX) return UNBOUNDED;
697 696
              excess[i] -= c;
698 697
              excess[_target[j]] += c;
699 698
            }
700 699
          }
701 700
        }
702 701
      }
703 702
      Value ex, max_cap = 0;
704 703
      for (int i = 0; i != _res_node_num; ++i) {
705 704
        ex = excess[i];
706 705
        if (ex < 0) max_cap -= ex;
707 706
      }
708 707
      for (int j = 0; j != _res_arc_num; ++j) {
709 708
        if (_upper[j] >= MAX) _upper[j] = max_cap;
710 709
      }
711 710

	
712 711
      // Initialize maps for Circulation and remove non-zero lower bounds
713 712
      ConstMap<Arc, Value> low(0);
714 713
      typedef typename Digraph::template ArcMap<Value> ValueArcMap;
715 714
      typedef typename Digraph::template NodeMap<Value> ValueNodeMap;
716 715
      ValueArcMap cap(_graph), flow(_graph);
717 716
      ValueNodeMap sup(_graph);
718 717
      for (NodeIt n(_graph); n != INVALID; ++n) {
719 718
        sup[n] = _supply[_node_id[n]];
720 719
      }
721 720
      if (_have_lower) {
722 721
        for (ArcIt a(_graph); a != INVALID; ++a) {
723 722
          int j = _arc_idf[a];
724 723
          Value c = _lower[j];
725 724
          cap[a] = _upper[j] - c;
726 725
          sup[_graph.source(a)] -= c;
727 726
          sup[_graph.target(a)] += c;
728 727
        }
729 728
      } else {
730 729
        for (ArcIt a(_graph); a != INVALID; ++a) {
731 730
          cap[a] = _upper[_arc_idf[a]];
732 731
        }
733 732
      }
734 733

	
735 734
      // Find a feasible flow using Circulation
736 735
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
737 736
        circ(_graph, low, cap, sup);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_EULER_H
20 20
#define LEMON_EULER_H
21 21

	
22 22
#include<lemon/core.h>
23 23
#include<lemon/adaptors.h>
24 24
#include<lemon/connectivity.h>
25 25
#include <list>
26 26

	
27 27
/// \ingroup graph_properties
28 28
/// \file
29 29
/// \brief Euler tour iterators and a function for checking the \e Eulerian
30 30
/// property.
31 31
///
32 32
///This file provides Euler tour iterators and a function to check
33 33
///if a (di)graph is \e Eulerian.
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  ///Euler tour iterator for digraphs.
38 38

	
39
  /// \ingroup graph_prop
39
  /// \ingroup graph_properties
40 40
  ///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
41 41
  ///graph (if there exists) and it converts to the \c Arc type of the digraph.
42 42
  ///
43 43
  ///For example, if the given digraph has an Euler tour (i.e it has only one
44 44
  ///non-trivial component and the in-degree is equal to the out-degree
45 45
  ///for all nodes), then the following code will put the arcs of \c g
46 46
  ///to the vector \c et according to an Euler tour of \c g.
47 47
  ///\code
48 48
  ///  std::vector<ListDigraph::Arc> et;
49 49
  ///  for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e)
50 50
  ///    et.push_back(e);
51 51
  ///\endcode
52 52
  ///If \c g has no Euler tour, then the resulted walk will not be closed
53 53
  ///or not contain all arcs.
54 54
  ///\sa EulerIt
55 55
  template<typename GR>
56 56
  class DiEulerIt
57 57
  {
58 58
    typedef typename GR::Node Node;
59 59
    typedef typename GR::NodeIt NodeIt;
60 60
    typedef typename GR::Arc Arc;
61 61
    typedef typename GR::ArcIt ArcIt;
62 62
    typedef typename GR::OutArcIt OutArcIt;
63 63
    typedef typename GR::InArcIt InArcIt;
64 64

	
65 65
    const GR &g;
66 66
    typename GR::template NodeMap<OutArcIt> narc;
67 67
    std::list<Arc> euler;
68 68

	
69 69
  public:
70 70

	
71 71
    ///Constructor
72 72

	
73 73
    ///Constructor.
74 74
    ///\param gr A digraph.
75 75
    ///\param start The starting point of the tour. If it is not given,
76 76
    ///the tour will start from the first node that has an outgoing arc.
77 77
    DiEulerIt(const GR &gr, typename GR::Node start = INVALID)
78 78
      : g(gr), narc(g)
79 79
    {
80 80
      if (start==INVALID) {
81 81
        NodeIt n(g);
82 82
        while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
83 83
        start=n;
84 84
      }
85 85
      if (start!=INVALID) {
86 86
        for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
87 87
        while (narc[start]!=INVALID) {
88 88
          euler.push_back(narc[start]);
89 89
          Node next=g.target(narc[start]);
90 90
          ++narc[start];
91 91
          start=next;
92 92
        }
93 93
      }
94 94
    }
95 95

	
96 96
    ///Arc conversion
97 97
    operator Arc() { return euler.empty()?INVALID:euler.front(); }
98 98
    ///Compare with \c INVALID
99 99
    bool operator==(Invalid) { return euler.empty(); }
100 100
    ///Compare with \c INVALID
101 101
    bool operator!=(Invalid) { return !euler.empty(); }
102 102

	
103 103
    ///Next arc of the tour
104 104

	
105 105
    ///Next arc of the tour
106 106
    ///
107 107
    DiEulerIt &operator++() {
108 108
      Node s=g.target(euler.front());
109 109
      euler.pop_front();
110 110
      typename std::list<Arc>::iterator next=euler.begin();
111 111
      while(narc[s]!=INVALID) {
112 112
        euler.insert(next,narc[s]);
113 113
        Node n=g.target(narc[s]);
114 114
        ++narc[s];
115 115
        s=n;
116 116
      }
117 117
      return *this;
118 118
    }
119 119
    ///Postfix incrementation
120 120

	
121 121
    /// Postfix incrementation.
122 122
    ///
123 123
    ///\warning This incrementation
124 124
    ///returns an \c Arc, not a \ref DiEulerIt, as one may
125 125
    ///expect.
126 126
    Arc operator++(int)
127 127
    {
128 128
      Arc e=*this;
129 129
      ++(*this);
130 130
      return e;
131 131
    }
132 132
  };
133 133

	
134 134
  ///Euler tour iterator for graphs.
135 135

	
136 136
  /// \ingroup graph_properties
137 137
  ///This iterator provides an Euler tour (Eulerian circuit) of an
138 138
  ///\e undirected graph (if there exists) and it converts to the \c Arc
139 139
  ///and \c Edge types of the graph.
140 140
  ///
141 141
  ///For example, if the given graph has an Euler tour (i.e it has only one
142 142
  ///non-trivial component and the degree of each node is even),
143 143
  ///the following code will print the arc IDs according to an
144 144
  ///Euler tour of \c g.
145 145
  ///\code
146 146
  ///  for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
147 147
  ///    std::cout << g.id(Edge(e)) << std::eol;
148 148
  ///  }
149 149
  ///\endcode
150 150
  ///Although this iterator is for undirected graphs, it still returns
151 151
  ///arcs in order to indicate the direction of the tour.
152 152
  ///(But arcs convert to edges, of course.)
153 153
  ///
154 154
  ///If \c g has no Euler tour, then the resulted walk will not be closed
155 155
  ///or not contain all edges.
156 156
  template<typename GR>
157 157
  class EulerIt
158 158
  {
159 159
    typedef typename GR::Node Node;
160 160
    typedef typename GR::NodeIt NodeIt;
161 161
    typedef typename GR::Arc Arc;
162 162
    typedef typename GR::Edge Edge;
163 163
    typedef typename GR::ArcIt ArcIt;
164 164
    typedef typename GR::OutArcIt OutArcIt;
165 165
    typedef typename GR::InArcIt InArcIt;
166 166

	
167 167
    const GR &g;
168 168
    typename GR::template NodeMap<OutArcIt> narc;
169 169
    typename GR::template EdgeMap<bool> visited;
170 170
    std::list<Arc> euler;
171 171

	
172 172
  public:
173 173

	
174 174
    ///Constructor
175 175

	
176 176
    ///Constructor.
177 177
    ///\param gr A graph.
178 178
    ///\param start The starting point of the tour. If it is not given,
179 179
    ///the tour will start from the first node that has an incident edge.
180 180
    EulerIt(const GR &gr, typename GR::Node start = INVALID)
181 181
      : g(gr), narc(g), visited(g, false)
182 182
    {
183 183
      if (start==INVALID) {
184 184
        NodeIt n(g);
185 185
        while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n;
186 186
        start=n;
187 187
      }
188 188
      if (start!=INVALID) {
189 189
        for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n);
190 190
        while(narc[start]!=INVALID) {
191 191
          euler.push_back(narc[start]);
192 192
          visited[narc[start]]=true;
193 193
          Node next=g.target(narc[start]);
194 194
          ++narc[start];
195 195
          start=next;
196 196
          while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start];
197 197
        }
198 198
      }
199 199
    }
200 200

	
201 201
    ///Arc conversion
202 202
    operator Arc() const { return euler.empty()?INVALID:euler.front(); }
203 203
    ///Edge conversion
204 204
    operator Edge() const { return euler.empty()?INVALID:euler.front(); }
205 205
    ///Compare with \c INVALID
206 206
    bool operator==(Invalid) const { return euler.empty(); }
207 207
    ///Compare with \c INVALID
208 208
    bool operator!=(Invalid) const { return !euler.empty(); }
209 209

	
210 210
    ///Next arc of the tour
211 211

	
212 212
    ///Next arc of the tour
213 213
    ///
214 214
    EulerIt &operator++() {
215 215
      Node s=g.target(euler.front());
216 216
      euler.pop_front();
217 217
      typename std::list<Arc>::iterator next=euler.begin();
218 218
      while(narc[s]!=INVALID) {
219 219
        while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s];
220 220
        if(narc[s]==INVALID) break;
221 221
        else {
222 222
          euler.insert(next,narc[s]);
223 223
          visited[narc[s]]=true;
224 224
          Node n=g.target(narc[s]);
225 225
          ++narc[s];
226 226
          s=n;
227 227
        }
228 228
      }
229 229
      return *this;
230 230
    }
231 231

	
232 232
    ///Postfix incrementation
233 233

	
234 234
    /// Postfix incrementation.
235 235
    ///
236 236
    ///\warning This incrementation returns an \c Arc (which converts to
237 237
    ///an \c Edge), not an \ref EulerIt, as one may expect.
238 238
    Arc operator++(int)
239 239
    {
240 240
      Arc e=*this;
241 241
      ++(*this);
242 242
      return e;
243 243
    }
244 244
  };
245 245

	
246 246

	
247 247
  ///Check if the given graph is Eulerian
248 248

	
249 249
  /// \ingroup graph_properties
250 250
  ///This function checks if the given graph is Eulerian.
251 251
  ///It works for both directed and undirected graphs.
252 252
  ///
253 253
  ///By definition, a digraph is called \e Eulerian if
254 254
  ///and only if it is connected and the number of incoming and outgoing
255 255
  ///arcs are the same for each node.
256 256
  ///Similarly, an undirected graph is called \e Eulerian if
257 257
  ///and only if it is connected and the number of incident edges is even
258 258
  ///for each node.
259 259
  ///
260 260
  ///\note There are (di)graphs that are not Eulerian, but still have an
261 261
  /// Euler tour, since they may contain isolated nodes.
262 262
  ///
263 263
  ///\sa DiEulerIt, EulerIt
264 264
  template<typename GR>
265 265
#ifdef DOXYGEN
266 266
  bool
267 267
#else
268 268
  typename enable_if<UndirectedTagIndicator<GR>,bool>::type
269 269
  eulerian(const GR &g)
270 270
  {
271 271
    for(typename GR::NodeIt n(g);n!=INVALID;++n)
272 272
      if(countIncEdges(g,n)%2) return false;
273 273
    return connected(g);
274 274
  }
275 275
  template<class GR>
276 276
  typename disable_if<UndirectedTagIndicator<GR>,bool>::type
277 277
#endif
278 278
  eulerian(const GR &g)
279 279
  {
280 280
    for(typename GR::NodeIt n(g);n!=INVALID;++n)
281 281
      if(countInArcs(g,n)!=countOutArcs(g,n)) return false;
282 282
    return connected(undirector(g));
283 283
  }
284 284

	
285 285
}
286 286

	
287 287
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
20 20
#define LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
21 21

	
22 22
/// \ingroup approx_algs
23 23
///
24 24
/// \file
25 25
/// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan
26 26
/// for the maximum clique problem
27 27

	
28 28
#include <vector>
29 29
#include <limits>
30 30
#include <lemon/core.h>
31 31
#include <lemon/random.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  /// \addtogroup approx_algs
36 36
  /// @{
37 37

	
38 38
  /// \brief Implementation of the iterated local search algorithm of Grosso,
39 39
  /// Locatelli, and Pullan for the maximum clique problem
40 40
  ///
41 41
  /// \ref GrossoLocatelliPullanMc implements the iterated local search
42 42
  /// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum
43 43
  /// \e clique \e problem \ref grosso08maxclique.
44 44
  /// It is to find the largest complete subgraph (\e clique) in an
45 45
  /// undirected graph, i.e., the largest set of nodes where each
46 46
  /// pair of nodes is connected.
47 47
  ///
48 48
  /// This class provides a simple but highly efficient and robust heuristic
49
  /// method that quickly finds a large clique, but not necessarily the
49
  /// method that quickly finds a quite large clique, but not necessarily the
50 50
  /// largest one.
51
  /// The algorithm performs a certain number of iterations to find several
52
  /// cliques and selects the largest one among them. Various limits can be
53
  /// specified to control the running time and the effectiveness of the
54
  /// search process.
51 55
  ///
52 56
  /// \tparam GR The undirected graph type the algorithm runs on.
53 57
  ///
54 58
  /// \note %GrossoLocatelliPullanMc provides three different node selection
55 59
  /// rules, from which the most powerful one is used by default.
56 60
  /// For more information, see \ref SelectionRule.
57 61
  template <typename GR>
58 62
  class GrossoLocatelliPullanMc
59 63
  {
60 64
  public:
61 65

	
62 66
    /// \brief Constants for specifying the node selection rule.
63 67
    ///
64 68
    /// Enum type containing constants for specifying the node selection rule
65 69
    /// for the \ref run() function.
66 70
    ///
67 71
    /// During the algorithm, nodes are selected for addition to the current
68 72
    /// clique according to the applied rule.
69 73
    /// In general, the PENALTY_BASED rule turned out to be the most powerful
70 74
    /// and the most robust, thus it is the default option.
71 75
    /// However, another selection rule can be specified using the \ref run()
72 76
    /// function with the proper parameter.
73 77
    enum SelectionRule {
74 78

	
75 79
      /// A node is selected randomly without any evaluation at each step.
76 80
      RANDOM,
77 81

	
78 82
      /// A node of maximum degree is selected randomly at each step.
79 83
      DEGREE_BASED,
80 84

	
81 85
      /// A node of minimum penalty is selected randomly at each step.
82 86
      /// The node penalties are updated adaptively after each stage of the
83 87
      /// search process.
84 88
      PENALTY_BASED
85 89
    };
86 90

	
91
    /// \brief Constants for the causes of search termination.
92
    ///
93
    /// Enum type containing constants for the different causes of search
94
    /// termination. The \ref run() function returns one of these values.
95
    enum TerminationCause {
96

	
97
      /// The iteration count limit is reached.
98
      ITERATION_LIMIT,
99

	
100
      /// The step count limit is reached.
101
      STEP_LIMIT,
102

	
103
      /// The clique size limit is reached.
104
      SIZE_LIMIT
105
    };
106

	
87 107
  private:
88 108

	
89 109
    TEMPLATE_GRAPH_TYPEDEFS(GR);
90 110

	
91 111
    typedef std::vector<int> IntVector;
92 112
    typedef std::vector<char> BoolVector;
93 113
    typedef std::vector<BoolVector> BoolMatrix;
94 114
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
95 115

	
116
    // The underlying graph
96 117
    const GR &_graph;
97 118
    IntNodeMap _id;
98 119

	
99 120
    // Internal matrix representation of the graph
100 121
    BoolMatrix _gr;
101 122
    int _n;
123
    
124
    // Search options
125
    bool _delta_based_restart;
126
    int _restart_delta_limit;
127
 
128
    // Search limits
129
    int _iteration_limit;
130
    int _step_limit;
131
    int _size_limit;
102 132

	
103 133
    // The current clique
104 134
    BoolVector _clique;
105 135
    int _size;
106 136

	
107 137
    // The best clique found so far
108 138
    BoolVector _best_clique;
109 139
    int _best_size;
110 140

	
111 141
    // The "distances" of the nodes from the current clique.
112 142
    // _delta[u] is the number of nodes in the clique that are
113 143
    // not connected with u.
114 144
    IntVector _delta;
115 145

	
116 146
    // The current tabu set
117 147
    BoolVector _tabu;
118 148

	
119 149
    // Random number generator
120 150
    Random _rnd;
121 151

	
122 152
  private:
123 153

	
124 154
    // Implementation of the RANDOM node selection rule.
125 155
    class RandomSelectionRule
126 156
    {
127 157
    private:
128 158

	
129 159
      // References to the algorithm instance
130 160
      const BoolVector &_clique;
131 161
      const IntVector  &_delta;
132 162
      const BoolVector &_tabu;
133 163
      Random &_rnd;
134 164

	
135 165
      // Pivot rule data
136 166
      int _n;
137 167

	
138 168
    public:
139 169

	
140 170
      // Constructor
141 171
      RandomSelectionRule(GrossoLocatelliPullanMc &mc) :
142 172
        _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
143 173
        _rnd(mc._rnd), _n(mc._n)
144 174
      {}
145 175

	
146 176
      // Return a node index for a feasible add move or -1 if no one exists
147 177
      int nextFeasibleAddNode() const {
148 178
        int start_node = _rnd[_n];
149 179
        for (int i = start_node; i != _n; i++) {
150 180
          if (_delta[i] == 0 && !_tabu[i]) return i;
151 181
        }
152 182
        for (int i = 0; i != start_node; i++) {
153 183
          if (_delta[i] == 0 && !_tabu[i]) return i;
154 184
        }
155 185
        return -1;
156 186
      }
157 187

	
158 188
      // Return a node index for a feasible swap move or -1 if no one exists
159 189
      int nextFeasibleSwapNode() const {
160 190
        int start_node = _rnd[_n];
161 191
        for (int i = start_node; i != _n; i++) {
162 192
          if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
163 193
        }
164 194
        for (int i = 0; i != start_node; i++) {
165 195
          if (!_clique[i] && _delta[i] == 1 && !_tabu[i]) return i;
166 196
        }
167 197
        return -1;
168 198
      }
169 199

	
170 200
      // Return a node index for an add move or -1 if no one exists
171 201
      int nextAddNode() const {
172 202
        int start_node = _rnd[_n];
173 203
        for (int i = start_node; i != _n; i++) {
174 204
          if (_delta[i] == 0) return i;
175 205
        }
176 206
        for (int i = 0; i != start_node; i++) {
177 207
          if (_delta[i] == 0) return i;
178 208
        }
179 209
        return -1;
180 210
      }
181 211

	
182 212
      // Update internal data structures between stages (if necessary)
183 213
      void update() {}
184 214

	
185 215
    }; //class RandomSelectionRule
186 216

	
187 217

	
188 218
    // Implementation of the DEGREE_BASED node selection rule.
189 219
    class DegreeBasedSelectionRule
190 220
    {
191 221
    private:
192 222

	
193 223
      // References to the algorithm instance
194 224
      const BoolVector &_clique;
195 225
      const IntVector  &_delta;
196 226
      const BoolVector &_tabu;
197 227
      Random &_rnd;
198 228

	
199 229
      // Pivot rule data
200 230
      int _n;
201 231
      IntVector _deg;
202 232

	
203 233
    public:
204 234

	
205 235
      // Constructor
206 236
      DegreeBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
207 237
        _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
208 238
        _rnd(mc._rnd), _n(mc._n), _deg(_n)
209 239
      {
210 240
        for (int i = 0; i != _n; i++) {
211 241
          int d = 0;
212 242
          BoolVector &row = mc._gr[i];
213 243
          for (int j = 0; j != _n; j++) {
214 244
            if (row[j]) d++;
215 245
          }
216 246
          _deg[i] = d;
217 247
        }
218 248
      }
219 249

	
220 250
      // Return a node index for a feasible add move or -1 if no one exists
221 251
      int nextFeasibleAddNode() const {
222 252
        int start_node = _rnd[_n];
223 253
        int node = -1, max_deg = -1;
224 254
        for (int i = start_node; i != _n; i++) {
225 255
          if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
226 256
            node = i;
227 257
            max_deg = _deg[i];
228 258
          }
229 259
        }
230 260
        for (int i = 0; i != start_node; i++) {
231 261
          if (_delta[i] == 0 && !_tabu[i] && _deg[i] > max_deg) {
232 262
            node = i;
233 263
            max_deg = _deg[i];
234 264
          }
235 265
        }
236 266
        return node;
237 267
      }
238 268

	
239 269
      // Return a node index for a feasible swap move or -1 if no one exists
240 270
      int nextFeasibleSwapNode() const {
241 271
        int start_node = _rnd[_n];
242 272
        int node = -1, max_deg = -1;
243 273
        for (int i = start_node; i != _n; i++) {
244 274
          if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
245 275
              _deg[i] > max_deg) {
246 276
            node = i;
247 277
            max_deg = _deg[i];
248 278
          }
249 279
        }
250 280
        for (int i = 0; i != start_node; i++) {
251 281
          if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
252 282
              _deg[i] > max_deg) {
253 283
            node = i;
254 284
            max_deg = _deg[i];
255 285
          }
256 286
        }
257 287
        return node;
258 288
      }
259 289

	
260 290
      // Return a node index for an add move or -1 if no one exists
261 291
      int nextAddNode() const {
262 292
        int start_node = _rnd[_n];
263 293
        int node = -1, max_deg = -1;
264 294
        for (int i = start_node; i != _n; i++) {
265 295
          if (_delta[i] == 0 && _deg[i] > max_deg) {
266 296
            node = i;
267 297
            max_deg = _deg[i];
268 298
          }
269 299
        }
270 300
        for (int i = 0; i != start_node; i++) {
271 301
          if (_delta[i] == 0 && _deg[i] > max_deg) {
272 302
            node = i;
273 303
            max_deg = _deg[i];
274 304
          }
275 305
        }
276 306
        return node;
277 307
      }
278 308

	
279 309
      // Update internal data structures between stages (if necessary)
280 310
      void update() {}
281 311

	
282 312
    }; //class DegreeBasedSelectionRule
283 313

	
284 314

	
285 315
    // Implementation of the PENALTY_BASED node selection rule.
286 316
    class PenaltyBasedSelectionRule
287 317
    {
288 318
    private:
289 319

	
290 320
      // References to the algorithm instance
291 321
      const BoolVector &_clique;
292 322
      const IntVector  &_delta;
293 323
      const BoolVector &_tabu;
294 324
      Random &_rnd;
295 325

	
296 326
      // Pivot rule data
297 327
      int _n;
298 328
      IntVector _penalty;
299 329

	
300 330
    public:
301 331

	
302 332
      // Constructor
303 333
      PenaltyBasedSelectionRule(GrossoLocatelliPullanMc &mc) :
304 334
        _clique(mc._clique), _delta(mc._delta), _tabu(mc._tabu),
305 335
        _rnd(mc._rnd), _n(mc._n), _penalty(_n, 0)
306 336
      {}
307 337

	
308 338
      // Return a node index for a feasible add move or -1 if no one exists
309 339
      int nextFeasibleAddNode() const {
310 340
        int start_node = _rnd[_n];
311 341
        int node = -1, min_p = std::numeric_limits<int>::max();
312 342
        for (int i = start_node; i != _n; i++) {
313 343
          if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
314 344
            node = i;
315 345
            min_p = _penalty[i];
316 346
          }
317 347
        }
318 348
        for (int i = 0; i != start_node; i++) {
319 349
          if (_delta[i] == 0 && !_tabu[i] && _penalty[i] < min_p) {
320 350
            node = i;
321 351
            min_p = _penalty[i];
322 352
          }
323 353
        }
324 354
        return node;
325 355
      }
326 356

	
327 357
      // Return a node index for a feasible swap move or -1 if no one exists
328 358
      int nextFeasibleSwapNode() const {
329 359
        int start_node = _rnd[_n];
330 360
        int node = -1, min_p = std::numeric_limits<int>::max();
331 361
        for (int i = start_node; i != _n; i++) {
332 362
          if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
333 363
              _penalty[i] < min_p) {
334 364
            node = i;
335 365
            min_p = _penalty[i];
336 366
          }
337 367
        }
338 368
        for (int i = 0; i != start_node; i++) {
339 369
          if (!_clique[i] && _delta[i] == 1 && !_tabu[i] &&
340 370
              _penalty[i] < min_p) {
341 371
            node = i;
342 372
            min_p = _penalty[i];
343 373
          }
344 374
        }
345 375
        return node;
346 376
      }
347 377

	
348 378
      // Return a node index for an add move or -1 if no one exists
349 379
      int nextAddNode() const {
350 380
        int start_node = _rnd[_n];
351 381
        int node = -1, min_p = std::numeric_limits<int>::max();
352 382
        for (int i = start_node; i != _n; i++) {
353 383
          if (_delta[i] == 0 && _penalty[i] < min_p) {
354 384
            node = i;
355 385
            min_p = _penalty[i];
356 386
          }
357 387
        }
358 388
        for (int i = 0; i != start_node; i++) {
359 389
          if (_delta[i] == 0 && _penalty[i] < min_p) {
360 390
            node = i;
361 391
            min_p = _penalty[i];
362 392
          }
363 393
        }
364 394
        return node;
365 395
      }
366 396

	
367 397
      // Update internal data structures between stages (if necessary)
368 398
      void update() {}
369 399

	
370 400
    }; //class PenaltyBasedSelectionRule
371 401

	
372 402
  public:
373 403

	
374 404
    /// \brief Constructor.
375 405
    ///
376 406
    /// Constructor.
377 407
    /// The global \ref rnd "random number generator instance" is used
378 408
    /// during the algorithm.
379 409
    ///
380 410
    /// \param graph The undirected graph the algorithm runs on.
381 411
    GrossoLocatelliPullanMc(const GR& graph) :
382 412
      _graph(graph), _id(_graph), _rnd(rnd)
383
    {}
413
    {
414
      initOptions();
415
    }
384 416

	
385 417
    /// \brief Constructor with random seed.
386 418
    ///
387 419
    /// Constructor with random seed.
388 420
    ///
389 421
    /// \param graph The undirected graph the algorithm runs on.
390 422
    /// \param seed Seed value for the internal random number generator
391 423
    /// that is used during the algorithm.
392 424
    GrossoLocatelliPullanMc(const GR& graph, int seed) :
393 425
      _graph(graph), _id(_graph), _rnd(seed)
394
    {}
426
    {
427
      initOptions();
428
    }
395 429

	
396 430
    /// \brief Constructor with random number generator.
397 431
    ///
398 432
    /// Constructor with random number generator.
399 433
    ///
400 434
    /// \param graph The undirected graph the algorithm runs on.
401 435
    /// \param random A random number generator that is used during the
402 436
    /// algorithm.
403 437
    GrossoLocatelliPullanMc(const GR& graph, const Random& random) :
404 438
      _graph(graph), _id(_graph), _rnd(random)
405
    {}
439
    {
440
      initOptions();
441
    }
406 442

	
407 443
    /// \name Execution Control
444
    /// The \ref run() function can be used to execute the algorithm.\n
445
    /// The functions \ref iterationLimit(int), \ref stepLimit(int), and 
446
    /// \ref sizeLimit(int) can be used to specify various limits for the
447
    /// search process.
448
    
408 449
    /// @{
450
    
451
    /// \brief Sets the maximum number of iterations.
452
    ///
453
    /// This function sets the maximum number of iterations.
454
    /// Each iteration of the algorithm finds a maximal clique (but not
455
    /// necessarily the largest one) by performing several search steps
456
    /// (node selections).
457
    ///
458
    /// This limit controls the running time and the success of the
459
    /// algorithm. For larger values, the algorithm runs slower, but it more
460
    /// likely finds larger cliques. For smaller values, the algorithm is
461
    /// faster but probably gives worse results.
462
    /// 
463
    /// The default value is \c 1000.
464
    /// \c -1 means that number of iterations is not limited.
465
    ///
466
    /// \warning You should specify a reasonable limit for the number of
467
    /// iterations and/or the number of search steps.
468
    ///
469
    /// \return <tt>(*this)</tt>
470
    ///
471
    /// \sa stepLimit(int)
472
    /// \sa sizeLimit(int)
473
    GrossoLocatelliPullanMc& iterationLimit(int limit) {
474
      _iteration_limit = limit;
475
      return *this;
476
    }
477
    
478
    /// \brief Sets the maximum number of search steps.
479
    ///
480
    /// This function sets the maximum number of elementary search steps.
481
    /// Each iteration of the algorithm finds a maximal clique (but not
482
    /// necessarily the largest one) by performing several search steps
483
    /// (node selections).
484
    ///
485
    /// This limit controls the running time and the success of the
486
    /// algorithm. For larger values, the algorithm runs slower, but it more
487
    /// likely finds larger cliques. For smaller values, the algorithm is
488
    /// faster but probably gives worse results.
489
    /// 
490
    /// The default value is \c -1, which means that number of steps
491
    /// is not limited explicitly. However, the number of iterations is
492
    /// limited and each iteration performs a finite number of search steps.
493
    ///
494
    /// \warning You should specify a reasonable limit for the number of
495
    /// iterations and/or the number of search steps.
496
    ///
497
    /// \return <tt>(*this)</tt>
498
    ///
499
    /// \sa iterationLimit(int)
500
    /// \sa sizeLimit(int)
501
    GrossoLocatelliPullanMc& stepLimit(int limit) {
502
      _step_limit = limit;
503
      return *this;
504
    }
505
    
506
    /// \brief Sets the desired clique size.
507
    ///
508
    /// This function sets the desired clique size that serves as a search
509
    /// limit. If a clique of this size (or a larger one) is found, then the
510
    /// algorithm terminates.
511
    /// 
512
    /// This function is especially useful if you know an exact upper bound
513
    /// for the size of the cliques in the graph or if any clique above 
514
    /// a certain size limit is sufficient for your application.
515
    /// 
516
    /// The default value is \c -1, which means that the size limit is set to
517
    /// the number of nodes in the graph.
518
    ///
519
    /// \return <tt>(*this)</tt>
520
    ///
521
    /// \sa iterationLimit(int)
522
    /// \sa stepLimit(int)
523
    GrossoLocatelliPullanMc& sizeLimit(int limit) {
524
      _size_limit = limit;
525
      return *this;
526
    }
527
    
528
    /// \brief The maximum number of iterations.
529
    ///
530
    /// This function gives back the maximum number of iterations.
531
    /// \c -1 means that no limit is specified.
532
    ///
533
    /// \sa iterationLimit(int)
534
    int iterationLimit() const {
535
      return _iteration_limit;
536
    }
537
    
538
    /// \brief The maximum number of search steps.
539
    ///
540
    /// This function gives back the maximum number of search steps.
541
    /// \c -1 means that no limit is specified.
542
    ///
543
    /// \sa stepLimit(int)
544
    int stepLimit() const {
545
      return _step_limit;
546
    }
547
    
548
    /// \brief The desired clique size.
549
    ///
550
    /// This function gives back the desired clique size that serves as a
551
    /// search limit. \c -1 means that this limit is set to the number of
552
    /// nodes in the graph.
553
    ///
554
    /// \sa sizeLimit(int)
555
    int sizeLimit() const {
556
      return _size_limit;
557
    }
409 558

	
410 559
    /// \brief Runs the algorithm.
411 560
    ///
412
    /// This function runs the algorithm.
561
    /// This function runs the algorithm. If one of the specified limits
562
    /// is reached, the search process terminates.
413 563
    ///
414
    /// \param step_num The maximum number of node selections (steps)
415
    /// during the search process.
416
    /// This parameter controls the running time and the success of the
417
    /// algorithm. For larger values, the algorithm runs slower but it more
418
    /// likely finds larger cliques. For smaller values, the algorithm is
419
    /// faster but probably gives worse results.
420 564
    /// \param rule The node selection rule. For more information, see
421 565
    /// \ref SelectionRule.
422 566
    ///
423
    /// \return The size of the found clique.
424
    int run(int step_num = 100000,
425
            SelectionRule rule = PENALTY_BASED)
567
    /// \return The termination cause of the search. For more information,
568
    /// see \ref TerminationCause.
569
    TerminationCause run(SelectionRule rule = PENALTY_BASED)
426 570
    {
427 571
      init();
428 572
      switch (rule) {
429 573
        case RANDOM:
430
          return start<RandomSelectionRule>(step_num);
574
          return start<RandomSelectionRule>();
431 575
        case DEGREE_BASED:
432
          return start<DegreeBasedSelectionRule>(step_num);
433
        case PENALTY_BASED:
434
          return start<PenaltyBasedSelectionRule>(step_num);
576
          return start<DegreeBasedSelectionRule>();
577
        default:
578
          return start<PenaltyBasedSelectionRule>();
435 579
      }
436
      return 0; // avoid warning
437 580
    }
438 581

	
439 582
    /// @}
440 583

	
441 584
    /// \name Query Functions
585
    /// The results of the algorithm can be obtained using these functions.\n
586
    /// The run() function must be called before using them. 
587

	
442 588
    /// @{
443 589

	
444 590
    /// \brief The size of the found clique
445 591
    ///
446 592
    /// This function returns the size of the found clique.
447 593
    ///
448 594
    /// \pre run() must be called before using this function.
449 595
    int cliqueSize() const {
450 596
      return _best_size;
451 597
    }
452 598

	
453 599
    /// \brief Gives back the found clique in a \c bool node map
454 600
    ///
455 601
    /// This function gives back the characteristic vector of the found
456 602
    /// clique in the given node map.
457 603
    /// It must be a \ref concepts::WriteMap "writable" node map with
458 604
    /// \c bool (or convertible) value type.
459 605
    ///
460 606
    /// \pre run() must be called before using this function.
461 607
    template <typename CliqueMap>
462 608
    void cliqueMap(CliqueMap &map) const {
463 609
      for (NodeIt n(_graph); n != INVALID; ++n) {
464 610
        map[n] = static_cast<bool>(_best_clique[_id[n]]);
465 611
      }
466 612
    }
467 613

	
468 614
    /// \brief Iterator to list the nodes of the found clique
469 615
    ///
470 616
    /// This iterator class lists the nodes of the found clique.
471 617
    /// Before using it, you must allocate a GrossoLocatelliPullanMc instance
472 618
    /// and call its \ref GrossoLocatelliPullanMc::run() "run()" method.
473 619
    ///
474 620
    /// The following example prints out the IDs of the nodes in the found
475 621
    /// clique.
476 622
    /// \code
477 623
    ///   GrossoLocatelliPullanMc<Graph> mc(g);
478 624
    ///   mc.run();
479 625
    ///   for (GrossoLocatelliPullanMc<Graph>::CliqueNodeIt n(mc);
480 626
    ///        n != INVALID; ++n)
481 627
    ///   {
482 628
    ///     std::cout << g.id(n) << std::endl;
483 629
    ///   }
484 630
    /// \endcode
485 631
    class CliqueNodeIt
486 632
    {
487 633
    private:
488 634
      NodeIt _it;
489 635
      BoolNodeMap _map;
490 636

	
491 637
    public:
492 638

	
493 639
      /// Constructor
494 640

	
495 641
      /// Constructor.
496 642
      /// \param mc The algorithm instance.
497 643
      CliqueNodeIt(const GrossoLocatelliPullanMc &mc)
498 644
       : _map(mc._graph)
499 645
      {
500 646
        mc.cliqueMap(_map);
501 647
        for (_it = NodeIt(mc._graph); _it != INVALID && !_map[_it]; ++_it) ;
502 648
      }
503 649

	
504 650
      /// Conversion to \c Node
505 651
      operator Node() const { return _it; }
506 652

	
507 653
      bool operator==(Invalid) const { return _it == INVALID; }
508 654
      bool operator!=(Invalid) const { return _it != INVALID; }
509 655

	
510 656
      /// Next node
511 657
      CliqueNodeIt &operator++() {
512 658
        for (++_it; _it != INVALID && !_map[_it]; ++_it) ;
513 659
        return *this;
514 660
      }
515 661

	
516 662
      /// Postfix incrementation
517 663

	
518 664
      /// Postfix incrementation.
519 665
      ///
520 666
      /// \warning This incrementation returns a \c Node, not a
521 667
      /// \c CliqueNodeIt as one may expect.
522 668
      typename GR::Node operator++(int) {
523 669
        Node n=*this;
524 670
        ++(*this);
525 671
        return n;
526 672
      }
527 673

	
528 674
    };
529 675

	
530 676
    /// @}
531 677

	
532 678
  private:
679
  
680
    // Initialize search options and limits
681
    void initOptions() {
682
      // Search options
683
      _delta_based_restart = true;
684
      _restart_delta_limit = 4;
685
     
686
      // Search limits
687
      _iteration_limit = 1000;
688
      _step_limit = -1;             // this is disabled by default
689
      _size_limit = -1;             // this is disabled by default
690
    }
533 691

	
534 692
    // Adds a node to the current clique
535 693
    void addCliqueNode(int u) {
536 694
      if (_clique[u]) return;
537 695
      _clique[u] = true;
538 696
      _size++;
539 697
      BoolVector &row = _gr[u];
540 698
      for (int i = 0; i != _n; i++) {
541 699
        if (!row[i]) _delta[i]++;
542 700
      }
543 701
    }
544 702

	
545 703
    // Removes a node from the current clique
546 704
    void delCliqueNode(int u) {
547 705
      if (!_clique[u]) return;
548 706
      _clique[u] = false;
549 707
      _size--;
550 708
      BoolVector &row = _gr[u];
551 709
      for (int i = 0; i != _n; i++) {
552 710
        if (!row[i]) _delta[i]--;
553 711
      }
554 712
    }
555 713

	
556 714
    // Initialize data structures
557 715
    void init() {
558 716
      _n = countNodes(_graph);
559 717
      int ui = 0;
560 718
      for (NodeIt u(_graph); u != INVALID; ++u) {
561 719
        _id[u] = ui++;
562 720
      }
563 721
      _gr.clear();
564 722
      _gr.resize(_n, BoolVector(_n, false));
565 723
      ui = 0;
566 724
      for (NodeIt u(_graph); u != INVALID; ++u) {
567 725
        for (IncEdgeIt e(_graph, u); e != INVALID; ++e) {
568 726
          int vi = _id[_graph.runningNode(e)];
569 727
          _gr[ui][vi] = true;
570 728
          _gr[vi][ui] = true;
571 729
        }
572 730
        ++ui;
573 731
      }
574 732

	
575 733
      _clique.clear();
576 734
      _clique.resize(_n, false);
577 735
      _size = 0;
578 736
      _best_clique.clear();
579 737
      _best_clique.resize(_n, false);
580 738
      _best_size = 0;
581 739
      _delta.clear();
582 740
      _delta.resize(_n, 0);
583 741
      _tabu.clear();
584 742
      _tabu.resize(_n, false);
585 743
    }
586 744

	
587 745
    // Executes the algorithm
588 746
    template <typename SelectionRuleImpl>
589
    int start(int max_select) {
590
      // Options for the restart rule
591
      const bool delta_based_restart = true;
592
      const int restart_delta_limit = 4;
593

	
594
      if (_n == 0) return 0;
747
    TerminationCause start() {
748
      if (_n == 0) return SIZE_LIMIT;
595 749
      if (_n == 1) {
596 750
        _best_clique[0] = true;
597 751
        _best_size = 1;
598
        return _best_size;
752
        return SIZE_LIMIT;
599 753
      }
600 754

	
601
      // Iterated local search
755
      // Iterated local search algorithm
756
      const int max_size = _size_limit >= 0 ? _size_limit : _n;
757
      const int max_restart = _iteration_limit >= 0 ?
758
        _iteration_limit : std::numeric_limits<int>::max();
759
      const int max_select = _step_limit >= 0 ?
760
        _step_limit : std::numeric_limits<int>::max();
761

	
602 762
      SelectionRuleImpl sel_method(*this);
603
      int select = 0;
763
      int select = 0, restart = 0;
604 764
      IntVector restart_nodes;
605

	
606
      while (select < max_select) {
765
      while (select < max_select && restart < max_restart) {
607 766

	
608 767
        // Perturbation/restart
609
        if (delta_based_restart) {
768
        restart++;
769
        if (_delta_based_restart) {
610 770
          restart_nodes.clear();
611 771
          for (int i = 0; i != _n; i++) {
612
            if (_delta[i] >= restart_delta_limit)
772
            if (_delta[i] >= _restart_delta_limit)
613 773
              restart_nodes.push_back(i);
614 774
          }
615 775
        }
616 776
        int rs_node = -1;
617 777
        if (restart_nodes.size() > 0) {
618 778
          rs_node = restart_nodes[_rnd[restart_nodes.size()]];
619 779
        } else {
620 780
          rs_node = _rnd[_n];
621 781
        }
622 782
        BoolVector &row = _gr[rs_node];
623 783
        for (int i = 0; i != _n; i++) {
624 784
          if (_clique[i] && !row[i]) delCliqueNode(i);
625 785
        }
626 786
        addCliqueNode(rs_node);
627 787

	
628 788
        // Local search
629 789
        _tabu.clear();
630 790
        _tabu.resize(_n, false);
631 791
        bool tabu_empty = true;
632 792
        int max_swap = _size;
633 793
        while (select < max_select) {
634 794
          select++;
635 795
          int u;
636 796
          if ((u = sel_method.nextFeasibleAddNode()) != -1) {
637 797
            // Feasible add move
638 798
            addCliqueNode(u);
639 799
            if (tabu_empty) max_swap = _size;
640 800
          }
641 801
          else if ((u = sel_method.nextFeasibleSwapNode()) != -1) {
642 802
            // Feasible swap move
643 803
            int v = -1;
644 804
            BoolVector &row = _gr[u];
645 805
            for (int i = 0; i != _n; i++) {
646 806
              if (_clique[i] && !row[i]) {
647 807
                v = i;
648 808
                break;
649 809
              }
650 810
            }
651 811
            addCliqueNode(u);
652 812
            delCliqueNode(v);
653 813
            _tabu[v] = true;
654 814
            tabu_empty = false;
655 815
            if (--max_swap <= 0) break;
656 816
          }
657 817
          else if ((u = sel_method.nextAddNode()) != -1) {
658 818
            // Non-feasible add move
659 819
            addCliqueNode(u);
660 820
          }
661 821
          else break;
662 822
        }
663 823
        if (_size > _best_size) {
664 824
          _best_clique = _clique;
665 825
          _best_size = _size;
666
          if (_best_size == _n) return _best_size;
826
          if (_best_size >= max_size) return SIZE_LIMIT;
667 827
        }
668 828
        sel_method.update();
669 829
      }
670 830

	
671
      return _best_size;
831
      return (restart >= max_restart ? ITERATION_LIMIT : STEP_LIMIT);
672 832
    }
673 833

	
674 834
  }; //class GrossoLocatelliPullanMc
675 835

	
676 836
  ///@}
677 837

	
678 838
} //namespace lemon
679 839

	
680 840
#endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_NETWORK_SIMPLEX_H
20 20
#define LEMON_NETWORK_SIMPLEX_H
21 21

	
22 22
/// \ingroup min_cost_flow_algs
23 23
///
24 24
/// \file
25 25
/// \brief Network Simplex algorithm for finding a minimum cost flow.
26 26

	
27 27
#include <vector>
28 28
#include <limits>
29 29
#include <algorithm>
30 30

	
31 31
#include <lemon/core.h>
32 32
#include <lemon/math.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup min_cost_flow_algs
37 37
  /// @{
38 38

	
39 39
  /// \brief Implementation of the primal Network Simplex algorithm
40 40
  /// for finding a \ref min_cost_flow "minimum cost flow".
41 41
  ///
42 42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 43
  /// for finding a \ref min_cost_flow "minimum cost flow"
44 44
  /// \ref amo93networkflows, \ref dantzig63linearprog,
45 45
  /// \ref kellyoneill91netsimplex.
46 46
  /// This algorithm is a highly efficient specialized version of the
47 47
  /// linear programming simplex method directly for the minimum cost
48 48
  /// flow problem.
49 49
  ///
50
  /// In general, %NetworkSimplex is the fastest implementation available
51
  /// in LEMON for this problem.
52
  /// Moreover, it supports both directions of the supply/demand inequality
53
  /// constraints. For more information, see \ref SupplyType.
50
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
51
  /// implementations available in LEMON for this problem.
52
  /// Furthermore, this class supports both directions of the supply/demand
53
  /// inequality constraints. For more information, see \ref SupplyType.
54 54
  ///
55 55
  /// Most of the parameters of the problem (except for the digraph)
56 56
  /// can be given using separate functions, and the algorithm can be
57 57
  /// executed using the \ref run() function. If some parameters are not
58 58
  /// specified, then default values will be used.
59 59
  ///
60 60
  /// \tparam GR The digraph type the algorithm runs on.
61 61
  /// \tparam V The number type used for flow amounts, capacity bounds
62 62
  /// and supply values in the algorithm. By default, it is \c int.
63 63
  /// \tparam C The number type used for costs and potentials in the
64 64
  /// algorithm. By default, it is the same as \c V.
65 65
  ///
66 66
  /// \warning Both \c V and \c C must be signed number types.
67 67
  /// \warning All input data (capacities, supply values, and costs) must
68 68
  /// be integer.
69 69
  ///
70 70
  /// \note %NetworkSimplex provides five different pivot rule
71 71
  /// implementations, from which the most efficient one is used
72 72
  /// by default. For more information, see \ref PivotRule.
73 73
  template <typename GR, typename V = int, typename C = V>
74 74
  class NetworkSimplex
75 75
  {
76 76
  public:
77 77

	
78 78
    /// The type of the flow amounts, capacity bounds and supply values
79 79
    typedef V Value;
80 80
    /// The type of the arc costs
81 81
    typedef C Cost;
82 82

	
83 83
  public:
84 84

	
85 85
    /// \brief Problem type constants for the \c run() function.
86 86
    ///
87 87
    /// Enum type containing the problem type constants that can be
88 88
    /// returned by the \ref run() function of the algorithm.
89 89
    enum ProblemType {
90 90
      /// The problem has no feasible solution (flow).
91 91
      INFEASIBLE,
92 92
      /// The problem has optimal solution (i.e. it is feasible and
93 93
      /// bounded), and the algorithm has found optimal flow and node
94 94
      /// potentials (primal and dual solutions).
95 95
      OPTIMAL,
96 96
      /// The objective function of the problem is unbounded, i.e.
97 97
      /// there is a directed cycle having negative total cost and
98 98
      /// infinite upper bound.
99 99
      UNBOUNDED
100 100
    };
101 101

	
102 102
    /// \brief Constants for selecting the type of the supply constraints.
103 103
    ///
104 104
    /// Enum type containing constants for selecting the supply type,
105 105
    /// i.e. the direction of the inequalities in the supply/demand
106 106
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
107 107
    ///
108 108
    /// The default supply type is \c GEQ, the \c LEQ type can be
109 109
    /// selected using \ref supplyType().
110 110
    /// The equality form is a special case of both supply types.
111 111
    enum SupplyType {
112 112
      /// This option means that there are <em>"greater or equal"</em>
113 113
      /// supply/demand constraints in the definition of the problem.
114 114
      GEQ,
115 115
      /// This option means that there are <em>"less or equal"</em>
116 116
      /// supply/demand constraints in the definition of the problem.
117 117
      LEQ
118 118
    };
119 119

	
120 120
    /// \brief Constants for selecting the pivot rule.
121 121
    ///
122 122
    /// Enum type containing constants for selecting the pivot rule for
123 123
    /// the \ref run() function.
124 124
    ///
125 125
    /// \ref NetworkSimplex provides five different pivot rule
126 126
    /// implementations that significantly affect the running time
127 127
    /// of the algorithm.
128 128
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
129
    /// proved to be the most efficient and the most robust on various
129
    /// turend out to be the most efficient and the most robust on various
130 130
    /// test inputs.
131 131
    /// However, another pivot rule can be selected using the \ref run()
132 132
    /// function with the proper parameter.
133 133
    enum PivotRule {
134 134

	
135 135
      /// The \e First \e Eligible pivot rule.
136 136
      /// The next eligible arc is selected in a wraparound fashion
137 137
      /// in every iteration.
138 138
      FIRST_ELIGIBLE,
139 139

	
140 140
      /// The \e Best \e Eligible pivot rule.
141 141
      /// The best eligible arc is selected in every iteration.
142 142
      BEST_ELIGIBLE,
143 143

	
144 144
      /// The \e Block \e Search pivot rule.
145 145
      /// A specified number of arcs are examined in every iteration
146 146
      /// in a wraparound fashion and the best eligible arc is selected
147 147
      /// from this block.
148 148
      BLOCK_SEARCH,
149 149

	
150 150
      /// The \e Candidate \e List pivot rule.
151 151
      /// In a major iteration a candidate list is built from eligible arcs
152 152
      /// in a wraparound fashion and in the following minor iterations
153 153
      /// the best eligible arc is selected from this list.
154 154
      CANDIDATE_LIST,
155 155

	
156 156
      /// The \e Altering \e Candidate \e List pivot rule.
157 157
      /// It is a modified version of the Candidate List method.
158 158
      /// It keeps only the several best eligible arcs from the former
159 159
      /// candidate list and extends this list in every iteration.
160 160
      ALTERING_LIST
161 161
    };
162 162

	
163 163
  private:
164 164

	
165 165
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
166 166

	
167 167
    typedef std::vector<int> IntVector;
168 168
    typedef std::vector<Value> ValueVector;
169 169
    typedef std::vector<Cost> CostVector;
170 170
    typedef std::vector<signed char> CharVector;
171
    // Note: vector<signed char> is used instead of vector<ArcState> and 
171
    // Note: vector<signed char> is used instead of vector<ArcState> and
172 172
    // vector<ArcDirection> for efficiency reasons
173 173

	
174 174
    // State constants for arcs
175 175
    enum ArcState {
176 176
      STATE_UPPER = -1,
177 177
      STATE_TREE  =  0,
178 178
      STATE_LOWER =  1
179 179
    };
180 180

	
181 181
    // Direction constants for tree arcs
182 182
    enum ArcDirection {
183 183
      DIR_DOWN = -1,
184 184
      DIR_UP   =  1
185 185
    };
186 186

	
187 187
  private:
188 188

	
189 189
    // Data related to the underlying digraph
190 190
    const GR &_graph;
191 191
    int _node_num;
192 192
    int _arc_num;
193 193
    int _all_arc_num;
194 194
    int _search_arc_num;
195 195

	
196 196
    // Parameters of the problem
197 197
    bool _have_lower;
198 198
    SupplyType _stype;
199 199
    Value _sum_supply;
200 200

	
201 201
    // Data structures for storing the digraph
202 202
    IntNodeMap _node_id;
203 203
    IntArcMap _arc_id;
204 204
    IntVector _source;
205 205
    IntVector _target;
206 206
    bool _arc_mixing;
207 207

	
208 208
    // Node and arc data
209 209
    ValueVector _lower;
210 210
    ValueVector _upper;
211 211
    ValueVector _cap;
212 212
    CostVector _cost;
213 213
    ValueVector _supply;
214 214
    ValueVector _flow;
215 215
    CostVector _pi;
216 216

	
217 217
    // Data for storing the spanning tree structure
218 218
    IntVector _parent;
219 219
    IntVector _pred;
220 220
    IntVector _thread;
221 221
    IntVector _rev_thread;
222 222
    IntVector _succ_num;
223 223
    IntVector _last_succ;
224 224
    CharVector _pred_dir;
225 225
    CharVector _state;
226 226
    IntVector _dirty_revs;
227 227
    int _root;
228 228

	
229 229
    // Temporary data used in the current pivot iteration
230 230
    int in_arc, join, u_in, v_in, u_out, v_out;
231 231
    Value delta;
232 232

	
233 233
    const Value MAX;
234 234

	
235 235
  public:
236 236

	
237 237
    /// \brief Constant for infinite upper bounds (capacities).
238 238
    ///
239 239
    /// Constant for infinite upper bounds (capacities).
240 240
    /// It is \c std::numeric_limits<Value>::infinity() if available,
241 241
    /// \c std::numeric_limits<Value>::max() otherwise.
242 242
    const Value INF;
243 243

	
244 244
  private:
245 245

	
246 246
    // Implementation of the First Eligible pivot rule
247 247
    class FirstEligiblePivotRule
248 248
    {
249 249
    private:
250 250

	
251 251
      // References to the NetworkSimplex class
252 252
      const IntVector  &_source;
253 253
      const IntVector  &_target;
254 254
      const CostVector &_cost;
255 255
      const CharVector &_state;
256 256
      const CostVector &_pi;
257 257
      int &_in_arc;
258 258
      int _search_arc_num;
259 259

	
260 260
      // Pivot rule data
261 261
      int _next_arc;
262 262

	
263 263
    public:
264 264

	
265 265
      // Constructor
266 266
      FirstEligiblePivotRule(NetworkSimplex &ns) :
267 267
        _source(ns._source), _target(ns._target),
268 268
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
269 269
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
270 270
        _next_arc(0)
271 271
      {}
272 272

	
273 273
      // Find next entering arc
274 274
      bool findEnteringArc() {
275 275
        Cost c;
276 276
        for (int e = _next_arc; e != _search_arc_num; ++e) {
277 277
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
278 278
          if (c < 0) {
279 279
            _in_arc = e;
280 280
            _next_arc = e + 1;
281 281
            return true;
282 282
          }
283 283
        }
284 284
        for (int e = 0; e != _next_arc; ++e) {
285 285
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
286 286
          if (c < 0) {
287 287
            _in_arc = e;
288 288
            _next_arc = e + 1;
289 289
            return true;
290 290
          }
291 291
        }
292 292
        return false;
293 293
      }
294 294

	
295 295
    }; //class FirstEligiblePivotRule
296 296

	
297 297

	
298 298
    // Implementation of the Best Eligible pivot rule
299 299
    class BestEligiblePivotRule
300 300
    {
301 301
    private:
302 302

	
303 303
      // References to the NetworkSimplex class
304 304
      const IntVector  &_source;
305 305
      const IntVector  &_target;
306 306
      const CostVector &_cost;
307 307
      const CharVector &_state;
308 308
      const CostVector &_pi;
309 309
      int &_in_arc;
310 310
      int _search_arc_num;
311 311

	
312 312
    public:
313 313

	
314 314
      // Constructor
315 315
      BestEligiblePivotRule(NetworkSimplex &ns) :
316 316
        _source(ns._source), _target(ns._target),
317 317
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
318 318
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
319 319
      {}
320 320

	
321 321
      // Find next entering arc
322 322
      bool findEnteringArc() {
323 323
        Cost c, min = 0;
324 324
        for (int e = 0; e != _search_arc_num; ++e) {
325 325
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
326 326
          if (c < min) {
327 327
            min = c;
328 328
            _in_arc = e;
329 329
          }
330 330
        }
331 331
        return min < 0;
332 332
      }
333 333

	
334 334
    }; //class BestEligiblePivotRule
335 335

	
336 336

	
337 337
    // Implementation of the Block Search pivot rule
338 338
    class BlockSearchPivotRule
339 339
    {
340 340
    private:
341 341

	
342 342
      // References to the NetworkSimplex class
343 343
      const IntVector  &_source;
344 344
      const IntVector  &_target;
345 345
      const CostVector &_cost;
346 346
      const CharVector &_state;
347 347
      const CostVector &_pi;
348 348
      int &_in_arc;
349 349
      int _search_arc_num;
350 350

	
351 351
      // Pivot rule data
352 352
      int _block_size;
353 353
      int _next_arc;
354 354

	
355 355
    public:
356 356

	
357 357
      // Constructor
358 358
      BlockSearchPivotRule(NetworkSimplex &ns) :
359 359
        _source(ns._source), _target(ns._target),
360 360
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
361 361
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
362 362
        _next_arc(0)
363 363
      {
364 364
        // The main parameters of the pivot rule
365 365
        const double BLOCK_SIZE_FACTOR = 1.0;
366 366
        const int MIN_BLOCK_SIZE = 10;
367 367

	
368 368
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
369 369
                                    std::sqrt(double(_search_arc_num))),
370 370
                                MIN_BLOCK_SIZE );
371 371
      }
372 372

	
373 373
      // Find next entering arc
374 374
      bool findEnteringArc() {
375 375
        Cost c, min = 0;
376 376
        int cnt = _block_size;
377 377
        int e;
378 378
        for (e = _next_arc; e != _search_arc_num; ++e) {
379 379
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
380 380
          if (c < min) {
381 381
            min = c;
382 382
            _in_arc = e;
383 383
          }
384 384
          if (--cnt == 0) {
385 385
            if (min < 0) goto search_end;
386 386
            cnt = _block_size;
387 387
          }
388 388
        }
389 389
        for (e = 0; e != _next_arc; ++e) {
390 390
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
391 391
          if (c < min) {
392 392
            min = c;
393 393
            _in_arc = e;
394 394
          }
395 395
          if (--cnt == 0) {
396 396
            if (min < 0) goto search_end;
397 397
            cnt = _block_size;
398 398
          }
399 399
        }
400 400
        if (min >= 0) return false;
401 401

	
402 402
      search_end:
403 403
        _next_arc = e;
404 404
        return true;
405 405
      }
406 406

	
407 407
    }; //class BlockSearchPivotRule
408 408

	
409 409

	
410 410
    // Implementation of the Candidate List pivot rule
411 411
    class CandidateListPivotRule
412 412
    {
413 413
    private:
414 414

	
415 415
      // References to the NetworkSimplex class
416 416
      const IntVector  &_source;
417 417
      const IntVector  &_target;
418 418
      const CostVector &_cost;
419 419
      const CharVector &_state;
420 420
      const CostVector &_pi;
421 421
      int &_in_arc;
422 422
      int _search_arc_num;
423 423

	
424 424
      // Pivot rule data
425 425
      IntVector _candidates;
426 426
      int _list_length, _minor_limit;
427 427
      int _curr_length, _minor_count;
428 428
      int _next_arc;
429 429

	
430 430
    public:
431 431

	
432 432
      /// Constructor
433 433
      CandidateListPivotRule(NetworkSimplex &ns) :
434 434
        _source(ns._source), _target(ns._target),
435 435
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
436 436
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
437 437
        _next_arc(0)
438 438
      {
439 439
        // The main parameters of the pivot rule
440 440
        const double LIST_LENGTH_FACTOR = 0.25;
441 441
        const int MIN_LIST_LENGTH = 10;
442 442
        const double MINOR_LIMIT_FACTOR = 0.1;
443 443
        const int MIN_MINOR_LIMIT = 3;
444 444

	
445 445
        _list_length = std::max( int(LIST_LENGTH_FACTOR *
446 446
                                     std::sqrt(double(_search_arc_num))),
447 447
                                 MIN_LIST_LENGTH );
448 448
        _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length),
449 449
                                 MIN_MINOR_LIMIT );
450 450
        _curr_length = _minor_count = 0;
451 451
        _candidates.resize(_list_length);
452 452
      }
453 453

	
454 454
      /// Find next entering arc
455 455
      bool findEnteringArc() {
456 456
        Cost min, c;
457 457
        int e;
458 458
        if (_curr_length > 0 && _minor_count < _minor_limit) {
459 459
          // Minor iteration: select the best eligible arc from the
460 460
          // current candidate list
461 461
          ++_minor_count;
462 462
          min = 0;
463 463
          for (int i = 0; i < _curr_length; ++i) {
464 464
            e = _candidates[i];
465 465
            c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
466 466
            if (c < min) {
467 467
              min = c;
468 468
              _in_arc = e;
469 469
            }
470 470
            else if (c >= 0) {
471 471
              _candidates[i--] = _candidates[--_curr_length];
472 472
            }
473 473
          }
474 474
          if (min < 0) return true;
475 475
        }
476 476

	
477 477
        // Major iteration: build a new candidate list
478 478
        min = 0;
479 479
        _curr_length = 0;
480 480
        for (e = _next_arc; e != _search_arc_num; ++e) {
481 481
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
482 482
          if (c < 0) {
483 483
            _candidates[_curr_length++] = e;
484 484
            if (c < min) {
485 485
              min = c;
486 486
              _in_arc = e;
487 487
            }
488 488
            if (_curr_length == _list_length) goto search_end;
489 489
          }
490 490
        }
491 491
        for (e = 0; e != _next_arc; ++e) {
492 492
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
493 493
          if (c < 0) {
494 494
            _candidates[_curr_length++] = e;
495 495
            if (c < min) {
496 496
              min = c;
497 497
              _in_arc = e;
498 498
            }
499 499
            if (_curr_length == _list_length) goto search_end;
500 500
          }
501 501
        }
502 502
        if (_curr_length == 0) return false;
503 503

	
504 504
      search_end:
505 505
        _minor_count = 1;
506 506
        _next_arc = e;
507 507
        return true;
508 508
      }
509 509

	
510 510
    }; //class CandidateListPivotRule
511 511

	
512 512

	
513 513
    // Implementation of the Altering Candidate List pivot rule
514 514
    class AlteringListPivotRule
515 515
    {
516 516
    private:
517 517

	
518 518
      // References to the NetworkSimplex class
519 519
      const IntVector  &_source;
520 520
      const IntVector  &_target;
521 521
      const CostVector &_cost;
522 522
      const CharVector &_state;
523 523
      const CostVector &_pi;
524 524
      int &_in_arc;
525 525
      int _search_arc_num;
526 526

	
527 527
      // Pivot rule data
528 528
      int _block_size, _head_length, _curr_length;
529 529
      int _next_arc;
530 530
      IntVector _candidates;
531 531
      CostVector _cand_cost;
532 532

	
533 533
      // Functor class to compare arcs during sort of the candidate list
534 534
      class SortFunc
535 535
      {
536 536
      private:
537 537
        const CostVector &_map;
538 538
      public:
539 539
        SortFunc(const CostVector &map) : _map(map) {}
540 540
        bool operator()(int left, int right) {
541 541
          return _map[left] > _map[right];
542 542
        }
543 543
      };
544 544

	
545 545
      SortFunc _sort_func;
546 546

	
547 547
    public:
548 548

	
549 549
      // Constructor
550 550
      AlteringListPivotRule(NetworkSimplex &ns) :
551 551
        _source(ns._source), _target(ns._target),
552 552
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
553 553
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
554 554
        _next_arc(0), _cand_cost(ns._search_arc_num), _sort_func(_cand_cost)
555 555
      {
556 556
        // The main parameters of the pivot rule
557 557
        const double BLOCK_SIZE_FACTOR = 1.0;
558 558
        const int MIN_BLOCK_SIZE = 10;
559 559
        const double HEAD_LENGTH_FACTOR = 0.1;
560 560
        const int MIN_HEAD_LENGTH = 3;
561 561

	
562 562
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
563 563
                                    std::sqrt(double(_search_arc_num))),
564 564
                                MIN_BLOCK_SIZE );
565 565
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
566 566
                                 MIN_HEAD_LENGTH );
567 567
        _candidates.resize(_head_length + _block_size);
568 568
        _curr_length = 0;
569 569
      }
570 570

	
571 571
      // Find next entering arc
572 572
      bool findEnteringArc() {
573 573
        // Check the current candidate list
574 574
        int e;
575 575
        Cost c;
576 576
        for (int i = 0; i != _curr_length; ++i) {
577 577
          e = _candidates[i];
578 578
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
579 579
          if (c < 0) {
580 580
            _cand_cost[e] = c;
581 581
          } else {
582 582
            _candidates[i--] = _candidates[--_curr_length];
583 583
          }
584 584
        }
585 585

	
586 586
        // Extend the list
587 587
        int cnt = _block_size;
588 588
        int limit = _head_length;
589 589

	
590 590
        for (e = _next_arc; e != _search_arc_num; ++e) {
591 591
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
592 592
          if (c < 0) {
593 593
            _cand_cost[e] = c;
594 594
            _candidates[_curr_length++] = e;
595 595
          }
596 596
          if (--cnt == 0) {
597 597
            if (_curr_length > limit) goto search_end;
598 598
            limit = 0;
599 599
            cnt = _block_size;
600 600
          }
601 601
        }
602 602
        for (e = 0; e != _next_arc; ++e) {
603 603
          _cand_cost[e] = _state[e] *
604 604
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
605 605
          if (_cand_cost[e] < 0) {
606 606
            _candidates[_curr_length++] = e;
607 607
          }
608 608
          if (--cnt == 0) {
609 609
            if (_curr_length > limit) goto search_end;
610 610
            limit = 0;
611 611
            cnt = _block_size;
612 612
          }
613 613
        }
614 614
        if (_curr_length == 0) return false;
615 615

	
616 616
      search_end:
617 617

	
618 618
        // Make heap of the candidate list (approximating a partial sort)
619 619
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
620 620
                   _sort_func );
621 621

	
622 622
        // Pop the first element of the heap
623 623
        _in_arc = _candidates[0];
624 624
        _next_arc = e;
625 625
        pop_heap( _candidates.begin(), _candidates.begin() + _curr_length,
626 626
                  _sort_func );
627 627
        _curr_length = std::min(_head_length, _curr_length - 1);
628 628
        return true;
629 629
      }
630 630

	
631 631
    }; //class AlteringListPivotRule
632 632

	
633 633
  public:
634 634

	
635 635
    /// \brief Constructor.
636 636
    ///
637 637
    /// The constructor of the class.
638 638
    ///
639 639
    /// \param graph The digraph the algorithm runs on.
640 640
    /// \param arc_mixing Indicate if the arcs will be stored in a
641 641
    /// mixed order in the internal data structure.
642 642
    /// In general, it leads to similar performance as using the original
643 643
    /// arc order, but it makes the algorithm more robust and in special
644 644
    /// cases, even significantly faster. Therefore, it is enabled by default.
645 645
    NetworkSimplex(const GR& graph, bool arc_mixing = true) :
646 646
      _graph(graph), _node_id(graph), _arc_id(graph),
647 647
      _arc_mixing(arc_mixing),
648 648
      MAX(std::numeric_limits<Value>::max()),
649 649
      INF(std::numeric_limits<Value>::has_infinity ?
650 650
          std::numeric_limits<Value>::infinity() : MAX)
651 651
    {
652 652
      // Check the number types
653 653
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
654 654
        "The flow type of NetworkSimplex must be signed");
655 655
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
656 656
        "The cost type of NetworkSimplex must be signed");
657 657

	
658 658
      // Reset data structures
659 659
      reset();
660 660
    }
661 661

	
662 662
    /// \name Parameters
663 663
    /// The parameters of the algorithm can be specified using these
664 664
    /// functions.
665 665

	
666 666
    /// @{
667 667

	
668 668
    /// \brief Set the lower bounds on the arcs.
669 669
    ///
670 670
    /// This function sets the lower bounds on the arcs.
671 671
    /// If it is not used before calling \ref run(), the lower bounds
672 672
    /// will be set to zero on all arcs.
673 673
    ///
674 674
    /// \param map An arc map storing the lower bounds.
675 675
    /// Its \c Value type must be convertible to the \c Value type
676 676
    /// of the algorithm.
677 677
    ///
678 678
    /// \return <tt>(*this)</tt>
679 679
    template <typename LowerMap>
680 680
    NetworkSimplex& lowerMap(const LowerMap& map) {
681 681
      _have_lower = true;
682 682
      for (ArcIt a(_graph); a != INVALID; ++a) {
683 683
        _lower[_arc_id[a]] = map[a];
684 684
      }
685 685
      return *this;
686 686
    }
687 687

	
688 688
    /// \brief Set the upper bounds (capacities) on the arcs.
689 689
    ///
690 690
    /// This function sets the upper bounds (capacities) on the arcs.
691 691
    /// If it is not used before calling \ref run(), the upper bounds
692 692
    /// will be set to \ref INF on all arcs (i.e. the flow value will be
693 693
    /// unbounded from above).
694 694
    ///
695 695
    /// \param map An arc map storing the upper bounds.
696 696
    /// Its \c Value type must be convertible to the \c Value type
697 697
    /// of the algorithm.
698 698
    ///
699 699
    /// \return <tt>(*this)</tt>
700 700
    template<typename UpperMap>
701 701
    NetworkSimplex& upperMap(const UpperMap& map) {
702 702
      for (ArcIt a(_graph); a != INVALID; ++a) {
703 703
        _upper[_arc_id[a]] = map[a];
704 704
      }
705 705
      return *this;
706 706
    }
707 707

	
708 708
    /// \brief Set the costs of the arcs.
709 709
    ///
710 710
    /// This function sets the costs of the arcs.
711 711
    /// If it is not used before calling \ref run(), the costs
712 712
    /// will be set to \c 1 on all arcs.
713 713
    ///
714 714
    /// \param map An arc map storing the costs.
715 715
    /// Its \c Value type must be convertible to the \c Cost type
716 716
    /// of the algorithm.
717 717
    ///
718 718
    /// \return <tt>(*this)</tt>
719 719
    template<typename CostMap>
720 720
    NetworkSimplex& costMap(const CostMap& map) {
721 721
      for (ArcIt a(_graph); a != INVALID; ++a) {
722 722
        _cost[_arc_id[a]] = map[a];
723 723
      }
724 724
      return *this;
725 725
    }
726 726

	
727 727
    /// \brief Set the supply values of the nodes.
728 728
    ///
729 729
    /// This function sets the supply values of the nodes.
730 730
    /// If neither this function nor \ref stSupply() is used before
731 731
    /// calling \ref run(), the supply of each node will be set to zero.
732 732
    ///
733 733
    /// \param map A node map storing the supply values.
734 734
    /// Its \c Value type must be convertible to the \c Value type
735 735
    /// of the algorithm.
736 736
    ///
737 737
    /// \return <tt>(*this)</tt>
738
    ///
739
    /// \sa supplyType()
738 740
    template<typename SupplyMap>
739 741
    NetworkSimplex& supplyMap(const SupplyMap& map) {
740 742
      for (NodeIt n(_graph); n != INVALID; ++n) {
741 743
        _supply[_node_id[n]] = map[n];
742 744
      }
743 745
      return *this;
744 746
    }
745 747

	
746 748
    /// \brief Set single source and target nodes and a supply value.
747 749
    ///
748 750
    /// This function sets a single source node and a single target node
749 751
    /// and the required flow value.
750 752
    /// If neither this function nor \ref supplyMap() is used before
751 753
    /// calling \ref run(), the supply of each node will be set to zero.
752 754
    ///
753 755
    /// Using this function has the same effect as using \ref supplyMap()
754
    /// with such a map in which \c k is assigned to \c s, \c -k is
756
    /// with a map in which \c k is assigned to \c s, \c -k is
755 757
    /// assigned to \c t and all other nodes have zero supply value.
756 758
    ///
757 759
    /// \param s The source node.
758 760
    /// \param t The target node.
759 761
    /// \param k The required amount of flow from node \c s to node \c t
760 762
    /// (i.e. the supply of \c s and the demand of \c t).
761 763
    ///
762 764
    /// \return <tt>(*this)</tt>
763 765
    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
764 766
      for (int i = 0; i != _node_num; ++i) {
765 767
        _supply[i] = 0;
766 768
      }
767 769
      _supply[_node_id[s]] =  k;
768 770
      _supply[_node_id[t]] = -k;
769 771
      return *this;
770 772
    }
771 773

	
772 774
    /// \brief Set the type of the supply constraints.
773 775
    ///
774 776
    /// This function sets the type of the supply/demand constraints.
775 777
    /// If it is not used before calling \ref run(), the \ref GEQ supply
776 778
    /// type will be used.
777 779
    ///
778 780
    /// For more information, see \ref SupplyType.
779 781
    ///
780 782
    /// \return <tt>(*this)</tt>
781 783
    NetworkSimplex& supplyType(SupplyType supply_type) {
782 784
      _stype = supply_type;
783 785
      return *this;
784 786
    }
785 787

	
786 788
    /// @}
787 789

	
788 790
    /// \name Execution Control
789 791
    /// The algorithm can be executed using \ref run().
790 792

	
791 793
    /// @{
792 794

	
793 795
    /// \brief Run the algorithm.
794 796
    ///
795 797
    /// This function runs the algorithm.
796 798
    /// The paramters can be specified using functions \ref lowerMap(),
797 799
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
798 800
    /// \ref supplyType().
799 801
    /// For example,
800 802
    /// \code
801 803
    ///   NetworkSimplex<ListDigraph> ns(graph);
802 804
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
803 805
    ///     .supplyMap(sup).run();
804 806
    /// \endcode
805 807
    ///
806 808
    /// This function can be called more than once. All the given parameters
807 809
    /// are kept for the next call, unless \ref resetParams() or \ref reset()
808 810
    /// is used, thus only the modified parameters have to be set again.
809 811
    /// If the underlying digraph was also modified after the construction
810 812
    /// of the class (or the last \ref reset() call), then the \ref reset()
811 813
    /// function must be called.
812 814
    ///
813 815
    /// \param pivot_rule The pivot rule that will be used during the
814 816
    /// algorithm. For more information, see \ref PivotRule.
815 817
    ///
816 818
    /// \return \c INFEASIBLE if no feasible flow exists,
817 819
    /// \n \c OPTIMAL if the problem has optimal solution
818 820
    /// (i.e. it is feasible and bounded), and the algorithm has found
819 821
    /// optimal flow and node potentials (primal and dual solutions),
820 822
    /// \n \c UNBOUNDED if the objective function of the problem is
821 823
    /// unbounded, i.e. there is a directed cycle having negative total
822 824
    /// cost and infinite upper bound.
823 825
    ///
824 826
    /// \see ProblemType, PivotRule
825 827
    /// \see resetParams(), reset()
826 828
    ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
827 829
      if (!init()) return INFEASIBLE;
828 830
      return start(pivot_rule);
829 831
    }
830 832

	
831 833
    /// \brief Reset all the parameters that have been given before.
832 834
    ///
833 835
    /// This function resets all the paramaters that have been given
834 836
    /// before using functions \ref lowerMap(), \ref upperMap(),
835 837
    /// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType().
836 838
    ///
837 839
    /// It is useful for multiple \ref run() calls. Basically, all the given
838 840
    /// parameters are kept for the next \ref run() call, unless
839 841
    /// \ref resetParams() or \ref reset() is used.
840 842
    /// If the underlying digraph was also modified after the construction
841 843
    /// of the class or the last \ref reset() call, then the \ref reset()
842 844
    /// function must be used, otherwise \ref resetParams() is sufficient.
843 845
    ///
844 846
    /// For example,
845 847
    /// \code
846 848
    ///   NetworkSimplex<ListDigraph> ns(graph);
847 849
    ///
848 850
    ///   // First run
849 851
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
850 852
    ///     .supplyMap(sup).run();
851 853
    ///
852 854
    ///   // Run again with modified cost map (resetParams() is not called,
853 855
    ///   // so only the cost map have to be set again)
854 856
    ///   cost[e] += 100;
855 857
    ///   ns.costMap(cost).run();
856 858
    ///
857 859
    ///   // Run again from scratch using resetParams()
858 860
    ///   // (the lower bounds will be set to zero on all arcs)
859 861
    ///   ns.resetParams();
860 862
    ///   ns.upperMap(capacity).costMap(cost)
861 863
    ///     .supplyMap(sup).run();
862 864
    /// \endcode
863 865
    ///
864 866
    /// \return <tt>(*this)</tt>
865 867
    ///
866 868
    /// \see reset(), run()
867 869
    NetworkSimplex& resetParams() {
868 870
      for (int i = 0; i != _node_num; ++i) {
869 871
        _supply[i] = 0;
870 872
      }
871 873
      for (int i = 0; i != _arc_num; ++i) {
872 874
        _lower[i] = 0;
873 875
        _upper[i] = INF;
874 876
        _cost[i] = 1;
875 877
      }
876 878
      _have_lower = false;
877 879
      _stype = GEQ;
878 880
      return *this;
879 881
    }
880 882

	
881 883
    /// \brief Reset the internal data structures and all the parameters
882 884
    /// that have been given before.
883 885
    ///
884 886
    /// This function resets the internal data structures and all the
885 887
    /// paramaters that have been given before using functions \ref lowerMap(),
886 888
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
887 889
    /// \ref supplyType().
888 890
    ///
889 891
    /// It is useful for multiple \ref run() calls. Basically, all the given
890 892
    /// parameters are kept for the next \ref run() call, unless
891 893
    /// \ref resetParams() or \ref reset() is used.
892 894
    /// If the underlying digraph was also modified after the construction
893 895
    /// of the class or the last \ref reset() call, then the \ref reset()
894 896
    /// function must be used, otherwise \ref resetParams() is sufficient.
895 897
    ///
896 898
    /// See \ref resetParams() for examples.
897 899
    ///
898 900
    /// \return <tt>(*this)</tt>
899 901
    ///
900 902
    /// \see resetParams(), run()
901 903
    NetworkSimplex& reset() {
902 904
      // Resize vectors
903 905
      _node_num = countNodes(_graph);
904 906
      _arc_num = countArcs(_graph);
905 907
      int all_node_num = _node_num + 1;
906 908
      int max_arc_num = _arc_num + 2 * _node_num;
907 909

	
908 910
      _source.resize(max_arc_num);
909 911
      _target.resize(max_arc_num);
910 912

	
911 913
      _lower.resize(_arc_num);
912 914
      _upper.resize(_arc_num);
913 915
      _cap.resize(max_arc_num);
914 916
      _cost.resize(max_arc_num);
915 917
      _supply.resize(all_node_num);
916 918
      _flow.resize(max_arc_num);
917 919
      _pi.resize(all_node_num);
918 920

	
919 921
      _parent.resize(all_node_num);
920 922
      _pred.resize(all_node_num);
921 923
      _pred_dir.resize(all_node_num);
922 924
      _thread.resize(all_node_num);
923 925
      _rev_thread.resize(all_node_num);
924 926
      _succ_num.resize(all_node_num);
925 927
      _last_succ.resize(all_node_num);
926 928
      _state.resize(max_arc_num);
927 929

	
928 930
      // Copy the graph
929 931
      int i = 0;
930 932
      for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
931 933
        _node_id[n] = i;
932 934
      }
933 935
      if (_arc_mixing) {
934 936
        // Store the arcs in a mixed order
935 937
        const int skip = std::max(_arc_num / _node_num, 3);
936 938
        int i = 0, j = 0;
937 939
        for (ArcIt a(_graph); a != INVALID; ++a) {
938 940
          _arc_id[a] = i;
939 941
          _source[i] = _node_id[_graph.source(a)];
940 942
          _target[i] = _node_id[_graph.target(a)];
941 943
          if ((i += skip) >= _arc_num) i = ++j;
942 944
        }
943 945
      } else {
944 946
        // Store the arcs in the original order
945 947
        int i = 0;
946 948
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
947 949
          _arc_id[a] = i;
948 950
          _source[i] = _node_id[_graph.source(a)];
949 951
          _target[i] = _node_id[_graph.target(a)];
950 952
        }
951 953
      }
952 954

	
953 955
      // Reset parameters
954 956
      resetParams();
955 957
      return *this;
956 958
    }
957 959

	
958 960
    /// @}
959 961

	
960 962
    /// \name Query Functions
961 963
    /// The results of the algorithm can be obtained using these
962 964
    /// functions.\n
963 965
    /// The \ref run() function must be called before using them.
964 966

	
965 967
    /// @{
966 968

	
967 969
    /// \brief Return the total cost of the found flow.
968 970
    ///
969 971
    /// This function returns the total cost of the found flow.
970 972
    /// Its complexity is O(e).
971 973
    ///
972 974
    /// \note The return type of the function can be specified as a
973 975
    /// template parameter. For example,
974 976
    /// \code
975 977
    ///   ns.totalCost<double>();
976 978
    /// \endcode
977 979
    /// It is useful if the total cost cannot be stored in the \c Cost
978 980
    /// type of the algorithm, which is the default return type of the
979 981
    /// function.
980 982
    ///
981 983
    /// \pre \ref run() must be called before using this function.
982 984
    template <typename Number>
983 985
    Number totalCost() const {
984 986
      Number c = 0;
985 987
      for (ArcIt a(_graph); a != INVALID; ++a) {
986 988
        int i = _arc_id[a];
987 989
        c += Number(_flow[i]) * Number(_cost[i]);
988 990
      }
989 991
      return c;
990 992
    }
991 993

	
992 994
#ifndef DOXYGEN
993 995
    Cost totalCost() const {
994 996
      return totalCost<Cost>();
995 997
    }
996 998
#endif
997 999

	
998 1000
    /// \brief Return the flow on the given arc.
999 1001
    ///
1000 1002
    /// This function returns the flow on the given arc.
1001 1003
    ///
1002 1004
    /// \pre \ref run() must be called before using this function.
1003 1005
    Value flow(const Arc& a) const {
1004 1006
      return _flow[_arc_id[a]];
1005 1007
    }
1006 1008

	
1007 1009
    /// \brief Return the flow map (the primal solution).
1008 1010
    ///
1009 1011
    /// This function copies the flow value on each arc into the given
1010 1012
    /// map. The \c Value type of the algorithm must be convertible to
1011 1013
    /// the \c Value type of the map.
1012 1014
    ///
1013 1015
    /// \pre \ref run() must be called before using this function.
1014 1016
    template <typename FlowMap>
1015 1017
    void flowMap(FlowMap &map) const {
1016 1018
      for (ArcIt a(_graph); a != INVALID; ++a) {
1017 1019
        map.set(a, _flow[_arc_id[a]]);
1018 1020
      }
1019 1021
    }
1020 1022

	
1021 1023
    /// \brief Return the potential (dual value) of the given node.
1022 1024
    ///
1023 1025
    /// This function returns the potential (dual value) of the
1024 1026
    /// given node.
1025 1027
    ///
1026 1028
    /// \pre \ref run() must be called before using this function.
1027 1029
    Cost potential(const Node& n) const {
1028 1030
      return _pi[_node_id[n]];
1029 1031
    }
1030 1032

	
1031 1033
    /// \brief Return the potential map (the dual solution).
1032 1034
    ///
1033 1035
    /// This function copies the potential (dual value) of each node
1034 1036
    /// into the given map.
1035 1037
    /// The \c Cost type of the algorithm must be convertible to the
1036 1038
    /// \c Value type of the map.
1037 1039
    ///
1038 1040
    /// \pre \ref run() must be called before using this function.
1039 1041
    template <typename PotentialMap>
1040 1042
    void potentialMap(PotentialMap &map) const {
1041 1043
      for (NodeIt n(_graph); n != INVALID; ++n) {
1042 1044
        map.set(n, _pi[_node_id[n]]);
1043 1045
      }
1044 1046
    }
1045 1047

	
1046 1048
    /// @}
1047 1049

	
1048 1050
  private:
1049 1051

	
1050 1052
    // Initialize internal data structures
1051 1053
    bool init() {
1052 1054
      if (_node_num == 0) return false;
1053 1055

	
1054 1056
      // Check the sum of supply values
1055 1057
      _sum_supply = 0;
1056 1058
      for (int i = 0; i != _node_num; ++i) {
1057 1059
        _sum_supply += _supply[i];
1058 1060
      }
1059 1061
      if ( !((_stype == GEQ && _sum_supply <= 0) ||
1060 1062
             (_stype == LEQ && _sum_supply >= 0)) ) return false;
1061 1063

	
1062 1064
      // Remove non-zero lower bounds
1063 1065
      if (_have_lower) {
1064 1066
        for (int i = 0; i != _arc_num; ++i) {
1065 1067
          Value c = _lower[i];
1066 1068
          if (c >= 0) {
1067 1069
            _cap[i] = _upper[i] < MAX ? _upper[i] - c : INF;
1068 1070
          } else {
1069 1071
            _cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF;
1070 1072
          }
1071 1073
          _supply[_source[i]] -= c;
1072 1074
          _supply[_target[i]] += c;
1073 1075
        }
1074 1076
      } else {
1075 1077
        for (int i = 0; i != _arc_num; ++i) {
1076 1078
          _cap[i] = _upper[i];
1077 1079
        }
1078 1080
      }
1079 1081

	
1080 1082
      // Initialize artifical cost
1081 1083
      Cost ART_COST;
1082 1084
      if (std::numeric_limits<Cost>::is_exact) {
1083 1085
        ART_COST = std::numeric_limits<Cost>::max() / 2 + 1;
1084 1086
      } else {
1085 1087
        ART_COST = 0;
1086 1088
        for (int i = 0; i != _arc_num; ++i) {
1087 1089
          if (_cost[i] > ART_COST) ART_COST = _cost[i];
1088 1090
        }
1089 1091
        ART_COST = (ART_COST + 1) * _node_num;
1090 1092
      }
1091 1093

	
1092 1094
      // Initialize arc maps
1093 1095
      for (int i = 0; i != _arc_num; ++i) {
1094 1096
        _flow[i] = 0;
1095 1097
        _state[i] = STATE_LOWER;
1096 1098
      }
1097 1099

	
1098 1100
      // Set data for the artificial root node
1099 1101
      _root = _node_num;
1100 1102
      _parent[_root] = -1;
1101 1103
      _pred[_root] = -1;
1102 1104
      _thread[_root] = 0;
1103 1105
      _rev_thread[0] = _root;
1104 1106
      _succ_num[_root] = _node_num + 1;
1105 1107
      _last_succ[_root] = _root - 1;
1106 1108
      _supply[_root] = -_sum_supply;
1107 1109
      _pi[_root] = 0;
1108 1110

	
1109 1111
      // Add artificial arcs and initialize the spanning tree data structure
1110 1112
      if (_sum_supply == 0) {
1111 1113
        // EQ supply constraints
1112 1114
        _search_arc_num = _arc_num;
1113 1115
        _all_arc_num = _arc_num + _node_num;
1114 1116
        for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
1115 1117
          _parent[u] = _root;
1116 1118
          _pred[u] = e;
1117 1119
          _thread[u] = u + 1;
1118 1120
          _rev_thread[u + 1] = u;
1119 1121
          _succ_num[u] = 1;
1120 1122
          _last_succ[u] = u;
1121 1123
          _cap[e] = INF;
1122 1124
          _state[e] = STATE_TREE;
1123 1125
          if (_supply[u] >= 0) {
1124 1126
            _pred_dir[u] = DIR_UP;
1125 1127
            _pi[u] = 0;
1126 1128
            _source[e] = u;
1127 1129
            _target[e] = _root;
1128 1130
            _flow[e] = _supply[u];
1129 1131
            _cost[e] = 0;
1130 1132
          } else {
1131 1133
            _pred_dir[u] = DIR_DOWN;
1132 1134
            _pi[u] = ART_COST;
1133 1135
            _source[e] = _root;
1134 1136
            _target[e] = u;
1135 1137
            _flow[e] = -_supply[u];
1136 1138
            _cost[e] = ART_COST;
1137 1139
          }
1138 1140
        }
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup paths
20 20
///\file
21 21
///\brief Classes for representing paths in digraphs.
22 22
///
23 23

	
24 24
#ifndef LEMON_PATH_H
25 25
#define LEMON_PATH_H
26 26

	
27 27
#include <vector>
28 28
#include <algorithm>
29 29

	
30 30
#include <lemon/error.h>
31 31
#include <lemon/core.h>
32 32
#include <lemon/concepts/path.h>
33 33

	
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup paths
37 37
  /// @{
38 38

	
39 39

	
40 40
  /// \brief A structure for representing directed paths in a digraph.
41 41
  ///
42 42
  /// A structure for representing directed path in a digraph.
43 43
  /// \tparam GR The digraph type in which the path is.
44 44
  ///
45 45
  /// In a sense, the path can be treated as a list of arcs. The
46
  /// lemon path type stores just this list. As a consequence, it
46
  /// LEMON path type stores just this list. As a consequence, it
47 47
  /// cannot enumerate the nodes of the path and the source node of
48 48
  /// a zero length path is undefined.
49 49
  ///
50 50
  /// This implementation is a back and front insertable and erasable
51 51
  /// path type. It can be indexed in O(1) time. The front and back
52 52
  /// insertion and erase is done in O(1) (amortized) time. The
53 53
  /// implementation uses two vectors for storing the front and back
54 54
  /// insertions.
55 55
  template <typename GR>
56 56
  class Path {
57 57
  public:
58 58

	
59 59
    typedef GR Digraph;
60 60
    typedef typename Digraph::Arc Arc;
61 61

	
62 62
    /// \brief Default constructor
63 63
    ///
64 64
    /// Default constructor
65 65
    Path() {}
66 66

	
67 67
    /// \brief Template copy constructor
68 68
    ///
69 69
    /// This constuctor initializes the path from any other path type.
70 70
    /// It simply makes a copy of the given path.
71 71
    template <typename CPath>
72 72
    Path(const CPath& cpath) {
73 73
      pathCopy(cpath, *this);
74 74
    }
75 75

	
76 76
    /// \brief Template copy assignment
77 77
    ///
78 78
    /// This operator makes a copy of a path of any other type.
79 79
    template <typename CPath>
80 80
    Path& operator=(const CPath& cpath) {
81 81
      pathCopy(cpath, *this);
82 82
      return *this;
83 83
    }
84 84

	
85 85
    /// \brief LEMON style iterator for path arcs
86 86
    ///
87 87
    /// This class is used to iterate on the arcs of the paths.
88 88
    class ArcIt {
89 89
      friend class Path;
90 90
    public:
91 91
      /// \brief Default constructor
92 92
      ArcIt() {}
93 93
      /// \brief Invalid constructor
94 94
      ArcIt(Invalid) : path(0), idx(-1) {}
95 95
      /// \brief Initializate the iterator to the first arc of path
96 96
      ArcIt(const Path &_path)
97 97
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
98 98

	
99 99
    private:
100 100

	
101 101
      ArcIt(const Path &_path, int _idx)
102 102
        : path(&_path), idx(_idx) {}
103 103

	
104 104
    public:
105 105

	
106 106
      /// \brief Conversion to Arc
107 107
      operator const Arc&() const {
108 108
        return path->nth(idx);
109 109
      }
110 110

	
111 111
      /// \brief Next arc
112 112
      ArcIt& operator++() {
113 113
        ++idx;
114 114
        if (idx >= path->length()) idx = -1;
115 115
        return *this;
116 116
      }
117 117

	
118 118
      /// \brief Comparison operator
119 119
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
120 120
      /// \brief Comparison operator
121 121
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
122 122
      /// \brief Comparison operator
123 123
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
124 124

	
125 125
    private:
126 126
      const Path *path;
127 127
      int idx;
128 128
    };
129 129

	
130 130
    /// \brief Length of the path.
131 131
    int length() const { return head.size() + tail.size(); }
132 132
    /// \brief Return whether the path is empty.
133 133
    bool empty() const { return head.empty() && tail.empty(); }
134 134

	
135 135
    /// \brief Reset the path to an empty one.
136 136
    void clear() { head.clear(); tail.clear(); }
137 137

	
138
    /// \brief The nth arc.
138
    /// \brief The n-th arc.
139 139
    ///
140 140
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
141 141
    const Arc& nth(int n) const {
142 142
      return n < int(head.size()) ? *(head.rbegin() + n) :
143 143
        *(tail.begin() + (n - head.size()));
144 144
    }
145 145

	
146
    /// \brief Initialize arc iterator to point to the nth arc
146
    /// \brief Initialize arc iterator to point to the n-th arc
147 147
    ///
148 148
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
149 149
    ArcIt nthIt(int n) const {
150 150
      return ArcIt(*this, n);
151 151
    }
152 152

	
153 153
    /// \brief The first arc of the path
154 154
    const Arc& front() const {
155 155
      return head.empty() ? tail.front() : head.back();
156 156
    }
157 157

	
158 158
    /// \brief Add a new arc before the current path
159 159
    void addFront(const Arc& arc) {
160 160
      head.push_back(arc);
161 161
    }
162 162

	
163 163
    /// \brief Erase the first arc of the path
164 164
    void eraseFront() {
165 165
      if (!head.empty()) {
166 166
        head.pop_back();
167 167
      } else {
168 168
        head.clear();
169 169
        int halfsize = tail.size() / 2;
170 170
        head.resize(halfsize);
171 171
        std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
172 172
                  head.rbegin());
173 173
        std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
174 174
        tail.resize(tail.size() - halfsize - 1);
175 175
      }
176 176
    }
177 177

	
178 178
    /// \brief The last arc of the path
179 179
    const Arc& back() const {
180 180
      return tail.empty() ? head.front() : tail.back();
181 181
    }
182 182

	
183 183
    /// \brief Add a new arc behind the current path
184 184
    void addBack(const Arc& arc) {
185 185
      tail.push_back(arc);
186 186
    }
187 187

	
188 188
    /// \brief Erase the last arc of the path
189 189
    void eraseBack() {
190 190
      if (!tail.empty()) {
191 191
        tail.pop_back();
192 192
      } else {
193 193
        int halfsize = head.size() / 2;
194 194
        tail.resize(halfsize);
195 195
        std::copy(head.begin() + 1, head.begin() + halfsize + 1,
196 196
                  tail.rbegin());
197 197
        std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
198 198
        head.resize(head.size() - halfsize - 1);
199 199
      }
200 200
    }
201 201

	
202 202
    typedef True BuildTag;
203 203

	
204 204
    template <typename CPath>
205 205
    void build(const CPath& path) {
206 206
      int len = path.length();
207 207
      tail.reserve(len);
208 208
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
209 209
        tail.push_back(it);
210 210
      }
211 211
    }
212 212

	
213 213
    template <typename CPath>
214 214
    void buildRev(const CPath& path) {
215 215
      int len = path.length();
216 216
      head.reserve(len);
217 217
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
218 218
        head.push_back(it);
219 219
      }
220 220
    }
221 221

	
222 222
  protected:
223 223
    typedef std::vector<Arc> Container;
224 224
    Container head, tail;
225 225

	
226 226
  };
227 227

	
228 228
  /// \brief A structure for representing directed paths in a digraph.
229 229
  ///
230 230
  /// A structure for representing directed path in a digraph.
231 231
  /// \tparam GR The digraph type in which the path is.
232 232
  ///
233 233
  /// In a sense, the path can be treated as a list of arcs. The
234
  /// lemon path type stores just this list. As a consequence it
234
  /// LEMON path type stores just this list. As a consequence it
235 235
  /// cannot enumerate the nodes in the path and the zero length paths
236 236
  /// cannot store the source.
237 237
  ///
238 238
  /// This implementation is a just back insertable and erasable path
239 239
  /// type. It can be indexed in O(1) time. The back insertion and
240 240
  /// erasure is amortized O(1) time. This implementation is faster
241 241
  /// then the \c Path type because it use just one vector for the
242 242
  /// arcs.
243 243
  template <typename GR>
244 244
  class SimplePath {
245 245
  public:
246 246

	
247 247
    typedef GR Digraph;
248 248
    typedef typename Digraph::Arc Arc;
249 249

	
250 250
    /// \brief Default constructor
251 251
    ///
252 252
    /// Default constructor
253 253
    SimplePath() {}
254 254

	
255 255
    /// \brief Template copy constructor
256 256
    ///
257 257
    /// This path can be initialized with any other path type. It just
258 258
    /// makes a copy of the given path.
259 259
    template <typename CPath>
260 260
    SimplePath(const CPath& cpath) {
261 261
      pathCopy(cpath, *this);
262 262
    }
263 263

	
264 264
    /// \brief Template copy assignment
265 265
    ///
266 266
    /// This path can be initialized with any other path type. It just
267 267
    /// makes a copy of the given path.
268 268
    template <typename CPath>
269 269
    SimplePath& operator=(const CPath& cpath) {
270 270
      pathCopy(cpath, *this);
271 271
      return *this;
272 272
    }
273 273

	
274 274
    /// \brief Iterator class to iterate on the arcs of the paths
275 275
    ///
276 276
    /// This class is used to iterate on the arcs of the paths
277 277
    ///
278 278
    /// Of course it converts to Digraph::Arc
279 279
    class ArcIt {
280 280
      friend class SimplePath;
281 281
    public:
282 282
      /// Default constructor
283 283
      ArcIt() {}
284 284
      /// Invalid constructor
285 285
      ArcIt(Invalid) : path(0), idx(-1) {}
286 286
      /// \brief Initializate the constructor to the first arc of path
287 287
      ArcIt(const SimplePath &_path)
288 288
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
289 289

	
290 290
    private:
291 291

	
292 292
      /// Constructor with starting point
293 293
      ArcIt(const SimplePath &_path, int _idx)
294 294
        : idx(_idx), path(&_path) {}
295 295

	
296 296
    public:
297 297

	
298 298
      ///Conversion to Digraph::Arc
299 299
      operator const Arc&() const {
300 300
        return path->nth(idx);
301 301
      }
302 302

	
303 303
      /// Next arc
304 304
      ArcIt& operator++() {
305 305
        ++idx;
306 306
        if (idx >= path->length()) idx = -1;
307 307
        return *this;
308 308
      }
309 309

	
310 310
      /// Comparison operator
311 311
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
312 312
      /// Comparison operator
313 313
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
314 314
      /// Comparison operator
315 315
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
316 316

	
317 317
    private:
318 318
      const SimplePath *path;
319 319
      int idx;
320 320
    };
321 321

	
322 322
    /// \brief Length of the path.
323 323
    int length() const { return data.size(); }
324 324
    /// \brief Return true if the path is empty.
325 325
    bool empty() const { return data.empty(); }
326 326

	
327 327
    /// \brief Reset the path to an empty one.
328 328
    void clear() { data.clear(); }
329 329

	
330
    /// \brief The nth arc.
330
    /// \brief The n-th arc.
331 331
    ///
332 332
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
333 333
    const Arc& nth(int n) const {
334 334
      return data[n];
335 335
    }
336 336

	
337
    /// \brief  Initializes arc iterator to point to the nth arc.
337
    /// \brief  Initializes arc iterator to point to the n-th arc.
338 338
    ArcIt nthIt(int n) const {
339 339
      return ArcIt(*this, n);
340 340
    }
341 341

	
342 342
    /// \brief The first arc of the path.
343 343
    const Arc& front() const {
344 344
      return data.front();
345 345
    }
346 346

	
347 347
    /// \brief The last arc of the path.
348 348
    const Arc& back() const {
349 349
      return data.back();
350 350
    }
351 351

	
352 352
    /// \brief Add a new arc behind the current path.
353 353
    void addBack(const Arc& arc) {
354 354
      data.push_back(arc);
355 355
    }
356 356

	
357 357
    /// \brief Erase the last arc of the path
358 358
    void eraseBack() {
359 359
      data.pop_back();
360 360
    }
361 361

	
362 362
    typedef True BuildTag;
363 363

	
364 364
    template <typename CPath>
365 365
    void build(const CPath& path) {
366 366
      int len = path.length();
367 367
      data.resize(len);
368 368
      int index = 0;
369 369
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
370 370
        data[index] = it;;
371 371
        ++index;
372 372
      }
373 373
    }
374 374

	
375 375
    template <typename CPath>
376 376
    void buildRev(const CPath& path) {
377 377
      int len = path.length();
378 378
      data.resize(len);
379 379
      int index = len;
380 380
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
381 381
        --index;
382 382
        data[index] = it;;
383 383
      }
384 384
    }
385 385

	
386 386
  protected:
387 387
    typedef std::vector<Arc> Container;
388 388
    Container data;
389 389

	
390 390
  };
391 391

	
392 392
  /// \brief A structure for representing directed paths in a digraph.
393 393
  ///
394 394
  /// A structure for representing directed path in a digraph.
395 395
  /// \tparam GR The digraph type in which the path is.
396 396
  ///
397 397
  /// In a sense, the path can be treated as a list of arcs. The
398
  /// lemon path type stores just this list. As a consequence it
398
  /// LEMON path type stores just this list. As a consequence it
399 399
  /// cannot enumerate the nodes in the path and the zero length paths
400 400
  /// cannot store the source.
401 401
  ///
402 402
  /// This implementation is a back and front insertable and erasable
403 403
  /// path type. It can be indexed in O(k) time, where k is the rank
404 404
  /// of the arc in the path. The length can be computed in O(n)
405 405
  /// time. The front and back insertion and erasure is O(1) time
406 406
  /// and it can be splited and spliced in O(1) time.
407 407
  template <typename GR>
408 408
  class ListPath {
409 409
  public:
410 410

	
411 411
    typedef GR Digraph;
412 412
    typedef typename Digraph::Arc Arc;
413 413

	
414 414
  protected:
415 415

	
416 416
    // the std::list<> is incompatible
417 417
    // hard to create invalid iterator
418 418
    struct Node {
419 419
      Arc arc;
420 420
      Node *next, *prev;
421 421
    };
422 422

	
423 423
    Node *first, *last;
424 424

	
425 425
    std::allocator<Node> alloc;
426 426

	
427 427
  public:
428 428

	
429 429
    /// \brief Default constructor
430 430
    ///
431 431
    /// Default constructor
432 432
    ListPath() : first(0), last(0) {}
433 433

	
434 434
    /// \brief Template copy constructor
435 435
    ///
436 436
    /// This path can be initialized with any other path type. It just
437 437
    /// makes a copy of the given path.
438 438
    template <typename CPath>
439 439
    ListPath(const CPath& cpath) : first(0), last(0) {
440 440
      pathCopy(cpath, *this);
441 441
    }
442 442

	
443 443
    /// \brief Destructor of the path
444 444
    ///
445 445
    /// Destructor of the path
446 446
    ~ListPath() {
447 447
      clear();
448 448
    }
449 449

	
450 450
    /// \brief Template copy assignment
451 451
    ///
452 452
    /// This path can be initialized with any other path type. It just
453 453
    /// makes a copy of the given path.
454 454
    template <typename CPath>
455 455
    ListPath& operator=(const CPath& cpath) {
456 456
      pathCopy(cpath, *this);
457 457
      return *this;
458 458
    }
459 459

	
460 460
    /// \brief Iterator class to iterate on the arcs of the paths
461 461
    ///
462 462
    /// This class is used to iterate on the arcs of the paths
463 463
    ///
464 464
    /// Of course it converts to Digraph::Arc
465 465
    class ArcIt {
466 466
      friend class ListPath;
467 467
    public:
468 468
      /// Default constructor
469 469
      ArcIt() {}
470 470
      /// Invalid constructor
471 471
      ArcIt(Invalid) : path(0), node(0) {}
472 472
      /// \brief Initializate the constructor to the first arc of path
473 473
      ArcIt(const ListPath &_path)
474 474
        : path(&_path), node(_path.first) {}
475 475

	
476 476
    protected:
477 477

	
478 478
      ArcIt(const ListPath &_path, Node *_node)
479 479
        : path(&_path), node(_node) {}
480 480

	
481 481

	
482 482
    public:
483 483

	
484 484
      ///Conversion to Digraph::Arc
485 485
      operator const Arc&() const {
486 486
        return node->arc;
487 487
      }
488 488

	
489 489
      /// Next arc
490 490
      ArcIt& operator++() {
491 491
        node = node->next;
492 492
        return *this;
493 493
      }
494 494

	
495 495
      /// Comparison operator
496 496
      bool operator==(const ArcIt& e) const { return node==e.node; }
497 497
      /// Comparison operator
498 498
      bool operator!=(const ArcIt& e) const { return node!=e.node; }
499 499
      /// Comparison operator
500 500
      bool operator<(const ArcIt& e) const { return node<e.node; }
501 501

	
502 502
    private:
503 503
      const ListPath *path;
504 504
      Node *node;
505 505
    };
506 506

	
507
    /// \brief The nth arc.
507
    /// \brief The n-th arc.
508 508
    ///
509
    /// This function looks for the nth arc in O(n) time.
509
    /// This function looks for the n-th arc in O(n) time.
510 510
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
511 511
    const Arc& nth(int n) const {
512 512
      Node *node = first;
513 513
      for (int i = 0; i < n; ++i) {
514 514
        node = node->next;
515 515
      }
516 516
      return node->arc;
517 517
    }
518 518

	
519
    /// \brief Initializes arc iterator to point to the nth arc.
519
    /// \brief Initializes arc iterator to point to the n-th arc.
520 520
    ArcIt nthIt(int n) const {
521 521
      Node *node = first;
522 522
      for (int i = 0; i < n; ++i) {
523 523
        node = node->next;
524 524
      }
525 525
      return ArcIt(*this, node);
526 526
    }
527 527

	
528 528
    /// \brief Length of the path.
529 529
    int length() const {
530 530
      int len = 0;
531 531
      Node *node = first;
532 532
      while (node != 0) {
533 533
        node = node->next;
534 534
        ++len;
535 535
      }
536 536
      return len;
537 537
    }
538 538

	
539 539
    /// \brief Return true if the path is empty.
540 540
    bool empty() const { return first == 0; }
541 541

	
542 542
    /// \brief Reset the path to an empty one.
543 543
    void clear() {
544 544
      while (first != 0) {
545 545
        last = first->next;
546 546
        alloc.destroy(first);
547 547
        alloc.deallocate(first, 1);
548 548
        first = last;
549 549
      }
550 550
    }
551 551

	
552 552
    /// \brief The first arc of the path
553 553
    const Arc& front() const {
554 554
      return first->arc;
555 555
    }
556 556

	
557 557
    /// \brief Add a new arc before the current path
558 558
    void addFront(const Arc& arc) {
559 559
      Node *node = alloc.allocate(1);
560 560
      alloc.construct(node, Node());
561 561
      node->prev = 0;
562 562
      node->next = first;
563 563
      node->arc = arc;
564 564
      if (first) {
565 565
        first->prev = node;
566 566
        first = node;
567 567
      } else {
568 568
        first = last = node;
569 569
      }
570 570
    }
571 571

	
572 572
    /// \brief Erase the first arc of the path
573 573
    void eraseFront() {
574 574
      Node *node = first;
575 575
      first = first->next;
576 576
      if (first) {
577 577
        first->prev = 0;
578 578
      } else {
579 579
        last = 0;
580 580
      }
581 581
      alloc.destroy(node);
582 582
      alloc.deallocate(node, 1);
583 583
    }
584 584

	
585 585
    /// \brief The last arc of the path.
586 586
    const Arc& back() const {
587 587
      return last->arc;
588 588
    }
589 589

	
590 590
    /// \brief Add a new arc behind the current path.
591 591
    void addBack(const Arc& arc) {
592 592
      Node *node = alloc.allocate(1);
593 593
      alloc.construct(node, Node());
594 594
      node->next = 0;
595 595
      node->prev = last;
596 596
      node->arc = arc;
597 597
      if (last) {
598 598
        last->next = node;
599 599
        last = node;
600 600
      } else {
601 601
        last = first = node;
602 602
      }
603 603
    }
604 604

	
605 605
    /// \brief Erase the last arc of the path
606 606
    void eraseBack() {
607 607
      Node *node = last;
608 608
      last = last->prev;
609 609
      if (last) {
610 610
        last->next = 0;
611 611
      } else {
612 612
        first = 0;
613 613
      }
614 614
      alloc.destroy(node);
615 615
      alloc.deallocate(node, 1);
616 616
    }
617 617

	
618 618
    /// \brief Splice a path to the back of the current path.
619 619
    ///
620 620
    /// It splices \c tpath to the back of the current path and \c
621 621
    /// tpath becomes empty. The time complexity of this function is
622 622
    /// O(1).
623 623
    void spliceBack(ListPath& tpath) {
624 624
      if (first) {
625 625
        if (tpath.first) {
626 626
          last->next = tpath.first;
627 627
          tpath.first->prev = last;
628 628
          last = tpath.last;
629 629
        }
630 630
      } else {
631 631
        first = tpath.first;
632 632
        last = tpath.last;
633 633
      }
634 634
      tpath.first = tpath.last = 0;
635 635
    }
636 636

	
637 637
    /// \brief Splice a path to the front of the current path.
638 638
    ///
639 639
    /// It splices \c tpath before the current path and \c tpath
640 640
    /// becomes empty. The time complexity of this function
641 641
    /// is O(1).
642 642
    void spliceFront(ListPath& tpath) {
643 643
      if (first) {
644 644
        if (tpath.first) {
645 645
          first->prev = tpath.last;
646 646
          tpath.last->next = first;
647 647
          first = tpath.first;
648 648
        }
649 649
      } else {
650 650
        first = tpath.first;
651 651
        last = tpath.last;
652 652
      }
653 653
      tpath.first = tpath.last = 0;
654 654
    }
655 655

	
656 656
    /// \brief Splice a path into the current path.
657 657
    ///
658 658
    /// It splices the \c tpath into the current path before the
659 659
    /// position of \c it iterator and \c tpath becomes empty. The
660 660
    /// time complexity of this function is O(1). If the \c it is
661 661
    /// \c INVALID then it will splice behind the current path.
662 662
    void splice(ArcIt it, ListPath& tpath) {
663 663
      if (it.node) {
664 664
        if (tpath.first) {
665 665
          tpath.first->prev = it.node->prev;
666 666
          if (it.node->prev) {
667 667
            it.node->prev->next = tpath.first;
668 668
          } else {
669 669
            first = tpath.first;
670 670
          }
671 671
          it.node->prev = tpath.last;
672 672
          tpath.last->next = it.node;
673 673
        }
674 674
      } else {
675 675
        if (first) {
676 676
          if (tpath.first) {
677 677
            last->next = tpath.first;
678 678
            tpath.first->prev = last;
679 679
            last = tpath.last;
680 680
          }
681 681
        } else {
682 682
          first = tpath.first;
683 683
          last = tpath.last;
684 684
        }
685 685
      }
686 686
      tpath.first = tpath.last = 0;
687 687
    }
688 688

	
689 689
    /// \brief Split the current path.
690 690
    ///
691 691
    /// It splits the current path into two parts. The part before
692 692
    /// the iterator \c it will remain in the current path and the part
693 693
    /// starting with
694 694
    /// \c it will put into \c tpath. If \c tpath have arcs
695 695
    /// before the operation they are removed first.  The time
696 696
    /// complexity of this function is O(1) plus the the time of emtying
697 697
    /// \c tpath. If \c it is \c INVALID then it just clears \c tpath
698 698
    void split(ArcIt it, ListPath& tpath) {
699 699
      tpath.clear();
700 700
      if (it.node) {
701 701
        tpath.first = it.node;
702 702
        tpath.last = last;
703 703
        if (it.node->prev) {
704 704
          last = it.node->prev;
705 705
          last->next = 0;
706 706
        } else {
707 707
          first = last = 0;
708 708
        }
709 709
        it.node->prev = 0;
710 710
      }
711 711
    }
712 712

	
713 713

	
714 714
    typedef True BuildTag;
715 715

	
716 716
    template <typename CPath>
717 717
    void build(const CPath& path) {
718 718
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
719 719
        addBack(it);
720 720
      }
721 721
    }
722 722

	
723 723
    template <typename CPath>
724 724
    void buildRev(const CPath& path) {
725 725
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
726 726
        addFront(it);
727 727
      }
728 728
    }
729 729

	
730 730
  };
731 731

	
732 732
  /// \brief A structure for representing directed paths in a digraph.
733 733
  ///
734 734
  /// A structure for representing directed path in a digraph.
735 735
  /// \tparam GR The digraph type in which the path is.
736 736
  ///
737 737
  /// In a sense, the path can be treated as a list of arcs. The
738
  /// lemon path type stores just this list. As a consequence it
738
  /// LEMON path type stores just this list. As a consequence it
739 739
  /// cannot enumerate the nodes in the path and the source node of
740 740
  /// a zero length path is undefined.
741 741
  ///
742 742
  /// This implementation is completly static, i.e. it can be copy constucted
743 743
  /// or copy assigned from another path, but otherwise it cannot be
744 744
  /// modified.
745 745
  ///
746 746
  /// Being the the most memory efficient path type in LEMON,
747 747
  /// it is intented to be
748 748
  /// used when you want to store a large number of paths.
749 749
  template <typename GR>
750 750
  class StaticPath {
751 751
  public:
752 752

	
753 753
    typedef GR Digraph;
754 754
    typedef typename Digraph::Arc Arc;
755 755

	
756 756
    /// \brief Default constructor
757 757
    ///
758 758
    /// Default constructor
759 759
    StaticPath() : len(0), arcs(0) {}
760 760

	
761 761
    /// \brief Template copy constructor
762 762
    ///
763 763
    /// This path can be initialized from any other path type.
764 764
    template <typename CPath>
765 765
    StaticPath(const CPath& cpath) : arcs(0) {
766 766
      pathCopy(cpath, *this);
767 767
    }
768 768

	
769 769
    /// \brief Destructor of the path
770 770
    ///
771 771
    /// Destructor of the path
772 772
    ~StaticPath() {
773 773
      if (arcs) delete[] arcs;
774 774
    }
775 775

	
776 776
    /// \brief Template copy assignment
777 777
    ///
778 778
    /// This path can be made equal to any other path type. It simply
779 779
    /// makes a copy of the given path.
780 780
    template <typename CPath>
781 781
    StaticPath& operator=(const CPath& cpath) {
782 782
      pathCopy(cpath, *this);
783 783
      return *this;
784 784
    }
785 785

	
786 786
    /// \brief Iterator class to iterate on the arcs of the paths
787 787
    ///
788 788
    /// This class is used to iterate on the arcs of the paths
789 789
    ///
790 790
    /// Of course it converts to Digraph::Arc
791 791
    class ArcIt {
792 792
      friend class StaticPath;
793 793
    public:
794 794
      /// Default constructor
795 795
      ArcIt() {}
796 796
      /// Invalid constructor
797 797
      ArcIt(Invalid) : path(0), idx(-1) {}
798 798
      /// Initializate the constructor to the first arc of path
799 799
      ArcIt(const StaticPath &_path)
800 800
        : path(&_path), idx(_path.empty() ? -1 : 0) {}
801 801

	
802 802
    private:
803 803

	
804 804
      /// Constructor with starting point
805 805
      ArcIt(const StaticPath &_path, int _idx)
806 806
        : idx(_idx), path(&_path) {}
807 807

	
808 808
    public:
809 809

	
810 810
      ///Conversion to Digraph::Arc
811 811
      operator const Arc&() const {
812 812
        return path->nth(idx);
813 813
      }
814 814

	
815 815
      /// Next arc
816 816
      ArcIt& operator++() {
817 817
        ++idx;
818 818
        if (idx >= path->length()) idx = -1;
819 819
        return *this;
820 820
      }
821 821

	
822 822
      /// Comparison operator
823 823
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
824 824
      /// Comparison operator
825 825
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
826 826
      /// Comparison operator
827 827
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
828 828

	
829 829
    private:
830 830
      const StaticPath *path;
831 831
      int idx;
832 832
    };
833 833

	
834
    /// \brief The nth arc.
834
    /// \brief The n-th arc.
835 835
    ///
836 836
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
837 837
    const Arc& nth(int n) const {
838 838
      return arcs[n];
839 839
    }
840 840

	
841
    /// \brief The arc iterator pointing to the nth arc.
841
    /// \brief The arc iterator pointing to the n-th arc.
842 842
    ArcIt nthIt(int n) const {
843 843
      return ArcIt(*this, n);
844 844
    }
845 845

	
846 846
    /// \brief The length of the path.
847 847
    int length() const { return len; }
848 848

	
849 849
    /// \brief Return true when the path is empty.
850 850
    int empty() const { return len == 0; }
851 851

	
852 852
    /// \brief Erase all arcs in the digraph.
853 853
    void clear() {
854 854
      len = 0;
855 855
      if (arcs) delete[] arcs;
856 856
      arcs = 0;
857 857
    }
858 858

	
859 859
    /// \brief The first arc of the path.
860 860
    const Arc& front() const {
861 861
      return arcs[0];
862 862
    }
863 863

	
864 864
    /// \brief The last arc of the path.
865 865
    const Arc& back() const {
866 866
      return arcs[len - 1];
867 867
    }
868 868

	
869 869

	
870 870
    typedef True BuildTag;
871 871

	
872 872
    template <typename CPath>
873 873
    void build(const CPath& path) {
874 874
      len = path.length();
875 875
      arcs = new Arc[len];
876 876
      int index = 0;
877 877
      for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
878 878
        arcs[index] = it;
879 879
        ++index;
880 880
      }
881 881
    }
882 882

	
883 883
    template <typename CPath>
884 884
    void buildRev(const CPath& path) {
885 885
      len = path.length();
886 886
      arcs = new Arc[len];
887 887
      int index = len;
888 888
      for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
889 889
        --index;
890 890
        arcs[index] = it;
891 891
      }
892 892
    }
893 893

	
894 894
  private:
895 895
    int len;
896 896
    Arc* arcs;
897 897
  };
898 898

	
899 899
  ///////////////////////////////////////////////////////////////////////
900 900
  // Additional utilities
901 901
  ///////////////////////////////////////////////////////////////////////
902 902

	
903 903
  namespace _path_bits {
904 904

	
905 905
    template <typename Path, typename Enable = void>
906 906
    struct RevPathTagIndicator {
907 907
      static const bool value = false;
908 908
    };
909 909

	
910 910
    template <typename Path>
911 911
    struct RevPathTagIndicator<
912 912
      Path,
913 913
      typename enable_if<typename Path::RevPathTag, void>::type
914 914
      > {
915 915
      static const bool value = true;
916 916
    };
917 917

	
918 918
    template <typename Path, typename Enable = void>
919 919
    struct BuildTagIndicator {
920 920
      static const bool value = false;
921 921
    };
922 922

	
923 923
    template <typename Path>
924 924
    struct BuildTagIndicator<
925 925
      Path,
926 926
      typename enable_if<typename Path::BuildTag, void>::type
927 927
    > {
928 928
      static const bool value = true;
929 929
    };
930 930

	
931 931
    template <typename From, typename To,
932 932
              bool buildEnable = BuildTagIndicator<To>::value>
933 933
    struct PathCopySelectorForward {
934 934
      static void copy(const From& from, To& to) {
935 935
        to.clear();
936 936
        for (typename From::ArcIt it(from); it != INVALID; ++it) {
937 937
          to.addBack(it);
938 938
        }
939 939
      }
940 940
    };
941 941

	
942 942
    template <typename From, typename To>
943 943
    struct PathCopySelectorForward<From, To, true> {
944 944
      static void copy(const From& from, To& to) {
945 945
        to.clear();
946 946
        to.build(from);
947 947
      }
948 948
    };
949 949

	
950 950
    template <typename From, typename To,
951 951
              bool buildEnable = BuildTagIndicator<To>::value>
952 952
    struct PathCopySelectorBackward {
953 953
      static void copy(const From& from, To& to) {
954 954
        to.clear();
955 955
        for (typename From::RevArcIt it(from); it != INVALID; ++it) {
956 956
          to.addFront(it);
957 957
        }
958 958
      }
959 959
    };
960 960

	
961 961
    template <typename From, typename To>
962 962
    struct PathCopySelectorBackward<From, To, true> {
963 963
      static void copy(const From& from, To& to) {
964 964
        to.clear();
965 965
        to.buildRev(from);
966 966
      }
967 967
    };
968 968

	
969 969

	
970 970
    template <typename From, typename To,
971 971
              bool revEnable = RevPathTagIndicator<From>::value>
972 972
    struct PathCopySelector {
973 973
      static void copy(const From& from, To& to) {
974 974
        PathCopySelectorForward<From, To>::copy(from, to);
975 975
      }
976 976
    };
977 977

	
978 978
    template <typename From, typename To>
979 979
    struct PathCopySelector<From, To, true> {
980 980
      static void copy(const From& from, To& to) {
981 981
        PathCopySelectorBackward<From, To>::copy(from, to);
982 982
      }
983 983
    };
984 984

	
985 985
  }
986 986

	
987 987

	
988 988
  /// \brief Make a copy of a path.
989 989
  ///
990 990
  /// This function makes a copy of a path.
991 991
  template <typename From, typename To>
992 992
  void pathCopy(const From& from, To& to) {
993 993
    checkConcept<concepts::PathDumper<typename From::Digraph>, From>();
994 994
    _path_bits::PathCopySelector<From, To>::copy(from, to);
995 995
  }
996 996

	
997 997
  /// \brief Deprecated version of \ref pathCopy().
998 998
  ///
999 999
  /// Deprecated version of \ref pathCopy() (only for reverse compatibility).
1000 1000
  template <typename To, typename From>
1001 1001
  void copyPath(To& to, const From& from) {
1002 1002
    pathCopy(from, to);
1003 1003
  }
1004 1004

	
1005 1005
  /// \brief Check the consistency of a path.
1006 1006
  ///
1007 1007
  /// This function checks that the target of each arc is the same
1008 1008
  /// as the source of the next one.
1009 1009
  ///
1010 1010
  template <typename Digraph, typename Path>
1011 1011
  bool checkPath(const Digraph& digraph, const Path& path) {
1012 1012
    typename Path::ArcIt it(path);
1013 1013
    if (it == INVALID) return true;
1014 1014
    typename Digraph::Node node = digraph.target(it);
1015 1015
    ++it;
1016 1016
    while (it != INVALID) {
1017 1017
      if (digraph.source(it) != node) return false;
1018 1018
      node = digraph.target(it);
1019 1019
      ++it;
1020 1020
    }
1021 1021
    return true;
1022 1022
  }
1023 1023

	
1024 1024
  /// \brief The source of a path
1025 1025
  ///
1026 1026
  /// This function returns the source node of the given path.
1027 1027
  /// If the path is empty, then it returns \c INVALID.
1028 1028
  template <typename Digraph, typename Path>
1029 1029
  typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) {
1030 1030
    return path.empty() ? INVALID : digraph.source(path.front());
1031 1031
  }
1032 1032

	
1033 1033
  /// \brief The target of a path
1034 1034
  ///
1035 1035
  /// This function returns the target node of the given path.
1036 1036
  /// If the path is empty, then it returns \c INVALID.
1037 1037
  template <typename Digraph, typename Path>
1038 1038
  typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
1039 1039
    return path.empty() ? INVALID : digraph.target(path.back());
1040 1040
  }
1041 1041

	
1042 1042
  /// \brief Class which helps to iterate through the nodes of a path
1043 1043
  ///
1044 1044
  /// In a sense, the path can be treated as a list of arcs. The
1045
  /// lemon path type stores only this list. As a consequence, it
1045
  /// LEMON path type stores only this list. As a consequence, it
1046 1046
  /// cannot enumerate the nodes in the path and the zero length paths
1047 1047
  /// cannot have a source node.
1048 1048
  ///
1049 1049
  /// This class implements the node iterator of a path structure. To
1050 1050
  /// provide this feature, the underlying digraph should be passed to
1051 1051
  /// the constructor of the iterator.
1052 1052
  template <typename Path>
1053 1053
  class PathNodeIt {
1054 1054
  private:
1055 1055
    const typename Path::Digraph *_digraph;
1056 1056
    typename Path::ArcIt _it;
1057 1057
    typename Path::Digraph::Node _nd;
1058 1058

	
1059 1059
  public:
1060 1060

	
1061 1061
    typedef typename Path::Digraph Digraph;
1062 1062
    typedef typename Digraph::Node Node;
1063 1063

	
1064 1064
    /// Default constructor
1065 1065
    PathNodeIt() {}
1066 1066
    /// Invalid constructor
1067 1067
    PathNodeIt(Invalid)
1068 1068
      : _digraph(0), _it(INVALID), _nd(INVALID) {}
1069 1069
    /// Constructor
1070 1070
    PathNodeIt(const Digraph& digraph, const Path& path)
1071 1071
      : _digraph(&digraph), _it(path) {
1072 1072
      _nd = (_it != INVALID ? _digraph->source(_it) : INVALID);
1073 1073
    }
1074 1074
    /// Constructor
1075 1075
    PathNodeIt(const Digraph& digraph, const Path& path, const Node& src)
1076 1076
      : _digraph(&digraph), _it(path), _nd(src) {}
1077 1077

	
1078 1078
    ///Conversion to Digraph::Node
1079 1079
    operator Node() const {
1080 1080
      return _nd;
1081 1081
    }
1082 1082

	
1083 1083
    /// Next node
1084 1084
    PathNodeIt& operator++() {
1085 1085
      if (_it == INVALID) _nd = INVALID;
1086 1086
      else {
1087 1087
        _nd = _digraph->target(_it);
1088 1088
        ++_it;
1089 1089
      }
1090 1090
      return *this;
1091 1091
    }
1092 1092

	
1093 1093
    /// Comparison operator
1094 1094
    bool operator==(const PathNodeIt& n) const {
1095 1095
      return _it == n._it && _nd == n._nd;
1096 1096
    }
1097 1097
    /// Comparison operator
1098 1098
    bool operator!=(const PathNodeIt& n) const {
1099 1099
      return _it != n._it || _nd != n._nd;
1100 1100
    }
1101 1101
    /// Comparison operator
1102 1102
    bool operator<(const PathNodeIt& n) const {
1103 1103
      return (_it < n._it && _nd != INVALID);
1104 1104
    }
1105 1105

	
1106 1106
  };
1107 1107

	
1108 1108
  ///@}
1109 1109

	
1110 1110
} // namespace lemon
1111 1111

	
1112 1112
#endif // LEMON_PATH_H
Ignore white space 768 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <sstream>
20 20
#include <lemon/list_graph.h>
21 21
#include <lemon/full_graph.h>
22 22
#include <lemon/grid_graph.h>
23 23
#include <lemon/lgf_reader.h>
24 24
#include <lemon/grosso_locatelli_pullan_mc.h>
25 25

	
26 26
#include "test_tools.h"
27 27

	
28 28
using namespace lemon;
29 29

	
30 30
char test_lgf[] =
31 31
  "@nodes\n"
32 32
  "label max_clique\n"
33 33
  "1     0\n"
34 34
  "2     0\n"
35 35
  "3     0\n"
36 36
  "4     1\n"
37 37
  "5     1\n"
38 38
  "6     1\n"
39 39
  "7     1\n"
40 40
  "@edges\n"
41 41
  "    label\n"
42 42
  "1 2     1\n"
43 43
  "1 3     2\n"
44 44
  "1 4     3\n"
45 45
  "1 6     4\n"
46 46
  "2 3     5\n"
47 47
  "2 5     6\n"
48 48
  "2 7     7\n"
49 49
  "3 4     8\n"
50 50
  "3 5     9\n"
51 51
  "4 5    10\n"
52 52
  "4 6    11\n"
53 53
  "4 7    12\n"
54 54
  "5 6    13\n"
55 55
  "5 7    14\n"
56 56
  "6 7    15\n";
57 57
      
58 58

	
59 59
// Check with general graphs
60 60
template <typename Param>
61
void checkMaxCliqueGeneral(int max_sel, Param rule) {
61
void checkMaxCliqueGeneral(Param rule) {
62 62
  typedef ListGraph GR;
63 63
  typedef GrossoLocatelliPullanMc<GR> McAlg;
64 64
  typedef McAlg::CliqueNodeIt CliqueIt;
65 65
  
66 66
  // Basic tests
67 67
  {
68 68
    GR g;
69 69
    GR::NodeMap<bool> map(g);
70 70
    McAlg mc(g);
71
    check(mc.run(max_sel, rule) == 0, "Wrong clique size");
71
    mc.iterationLimit(50);
72
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
72 73
    check(mc.cliqueSize() == 0, "Wrong clique size");
73 74
    check(CliqueIt(mc) == INVALID, "Wrong CliqueNodeIt");
74 75

	
75 76
    GR::Node u = g.addNode();
76
    check(mc.run(max_sel, rule) == 1, "Wrong clique size");
77
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
77 78
    check(mc.cliqueSize() == 1, "Wrong clique size");
78 79
    mc.cliqueMap(map);
79 80
    check(map[u], "Wrong clique map");
80 81
    CliqueIt it1(mc);
81 82
    check(static_cast<GR::Node>(it1) == u && ++it1 == INVALID,
82 83
          "Wrong CliqueNodeIt");
83 84
    
84 85
    GR::Node v = g.addNode();
85
    check(mc.run(max_sel, rule) == 1, "Wrong clique size");
86
    check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause");
86 87
    check(mc.cliqueSize() == 1, "Wrong clique size");
87 88
    mc.cliqueMap(map);
88 89
    check((map[u] && !map[v]) || (map[v] && !map[u]), "Wrong clique map");
89 90
    CliqueIt it2(mc);
90 91
    check(it2 != INVALID && ++it2 == INVALID, "Wrong CliqueNodeIt");
91 92

	
92 93
    g.addEdge(u, v);
93
    check(mc.run(max_sel, rule) == 2, "Wrong clique size");
94
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
94 95
    check(mc.cliqueSize() == 2, "Wrong clique size");
95 96
    mc.cliqueMap(map);
96 97
    check(map[u] && map[v], "Wrong clique map");
97 98
    CliqueIt it3(mc);
98 99
    check(it3 != INVALID && ++it3 != INVALID && ++it3 == INVALID,
99 100
          "Wrong CliqueNodeIt");
100 101
  }
101 102

	
102 103
  // Test graph
103 104
  {
104 105
    GR g;
105 106
    GR::NodeMap<bool> max_clique(g);
106 107
    GR::NodeMap<bool> map(g);
107 108
    std::istringstream input(test_lgf);
108 109
    graphReader(g, input)
109 110
      .nodeMap("max_clique", max_clique)
110 111
      .run();
111 112
    
112 113
    McAlg mc(g);
113
    check(mc.run(max_sel, rule) == 4, "Wrong clique size");
114
    mc.iterationLimit(50);
115
    check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause");
114 116
    check(mc.cliqueSize() == 4, "Wrong clique size");
115 117
    mc.cliqueMap(map);
116 118
    for (GR::NodeIt n(g); n != INVALID; ++n) {
117 119
      check(map[n] == max_clique[n], "Wrong clique map");
118 120
    }
119 121
    int cnt = 0;
120 122
    for (CliqueIt n(mc); n != INVALID; ++n) {
121 123
      cnt++;
122 124
      check(map[n] && max_clique[n], "Wrong CliqueNodeIt");
123 125
    }
124 126
    check(cnt == 4, "Wrong CliqueNodeIt");
125 127
  }
126 128
}
127 129

	
128 130
// Check with full graphs
129 131
template <typename Param>
130
void checkMaxCliqueFullGraph(int max_sel, Param rule) {
132
void checkMaxCliqueFullGraph(Param rule) {
131 133
  typedef FullGraph GR;
132 134
  typedef GrossoLocatelliPullanMc<FullGraph> McAlg;
133 135
  typedef McAlg::CliqueNodeIt CliqueIt;
134 136
  
135 137
  for (int size = 0; size <= 40; size = size * 3 + 1) {
136 138
    GR g(size);
137 139
    GR::NodeMap<bool> map(g);
138 140
    McAlg mc(g);
139
    check(mc.run(max_sel, rule) == size, "Wrong clique size");
141
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
140 142
    check(mc.cliqueSize() == size, "Wrong clique size");
141 143
    mc.cliqueMap(map);
142 144
    for (GR::NodeIt n(g); n != INVALID; ++n) {
143 145
      check(map[n], "Wrong clique map");
144 146
    }
145 147
    int cnt = 0;
146 148
    for (CliqueIt n(mc); n != INVALID; ++n) cnt++;
147 149
    check(cnt == size, "Wrong CliqueNodeIt");
148 150
  }
149 151
}
150 152

	
151 153
// Check with grid graphs
152 154
template <typename Param>
153
void checkMaxCliqueGridGraph(int max_sel, Param rule) {
155
void checkMaxCliqueGridGraph(Param rule) {
154 156
  GridGraph g(5, 7);
155 157
  GridGraph::NodeMap<char> map(g);
156 158
  GrossoLocatelliPullanMc<GridGraph> mc(g);
157
  check(mc.run(max_sel, rule) == 2, "Wrong clique size");
159
  
160
  mc.iterationLimit(100);
161
  check(mc.run(rule) == mc.ITERATION_LIMIT, "Wrong termination cause");
162
  check(mc.cliqueSize() == 2, "Wrong clique size");
163

	
164
  mc.stepLimit(100);
165
  check(mc.run(rule) == mc.STEP_LIMIT, "Wrong termination cause");
166
  check(mc.cliqueSize() == 2, "Wrong clique size");
167

	
168
  mc.sizeLimit(2);
169
  check(mc.run(rule) == mc.SIZE_LIMIT, "Wrong termination cause");
158 170
  check(mc.cliqueSize() == 2, "Wrong clique size");
159 171
}
160 172

	
161 173

	
162 174
int main() {
163
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::RANDOM);
164
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED);
165
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED);
175
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::RANDOM);
176
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED);
177
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED);
166 178

	
167
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::RANDOM);
168
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED);
169
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED);
179
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::RANDOM);
180
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED);
181
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED);
170 182
                       
171
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::RANDOM);
172
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED);
173
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED);
183
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::RANDOM);
184
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED);
185
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED);
174 186
                       
175 187
  return 0;
176 188
}
0 comments (0 inline)