↑ Collapse diff ↑
Ignore white space 24 line context
... ...
@@ -89,28 +89,28 @@
89 89

	
90 90
\subsection cs-loc-var Class and instance member variables, auto variables
91 91

	
92 92
The names of class and instance member variables and auto variables
93 93
(=variables used locally in methods) should look like the following.
94 94

	
95 95
\code
96 96
all_lower_case_with_underscores
97 97
\endcode
98 98

	
99 99
\subsection pri-loc-var Private member variables
100 100

	
101
Private member variables should start with underscore
101
Private member variables should start with underscore.
102 102

	
103 103
\code
104
_start_with_underscores
104
_start_with_underscore
105 105
\endcode
106 106

	
107 107
\subsection cs-excep Exceptions
108 108

	
109 109
When writing exceptions please comply the following naming conventions.
110 110

	
111 111
\code
112 112
ClassNameEndsWithException
113 113
\endcode
114 114

	
115 115
or
116 116

	
Ignore white space 24 line context
... ...
@@ -397,28 +397,28 @@
397 397

	
398 398
LEMON contains several algorithms for this problem.
399 399
 - \ref NetworkSimplex Primal Network Simplex algorithm with various
400 400
   pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex.
401 401
 - \ref CostScaling Cost Scaling algorithm based on push/augment and
402 402
   relabel operations \ref goldberg90approximation, \ref goldberg97efficient,
403 403
   \ref bunnagel98efficient.
404 404
 - \ref CapacityScaling Capacity Scaling algorithm based on the successive
405 405
   shortest path method \ref edmondskarp72theoretical.
406 406
 - \ref CycleCanceling Cycle-Canceling algorithms, two of which are
407 407
   strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling.
408 408

	
409
In general NetworkSimplex is the most efficient implementation,
410
but in special cases other algorithms could be faster.
409
In general, \ref NetworkSimplex and \ref CostScaling are the most efficient
410
implementations, but the other two algorithms could be faster in special cases.
411 411
For example, if the total supply and/or capacities are rather small,
412
CapacityScaling is usually the fastest algorithm (without effective scaling).
412
\ref CapacityScaling is usually the fastest algorithm (without effective scaling).
413 413
*/
414 414

	
415 415
/**
416 416
@defgroup min_cut Minimum Cut Algorithms
417 417
@ingroup algs
418 418

	
419 419
\brief Algorithms for finding minimum cut in graphs.
420 420

	
421 421
This group contains the algorithms for finding minimum cut in graphs.
422 422

	
423 423
The \e minimum \e cut \e problem is to find a non-empty and non-complete
424 424
\f$X\f$ subset of the nodes with minimum overall capacity on
... ...
@@ -462,25 +462,25 @@
462 462
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the
463 463
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length
464 464
function.
465 465

	
466 466
LEMON contains three algorithms for solving the minimum mean cycle problem:
467 467
- \ref KarpMmc Karp's original algorithm \ref amo93networkflows,
468 468
  \ref dasdan98minmeancycle.
469 469
- \ref HartmannOrlinMmc Hartmann-Orlin's algorithm, which is an improved
470 470
  version of Karp's algorithm \ref dasdan98minmeancycle.
471 471
- \ref HowardMmc Howard's policy iteration algorithm
472 472
  \ref dasdan98minmeancycle.
473 473

	
474
In practice, the \ref HowardMmc "Howard" algorithm proved to be by far the
474
In practice, the \ref HowardMmc "Howard" algorithm turned out to be by far the
475 475
most efficient one, though the best known theoretical bound on its running
476 476
time is exponential.
477 477
Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms
478 478
run in time O(ne) and use space O(n<sup>2</sup>+e), but the latter one is
479 479
typically faster due to the applied early termination scheme.
480 480
*/
481 481

	
482 482
/**
483 483
@defgroup matching Matching Algorithms
484 484
@ingroup algs
485 485
\brief Algorithms for finding matchings in graphs and bipartite graphs.
486 486

	
... ...
@@ -530,25 +530,25 @@
530 530
@defgroup graph_properties Connectivity and Other Graph Properties
531 531
@ingroup algs
532 532
\brief Algorithms for discovering the graph properties
533 533

	
534 534
This group contains the algorithms for discovering the graph properties
535 535
like connectivity, bipartiteness, euler property, simplicity etc.
536 536

	
537 537
\image html connected_components.png
538 538
\image latex connected_components.eps "Connected components" width=\textwidth
539 539
*/
540 540

	
541 541
/**
542
@defgroup planar Planarity Embedding and Drawing
542
@defgroup planar Planar Embedding and Drawing
543 543
@ingroup algs
544 544
\brief Algorithms for planarity checking, embedding and drawing
545 545

	
546 546
This group contains the algorithms for planarity checking,
547 547
embedding and drawing.
548 548

	
549 549
\image html planar.png
550 550
\image latex planar.eps "Plane graph" width=\textwidth
551 551
*/
552 552

	
553 553
/**
554 554
@defgroup approx_algs Approximation Algorithms
Ignore white space 24 line context
... ...
@@ -80,26 +80,26 @@
80 80
  /// and supply values in the algorithm. By default, it is \c int.
81 81
  /// \tparam C The number type used for costs and potentials in the
82 82
  /// algorithm. By default, it is the same as \c V.
83 83
  /// \tparam TR The traits class that defines various types used by the
84 84
  /// algorithm. By default, it is \ref CapacityScalingDefaultTraits
85 85
  /// "CapacityScalingDefaultTraits<GR, V, C>".
86 86
  /// In most cases, this parameter should not be set directly,
87 87
  /// consider to use the named template parameters instead.
88 88
  ///
89 89
  /// \warning Both \c V and \c C must be signed number types.
90 90
  /// \warning All input data (capacities, supply values, and costs) must
91 91
  /// be integer.
92
  /// \warning This algorithm does not support negative costs for such
93
  /// arcs that have infinite upper bound.
92
  /// \warning This algorithm does not support negative costs for
93
  /// arcs having infinite upper bound.
94 94
#ifdef DOXYGEN
95 95
  template <typename GR, typename V, typename C, typename TR>
96 96
#else
97 97
  template < typename GR, typename V = int, typename C = V,
98 98
             typename TR = CapacityScalingDefaultTraits<GR, V, C> >
99 99
#endif
100 100
  class CapacityScaling
101 101
  {
102 102
  public:
103 103

	
104 104
    /// The type of the digraph
105 105
    typedef typename TR::Digraph Digraph;
... ...
@@ -414,25 +414,25 @@
414 414
      }
415 415
      return *this;
416 416
    }
417 417

	
418 418
    /// \brief Set single source and target nodes and a supply value.
419 419
    ///
420 420
    /// This function sets a single source node and a single target node
421 421
    /// and the required flow value.
422 422
    /// If neither this function nor \ref supplyMap() is used before
423 423
    /// calling \ref run(), the supply of each node will be set to zero.
424 424
    ///
425 425
    /// Using this function has the same effect as using \ref supplyMap()
426
    /// with such a map in which \c k is assigned to \c s, \c -k is
426
    /// with a map in which \c k is assigned to \c s, \c -k is
427 427
    /// assigned to \c t and all other nodes have zero supply value.
428 428
    ///
429 429
    /// \param s The source node.
430 430
    /// \param t The target node.
431 431
    /// \param k The required amount of flow from node \c s to node \c t
432 432
    /// (i.e. the supply of \c s and the demand of \c t).
433 433
    ///
434 434
    /// \return <tt>(*this)</tt>
435 435
    CapacityScaling& stSupply(const Node& s, const Node& t, Value k) {
436 436
      for (int i = 0; i != _node_num; ++i) {
437 437
        _supply[i] = 0;
438 438
      }
Ignore white space 24 line context
... ...
@@ -438,25 +438,25 @@
438 438
      Graph,
439 439
      typename enable_if<typename Graph::BuildTag, void>::type>
440 440
    {
441 441
      template <typename From, typename NodeRefMap, typename EdgeRefMap>
442 442
      static void copy(const From& from, Graph &to,
443 443
                       NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) {
444 444
        to.build(from, nodeRefMap, edgeRefMap);
445 445
      }
446 446
    };
447 447

	
448 448
  }
449 449

	
450
  /// Check whether a graph is undirected.
450
  /// \brief Check whether a graph is undirected.
451 451
  ///
452 452
  /// This function returns \c true if the given graph is undirected.
453 453
#ifdef DOXYGEN
454 454
  template <typename GR>
455 455
  bool undirected(const GR& g) { return false; }
456 456
#else
457 457
  template <typename GR>
458 458
  typename enable_if<UndirectedTagIndicator<GR>, bool>::type
459 459
  undirected(const GR&) {
460 460
    return true;
461 461
  }
462 462
  template <typename GR>
Ignore white space 24 line context
... ...
@@ -88,45 +88,48 @@
88 88

	
89 89
  /// \brief Implementation of the Cost Scaling algorithm for
90 90
  /// finding a \ref min_cost_flow "minimum cost flow".
91 91
  ///
92 92
  /// \ref CostScaling implements a cost scaling algorithm that performs
93 93
  /// push/augment and relabel operations for finding a \ref min_cost_flow
94 94
  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95 95
  /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 96
  /// It is a highly efficient primal-dual solution method, which
97 97
  /// can be viewed as the generalization of the \ref Preflow
98 98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
99 99
  ///
100
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
101
  /// implementations available in LEMON for this problem.
102
  ///
100 103
  /// Most of the parameters of the problem (except for the digraph)
101 104
  /// can be given using separate functions, and the algorithm can be
102 105
  /// executed using the \ref run() function. If some parameters are not
103 106
  /// specified, then default values will be used.
104 107
  ///
105 108
  /// \tparam GR The digraph type the algorithm runs on.
106 109
  /// \tparam V The number type used for flow amounts, capacity bounds
107 110
  /// and supply values in the algorithm. By default, it is \c int.
108 111
  /// \tparam C The number type used for costs and potentials in the
109 112
  /// algorithm. By default, it is the same as \c V.
110 113
  /// \tparam TR The traits class that defines various types used by the
111 114
  /// algorithm. By default, it is \ref CostScalingDefaultTraits
112 115
  /// "CostScalingDefaultTraits<GR, V, C>".
113 116
  /// In most cases, this parameter should not be set directly,
114 117
  /// consider to use the named template parameters instead.
115 118
  ///
116 119
  /// \warning Both \c V and \c C must be signed number types.
117 120
  /// \warning All input data (capacities, supply values, and costs) must
118 121
  /// be integer.
119
  /// \warning This algorithm does not support negative costs for such
120
  /// arcs that have infinite upper bound.
122
  /// \warning This algorithm does not support negative costs for
123
  /// arcs having infinite upper bound.
121 124
  ///
122 125
  /// \note %CostScaling provides three different internal methods,
123 126
  /// from which the most efficient one is used by default.
124 127
  /// For more information, see \ref Method.
125 128
#ifdef DOXYGEN
126 129
  template <typename GR, typename V, typename C, typename TR>
127 130
#else
128 131
  template < typename GR, typename V = int, typename C = V,
129 132
             typename TR = CostScalingDefaultTraits<GR, V, C> >
130 133
#endif
131 134
  class CostScaling
132 135
  {
... ...
@@ -170,25 +173,25 @@
170 173
      UNBOUNDED
171 174
    };
172 175

	
173 176
    /// \brief Constants for selecting the internal method.
174 177
    ///
175 178
    /// Enum type containing constants for selecting the internal method
176 179
    /// for the \ref run() function.
177 180
    ///
178 181
    /// \ref CostScaling provides three internal methods that differ mainly
179 182
    /// in their base operations, which are used in conjunction with the
180 183
    /// relabel operation.
181 184
    /// By default, the so called \ref PARTIAL_AUGMENT
182
    /// "Partial Augment-Relabel" method is used, which proved to be
185
    /// "Partial Augment-Relabel" method is used, which turned out to be
183 186
    /// the most efficient and the most robust on various test inputs.
184 187
    /// However, the other methods can be selected using the \ref run()
185 188
    /// function with the proper parameter.
186 189
    enum Method {
187 190
      /// Local push operations are used, i.e. flow is moved only on one
188 191
      /// admissible arc at once.
189 192
      PUSH,
190 193
      /// Augment operations are used, i.e. flow is moved on admissible
191 194
      /// paths from a node with excess to a node with deficit.
192 195
      AUGMENT,
193 196
      /// Partial augment operations are used, i.e. flow is moved on
194 197
      /// admissible paths started from a node with excess, but the
... ...
@@ -439,25 +442,25 @@
439 442
      }
440 443
      return *this;
441 444
    }
442 445

	
443 446
    /// \brief Set single source and target nodes and a supply value.
444 447
    ///
445 448
    /// This function sets a single source node and a single target node
446 449
    /// and the required flow value.
447 450
    /// If neither this function nor \ref supplyMap() is used before
448 451
    /// calling \ref run(), the supply of each node will be set to zero.
449 452
    ///
450 453
    /// Using this function has the same effect as using \ref supplyMap()
451
    /// with such a map in which \c k is assigned to \c s, \c -k is
454
    /// with a map in which \c k is assigned to \c s, \c -k is
452 455
    /// assigned to \c t and all other nodes have zero supply value.
453 456
    ///
454 457
    /// \param s The source node.
455 458
    /// \param t The target node.
456 459
    /// \param k The required amount of flow from node \c s to node \c t
457 460
    /// (i.e. the supply of \c s and the demand of \c t).
458 461
    ///
459 462
    /// \return <tt>(*this)</tt>
460 463
    CostScaling& stSupply(const Node& s, const Node& t, Value k) {
461 464
      for (int i = 0; i != _res_node_num; ++i) {
462 465
        _supply[i] = 0;
463 466
      }
Ignore white space 24 line context
... ...
@@ -59,26 +59,26 @@
59 59
  /// executed using the \ref run() function. If some parameters are not
60 60
  /// specified, then default values will be used.
61 61
  ///
62 62
  /// \tparam GR The digraph type the algorithm runs on.
63 63
  /// \tparam V The number type used for flow amounts, capacity bounds
64 64
  /// and supply values in the algorithm. By default, it is \c int.
65 65
  /// \tparam C The number type used for costs and potentials in the
66 66
  /// algorithm. By default, it is the same as \c V.
67 67
  ///
68 68
  /// \warning Both \c V and \c C must be signed number types.
69 69
  /// \warning All input data (capacities, supply values, and costs) must
70 70
  /// be integer.
71
  /// \warning This algorithm does not support negative costs for such
72
  /// arcs that have infinite upper bound.
71
  /// \warning This algorithm does not support negative costs for
72
  /// arcs having infinite upper bound.
73 73
  ///
74 74
  /// \note For more information about the three available methods,
75 75
  /// see \ref Method.
76 76
#ifdef DOXYGEN
77 77
  template <typename GR, typename V, typename C>
78 78
#else
79 79
  template <typename GR, typename V = int, typename C = V>
80 80
#endif
81 81
  class CycleCanceling
82 82
  {
83 83
  public:
84 84

	
... ...
@@ -108,26 +108,25 @@
108 108
      /// over the feasible flows, but this algroithm cannot handle
109 109
      /// these cases.
110 110
      UNBOUNDED
111 111
    };
112 112

	
113 113
    /// \brief Constants for selecting the used method.
114 114
    ///
115 115
    /// Enum type containing constants for selecting the used method
116 116
    /// for the \ref run() function.
117 117
    ///
118 118
    /// \ref CycleCanceling provides three different cycle-canceling
119 119
    /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten"
120
    /// is used, which proved to be the most efficient and the most robust
121
    /// on various test inputs.
120
    /// is used, which is by far the most efficient and the most robust.
122 121
    /// However, the other methods can be selected using the \ref run()
123 122
    /// function with the proper parameter.
124 123
    enum Method {
125 124
      /// A simple cycle-canceling method, which uses the
126 125
      /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration
127 126
      /// number for detecting negative cycles in the residual network.
128 127
      SIMPLE_CYCLE_CANCELING,
129 128
      /// The "Minimum Mean Cycle-Canceling" algorithm, which is a
130 129
      /// well-known strongly polynomial method
131 130
      /// \ref goldberg89cyclecanceling. It improves along a
132 131
      /// \ref min_mean_cycle "minimum mean cycle" in each iteration.
133 132
      /// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)).
... ...
@@ -341,25 +340,25 @@
341 340
      }
342 341
      return *this;
343 342
    }
344 343

	
345 344
    /// \brief Set single source and target nodes and a supply value.
346 345
    ///
347 346
    /// This function sets a single source node and a single target node
348 347
    /// and the required flow value.
349 348
    /// If neither this function nor \ref supplyMap() is used before
350 349
    /// calling \ref run(), the supply of each node will be set to zero.
351 350
    ///
352 351
    /// Using this function has the same effect as using \ref supplyMap()
353
    /// with such a map in which \c k is assigned to \c s, \c -k is
352
    /// with a map in which \c k is assigned to \c s, \c -k is
354 353
    /// assigned to \c t and all other nodes have zero supply value.
355 354
    ///
356 355
    /// \param s The source node.
357 356
    /// \param t The target node.
358 357
    /// \param k The required amount of flow from node \c s to node \c t
359 358
    /// (i.e. the supply of \c s and the demand of \c t).
360 359
    ///
361 360
    /// \return <tt>(*this)</tt>
362 361
    CycleCanceling& stSupply(const Node& s, const Node& t, Value k) {
363 362
      for (int i = 0; i != _res_node_num; ++i) {
364 363
        _supply[i] = 0;
365 364
      }
Ignore white space 24 line context
... ...
@@ -27,25 +27,25 @@
27 27
/// \ingroup graph_properties
28 28
/// \file
29 29
/// \brief Euler tour iterators and a function for checking the \e Eulerian
30 30
/// property.
31 31
///
32 32
///This file provides Euler tour iterators and a function to check
33 33
///if a (di)graph is \e Eulerian.
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  ///Euler tour iterator for digraphs.
38 38

	
39
  /// \ingroup graph_prop
39
  /// \ingroup graph_properties
40 40
  ///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
41 41
  ///graph (if there exists) and it converts to the \c Arc type of the digraph.
42 42
  ///
43 43
  ///For example, if the given digraph has an Euler tour (i.e it has only one
44 44
  ///non-trivial component and the in-degree is equal to the out-degree
45 45
  ///for all nodes), then the following code will put the arcs of \c g
46 46
  ///to the vector \c et according to an Euler tour of \c g.
47 47
  ///\code
48 48
  ///  std::vector<ListDigraph::Arc> et;
49 49
  ///  for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e)
50 50
  ///    et.push_back(e);
51 51
  ///\endcode
Ignore white space 24 line context
... ...
@@ -37,26 +37,30 @@
37 37

	
38 38
  /// \brief Implementation of the iterated local search algorithm of Grosso,
39 39
  /// Locatelli, and Pullan for the maximum clique problem
40 40
  ///
41 41
  /// \ref GrossoLocatelliPullanMc implements the iterated local search
42 42
  /// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum
43 43
  /// \e clique \e problem \ref grosso08maxclique.
44 44
  /// It is to find the largest complete subgraph (\e clique) in an
45 45
  /// undirected graph, i.e., the largest set of nodes where each
46 46
  /// pair of nodes is connected.
47 47
  ///
48 48
  /// This class provides a simple but highly efficient and robust heuristic
49
  /// method that quickly finds a large clique, but not necessarily the
49
  /// method that quickly finds a quite large clique, but not necessarily the
50 50
  /// largest one.
51
  /// The algorithm performs a certain number of iterations to find several
52
  /// cliques and selects the largest one among them. Various limits can be
53
  /// specified to control the running time and the effectiveness of the
54
  /// search process.
51 55
  ///
52 56
  /// \tparam GR The undirected graph type the algorithm runs on.
53 57
  ///
54 58
  /// \note %GrossoLocatelliPullanMc provides three different node selection
55 59
  /// rules, from which the most powerful one is used by default.
56 60
  /// For more information, see \ref SelectionRule.
57 61
  template <typename GR>
58 62
  class GrossoLocatelliPullanMc
59 63
  {
60 64
  public:
61 65

	
62 66
    /// \brief Constants for specifying the node selection rule.
... ...
@@ -75,39 +79,65 @@
75 79
      /// A node is selected randomly without any evaluation at each step.
76 80
      RANDOM,
77 81

	
78 82
      /// A node of maximum degree is selected randomly at each step.
79 83
      DEGREE_BASED,
80 84

	
81 85
      /// A node of minimum penalty is selected randomly at each step.
82 86
      /// The node penalties are updated adaptively after each stage of the
83 87
      /// search process.
84 88
      PENALTY_BASED
85 89
    };
86 90

	
91
    /// \brief Constants for the causes of search termination.
92
    ///
93
    /// Enum type containing constants for the different causes of search
94
    /// termination. The \ref run() function returns one of these values.
95
    enum TerminationCause {
96

	
97
      /// The iteration count limit is reached.
98
      ITERATION_LIMIT,
99

	
100
      /// The step count limit is reached.
101
      STEP_LIMIT,
102

	
103
      /// The clique size limit is reached.
104
      SIZE_LIMIT
105
    };
106

	
87 107
  private:
88 108

	
89 109
    TEMPLATE_GRAPH_TYPEDEFS(GR);
90 110

	
91 111
    typedef std::vector<int> IntVector;
92 112
    typedef std::vector<char> BoolVector;
93 113
    typedef std::vector<BoolVector> BoolMatrix;
94 114
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
95 115

	
116
    // The underlying graph
96 117
    const GR &_graph;
97 118
    IntNodeMap _id;
98 119

	
99 120
    // Internal matrix representation of the graph
100 121
    BoolMatrix _gr;
101 122
    int _n;
123
    
124
    // Search options
125
    bool _delta_based_restart;
126
    int _restart_delta_limit;
127
 
128
    // Search limits
129
    int _iteration_limit;
130
    int _step_limit;
131
    int _size_limit;
102 132

	
103 133
    // The current clique
104 134
    BoolVector _clique;
105 135
    int _size;
106 136

	
107 137
    // The best clique found so far
108 138
    BoolVector _best_clique;
109 139
    int _best_size;
110 140

	
111 141
    // The "distances" of the nodes from the current clique.
112 142
    // _delta[u] is the number of nodes in the clique that are
113 143
    // not connected with u.
... ...
@@ -371,83 +401,199 @@
371 401

	
372 402
  public:
373 403

	
374 404
    /// \brief Constructor.
375 405
    ///
376 406
    /// Constructor.
377 407
    /// The global \ref rnd "random number generator instance" is used
378 408
    /// during the algorithm.
379 409
    ///
380 410
    /// \param graph The undirected graph the algorithm runs on.
381 411
    GrossoLocatelliPullanMc(const GR& graph) :
382 412
      _graph(graph), _id(_graph), _rnd(rnd)
383
    {}
413
    {
414
      initOptions();
415
    }
384 416

	
385 417
    /// \brief Constructor with random seed.
386 418
    ///
387 419
    /// Constructor with random seed.
388 420
    ///
389 421
    /// \param graph The undirected graph the algorithm runs on.
390 422
    /// \param seed Seed value for the internal random number generator
391 423
    /// that is used during the algorithm.
392 424
    GrossoLocatelliPullanMc(const GR& graph, int seed) :
393 425
      _graph(graph), _id(_graph), _rnd(seed)
394
    {}
426
    {
427
      initOptions();
428
    }
395 429

	
396 430
    /// \brief Constructor with random number generator.
397 431
    ///
398 432
    /// Constructor with random number generator.
399 433
    ///
400 434
    /// \param graph The undirected graph the algorithm runs on.
401 435
    /// \param random A random number generator that is used during the
402 436
    /// algorithm.
403 437
    GrossoLocatelliPullanMc(const GR& graph, const Random& random) :
404 438
      _graph(graph), _id(_graph), _rnd(random)
405
    {}
439
    {
440
      initOptions();
441
    }
406 442

	
407 443
    /// \name Execution Control
444
    /// The \ref run() function can be used to execute the algorithm.\n
445
    /// The functions \ref iterationLimit(int), \ref stepLimit(int), and 
446
    /// \ref sizeLimit(int) can be used to specify various limits for the
447
    /// search process.
448
    
408 449
    /// @{
450
    
451
    /// \brief Sets the maximum number of iterations.
452
    ///
453
    /// This function sets the maximum number of iterations.
454
    /// Each iteration of the algorithm finds a maximal clique (but not
455
    /// necessarily the largest one) by performing several search steps
456
    /// (node selections).
457
    ///
458
    /// This limit controls the running time and the success of the
459
    /// algorithm. For larger values, the algorithm runs slower, but it more
460
    /// likely finds larger cliques. For smaller values, the algorithm is
461
    /// faster but probably gives worse results.
462
    /// 
463
    /// The default value is \c 1000.
464
    /// \c -1 means that number of iterations is not limited.
465
    ///
466
    /// \warning You should specify a reasonable limit for the number of
467
    /// iterations and/or the number of search steps.
468
    ///
469
    /// \return <tt>(*this)</tt>
470
    ///
471
    /// \sa stepLimit(int)
472
    /// \sa sizeLimit(int)
473
    GrossoLocatelliPullanMc& iterationLimit(int limit) {
474
      _iteration_limit = limit;
475
      return *this;
476
    }
477
    
478
    /// \brief Sets the maximum number of search steps.
479
    ///
480
    /// This function sets the maximum number of elementary search steps.
481
    /// Each iteration of the algorithm finds a maximal clique (but not
482
    /// necessarily the largest one) by performing several search steps
483
    /// (node selections).
484
    ///
485
    /// This limit controls the running time and the success of the
486
    /// algorithm. For larger values, the algorithm runs slower, but it more
487
    /// likely finds larger cliques. For smaller values, the algorithm is
488
    /// faster but probably gives worse results.
489
    /// 
490
    /// The default value is \c -1, which means that number of steps
491
    /// is not limited explicitly. However, the number of iterations is
492
    /// limited and each iteration performs a finite number of search steps.
493
    ///
494
    /// \warning You should specify a reasonable limit for the number of
495
    /// iterations and/or the number of search steps.
496
    ///
497
    /// \return <tt>(*this)</tt>
498
    ///
499
    /// \sa iterationLimit(int)
500
    /// \sa sizeLimit(int)
501
    GrossoLocatelliPullanMc& stepLimit(int limit) {
502
      _step_limit = limit;
503
      return *this;
504
    }
505
    
506
    /// \brief Sets the desired clique size.
507
    ///
508
    /// This function sets the desired clique size that serves as a search
509
    /// limit. If a clique of this size (or a larger one) is found, then the
510
    /// algorithm terminates.
511
    /// 
512
    /// This function is especially useful if you know an exact upper bound
513
    /// for the size of the cliques in the graph or if any clique above 
514
    /// a certain size limit is sufficient for your application.
515
    /// 
516
    /// The default value is \c -1, which means that the size limit is set to
517
    /// the number of nodes in the graph.
518
    ///
519
    /// \return <tt>(*this)</tt>
520
    ///
521
    /// \sa iterationLimit(int)
522
    /// \sa stepLimit(int)
523
    GrossoLocatelliPullanMc& sizeLimit(int limit) {
524
      _size_limit = limit;
525
      return *this;
526
    }
527
    
528
    /// \brief The maximum number of iterations.
529
    ///
530
    /// This function gives back the maximum number of iterations.
531
    /// \c -1 means that no limit is specified.
532
    ///
533
    /// \sa iterationLimit(int)
534
    int iterationLimit() const {
535
      return _iteration_limit;
536
    }
537
    
538
    /// \brief The maximum number of search steps.
539
    ///
540
    /// This function gives back the maximum number of search steps.
541
    /// \c -1 means that no limit is specified.
542
    ///
543
    /// \sa stepLimit(int)
544
    int stepLimit() const {
545
      return _step_limit;
546
    }
547
    
548
    /// \brief The desired clique size.
549
    ///
550
    /// This function gives back the desired clique size that serves as a
551
    /// search limit. \c -1 means that this limit is set to the number of
552
    /// nodes in the graph.
553
    ///
554
    /// \sa sizeLimit(int)
555
    int sizeLimit() const {
556
      return _size_limit;
557
    }
409 558

	
410 559
    /// \brief Runs the algorithm.
411 560
    ///
412
    /// This function runs the algorithm.
561
    /// This function runs the algorithm. If one of the specified limits
562
    /// is reached, the search process terminates.
413 563
    ///
414
    /// \param step_num The maximum number of node selections (steps)
415
    /// during the search process.
416
    /// This parameter controls the running time and the success of the
417
    /// algorithm. For larger values, the algorithm runs slower but it more
418
    /// likely finds larger cliques. For smaller values, the algorithm is
419
    /// faster but probably gives worse results.
420 564
    /// \param rule The node selection rule. For more information, see
421 565
    /// \ref SelectionRule.
422 566
    ///
423
    /// \return The size of the found clique.
424
    int run(int step_num = 100000,
425
            SelectionRule rule = PENALTY_BASED)
567
    /// \return The termination cause of the search. For more information,
568
    /// see \ref TerminationCause.
569
    TerminationCause run(SelectionRule rule = PENALTY_BASED)
426 570
    {
427 571
      init();
428 572
      switch (rule) {
429 573
        case RANDOM:
430
          return start<RandomSelectionRule>(step_num);
574
          return start<RandomSelectionRule>();
431 575
        case DEGREE_BASED:
432
          return start<DegreeBasedSelectionRule>(step_num);
433
        case PENALTY_BASED:
434
          return start<PenaltyBasedSelectionRule>(step_num);
576
          return start<DegreeBasedSelectionRule>();
577
        default:
578
          return start<PenaltyBasedSelectionRule>();
435 579
      }
436
      return 0; // avoid warning
437 580
    }
438 581

	
439 582
    /// @}
440 583

	
441 584
    /// \name Query Functions
585
    /// The results of the algorithm can be obtained using these functions.\n
586
    /// The run() function must be called before using them. 
587

	
442 588
    /// @{
443 589

	
444 590
    /// \brief The size of the found clique
445 591
    ///
446 592
    /// This function returns the size of the found clique.
447 593
    ///
448 594
    /// \pre run() must be called before using this function.
449 595
    int cliqueSize() const {
450 596
      return _best_size;
451 597
    }
452 598

	
453 599
    /// \brief Gives back the found clique in a \c bool node map
... ...
@@ -521,24 +667,36 @@
521 667
      /// \c CliqueNodeIt as one may expect.
522 668
      typename GR::Node operator++(int) {
523 669
        Node n=*this;
524 670
        ++(*this);
525 671
        return n;
526 672
      }
527 673

	
528 674
    };
529 675

	
530 676
    /// @}
531 677

	
532 678
  private:
679
  
680
    // Initialize search options and limits
681
    void initOptions() {
682
      // Search options
683
      _delta_based_restart = true;
684
      _restart_delta_limit = 4;
685
     
686
      // Search limits
687
      _iteration_limit = 1000;
688
      _step_limit = -1;             // this is disabled by default
689
      _size_limit = -1;             // this is disabled by default
690
    }
533 691

	
534 692
    // Adds a node to the current clique
535 693
    void addCliqueNode(int u) {
536 694
      if (_clique[u]) return;
537 695
      _clique[u] = true;
538 696
      _size++;
539 697
      BoolVector &row = _gr[u];
540 698
      for (int i = 0; i != _n; i++) {
541 699
        if (!row[i]) _delta[i]++;
542 700
      }
543 701
    }
544 702

	
... ...
@@ -577,48 +735,50 @@
577 735
      _size = 0;
578 736
      _best_clique.clear();
579 737
      _best_clique.resize(_n, false);
580 738
      _best_size = 0;
581 739
      _delta.clear();
582 740
      _delta.resize(_n, 0);
583 741
      _tabu.clear();
584 742
      _tabu.resize(_n, false);
585 743
    }
586 744

	
587 745
    // Executes the algorithm
588 746
    template <typename SelectionRuleImpl>
589
    int start(int max_select) {
590
      // Options for the restart rule
591
      const bool delta_based_restart = true;
592
      const int restart_delta_limit = 4;
593

	
594
      if (_n == 0) return 0;
747
    TerminationCause start() {
748
      if (_n == 0) return SIZE_LIMIT;
595 749
      if (_n == 1) {
596 750
        _best_clique[0] = true;
597 751
        _best_size = 1;
598
        return _best_size;
752
        return SIZE_LIMIT;
599 753
      }
600 754

	
601
      // Iterated local search
755
      // Iterated local search algorithm
756
      const int max_size = _size_limit >= 0 ? _size_limit : _n;
757
      const int max_restart = _iteration_limit >= 0 ?
758
        _iteration_limit : std::numeric_limits<int>::max();
759
      const int max_select = _step_limit >= 0 ?
760
        _step_limit : std::numeric_limits<int>::max();
761

	
602 762
      SelectionRuleImpl sel_method(*this);
603
      int select = 0;
763
      int select = 0, restart = 0;
604 764
      IntVector restart_nodes;
605

	
606
      while (select < max_select) {
765
      while (select < max_select && restart < max_restart) {
607 766

	
608 767
        // Perturbation/restart
609
        if (delta_based_restart) {
768
        restart++;
769
        if (_delta_based_restart) {
610 770
          restart_nodes.clear();
611 771
          for (int i = 0; i != _n; i++) {
612
            if (_delta[i] >= restart_delta_limit)
772
            if (_delta[i] >= _restart_delta_limit)
613 773
              restart_nodes.push_back(i);
614 774
          }
615 775
        }
616 776
        int rs_node = -1;
617 777
        if (restart_nodes.size() > 0) {
618 778
          rs_node = restart_nodes[_rnd[restart_nodes.size()]];
619 779
        } else {
620 780
          rs_node = _rnd[_n];
621 781
        }
622 782
        BoolVector &row = _gr[rs_node];
623 783
        for (int i = 0; i != _n; i++) {
624 784
          if (_clique[i] && !row[i]) delCliqueNode(i);
... ...
@@ -654,27 +814,27 @@
654 814
            tabu_empty = false;
655 815
            if (--max_swap <= 0) break;
656 816
          }
657 817
          else if ((u = sel_method.nextAddNode()) != -1) {
658 818
            // Non-feasible add move
659 819
            addCliqueNode(u);
660 820
          }
661 821
          else break;
662 822
        }
663 823
        if (_size > _best_size) {
664 824
          _best_clique = _clique;
665 825
          _best_size = _size;
666
          if (_best_size == _n) return _best_size;
826
          if (_best_size >= max_size) return SIZE_LIMIT;
667 827
        }
668 828
        sel_method.update();
669 829
      }
670 830

	
671
      return _best_size;
831
      return (restart >= max_restart ? ITERATION_LIMIT : STEP_LIMIT);
672 832
    }
673 833

	
674 834
  }; //class GrossoLocatelliPullanMc
675 835

	
676 836
  ///@}
677 837

	
678 838
} //namespace lemon
679 839

	
680 840
#endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H
Ignore white space 24 line context
... ...
@@ -38,28 +38,28 @@
38 38

	
39 39
  /// \brief Implementation of the primal Network Simplex algorithm
40 40
  /// for finding a \ref min_cost_flow "minimum cost flow".
41 41
  ///
42 42
  /// \ref NetworkSimplex implements the primal Network Simplex algorithm
43 43
  /// for finding a \ref min_cost_flow "minimum cost flow"
44 44
  /// \ref amo93networkflows, \ref dantzig63linearprog,
45 45
  /// \ref kellyoneill91netsimplex.
46 46
  /// This algorithm is a highly efficient specialized version of the
47 47
  /// linear programming simplex method directly for the minimum cost
48 48
  /// flow problem.
49 49
  ///
50
  /// In general, %NetworkSimplex is the fastest implementation available
51
  /// in LEMON for this problem.
52
  /// Moreover, it supports both directions of the supply/demand inequality
53
  /// constraints. For more information, see \ref SupplyType.
50
  /// In general, \ref NetworkSimplex and \ref CostScaling are the fastest
51
  /// implementations available in LEMON for this problem.
52
  /// Furthermore, this class supports both directions of the supply/demand
53
  /// inequality constraints. For more information, see \ref SupplyType.
54 54
  ///
55 55
  /// Most of the parameters of the problem (except for the digraph)
56 56
  /// can be given using separate functions, and the algorithm can be
57 57
  /// executed using the \ref run() function. If some parameters are not
58 58
  /// specified, then default values will be used.
59 59
  ///
60 60
  /// \tparam GR The digraph type the algorithm runs on.
61 61
  /// \tparam V The number type used for flow amounts, capacity bounds
62 62
  /// and supply values in the algorithm. By default, it is \c int.
63 63
  /// \tparam C The number type used for costs and potentials in the
64 64
  /// algorithm. By default, it is the same as \c V.
65 65
  ///
... ...
@@ -117,25 +117,25 @@
117 117
      LEQ
118 118
    };
119 119

	
120 120
    /// \brief Constants for selecting the pivot rule.
121 121
    ///
122 122
    /// Enum type containing constants for selecting the pivot rule for
123 123
    /// the \ref run() function.
124 124
    ///
125 125
    /// \ref NetworkSimplex provides five different pivot rule
126 126
    /// implementations that significantly affect the running time
127 127
    /// of the algorithm.
128 128
    /// By default, \ref BLOCK_SEARCH "Block Search" is used, which
129
    /// proved to be the most efficient and the most robust on various
129
    /// turend out to be the most efficient and the most robust on various
130 130
    /// test inputs.
131 131
    /// However, another pivot rule can be selected using the \ref run()
132 132
    /// function with the proper parameter.
133 133
    enum PivotRule {
134 134

	
135 135
      /// The \e First \e Eligible pivot rule.
136 136
      /// The next eligible arc is selected in a wraparound fashion
137 137
      /// in every iteration.
138 138
      FIRST_ELIGIBLE,
139 139

	
140 140
      /// The \e Best \e Eligible pivot rule.
141 141
      /// The best eligible arc is selected in every iteration.
... ...
@@ -159,25 +159,25 @@
159 159
      /// candidate list and extends this list in every iteration.
160 160
      ALTERING_LIST
161 161
    };
162 162

	
163 163
  private:
164 164

	
165 165
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
166 166

	
167 167
    typedef std::vector<int> IntVector;
168 168
    typedef std::vector<Value> ValueVector;
169 169
    typedef std::vector<Cost> CostVector;
170 170
    typedef std::vector<signed char> CharVector;
171
    // Note: vector<signed char> is used instead of vector<ArcState> and 
171
    // Note: vector<signed char> is used instead of vector<ArcState> and
172 172
    // vector<ArcDirection> for efficiency reasons
173 173

	
174 174
    // State constants for arcs
175 175
    enum ArcState {
176 176
      STATE_UPPER = -1,
177 177
      STATE_TREE  =  0,
178 178
      STATE_LOWER =  1
179 179
    };
180 180

	
181 181
    // Direction constants for tree arcs
182 182
    enum ArcDirection {
183 183
      DIR_DOWN = -1,
... ...
@@ -726,41 +726,43 @@
726 726

	
727 727
    /// \brief Set the supply values of the nodes.
728 728
    ///
729 729
    /// This function sets the supply values of the nodes.
730 730
    /// If neither this function nor \ref stSupply() is used before
731 731
    /// calling \ref run(), the supply of each node will be set to zero.
732 732
    ///
733 733
    /// \param map A node map storing the supply values.
734 734
    /// Its \c Value type must be convertible to the \c Value type
735 735
    /// of the algorithm.
736 736
    ///
737 737
    /// \return <tt>(*this)</tt>
738
    ///
739
    /// \sa supplyType()
738 740
    template<typename SupplyMap>
739 741
    NetworkSimplex& supplyMap(const SupplyMap& map) {
740 742
      for (NodeIt n(_graph); n != INVALID; ++n) {
741 743
        _supply[_node_id[n]] = map[n];
742 744
      }
743 745
      return *this;
744 746
    }
745 747

	
746 748
    /// \brief Set single source and target nodes and a supply value.
747 749
    ///
748 750
    /// This function sets a single source node and a single target node
749 751
    /// and the required flow value.
750 752
    /// If neither this function nor \ref supplyMap() is used before
751 753
    /// calling \ref run(), the supply of each node will be set to zero.
752 754
    ///
753 755
    /// Using this function has the same effect as using \ref supplyMap()
754
    /// with such a map in which \c k is assigned to \c s, \c -k is
756
    /// with a map in which \c k is assigned to \c s, \c -k is
755 757
    /// assigned to \c t and all other nodes have zero supply value.
756 758
    ///
757 759
    /// \param s The source node.
758 760
    /// \param t The target node.
759 761
    /// \param k The required amount of flow from node \c s to node \c t
760 762
    /// (i.e. the supply of \c s and the demand of \c t).
761 763
    ///
762 764
    /// \return <tt>(*this)</tt>
763 765
    NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
764 766
      for (int i = 0; i != _node_num; ++i) {
765 767
        _supply[i] = 0;
766 768
      }
Ignore white space 24 line context
... ...
@@ -34,25 +34,25 @@
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup paths
37 37
  /// @{
38 38

	
39 39

	
40 40
  /// \brief A structure for representing directed paths in a digraph.
41 41
  ///
42 42
  /// A structure for representing directed path in a digraph.
43 43
  /// \tparam GR The digraph type in which the path is.
44 44
  ///
45 45
  /// In a sense, the path can be treated as a list of arcs. The
46
  /// lemon path type stores just this list. As a consequence, it
46
  /// LEMON path type stores just this list. As a consequence, it
47 47
  /// cannot enumerate the nodes of the path and the source node of
48 48
  /// a zero length path is undefined.
49 49
  ///
50 50
  /// This implementation is a back and front insertable and erasable
51 51
  /// path type. It can be indexed in O(1) time. The front and back
52 52
  /// insertion and erase is done in O(1) (amortized) time. The
53 53
  /// implementation uses two vectors for storing the front and back
54 54
  /// insertions.
55 55
  template <typename GR>
56 56
  class Path {
57 57
  public:
58 58

	
... ...
@@ -126,33 +126,33 @@
126 126
      const Path *path;
127 127
      int idx;
128 128
    };
129 129

	
130 130
    /// \brief Length of the path.
131 131
    int length() const { return head.size() + tail.size(); }
132 132
    /// \brief Return whether the path is empty.
133 133
    bool empty() const { return head.empty() && tail.empty(); }
134 134

	
135 135
    /// \brief Reset the path to an empty one.
136 136
    void clear() { head.clear(); tail.clear(); }
137 137

	
138
    /// \brief The nth arc.
138
    /// \brief The n-th arc.
139 139
    ///
140 140
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
141 141
    const Arc& nth(int n) const {
142 142
      return n < int(head.size()) ? *(head.rbegin() + n) :
143 143
        *(tail.begin() + (n - head.size()));
144 144
    }
145 145

	
146
    /// \brief Initialize arc iterator to point to the nth arc
146
    /// \brief Initialize arc iterator to point to the n-th arc
147 147
    ///
148 148
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
149 149
    ArcIt nthIt(int n) const {
150 150
      return ArcIt(*this, n);
151 151
    }
152 152

	
153 153
    /// \brief The first arc of the path
154 154
    const Arc& front() const {
155 155
      return head.empty() ? tail.front() : head.back();
156 156
    }
157 157

	
158 158
    /// \brief Add a new arc before the current path
... ...
@@ -222,25 +222,25 @@
222 222
  protected:
223 223
    typedef std::vector<Arc> Container;
224 224
    Container head, tail;
225 225

	
226 226
  };
227 227

	
228 228
  /// \brief A structure for representing directed paths in a digraph.
229 229
  ///
230 230
  /// A structure for representing directed path in a digraph.
231 231
  /// \tparam GR The digraph type in which the path is.
232 232
  ///
233 233
  /// In a sense, the path can be treated as a list of arcs. The
234
  /// lemon path type stores just this list. As a consequence it
234
  /// LEMON path type stores just this list. As a consequence it
235 235
  /// cannot enumerate the nodes in the path and the zero length paths
236 236
  /// cannot store the source.
237 237
  ///
238 238
  /// This implementation is a just back insertable and erasable path
239 239
  /// type. It can be indexed in O(1) time. The back insertion and
240 240
  /// erasure is amortized O(1) time. This implementation is faster
241 241
  /// then the \c Path type because it use just one vector for the
242 242
  /// arcs.
243 243
  template <typename GR>
244 244
  class SimplePath {
245 245
  public:
246 246

	
... ...
@@ -318,32 +318,32 @@
318 318
      const SimplePath *path;
319 319
      int idx;
320 320
    };
321 321

	
322 322
    /// \brief Length of the path.
323 323
    int length() const { return data.size(); }
324 324
    /// \brief Return true if the path is empty.
325 325
    bool empty() const { return data.empty(); }
326 326

	
327 327
    /// \brief Reset the path to an empty one.
328 328
    void clear() { data.clear(); }
329 329

	
330
    /// \brief The nth arc.
330
    /// \brief The n-th arc.
331 331
    ///
332 332
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
333 333
    const Arc& nth(int n) const {
334 334
      return data[n];
335 335
    }
336 336

	
337
    /// \brief  Initializes arc iterator to point to the nth arc.
337
    /// \brief  Initializes arc iterator to point to the n-th arc.
338 338
    ArcIt nthIt(int n) const {
339 339
      return ArcIt(*this, n);
340 340
    }
341 341

	
342 342
    /// \brief The first arc of the path.
343 343
    const Arc& front() const {
344 344
      return data.front();
345 345
    }
346 346

	
347 347
    /// \brief The last arc of the path.
348 348
    const Arc& back() const {
349 349
      return data.back();
... ...
@@ -386,25 +386,25 @@
386 386
  protected:
387 387
    typedef std::vector<Arc> Container;
388 388
    Container data;
389 389

	
390 390
  };
391 391

	
392 392
  /// \brief A structure for representing directed paths in a digraph.
393 393
  ///
394 394
  /// A structure for representing directed path in a digraph.
395 395
  /// \tparam GR The digraph type in which the path is.
396 396
  ///
397 397
  /// In a sense, the path can be treated as a list of arcs. The
398
  /// lemon path type stores just this list. As a consequence it
398
  /// LEMON path type stores just this list. As a consequence it
399 399
  /// cannot enumerate the nodes in the path and the zero length paths
400 400
  /// cannot store the source.
401 401
  ///
402 402
  /// This implementation is a back and front insertable and erasable
403 403
  /// path type. It can be indexed in O(k) time, where k is the rank
404 404
  /// of the arc in the path. The length can be computed in O(n)
405 405
  /// time. The front and back insertion and erasure is O(1) time
406 406
  /// and it can be splited and spliced in O(1) time.
407 407
  template <typename GR>
408 408
  class ListPath {
409 409
  public:
410 410

	
... ...
@@ -495,37 +495,37 @@
495 495
      /// Comparison operator
496 496
      bool operator==(const ArcIt& e) const { return node==e.node; }
497 497
      /// Comparison operator
498 498
      bool operator!=(const ArcIt& e) const { return node!=e.node; }
499 499
      /// Comparison operator
500 500
      bool operator<(const ArcIt& e) const { return node<e.node; }
501 501

	
502 502
    private:
503 503
      const ListPath *path;
504 504
      Node *node;
505 505
    };
506 506

	
507
    /// \brief The nth arc.
507
    /// \brief The n-th arc.
508 508
    ///
509
    /// This function looks for the nth arc in O(n) time.
509
    /// This function looks for the n-th arc in O(n) time.
510 510
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
511 511
    const Arc& nth(int n) const {
512 512
      Node *node = first;
513 513
      for (int i = 0; i < n; ++i) {
514 514
        node = node->next;
515 515
      }
516 516
      return node->arc;
517 517
    }
518 518

	
519
    /// \brief Initializes arc iterator to point to the nth arc.
519
    /// \brief Initializes arc iterator to point to the n-th arc.
520 520
    ArcIt nthIt(int n) const {
521 521
      Node *node = first;
522 522
      for (int i = 0; i < n; ++i) {
523 523
        node = node->next;
524 524
      }
525 525
      return ArcIt(*this, node);
526 526
    }
527 527

	
528 528
    /// \brief Length of the path.
529 529
    int length() const {
530 530
      int len = 0;
531 531
      Node *node = first;
... ...
@@ -726,25 +726,25 @@
726 726
        addFront(it);
727 727
      }
728 728
    }
729 729

	
730 730
  };
731 731

	
732 732
  /// \brief A structure for representing directed paths in a digraph.
733 733
  ///
734 734
  /// A structure for representing directed path in a digraph.
735 735
  /// \tparam GR The digraph type in which the path is.
736 736
  ///
737 737
  /// In a sense, the path can be treated as a list of arcs. The
738
  /// lemon path type stores just this list. As a consequence it
738
  /// LEMON path type stores just this list. As a consequence it
739 739
  /// cannot enumerate the nodes in the path and the source node of
740 740
  /// a zero length path is undefined.
741 741
  ///
742 742
  /// This implementation is completly static, i.e. it can be copy constucted
743 743
  /// or copy assigned from another path, but otherwise it cannot be
744 744
  /// modified.
745 745
  ///
746 746
  /// Being the the most memory efficient path type in LEMON,
747 747
  /// it is intented to be
748 748
  /// used when you want to store a large number of paths.
749 749
  template <typename GR>
750 750
  class StaticPath {
... ...
@@ -822,32 +822,32 @@
822 822
      /// Comparison operator
823 823
      bool operator==(const ArcIt& e) const { return idx==e.idx; }
824 824
      /// Comparison operator
825 825
      bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
826 826
      /// Comparison operator
827 827
      bool operator<(const ArcIt& e) const { return idx<e.idx; }
828 828

	
829 829
    private:
830 830
      const StaticPath *path;
831 831
      int idx;
832 832
    };
833 833

	
834
    /// \brief The nth arc.
834
    /// \brief The n-th arc.
835 835
    ///
836 836
    /// \pre \c n is in the <tt>[0..length() - 1]</tt> range.
837 837
    const Arc& nth(int n) const {
838 838
      return arcs[n];
839 839
    }
840 840

	
841
    /// \brief The arc iterator pointing to the nth arc.
841
    /// \brief The arc iterator pointing to the n-th arc.
842 842
    ArcIt nthIt(int n) const {
843 843
      return ArcIt(*this, n);
844 844
    }
845 845

	
846 846
    /// \brief The length of the path.
847 847
    int length() const { return len; }
848 848

	
849 849
    /// \brief Return true when the path is empty.
850 850
    int empty() const { return len == 0; }
851 851

	
852 852
    /// \brief Erase all arcs in the digraph.
853 853
    void clear() {
... ...
@@ -1033,25 +1033,25 @@
1033 1033
  /// \brief The target of a path
1034 1034
  ///
1035 1035
  /// This function returns the target node of the given path.
1036 1036
  /// If the path is empty, then it returns \c INVALID.
1037 1037
  template <typename Digraph, typename Path>
1038 1038
  typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) {
1039 1039
    return path.empty() ? INVALID : digraph.target(path.back());
1040 1040
  }
1041 1041

	
1042 1042
  /// \brief Class which helps to iterate through the nodes of a path
1043 1043
  ///
1044 1044
  /// In a sense, the path can be treated as a list of arcs. The
1045
  /// lemon path type stores only this list. As a consequence, it
1045
  /// LEMON path type stores only this list. As a consequence, it
1046 1046
  /// cannot enumerate the nodes in the path and the zero length paths
1047 1047
  /// cannot have a source node.
1048 1048
  ///
1049 1049
  /// This class implements the node iterator of a path structure. To
1050 1050
  /// provide this feature, the underlying digraph should be passed to
1051 1051
  /// the constructor of the iterator.
1052 1052
  template <typename Path>
1053 1053
  class PathNodeIt {
1054 1054
  private:
1055 1055
    const typename Path::Digraph *_digraph;
1056 1056
    typename Path::ArcIt _it;
1057 1057
    typename Path::Digraph::Node _nd;
Ignore white space 24 line context
... ...
@@ -49,128 +49,140 @@
49 49
  "3 4     8\n"
50 50
  "3 5     9\n"
51 51
  "4 5    10\n"
52 52
  "4 6    11\n"
53 53
  "4 7    12\n"
54 54
  "5 6    13\n"
55 55
  "5 7    14\n"
56 56
  "6 7    15\n";
57 57
      
58 58

	
59 59
// Check with general graphs
60 60
template <typename Param>
61
void checkMaxCliqueGeneral(int max_sel, Param rule) {
61
void checkMaxCliqueGeneral(Param rule) {
62 62
  typedef ListGraph GR;
63 63
  typedef GrossoLocatelliPullanMc<GR> McAlg;
64 64
  typedef McAlg::CliqueNodeIt CliqueIt;
65 65
  
66 66
  // Basic tests
67 67
  {
68 68
    GR g;
69 69
    GR::NodeMap<bool> map(g);
70 70
    McAlg mc(g);
71
    check(mc.run(max_sel, rule) == 0, "Wrong clique size");
71
    mc.iterationLimit(50);
72
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
72 73
    check(mc.cliqueSize() == 0, "Wrong clique size");
73 74
    check(CliqueIt(mc) == INVALID, "Wrong CliqueNodeIt");
74 75

	
75 76
    GR::Node u = g.addNode();
76
    check(mc.run(max_sel, rule) == 1, "Wrong clique size");
77
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
77 78
    check(mc.cliqueSize() == 1, "Wrong clique size");
78 79
    mc.cliqueMap(map);
79 80
    check(map[u], "Wrong clique map");
80 81
    CliqueIt it1(mc);
81 82
    check(static_cast<GR::Node>(it1) == u && ++it1 == INVALID,
82 83
          "Wrong CliqueNodeIt");
83 84
    
84 85
    GR::Node v = g.addNode();
85
    check(mc.run(max_sel, rule) == 1, "Wrong clique size");
86
    check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause");
86 87
    check(mc.cliqueSize() == 1, "Wrong clique size");
87 88
    mc.cliqueMap(map);
88 89
    check((map[u] && !map[v]) || (map[v] && !map[u]), "Wrong clique map");
89 90
    CliqueIt it2(mc);
90 91
    check(it2 != INVALID && ++it2 == INVALID, "Wrong CliqueNodeIt");
91 92

	
92 93
    g.addEdge(u, v);
93
    check(mc.run(max_sel, rule) == 2, "Wrong clique size");
94
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
94 95
    check(mc.cliqueSize() == 2, "Wrong clique size");
95 96
    mc.cliqueMap(map);
96 97
    check(map[u] && map[v], "Wrong clique map");
97 98
    CliqueIt it3(mc);
98 99
    check(it3 != INVALID && ++it3 != INVALID && ++it3 == INVALID,
99 100
          "Wrong CliqueNodeIt");
100 101
  }
101 102

	
102 103
  // Test graph
103 104
  {
104 105
    GR g;
105 106
    GR::NodeMap<bool> max_clique(g);
106 107
    GR::NodeMap<bool> map(g);
107 108
    std::istringstream input(test_lgf);
108 109
    graphReader(g, input)
109 110
      .nodeMap("max_clique", max_clique)
110 111
      .run();
111 112
    
112 113
    McAlg mc(g);
113
    check(mc.run(max_sel, rule) == 4, "Wrong clique size");
114
    mc.iterationLimit(50);
115
    check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause");
114 116
    check(mc.cliqueSize() == 4, "Wrong clique size");
115 117
    mc.cliqueMap(map);
116 118
    for (GR::NodeIt n(g); n != INVALID; ++n) {
117 119
      check(map[n] == max_clique[n], "Wrong clique map");
118 120
    }
119 121
    int cnt = 0;
120 122
    for (CliqueIt n(mc); n != INVALID; ++n) {
121 123
      cnt++;
122 124
      check(map[n] && max_clique[n], "Wrong CliqueNodeIt");
123 125
    }
124 126
    check(cnt == 4, "Wrong CliqueNodeIt");
125 127
  }
126 128
}
127 129

	
128 130
// Check with full graphs
129 131
template <typename Param>
130
void checkMaxCliqueFullGraph(int max_sel, Param rule) {
132
void checkMaxCliqueFullGraph(Param rule) {
131 133
  typedef FullGraph GR;
132 134
  typedef GrossoLocatelliPullanMc<FullGraph> McAlg;
133 135
  typedef McAlg::CliqueNodeIt CliqueIt;
134 136
  
135 137
  for (int size = 0; size <= 40; size = size * 3 + 1) {
136 138
    GR g(size);
137 139
    GR::NodeMap<bool> map(g);
138 140
    McAlg mc(g);
139
    check(mc.run(max_sel, rule) == size, "Wrong clique size");
141
    check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause");
140 142
    check(mc.cliqueSize() == size, "Wrong clique size");
141 143
    mc.cliqueMap(map);
142 144
    for (GR::NodeIt n(g); n != INVALID; ++n) {
143 145
      check(map[n], "Wrong clique map");
144 146
    }
145 147
    int cnt = 0;
146 148
    for (CliqueIt n(mc); n != INVALID; ++n) cnt++;
147 149
    check(cnt == size, "Wrong CliqueNodeIt");
148 150
  }
149 151
}
150 152

	
151 153
// Check with grid graphs
152 154
template <typename Param>
153
void checkMaxCliqueGridGraph(int max_sel, Param rule) {
155
void checkMaxCliqueGridGraph(Param rule) {
154 156
  GridGraph g(5, 7);
155 157
  GridGraph::NodeMap<char> map(g);
156 158
  GrossoLocatelliPullanMc<GridGraph> mc(g);
157
  check(mc.run(max_sel, rule) == 2, "Wrong clique size");
159
  
160
  mc.iterationLimit(100);
161
  check(mc.run(rule) == mc.ITERATION_LIMIT, "Wrong termination cause");
162
  check(mc.cliqueSize() == 2, "Wrong clique size");
163

	
164
  mc.stepLimit(100);
165
  check(mc.run(rule) == mc.STEP_LIMIT, "Wrong termination cause");
166
  check(mc.cliqueSize() == 2, "Wrong clique size");
167

	
168
  mc.sizeLimit(2);
169
  check(mc.run(rule) == mc.SIZE_LIMIT, "Wrong termination cause");
158 170
  check(mc.cliqueSize() == 2, "Wrong clique size");
159 171
}
160 172

	
161 173

	
162 174
int main() {
163
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::RANDOM);
164
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED);
165
  checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED);
175
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::RANDOM);
176
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED);
177
  checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED);
166 178

	
167
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::RANDOM);
168
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED);
169
  checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED);
179
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::RANDOM);
180
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED);
181
  checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED);
170 182
                       
171
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::RANDOM);
172
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED);
173
  checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED);
183
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::RANDOM);
184
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED);
185
  checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED);
174 186
                       
175 187
  return 0;
176 188
}
0 comments (0 inline)