0
11
0
... | ... |
@@ -77,51 +77,51 @@ |
77 | 77 |
|
78 | 78 |
\code |
79 | 79 |
firstWordLowerCaseRestCapitalizedWithoutUnderscores |
80 | 80 |
\endcode |
81 | 81 |
|
82 | 82 |
\subsection cs-funcs Constants, Macros |
83 | 83 |
|
84 | 84 |
The names of constants and macros should look like the following. |
85 | 85 |
|
86 | 86 |
\code |
87 | 87 |
ALL_UPPER_CASE_WITH_UNDERSCORES |
88 | 88 |
\endcode |
89 | 89 |
|
90 | 90 |
\subsection cs-loc-var Class and instance member variables, auto variables |
91 | 91 |
|
92 | 92 |
The names of class and instance member variables and auto variables |
93 | 93 |
(=variables used locally in methods) should look like the following. |
94 | 94 |
|
95 | 95 |
\code |
96 | 96 |
all_lower_case_with_underscores |
97 | 97 |
\endcode |
98 | 98 |
|
99 | 99 |
\subsection pri-loc-var Private member variables |
100 | 100 |
|
101 |
Private member variables should start with underscore |
|
101 |
Private member variables should start with underscore. |
|
102 | 102 |
|
103 | 103 |
\code |
104 |
|
|
104 |
_start_with_underscore |
|
105 | 105 |
\endcode |
106 | 106 |
|
107 | 107 |
\subsection cs-excep Exceptions |
108 | 108 |
|
109 | 109 |
When writing exceptions please comply the following naming conventions. |
110 | 110 |
|
111 | 111 |
\code |
112 | 112 |
ClassNameEndsWithException |
113 | 113 |
\endcode |
114 | 114 |
|
115 | 115 |
or |
116 | 116 |
|
117 | 117 |
\code |
118 | 118 |
ClassNameEndsWithError |
119 | 119 |
\endcode |
120 | 120 |
|
121 | 121 |
\section header-template Template Header File |
122 | 122 |
|
123 | 123 |
Each LEMON header file should look like this: |
124 | 124 |
|
125 | 125 |
\include template.h |
126 | 126 |
|
127 | 127 |
*/ |
... | ... |
@@ -385,52 +385,52 @@ |
385 | 385 |
*/ |
386 | 386 |
|
387 | 387 |
/** |
388 | 388 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
389 | 389 |
@ingroup algs |
390 | 390 |
|
391 | 391 |
\brief Algorithms for finding minimum cost flows and circulations. |
392 | 392 |
|
393 | 393 |
This group contains the algorithms for finding minimum cost flows and |
394 | 394 |
circulations \ref amo93networkflows. For more information about this |
395 | 395 |
problem and its dual solution, see \ref min_cost_flow |
396 | 396 |
"Minimum Cost Flow Problem". |
397 | 397 |
|
398 | 398 |
LEMON contains several algorithms for this problem. |
399 | 399 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
400 | 400 |
pivot strategies \ref dantzig63linearprog, \ref kellyoneill91netsimplex. |
401 | 401 |
- \ref CostScaling Cost Scaling algorithm based on push/augment and |
402 | 402 |
relabel operations \ref goldberg90approximation, \ref goldberg97efficient, |
403 | 403 |
\ref bunnagel98efficient. |
404 | 404 |
- \ref CapacityScaling Capacity Scaling algorithm based on the successive |
405 | 405 |
shortest path method \ref edmondskarp72theoretical. |
406 | 406 |
- \ref CycleCanceling Cycle-Canceling algorithms, two of which are |
407 | 407 |
strongly polynomial \ref klein67primal, \ref goldberg89cyclecanceling. |
408 | 408 |
|
409 |
In general NetworkSimplex is the most efficient implementation, |
|
410 |
but in special cases other algorithms could be faster. |
|
409 |
In general, \ref NetworkSimplex and \ref CostScaling are the most efficient |
|
410 |
implementations, but the other two algorithms could be faster in special cases. |
|
411 | 411 |
For example, if the total supply and/or capacities are rather small, |
412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
412 |
\ref CapacityScaling is usually the fastest algorithm (without effective scaling). |
|
413 | 413 |
*/ |
414 | 414 |
|
415 | 415 |
/** |
416 | 416 |
@defgroup min_cut Minimum Cut Algorithms |
417 | 417 |
@ingroup algs |
418 | 418 |
|
419 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
420 | 420 |
|
421 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
422 | 422 |
|
423 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
424 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
425 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
426 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
427 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
428 | 428 |
|
429 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
430 | 430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
431 | 431 |
|
432 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
433 | 433 |
|
434 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
435 | 435 |
in directed graphs. |
436 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
... | ... |
@@ -450,49 +450,49 @@ |
450 | 450 |
This group contains the algorithms for finding minimum mean cycles |
451 | 451 |
\ref clrs01algorithms, \ref amo93networkflows. |
452 | 452 |
|
453 | 453 |
The \e minimum \e mean \e cycle \e problem is to find a directed cycle |
454 | 454 |
of minimum mean length (cost) in a digraph. |
455 | 455 |
The mean length of a cycle is the average length of its arcs, i.e. the |
456 | 456 |
ratio between the total length of the cycle and the number of arcs on it. |
457 | 457 |
|
458 | 458 |
This problem has an important connection to \e conservative \e length |
459 | 459 |
\e functions, too. A length function on the arcs of a digraph is called |
460 | 460 |
conservative if and only if there is no directed cycle of negative total |
461 | 461 |
length. For an arbitrary length function, the negative of the minimum |
462 | 462 |
cycle mean is the smallest \f$\epsilon\f$ value so that increasing the |
463 | 463 |
arc lengths uniformly by \f$\epsilon\f$ results in a conservative length |
464 | 464 |
function. |
465 | 465 |
|
466 | 466 |
LEMON contains three algorithms for solving the minimum mean cycle problem: |
467 | 467 |
- \ref KarpMmc Karp's original algorithm \ref amo93networkflows, |
468 | 468 |
\ref dasdan98minmeancycle. |
469 | 469 |
- \ref HartmannOrlinMmc Hartmann-Orlin's algorithm, which is an improved |
470 | 470 |
version of Karp's algorithm \ref dasdan98minmeancycle. |
471 | 471 |
- \ref HowardMmc Howard's policy iteration algorithm |
472 | 472 |
\ref dasdan98minmeancycle. |
473 | 473 |
|
474 |
In practice, the \ref HowardMmc "Howard" algorithm |
|
474 |
In practice, the \ref HowardMmc "Howard" algorithm turned out to be by far the |
|
475 | 475 |
most efficient one, though the best known theoretical bound on its running |
476 | 476 |
time is exponential. |
477 | 477 |
Both \ref KarpMmc "Karp" and \ref HartmannOrlinMmc "Hartmann-Orlin" algorithms |
478 | 478 |
run in time O(ne) and use space O(n<sup>2</sup>+e), but the latter one is |
479 | 479 |
typically faster due to the applied early termination scheme. |
480 | 480 |
*/ |
481 | 481 |
|
482 | 482 |
/** |
483 | 483 |
@defgroup matching Matching Algorithms |
484 | 484 |
@ingroup algs |
485 | 485 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
486 | 486 |
|
487 | 487 |
This group contains the algorithms for calculating |
488 | 488 |
matchings in graphs and bipartite graphs. The general matching problem is |
489 | 489 |
finding a subset of the edges for which each node has at most one incident |
490 | 490 |
edge. |
491 | 491 |
|
492 | 492 |
There are several different algorithms for calculate matchings in |
493 | 493 |
graphs. The matching problems in bipartite graphs are generally |
494 | 494 |
easier than in general graphs. The goal of the matching optimization |
495 | 495 |
can be finding maximum cardinality, maximum weight or minimum cost |
496 | 496 |
matching. The search can be constrained to find perfect or |
497 | 497 |
maximum cardinality matching. |
498 | 498 |
|
... | ... |
@@ -518,49 +518,49 @@ |
518 | 518 |
maximum cardinality fractional matching in general graphs. |
519 | 519 |
- \ref MaxWeightedFractionalMatching Augmenting path algorithm for calculating |
520 | 520 |
maximum weighted fractional matching in general graphs. |
521 | 521 |
- \ref MaxWeightedPerfectFractionalMatching |
522 | 522 |
Augmenting path algorithm for calculating maximum weighted |
523 | 523 |
perfect fractional matching in general graphs. |
524 | 524 |
|
525 | 525 |
\image html matching.png |
526 | 526 |
\image latex matching.eps "Min Cost Perfect Matching" width=\textwidth |
527 | 527 |
*/ |
528 | 528 |
|
529 | 529 |
/** |
530 | 530 |
@defgroup graph_properties Connectivity and Other Graph Properties |
531 | 531 |
@ingroup algs |
532 | 532 |
\brief Algorithms for discovering the graph properties |
533 | 533 |
|
534 | 534 |
This group contains the algorithms for discovering the graph properties |
535 | 535 |
like connectivity, bipartiteness, euler property, simplicity etc. |
536 | 536 |
|
537 | 537 |
\image html connected_components.png |
538 | 538 |
\image latex connected_components.eps "Connected components" width=\textwidth |
539 | 539 |
*/ |
540 | 540 |
|
541 | 541 |
/** |
542 |
@defgroup planar |
|
542 |
@defgroup planar Planar Embedding and Drawing |
|
543 | 543 |
@ingroup algs |
544 | 544 |
\brief Algorithms for planarity checking, embedding and drawing |
545 | 545 |
|
546 | 546 |
This group contains the algorithms for planarity checking, |
547 | 547 |
embedding and drawing. |
548 | 548 |
|
549 | 549 |
\image html planar.png |
550 | 550 |
\image latex planar.eps "Plane graph" width=\textwidth |
551 | 551 |
*/ |
552 | 552 |
|
553 | 553 |
/** |
554 | 554 |
@defgroup approx_algs Approximation Algorithms |
555 | 555 |
@ingroup algs |
556 | 556 |
\brief Approximation algorithms. |
557 | 557 |
|
558 | 558 |
This group contains the approximation and heuristic algorithms |
559 | 559 |
implemented in LEMON. |
560 | 560 |
|
561 | 561 |
<b>Maximum Clique Problem</b> |
562 | 562 |
- \ref GrossoLocatelliPullanMc An efficient heuristic algorithm of |
563 | 563 |
Grosso, Locatelli, and Pullan. |
564 | 564 |
*/ |
565 | 565 |
|
566 | 566 |
/** |
... | ... |
@@ -68,50 +68,50 @@ |
68 | 68 |
/// of the successive shortest path algorithm for finding a |
69 | 69 |
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
70 | 70 |
/// \ref edmondskarp72theoretical. It is an efficient dual |
71 | 71 |
/// solution method. |
72 | 72 |
/// |
73 | 73 |
/// Most of the parameters of the problem (except for the digraph) |
74 | 74 |
/// can be given using separate functions, and the algorithm can be |
75 | 75 |
/// executed using the \ref run() function. If some parameters are not |
76 | 76 |
/// specified, then default values will be used. |
77 | 77 |
/// |
78 | 78 |
/// \tparam GR The digraph type the algorithm runs on. |
79 | 79 |
/// \tparam V The number type used for flow amounts, capacity bounds |
80 | 80 |
/// and supply values in the algorithm. By default, it is \c int. |
81 | 81 |
/// \tparam C The number type used for costs and potentials in the |
82 | 82 |
/// algorithm. By default, it is the same as \c V. |
83 | 83 |
/// \tparam TR The traits class that defines various types used by the |
84 | 84 |
/// algorithm. By default, it is \ref CapacityScalingDefaultTraits |
85 | 85 |
/// "CapacityScalingDefaultTraits<GR, V, C>". |
86 | 86 |
/// In most cases, this parameter should not be set directly, |
87 | 87 |
/// consider to use the named template parameters instead. |
88 | 88 |
/// |
89 | 89 |
/// \warning Both \c V and \c C must be signed number types. |
90 | 90 |
/// \warning All input data (capacities, supply values, and costs) must |
91 | 91 |
/// be integer. |
92 |
/// \warning This algorithm does not support negative costs for such |
|
93 |
/// arcs that have infinite upper bound. |
|
92 |
/// \warning This algorithm does not support negative costs for |
|
93 |
/// arcs having infinite upper bound. |
|
94 | 94 |
#ifdef DOXYGEN |
95 | 95 |
template <typename GR, typename V, typename C, typename TR> |
96 | 96 |
#else |
97 | 97 |
template < typename GR, typename V = int, typename C = V, |
98 | 98 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
99 | 99 |
#endif |
100 | 100 |
class CapacityScaling |
101 | 101 |
{ |
102 | 102 |
public: |
103 | 103 |
|
104 | 104 |
/// The type of the digraph |
105 | 105 |
typedef typename TR::Digraph Digraph; |
106 | 106 |
/// The type of the flow amounts, capacity bounds and supply values |
107 | 107 |
typedef typename TR::Value Value; |
108 | 108 |
/// The type of the arc costs |
109 | 109 |
typedef typename TR::Cost Cost; |
110 | 110 |
|
111 | 111 |
/// The type of the heap used for internal Dijkstra computations |
112 | 112 |
typedef typename TR::Heap Heap; |
113 | 113 |
|
114 | 114 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
115 | 115 |
typedef TR Traits; |
116 | 116 |
|
117 | 117 |
public: |
... | ... |
@@ -402,49 +402,49 @@ |
402 | 402 |
/// If neither this function nor \ref stSupply() is used before |
403 | 403 |
/// calling \ref run(), the supply of each node will be set to zero. |
404 | 404 |
/// |
405 | 405 |
/// \param map A node map storing the supply values. |
406 | 406 |
/// Its \c Value type must be convertible to the \c Value type |
407 | 407 |
/// of the algorithm. |
408 | 408 |
/// |
409 | 409 |
/// \return <tt>(*this)</tt> |
410 | 410 |
template<typename SupplyMap> |
411 | 411 |
CapacityScaling& supplyMap(const SupplyMap& map) { |
412 | 412 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
413 | 413 |
_supply[_node_id[n]] = map[n]; |
414 | 414 |
} |
415 | 415 |
return *this; |
416 | 416 |
} |
417 | 417 |
|
418 | 418 |
/// \brief Set single source and target nodes and a supply value. |
419 | 419 |
/// |
420 | 420 |
/// This function sets a single source node and a single target node |
421 | 421 |
/// and the required flow value. |
422 | 422 |
/// If neither this function nor \ref supplyMap() is used before |
423 | 423 |
/// calling \ref run(), the supply of each node will be set to zero. |
424 | 424 |
/// |
425 | 425 |
/// Using this function has the same effect as using \ref supplyMap() |
426 |
/// with |
|
426 |
/// with a map in which \c k is assigned to \c s, \c -k is |
|
427 | 427 |
/// assigned to \c t and all other nodes have zero supply value. |
428 | 428 |
/// |
429 | 429 |
/// \param s The source node. |
430 | 430 |
/// \param t The target node. |
431 | 431 |
/// \param k The required amount of flow from node \c s to node \c t |
432 | 432 |
/// (i.e. the supply of \c s and the demand of \c t). |
433 | 433 |
/// |
434 | 434 |
/// \return <tt>(*this)</tt> |
435 | 435 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { |
436 | 436 |
for (int i = 0; i != _node_num; ++i) { |
437 | 437 |
_supply[i] = 0; |
438 | 438 |
} |
439 | 439 |
_supply[_node_id[s]] = k; |
440 | 440 |
_supply[_node_id[t]] = -k; |
441 | 441 |
return *this; |
442 | 442 |
} |
443 | 443 |
|
444 | 444 |
/// @} |
445 | 445 |
|
446 | 446 |
/// \name Execution control |
447 | 447 |
/// The algorithm can be executed using \ref run(). |
448 | 448 |
|
449 | 449 |
/// @{ |
450 | 450 |
... | ... |
@@ -426,49 +426,49 @@ |
426 | 426 |
for (typename From::NodeIt it(from); it != INVALID; ++it) { |
427 | 427 |
nodeRefMap[it] = to.addNode(); |
428 | 428 |
} |
429 | 429 |
for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
430 | 430 |
edgeRefMap[it] = to.addEdge(nodeRefMap[from.u(it)], |
431 | 431 |
nodeRefMap[from.v(it)]); |
432 | 432 |
} |
433 | 433 |
} |
434 | 434 |
}; |
435 | 435 |
|
436 | 436 |
template <typename Graph> |
437 | 437 |
struct GraphCopySelector< |
438 | 438 |
Graph, |
439 | 439 |
typename enable_if<typename Graph::BuildTag, void>::type> |
440 | 440 |
{ |
441 | 441 |
template <typename From, typename NodeRefMap, typename EdgeRefMap> |
442 | 442 |
static void copy(const From& from, Graph &to, |
443 | 443 |
NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
444 | 444 |
to.build(from, nodeRefMap, edgeRefMap); |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
} |
449 | 449 |
|
450 |
/// Check whether a graph is undirected. |
|
450 |
/// \brief Check whether a graph is undirected. |
|
451 | 451 |
/// |
452 | 452 |
/// This function returns \c true if the given graph is undirected. |
453 | 453 |
#ifdef DOXYGEN |
454 | 454 |
template <typename GR> |
455 | 455 |
bool undirected(const GR& g) { return false; } |
456 | 456 |
#else |
457 | 457 |
template <typename GR> |
458 | 458 |
typename enable_if<UndirectedTagIndicator<GR>, bool>::type |
459 | 459 |
undirected(const GR&) { |
460 | 460 |
return true; |
461 | 461 |
} |
462 | 462 |
template <typename GR> |
463 | 463 |
typename disable_if<UndirectedTagIndicator<GR>, bool>::type |
464 | 464 |
undirected(const GR&) { |
465 | 465 |
return false; |
466 | 466 |
} |
467 | 467 |
#endif |
468 | 468 |
|
469 | 469 |
/// \brief Class to copy a digraph. |
470 | 470 |
/// |
471 | 471 |
/// Class to copy a digraph to another digraph (duplicate a digraph). The |
472 | 472 |
/// simplest way of using it is through the \c digraphCopy() function. |
473 | 473 |
/// |
474 | 474 |
/// This class not only make a copy of a digraph, but it can create |
... | ... |
@@ -76,69 +76,72 @@ |
76 | 76 |
typedef V Value; |
77 | 77 |
typedef C Cost; |
78 | 78 |
#ifdef LEMON_HAVE_LONG_LONG |
79 | 79 |
typedef long long LargeCost; |
80 | 80 |
#else |
81 | 81 |
typedef long LargeCost; |
82 | 82 |
#endif |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// \addtogroup min_cost_flow_algs |
87 | 87 |
/// @{ |
88 | 88 |
|
89 | 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
90 | 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
91 | 91 |
/// |
92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
93 | 93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
94 | 94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
95 | 95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
96 | 96 |
/// It is a highly efficient primal-dual solution method, which |
97 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
98 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
99 | 99 |
/// |
100 |
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest |
|
101 |
/// implementations available in LEMON for this problem. |
|
102 |
/// |
|
100 | 103 |
/// Most of the parameters of the problem (except for the digraph) |
101 | 104 |
/// can be given using separate functions, and the algorithm can be |
102 | 105 |
/// executed using the \ref run() function. If some parameters are not |
103 | 106 |
/// specified, then default values will be used. |
104 | 107 |
/// |
105 | 108 |
/// \tparam GR The digraph type the algorithm runs on. |
106 | 109 |
/// \tparam V The number type used for flow amounts, capacity bounds |
107 | 110 |
/// and supply values in the algorithm. By default, it is \c int. |
108 | 111 |
/// \tparam C The number type used for costs and potentials in the |
109 | 112 |
/// algorithm. By default, it is the same as \c V. |
110 | 113 |
/// \tparam TR The traits class that defines various types used by the |
111 | 114 |
/// algorithm. By default, it is \ref CostScalingDefaultTraits |
112 | 115 |
/// "CostScalingDefaultTraits<GR, V, C>". |
113 | 116 |
/// In most cases, this parameter should not be set directly, |
114 | 117 |
/// consider to use the named template parameters instead. |
115 | 118 |
/// |
116 | 119 |
/// \warning Both \c V and \c C must be signed number types. |
117 | 120 |
/// \warning All input data (capacities, supply values, and costs) must |
118 | 121 |
/// be integer. |
119 |
/// \warning This algorithm does not support negative costs for such |
|
120 |
/// arcs that have infinite upper bound. |
|
122 |
/// \warning This algorithm does not support negative costs for |
|
123 |
/// arcs having infinite upper bound. |
|
121 | 124 |
/// |
122 | 125 |
/// \note %CostScaling provides three different internal methods, |
123 | 126 |
/// from which the most efficient one is used by default. |
124 | 127 |
/// For more information, see \ref Method. |
125 | 128 |
#ifdef DOXYGEN |
126 | 129 |
template <typename GR, typename V, typename C, typename TR> |
127 | 130 |
#else |
128 | 131 |
template < typename GR, typename V = int, typename C = V, |
129 | 132 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
130 | 133 |
#endif |
131 | 134 |
class CostScaling |
132 | 135 |
{ |
133 | 136 |
public: |
134 | 137 |
|
135 | 138 |
/// The type of the digraph |
136 | 139 |
typedef typename TR::Digraph Digraph; |
137 | 140 |
/// The type of the flow amounts, capacity bounds and supply values |
138 | 141 |
typedef typename TR::Value Value; |
139 | 142 |
/// The type of the arc costs |
140 | 143 |
typedef typename TR::Cost Cost; |
141 | 144 |
|
142 | 145 |
/// \brief The large cost type |
143 | 146 |
/// |
144 | 147 |
/// The large cost type used for internal computations. |
... | ... |
@@ -158,49 +161,49 @@ |
158 | 161 |
enum ProblemType { |
159 | 162 |
/// The problem has no feasible solution (flow). |
160 | 163 |
INFEASIBLE, |
161 | 164 |
/// The problem has optimal solution (i.e. it is feasible and |
162 | 165 |
/// bounded), and the algorithm has found optimal flow and node |
163 | 166 |
/// potentials (primal and dual solutions). |
164 | 167 |
OPTIMAL, |
165 | 168 |
/// The digraph contains an arc of negative cost and infinite |
166 | 169 |
/// upper bound. It means that the objective function is unbounded |
167 | 170 |
/// on that arc, however, note that it could actually be bounded |
168 | 171 |
/// over the feasible flows, but this algroithm cannot handle |
169 | 172 |
/// these cases. |
170 | 173 |
UNBOUNDED |
171 | 174 |
}; |
172 | 175 |
|
173 | 176 |
/// \brief Constants for selecting the internal method. |
174 | 177 |
/// |
175 | 178 |
/// Enum type containing constants for selecting the internal method |
176 | 179 |
/// for the \ref run() function. |
177 | 180 |
/// |
178 | 181 |
/// \ref CostScaling provides three internal methods that differ mainly |
179 | 182 |
/// in their base operations, which are used in conjunction with the |
180 | 183 |
/// relabel operation. |
181 | 184 |
/// By default, the so called \ref PARTIAL_AUGMENT |
182 |
/// "Partial Augment-Relabel" method is used, which |
|
185 |
/// "Partial Augment-Relabel" method is used, which turned out to be |
|
183 | 186 |
/// the most efficient and the most robust on various test inputs. |
184 | 187 |
/// However, the other methods can be selected using the \ref run() |
185 | 188 |
/// function with the proper parameter. |
186 | 189 |
enum Method { |
187 | 190 |
/// Local push operations are used, i.e. flow is moved only on one |
188 | 191 |
/// admissible arc at once. |
189 | 192 |
PUSH, |
190 | 193 |
/// Augment operations are used, i.e. flow is moved on admissible |
191 | 194 |
/// paths from a node with excess to a node with deficit. |
192 | 195 |
AUGMENT, |
193 | 196 |
/// Partial augment operations are used, i.e. flow is moved on |
194 | 197 |
/// admissible paths started from a node with excess, but the |
195 | 198 |
/// lengths of these paths are limited. This method can be viewed |
196 | 199 |
/// as a combined version of the previous two operations. |
197 | 200 |
PARTIAL_AUGMENT |
198 | 201 |
}; |
199 | 202 |
|
200 | 203 |
private: |
201 | 204 |
|
202 | 205 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
203 | 206 |
|
204 | 207 |
typedef std::vector<int> IntVector; |
205 | 208 |
typedef std::vector<Value> ValueVector; |
206 | 209 |
typedef std::vector<Cost> CostVector; |
... | ... |
@@ -427,49 +430,49 @@ |
427 | 430 |
/// If neither this function nor \ref stSupply() is used before |
428 | 431 |
/// calling \ref run(), the supply of each node will be set to zero. |
429 | 432 |
/// |
430 | 433 |
/// \param map A node map storing the supply values. |
431 | 434 |
/// Its \c Value type must be convertible to the \c Value type |
432 | 435 |
/// of the algorithm. |
433 | 436 |
/// |
434 | 437 |
/// \return <tt>(*this)</tt> |
435 | 438 |
template<typename SupplyMap> |
436 | 439 |
CostScaling& supplyMap(const SupplyMap& map) { |
437 | 440 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
438 | 441 |
_supply[_node_id[n]] = map[n]; |
439 | 442 |
} |
440 | 443 |
return *this; |
441 | 444 |
} |
442 | 445 |
|
443 | 446 |
/// \brief Set single source and target nodes and a supply value. |
444 | 447 |
/// |
445 | 448 |
/// This function sets a single source node and a single target node |
446 | 449 |
/// and the required flow value. |
447 | 450 |
/// If neither this function nor \ref supplyMap() is used before |
448 | 451 |
/// calling \ref run(), the supply of each node will be set to zero. |
449 | 452 |
/// |
450 | 453 |
/// Using this function has the same effect as using \ref supplyMap() |
451 |
/// with |
|
454 |
/// with a map in which \c k is assigned to \c s, \c -k is |
|
452 | 455 |
/// assigned to \c t and all other nodes have zero supply value. |
453 | 456 |
/// |
454 | 457 |
/// \param s The source node. |
455 | 458 |
/// \param t The target node. |
456 | 459 |
/// \param k The required amount of flow from node \c s to node \c t |
457 | 460 |
/// (i.e. the supply of \c s and the demand of \c t). |
458 | 461 |
/// |
459 | 462 |
/// \return <tt>(*this)</tt> |
460 | 463 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) { |
461 | 464 |
for (int i = 0; i != _res_node_num; ++i) { |
462 | 465 |
_supply[i] = 0; |
463 | 466 |
} |
464 | 467 |
_supply[_node_id[s]] = k; |
465 | 468 |
_supply[_node_id[t]] = -k; |
466 | 469 |
return *this; |
467 | 470 |
} |
468 | 471 |
|
469 | 472 |
/// @} |
470 | 473 |
|
471 | 474 |
/// \name Execution control |
472 | 475 |
/// The algorithm can be executed using \ref run(). |
473 | 476 |
|
474 | 477 |
/// @{ |
475 | 478 |
... | ... |
@@ -47,99 +47,98 @@ |
47 | 47 |
/// \ref CycleCanceling implements three different cycle-canceling |
48 | 48 |
/// algorithms for finding a \ref min_cost_flow "minimum cost flow" |
49 | 49 |
/// \ref amo93networkflows, \ref klein67primal, |
50 | 50 |
/// \ref goldberg89cyclecanceling. |
51 | 51 |
/// The most efficent one (both theoretically and practically) |
52 | 52 |
/// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm, |
53 | 53 |
/// thus it is the default method. |
54 | 54 |
/// It is strongly polynomial, but in practice, it is typically much |
55 | 55 |
/// slower than the scaling algorithms and NetworkSimplex. |
56 | 56 |
/// |
57 | 57 |
/// Most of the parameters of the problem (except for the digraph) |
58 | 58 |
/// can be given using separate functions, and the algorithm can be |
59 | 59 |
/// executed using the \ref run() function. If some parameters are not |
60 | 60 |
/// specified, then default values will be used. |
61 | 61 |
/// |
62 | 62 |
/// \tparam GR The digraph type the algorithm runs on. |
63 | 63 |
/// \tparam V The number type used for flow amounts, capacity bounds |
64 | 64 |
/// and supply values in the algorithm. By default, it is \c int. |
65 | 65 |
/// \tparam C The number type used for costs and potentials in the |
66 | 66 |
/// algorithm. By default, it is the same as \c V. |
67 | 67 |
/// |
68 | 68 |
/// \warning Both \c V and \c C must be signed number types. |
69 | 69 |
/// \warning All input data (capacities, supply values, and costs) must |
70 | 70 |
/// be integer. |
71 |
/// \warning This algorithm does not support negative costs for such |
|
72 |
/// arcs that have infinite upper bound. |
|
71 |
/// \warning This algorithm does not support negative costs for |
|
72 |
/// arcs having infinite upper bound. |
|
73 | 73 |
/// |
74 | 74 |
/// \note For more information about the three available methods, |
75 | 75 |
/// see \ref Method. |
76 | 76 |
#ifdef DOXYGEN |
77 | 77 |
template <typename GR, typename V, typename C> |
78 | 78 |
#else |
79 | 79 |
template <typename GR, typename V = int, typename C = V> |
80 | 80 |
#endif |
81 | 81 |
class CycleCanceling |
82 | 82 |
{ |
83 | 83 |
public: |
84 | 84 |
|
85 | 85 |
/// The type of the digraph |
86 | 86 |
typedef GR Digraph; |
87 | 87 |
/// The type of the flow amounts, capacity bounds and supply values |
88 | 88 |
typedef V Value; |
89 | 89 |
/// The type of the arc costs |
90 | 90 |
typedef C Cost; |
91 | 91 |
|
92 | 92 |
public: |
93 | 93 |
|
94 | 94 |
/// \brief Problem type constants for the \c run() function. |
95 | 95 |
/// |
96 | 96 |
/// Enum type containing the problem type constants that can be |
97 | 97 |
/// returned by the \ref run() function of the algorithm. |
98 | 98 |
enum ProblemType { |
99 | 99 |
/// The problem has no feasible solution (flow). |
100 | 100 |
INFEASIBLE, |
101 | 101 |
/// The problem has optimal solution (i.e. it is feasible and |
102 | 102 |
/// bounded), and the algorithm has found optimal flow and node |
103 | 103 |
/// potentials (primal and dual solutions). |
104 | 104 |
OPTIMAL, |
105 | 105 |
/// The digraph contains an arc of negative cost and infinite |
106 | 106 |
/// upper bound. It means that the objective function is unbounded |
107 | 107 |
/// on that arc, however, note that it could actually be bounded |
108 | 108 |
/// over the feasible flows, but this algroithm cannot handle |
109 | 109 |
/// these cases. |
110 | 110 |
UNBOUNDED |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
/// \brief Constants for selecting the used method. |
114 | 114 |
/// |
115 | 115 |
/// Enum type containing constants for selecting the used method |
116 | 116 |
/// for the \ref run() function. |
117 | 117 |
/// |
118 | 118 |
/// \ref CycleCanceling provides three different cycle-canceling |
119 | 119 |
/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" |
120 |
/// is used, which proved to be the most efficient and the most robust |
|
121 |
/// on various test inputs. |
|
120 |
/// is used, which is by far the most efficient and the most robust. |
|
122 | 121 |
/// However, the other methods can be selected using the \ref run() |
123 | 122 |
/// function with the proper parameter. |
124 | 123 |
enum Method { |
125 | 124 |
/// A simple cycle-canceling method, which uses the |
126 | 125 |
/// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration |
127 | 126 |
/// number for detecting negative cycles in the residual network. |
128 | 127 |
SIMPLE_CYCLE_CANCELING, |
129 | 128 |
/// The "Minimum Mean Cycle-Canceling" algorithm, which is a |
130 | 129 |
/// well-known strongly polynomial method |
131 | 130 |
/// \ref goldberg89cyclecanceling. It improves along a |
132 | 131 |
/// \ref min_mean_cycle "minimum mean cycle" in each iteration. |
133 | 132 |
/// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)). |
134 | 133 |
MINIMUM_MEAN_CYCLE_CANCELING, |
135 | 134 |
/// The "Cancel And Tighten" algorithm, which can be viewed as an |
136 | 135 |
/// improved version of the previous method |
137 | 136 |
/// \ref goldberg89cyclecanceling. |
138 | 137 |
/// It is faster both in theory and in practice, its running time |
139 | 138 |
/// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)). |
140 | 139 |
CANCEL_AND_TIGHTEN |
141 | 140 |
}; |
142 | 141 |
|
143 | 142 |
private: |
144 | 143 |
|
145 | 144 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
... | ... |
@@ -329,49 +328,49 @@ |
329 | 328 |
/// If neither this function nor \ref stSupply() is used before |
330 | 329 |
/// calling \ref run(), the supply of each node will be set to zero. |
331 | 330 |
/// |
332 | 331 |
/// \param map A node map storing the supply values. |
333 | 332 |
/// Its \c Value type must be convertible to the \c Value type |
334 | 333 |
/// of the algorithm. |
335 | 334 |
/// |
336 | 335 |
/// \return <tt>(*this)</tt> |
337 | 336 |
template<typename SupplyMap> |
338 | 337 |
CycleCanceling& supplyMap(const SupplyMap& map) { |
339 | 338 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
340 | 339 |
_supply[_node_id[n]] = map[n]; |
341 | 340 |
} |
342 | 341 |
return *this; |
343 | 342 |
} |
344 | 343 |
|
345 | 344 |
/// \brief Set single source and target nodes and a supply value. |
346 | 345 |
/// |
347 | 346 |
/// This function sets a single source node and a single target node |
348 | 347 |
/// and the required flow value. |
349 | 348 |
/// If neither this function nor \ref supplyMap() is used before |
350 | 349 |
/// calling \ref run(), the supply of each node will be set to zero. |
351 | 350 |
/// |
352 | 351 |
/// Using this function has the same effect as using \ref supplyMap() |
353 |
/// with |
|
352 |
/// with a map in which \c k is assigned to \c s, \c -k is |
|
354 | 353 |
/// assigned to \c t and all other nodes have zero supply value. |
355 | 354 |
/// |
356 | 355 |
/// \param s The source node. |
357 | 356 |
/// \param t The target node. |
358 | 357 |
/// \param k The required amount of flow from node \c s to node \c t |
359 | 358 |
/// (i.e. the supply of \c s and the demand of \c t). |
360 | 359 |
/// |
361 | 360 |
/// \return <tt>(*this)</tt> |
362 | 361 |
CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { |
363 | 362 |
for (int i = 0; i != _res_node_num; ++i) { |
364 | 363 |
_supply[i] = 0; |
365 | 364 |
} |
366 | 365 |
_supply[_node_id[s]] = k; |
367 | 366 |
_supply[_node_id[t]] = -k; |
368 | 367 |
return *this; |
369 | 368 |
} |
370 | 369 |
|
371 | 370 |
/// @} |
372 | 371 |
|
373 | 372 |
/// \name Execution control |
374 | 373 |
/// The algorithm can be executed using \ref run(). |
375 | 374 |
|
376 | 375 |
/// @{ |
377 | 376 |
... | ... |
@@ -15,49 +15,49 @@ |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EULER_H |
20 | 20 |
#define LEMON_EULER_H |
21 | 21 |
|
22 | 22 |
#include<lemon/core.h> |
23 | 23 |
#include<lemon/adaptors.h> |
24 | 24 |
#include<lemon/connectivity.h> |
25 | 25 |
#include <list> |
26 | 26 |
|
27 | 27 |
/// \ingroup graph_properties |
28 | 28 |
/// \file |
29 | 29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
30 | 30 |
/// property. |
31 | 31 |
/// |
32 | 32 |
///This file provides Euler tour iterators and a function to check |
33 | 33 |
///if a (di)graph is \e Eulerian. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Euler tour iterator for digraphs. |
38 | 38 |
|
39 |
/// \ingroup |
|
39 |
/// \ingroup graph_properties |
|
40 | 40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
41 | 41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
42 | 42 |
/// |
43 | 43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
44 | 44 |
///non-trivial component and the in-degree is equal to the out-degree |
45 | 45 |
///for all nodes), then the following code will put the arcs of \c g |
46 | 46 |
///to the vector \c et according to an Euler tour of \c g. |
47 | 47 |
///\code |
48 | 48 |
/// std::vector<ListDigraph::Arc> et; |
49 | 49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
50 | 50 |
/// et.push_back(e); |
51 | 51 |
///\endcode |
52 | 52 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
53 | 53 |
///or not contain all arcs. |
54 | 54 |
///\sa EulerIt |
55 | 55 |
template<typename GR> |
56 | 56 |
class DiEulerIt |
57 | 57 |
{ |
58 | 58 |
typedef typename GR::Node Node; |
59 | 59 |
typedef typename GR::NodeIt NodeIt; |
60 | 60 |
typedef typename GR::Arc Arc; |
61 | 61 |
typedef typename GR::ArcIt ArcIt; |
62 | 62 |
typedef typename GR::OutArcIt OutArcIt; |
63 | 63 |
typedef typename GR::InArcIt InArcIt; |
... | ... |
@@ -25,102 +25,132 @@ |
25 | 25 |
/// \brief The iterated local search algorithm of Grosso, Locatelli, and Pullan |
26 | 26 |
/// for the maximum clique problem |
27 | 27 |
|
28 | 28 |
#include <vector> |
29 | 29 |
#include <limits> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/random.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \addtogroup approx_algs |
36 | 36 |
/// @{ |
37 | 37 |
|
38 | 38 |
/// \brief Implementation of the iterated local search algorithm of Grosso, |
39 | 39 |
/// Locatelli, and Pullan for the maximum clique problem |
40 | 40 |
/// |
41 | 41 |
/// \ref GrossoLocatelliPullanMc implements the iterated local search |
42 | 42 |
/// algorithm of Grosso, Locatelli, and Pullan for solving the \e maximum |
43 | 43 |
/// \e clique \e problem \ref grosso08maxclique. |
44 | 44 |
/// It is to find the largest complete subgraph (\e clique) in an |
45 | 45 |
/// undirected graph, i.e., the largest set of nodes where each |
46 | 46 |
/// pair of nodes is connected. |
47 | 47 |
/// |
48 | 48 |
/// This class provides a simple but highly efficient and robust heuristic |
49 |
/// method that quickly finds a large clique, but not necessarily the |
|
49 |
/// method that quickly finds a quite large clique, but not necessarily the |
|
50 | 50 |
/// largest one. |
51 |
/// The algorithm performs a certain number of iterations to find several |
|
52 |
/// cliques and selects the largest one among them. Various limits can be |
|
53 |
/// specified to control the running time and the effectiveness of the |
|
54 |
/// search process. |
|
51 | 55 |
/// |
52 | 56 |
/// \tparam GR The undirected graph type the algorithm runs on. |
53 | 57 |
/// |
54 | 58 |
/// \note %GrossoLocatelliPullanMc provides three different node selection |
55 | 59 |
/// rules, from which the most powerful one is used by default. |
56 | 60 |
/// For more information, see \ref SelectionRule. |
57 | 61 |
template <typename GR> |
58 | 62 |
class GrossoLocatelliPullanMc |
59 | 63 |
{ |
60 | 64 |
public: |
61 | 65 |
|
62 | 66 |
/// \brief Constants for specifying the node selection rule. |
63 | 67 |
/// |
64 | 68 |
/// Enum type containing constants for specifying the node selection rule |
65 | 69 |
/// for the \ref run() function. |
66 | 70 |
/// |
67 | 71 |
/// During the algorithm, nodes are selected for addition to the current |
68 | 72 |
/// clique according to the applied rule. |
69 | 73 |
/// In general, the PENALTY_BASED rule turned out to be the most powerful |
70 | 74 |
/// and the most robust, thus it is the default option. |
71 | 75 |
/// However, another selection rule can be specified using the \ref run() |
72 | 76 |
/// function with the proper parameter. |
73 | 77 |
enum SelectionRule { |
74 | 78 |
|
75 | 79 |
/// A node is selected randomly without any evaluation at each step. |
76 | 80 |
RANDOM, |
77 | 81 |
|
78 | 82 |
/// A node of maximum degree is selected randomly at each step. |
79 | 83 |
DEGREE_BASED, |
80 | 84 |
|
81 | 85 |
/// A node of minimum penalty is selected randomly at each step. |
82 | 86 |
/// The node penalties are updated adaptively after each stage of the |
83 | 87 |
/// search process. |
84 | 88 |
PENALTY_BASED |
85 | 89 |
}; |
86 | 90 |
|
91 |
/// \brief Constants for the causes of search termination. |
|
92 |
/// |
|
93 |
/// Enum type containing constants for the different causes of search |
|
94 |
/// termination. The \ref run() function returns one of these values. |
|
95 |
enum TerminationCause { |
|
96 |
|
|
97 |
/// The iteration count limit is reached. |
|
98 |
ITERATION_LIMIT, |
|
99 |
|
|
100 |
/// The step count limit is reached. |
|
101 |
STEP_LIMIT, |
|
102 |
|
|
103 |
/// The clique size limit is reached. |
|
104 |
SIZE_LIMIT |
|
105 |
}; |
|
106 |
|
|
87 | 107 |
private: |
88 | 108 |
|
89 | 109 |
TEMPLATE_GRAPH_TYPEDEFS(GR); |
90 | 110 |
|
91 | 111 |
typedef std::vector<int> IntVector; |
92 | 112 |
typedef std::vector<char> BoolVector; |
93 | 113 |
typedef std::vector<BoolVector> BoolMatrix; |
94 | 114 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
95 | 115 |
|
116 |
// The underlying graph |
|
96 | 117 |
const GR &_graph; |
97 | 118 |
IntNodeMap _id; |
98 | 119 |
|
99 | 120 |
// Internal matrix representation of the graph |
100 | 121 |
BoolMatrix _gr; |
101 | 122 |
int _n; |
102 | 123 |
|
124 |
// Search options |
|
125 |
bool _delta_based_restart; |
|
126 |
int _restart_delta_limit; |
|
127 |
|
|
128 |
// Search limits |
|
129 |
int _iteration_limit; |
|
130 |
int _step_limit; |
|
131 |
int _size_limit; |
|
132 |
|
|
103 | 133 |
// The current clique |
104 | 134 |
BoolVector _clique; |
105 | 135 |
int _size; |
106 | 136 |
|
107 | 137 |
// The best clique found so far |
108 | 138 |
BoolVector _best_clique; |
109 | 139 |
int _best_size; |
110 | 140 |
|
111 | 141 |
// The "distances" of the nodes from the current clique. |
112 | 142 |
// _delta[u] is the number of nodes in the clique that are |
113 | 143 |
// not connected with u. |
114 | 144 |
IntVector _delta; |
115 | 145 |
|
116 | 146 |
// The current tabu set |
117 | 147 |
BoolVector _tabu; |
118 | 148 |
|
119 | 149 |
// Random number generator |
120 | 150 |
Random _rnd; |
121 | 151 |
|
122 | 152 |
private: |
123 | 153 |
|
124 | 154 |
// Implementation of the RANDOM node selection rule. |
125 | 155 |
class RandomSelectionRule |
126 | 156 |
{ |
... | ... |
@@ -359,107 +389,223 @@ |
359 | 389 |
if (_delta[i] == 0 && _penalty[i] < min_p) { |
360 | 390 |
node = i; |
361 | 391 |
min_p = _penalty[i]; |
362 | 392 |
} |
363 | 393 |
} |
364 | 394 |
return node; |
365 | 395 |
} |
366 | 396 |
|
367 | 397 |
// Update internal data structures between stages (if necessary) |
368 | 398 |
void update() {} |
369 | 399 |
|
370 | 400 |
}; //class PenaltyBasedSelectionRule |
371 | 401 |
|
372 | 402 |
public: |
373 | 403 |
|
374 | 404 |
/// \brief Constructor. |
375 | 405 |
/// |
376 | 406 |
/// Constructor. |
377 | 407 |
/// The global \ref rnd "random number generator instance" is used |
378 | 408 |
/// during the algorithm. |
379 | 409 |
/// |
380 | 410 |
/// \param graph The undirected graph the algorithm runs on. |
381 | 411 |
GrossoLocatelliPullanMc(const GR& graph) : |
382 | 412 |
_graph(graph), _id(_graph), _rnd(rnd) |
383 |
{ |
|
413 |
{ |
|
414 |
initOptions(); |
|
415 |
} |
|
384 | 416 |
|
385 | 417 |
/// \brief Constructor with random seed. |
386 | 418 |
/// |
387 | 419 |
/// Constructor with random seed. |
388 | 420 |
/// |
389 | 421 |
/// \param graph The undirected graph the algorithm runs on. |
390 | 422 |
/// \param seed Seed value for the internal random number generator |
391 | 423 |
/// that is used during the algorithm. |
392 | 424 |
GrossoLocatelliPullanMc(const GR& graph, int seed) : |
393 | 425 |
_graph(graph), _id(_graph), _rnd(seed) |
394 |
{ |
|
426 |
{ |
|
427 |
initOptions(); |
|
428 |
} |
|
395 | 429 |
|
396 | 430 |
/// \brief Constructor with random number generator. |
397 | 431 |
/// |
398 | 432 |
/// Constructor with random number generator. |
399 | 433 |
/// |
400 | 434 |
/// \param graph The undirected graph the algorithm runs on. |
401 | 435 |
/// \param random A random number generator that is used during the |
402 | 436 |
/// algorithm. |
403 | 437 |
GrossoLocatelliPullanMc(const GR& graph, const Random& random) : |
404 | 438 |
_graph(graph), _id(_graph), _rnd(random) |
405 |
{ |
|
439 |
{ |
|
440 |
initOptions(); |
|
441 |
} |
|
406 | 442 |
|
407 | 443 |
/// \name Execution Control |
444 |
/// The \ref run() function can be used to execute the algorithm.\n |
|
445 |
/// The functions \ref iterationLimit(int), \ref stepLimit(int), and |
|
446 |
/// \ref sizeLimit(int) can be used to specify various limits for the |
|
447 |
/// search process. |
|
448 |
|
|
408 | 449 |
/// @{ |
409 | 450 |
|
451 |
/// \brief Sets the maximum number of iterations. |
|
452 |
/// |
|
453 |
/// This function sets the maximum number of iterations. |
|
454 |
/// Each iteration of the algorithm finds a maximal clique (but not |
|
455 |
/// necessarily the largest one) by performing several search steps |
|
456 |
/// (node selections). |
|
457 |
/// |
|
458 |
/// This limit controls the running time and the success of the |
|
459 |
/// algorithm. For larger values, the algorithm runs slower, but it more |
|
460 |
/// likely finds larger cliques. For smaller values, the algorithm is |
|
461 |
/// faster but probably gives worse results. |
|
462 |
/// |
|
463 |
/// The default value is \c 1000. |
|
464 |
/// \c -1 means that number of iterations is not limited. |
|
465 |
/// |
|
466 |
/// \warning You should specify a reasonable limit for the number of |
|
467 |
/// iterations and/or the number of search steps. |
|
468 |
/// |
|
469 |
/// \return <tt>(*this)</tt> |
|
470 |
/// |
|
471 |
/// \sa stepLimit(int) |
|
472 |
/// \sa sizeLimit(int) |
|
473 |
GrossoLocatelliPullanMc& iterationLimit(int limit) { |
|
474 |
_iteration_limit = limit; |
|
475 |
return *this; |
|
476 |
} |
|
477 |
|
|
478 |
/// \brief Sets the maximum number of search steps. |
|
479 |
/// |
|
480 |
/// This function sets the maximum number of elementary search steps. |
|
481 |
/// Each iteration of the algorithm finds a maximal clique (but not |
|
482 |
/// necessarily the largest one) by performing several search steps |
|
483 |
/// (node selections). |
|
484 |
/// |
|
485 |
/// This limit controls the running time and the success of the |
|
486 |
/// algorithm. For larger values, the algorithm runs slower, but it more |
|
487 |
/// likely finds larger cliques. For smaller values, the algorithm is |
|
488 |
/// faster but probably gives worse results. |
|
489 |
/// |
|
490 |
/// The default value is \c -1, which means that number of steps |
|
491 |
/// is not limited explicitly. However, the number of iterations is |
|
492 |
/// limited and each iteration performs a finite number of search steps. |
|
493 |
/// |
|
494 |
/// \warning You should specify a reasonable limit for the number of |
|
495 |
/// iterations and/or the number of search steps. |
|
496 |
/// |
|
497 |
/// \return <tt>(*this)</tt> |
|
498 |
/// |
|
499 |
/// \sa iterationLimit(int) |
|
500 |
/// \sa sizeLimit(int) |
|
501 |
GrossoLocatelliPullanMc& stepLimit(int limit) { |
|
502 |
_step_limit = limit; |
|
503 |
return *this; |
|
504 |
} |
|
505 |
|
|
506 |
/// \brief Sets the desired clique size. |
|
507 |
/// |
|
508 |
/// This function sets the desired clique size that serves as a search |
|
509 |
/// limit. If a clique of this size (or a larger one) is found, then the |
|
510 |
/// algorithm terminates. |
|
511 |
/// |
|
512 |
/// This function is especially useful if you know an exact upper bound |
|
513 |
/// for the size of the cliques in the graph or if any clique above |
|
514 |
/// a certain size limit is sufficient for your application. |
|
515 |
/// |
|
516 |
/// The default value is \c -1, which means that the size limit is set to |
|
517 |
/// the number of nodes in the graph. |
|
518 |
/// |
|
519 |
/// \return <tt>(*this)</tt> |
|
520 |
/// |
|
521 |
/// \sa iterationLimit(int) |
|
522 |
/// \sa stepLimit(int) |
|
523 |
GrossoLocatelliPullanMc& sizeLimit(int limit) { |
|
524 |
_size_limit = limit; |
|
525 |
return *this; |
|
526 |
} |
|
527 |
|
|
528 |
/// \brief The maximum number of iterations. |
|
529 |
/// |
|
530 |
/// This function gives back the maximum number of iterations. |
|
531 |
/// \c -1 means that no limit is specified. |
|
532 |
/// |
|
533 |
/// \sa iterationLimit(int) |
|
534 |
int iterationLimit() const { |
|
535 |
return _iteration_limit; |
|
536 |
} |
|
537 |
|
|
538 |
/// \brief The maximum number of search steps. |
|
539 |
/// |
|
540 |
/// This function gives back the maximum number of search steps. |
|
541 |
/// \c -1 means that no limit is specified. |
|
542 |
/// |
|
543 |
/// \sa stepLimit(int) |
|
544 |
int stepLimit() const { |
|
545 |
return _step_limit; |
|
546 |
} |
|
547 |
|
|
548 |
/// \brief The desired clique size. |
|
549 |
/// |
|
550 |
/// This function gives back the desired clique size that serves as a |
|
551 |
/// search limit. \c -1 means that this limit is set to the number of |
|
552 |
/// nodes in the graph. |
|
553 |
/// |
|
554 |
/// \sa sizeLimit(int) |
|
555 |
int sizeLimit() const { |
|
556 |
return _size_limit; |
|
557 |
} |
|
558 |
|
|
410 | 559 |
/// \brief Runs the algorithm. |
411 | 560 |
/// |
412 |
/// This function runs the algorithm. |
|
561 |
/// This function runs the algorithm. If one of the specified limits |
|
562 |
/// is reached, the search process terminates. |
|
413 | 563 |
/// |
414 |
/// \param step_num The maximum number of node selections (steps) |
|
415 |
/// during the search process. |
|
416 |
/// This parameter controls the running time and the success of the |
|
417 |
/// algorithm. For larger values, the algorithm runs slower but it more |
|
418 |
/// likely finds larger cliques. For smaller values, the algorithm is |
|
419 |
/// faster but probably gives worse results. |
|
420 | 564 |
/// \param rule The node selection rule. For more information, see |
421 | 565 |
/// \ref SelectionRule. |
422 | 566 |
/// |
423 |
/// \return The size of the found clique. |
|
424 |
int run(int step_num = 100000, |
|
425 |
|
|
567 |
/// \return The termination cause of the search. For more information, |
|
568 |
/// see \ref TerminationCause. |
|
569 |
TerminationCause run(SelectionRule rule = PENALTY_BASED) |
|
426 | 570 |
{ |
427 | 571 |
init(); |
428 | 572 |
switch (rule) { |
429 | 573 |
case RANDOM: |
430 |
return start<RandomSelectionRule>( |
|
574 |
return start<RandomSelectionRule>(); |
|
431 | 575 |
case DEGREE_BASED: |
432 |
return start<DegreeBasedSelectionRule>(step_num); |
|
433 |
case PENALTY_BASED: |
|
434 |
return start< |
|
576 |
return start<DegreeBasedSelectionRule>(); |
|
577 |
default: |
|
578 |
return start<PenaltyBasedSelectionRule>(); |
|
435 | 579 |
} |
436 |
return 0; // avoid warning |
|
437 | 580 |
} |
438 | 581 |
|
439 | 582 |
/// @} |
440 | 583 |
|
441 | 584 |
/// \name Query Functions |
585 |
/// The results of the algorithm can be obtained using these functions.\n |
|
586 |
/// The run() function must be called before using them. |
|
587 |
|
|
442 | 588 |
/// @{ |
443 | 589 |
|
444 | 590 |
/// \brief The size of the found clique |
445 | 591 |
/// |
446 | 592 |
/// This function returns the size of the found clique. |
447 | 593 |
/// |
448 | 594 |
/// \pre run() must be called before using this function. |
449 | 595 |
int cliqueSize() const { |
450 | 596 |
return _best_size; |
451 | 597 |
} |
452 | 598 |
|
453 | 599 |
/// \brief Gives back the found clique in a \c bool node map |
454 | 600 |
/// |
455 | 601 |
/// This function gives back the characteristic vector of the found |
456 | 602 |
/// clique in the given node map. |
457 | 603 |
/// It must be a \ref concepts::WriteMap "writable" node map with |
458 | 604 |
/// \c bool (or convertible) value type. |
459 | 605 |
/// |
460 | 606 |
/// \pre run() must be called before using this function. |
461 | 607 |
template <typename CliqueMap> |
462 | 608 |
void cliqueMap(CliqueMap &map) const { |
463 | 609 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
464 | 610 |
map[n] = static_cast<bool>(_best_clique[_id[n]]); |
465 | 611 |
} |
... | ... |
@@ -510,48 +656,60 @@ |
510 | 656 |
/// Next node |
511 | 657 |
CliqueNodeIt &operator++() { |
512 | 658 |
for (++_it; _it != INVALID && !_map[_it]; ++_it) ; |
513 | 659 |
return *this; |
514 | 660 |
} |
515 | 661 |
|
516 | 662 |
/// Postfix incrementation |
517 | 663 |
|
518 | 664 |
/// Postfix incrementation. |
519 | 665 |
/// |
520 | 666 |
/// \warning This incrementation returns a \c Node, not a |
521 | 667 |
/// \c CliqueNodeIt as one may expect. |
522 | 668 |
typename GR::Node operator++(int) { |
523 | 669 |
Node n=*this; |
524 | 670 |
++(*this); |
525 | 671 |
return n; |
526 | 672 |
} |
527 | 673 |
|
528 | 674 |
}; |
529 | 675 |
|
530 | 676 |
/// @} |
531 | 677 |
|
532 | 678 |
private: |
533 | 679 |
|
680 |
// Initialize search options and limits |
|
681 |
void initOptions() { |
|
682 |
// Search options |
|
683 |
_delta_based_restart = true; |
|
684 |
_restart_delta_limit = 4; |
|
685 |
|
|
686 |
// Search limits |
|
687 |
_iteration_limit = 1000; |
|
688 |
_step_limit = -1; // this is disabled by default |
|
689 |
_size_limit = -1; // this is disabled by default |
|
690 |
} |
|
691 |
|
|
534 | 692 |
// Adds a node to the current clique |
535 | 693 |
void addCliqueNode(int u) { |
536 | 694 |
if (_clique[u]) return; |
537 | 695 |
_clique[u] = true; |
538 | 696 |
_size++; |
539 | 697 |
BoolVector &row = _gr[u]; |
540 | 698 |
for (int i = 0; i != _n; i++) { |
541 | 699 |
if (!row[i]) _delta[i]++; |
542 | 700 |
} |
543 | 701 |
} |
544 | 702 |
|
545 | 703 |
// Removes a node from the current clique |
546 | 704 |
void delCliqueNode(int u) { |
547 | 705 |
if (!_clique[u]) return; |
548 | 706 |
_clique[u] = false; |
549 | 707 |
_size--; |
550 | 708 |
BoolVector &row = _gr[u]; |
551 | 709 |
for (int i = 0; i != _n; i++) { |
552 | 710 |
if (!row[i]) _delta[i]--; |
553 | 711 |
} |
554 | 712 |
} |
555 | 713 |
|
556 | 714 |
// Initialize data structures |
557 | 715 |
void init() { |
... | ... |
@@ -565,72 +723,74 @@ |
565 | 723 |
ui = 0; |
566 | 724 |
for (NodeIt u(_graph); u != INVALID; ++u) { |
567 | 725 |
for (IncEdgeIt e(_graph, u); e != INVALID; ++e) { |
568 | 726 |
int vi = _id[_graph.runningNode(e)]; |
569 | 727 |
_gr[ui][vi] = true; |
570 | 728 |
_gr[vi][ui] = true; |
571 | 729 |
} |
572 | 730 |
++ui; |
573 | 731 |
} |
574 | 732 |
|
575 | 733 |
_clique.clear(); |
576 | 734 |
_clique.resize(_n, false); |
577 | 735 |
_size = 0; |
578 | 736 |
_best_clique.clear(); |
579 | 737 |
_best_clique.resize(_n, false); |
580 | 738 |
_best_size = 0; |
581 | 739 |
_delta.clear(); |
582 | 740 |
_delta.resize(_n, 0); |
583 | 741 |
_tabu.clear(); |
584 | 742 |
_tabu.resize(_n, false); |
585 | 743 |
} |
586 | 744 |
|
587 | 745 |
// Executes the algorithm |
588 | 746 |
template <typename SelectionRuleImpl> |
589 |
int start(int max_select) { |
|
590 |
// Options for the restart rule |
|
591 |
const bool delta_based_restart = true; |
|
592 |
const int restart_delta_limit = 4; |
|
593 |
|
|
594 |
if (_n == 0) return 0; |
|
747 |
TerminationCause start() { |
|
748 |
if (_n == 0) return SIZE_LIMIT; |
|
595 | 749 |
if (_n == 1) { |
596 | 750 |
_best_clique[0] = true; |
597 | 751 |
_best_size = 1; |
598 |
return |
|
752 |
return SIZE_LIMIT; |
|
599 | 753 |
} |
600 | 754 |
|
601 |
// Iterated local search |
|
755 |
// Iterated local search algorithm |
|
756 |
const int max_size = _size_limit >= 0 ? _size_limit : _n; |
|
757 |
const int max_restart = _iteration_limit >= 0 ? |
|
758 |
_iteration_limit : std::numeric_limits<int>::max(); |
|
759 |
const int max_select = _step_limit >= 0 ? |
|
760 |
_step_limit : std::numeric_limits<int>::max(); |
|
761 |
|
|
602 | 762 |
SelectionRuleImpl sel_method(*this); |
603 |
int select = 0; |
|
763 |
int select = 0, restart = 0; |
|
604 | 764 |
IntVector restart_nodes; |
605 |
|
|
606 |
while (select < max_select) { |
|
765 |
while (select < max_select && restart < max_restart) { |
|
607 | 766 |
|
608 | 767 |
// Perturbation/restart |
609 |
|
|
768 |
restart++; |
|
769 |
if (_delta_based_restart) { |
|
610 | 770 |
restart_nodes.clear(); |
611 | 771 |
for (int i = 0; i != _n; i++) { |
612 |
if (_delta[i] >= |
|
772 |
if (_delta[i] >= _restart_delta_limit) |
|
613 | 773 |
restart_nodes.push_back(i); |
614 | 774 |
} |
615 | 775 |
} |
616 | 776 |
int rs_node = -1; |
617 | 777 |
if (restart_nodes.size() > 0) { |
618 | 778 |
rs_node = restart_nodes[_rnd[restart_nodes.size()]]; |
619 | 779 |
} else { |
620 | 780 |
rs_node = _rnd[_n]; |
621 | 781 |
} |
622 | 782 |
BoolVector &row = _gr[rs_node]; |
623 | 783 |
for (int i = 0; i != _n; i++) { |
624 | 784 |
if (_clique[i] && !row[i]) delCliqueNode(i); |
625 | 785 |
} |
626 | 786 |
addCliqueNode(rs_node); |
627 | 787 |
|
628 | 788 |
// Local search |
629 | 789 |
_tabu.clear(); |
630 | 790 |
_tabu.resize(_n, false); |
631 | 791 |
bool tabu_empty = true; |
632 | 792 |
int max_swap = _size; |
633 | 793 |
while (select < max_select) { |
634 | 794 |
select++; |
635 | 795 |
int u; |
636 | 796 |
if ((u = sel_method.nextFeasibleAddNode()) != -1) { |
... | ... |
@@ -642,39 +802,39 @@ |
642 | 802 |
// Feasible swap move |
643 | 803 |
int v = -1; |
644 | 804 |
BoolVector &row = _gr[u]; |
645 | 805 |
for (int i = 0; i != _n; i++) { |
646 | 806 |
if (_clique[i] && !row[i]) { |
647 | 807 |
v = i; |
648 | 808 |
break; |
649 | 809 |
} |
650 | 810 |
} |
651 | 811 |
addCliqueNode(u); |
652 | 812 |
delCliqueNode(v); |
653 | 813 |
_tabu[v] = true; |
654 | 814 |
tabu_empty = false; |
655 | 815 |
if (--max_swap <= 0) break; |
656 | 816 |
} |
657 | 817 |
else if ((u = sel_method.nextAddNode()) != -1) { |
658 | 818 |
// Non-feasible add move |
659 | 819 |
addCliqueNode(u); |
660 | 820 |
} |
661 | 821 |
else break; |
662 | 822 |
} |
663 | 823 |
if (_size > _best_size) { |
664 | 824 |
_best_clique = _clique; |
665 | 825 |
_best_size = _size; |
666 |
if (_best_size |
|
826 |
if (_best_size >= max_size) return SIZE_LIMIT; |
|
667 | 827 |
} |
668 | 828 |
sel_method.update(); |
669 | 829 |
} |
670 | 830 |
|
671 |
return |
|
831 |
return (restart >= max_restart ? ITERATION_LIMIT : STEP_LIMIT); |
|
672 | 832 |
} |
673 | 833 |
|
674 | 834 |
}; //class GrossoLocatelliPullanMc |
675 | 835 |
|
676 | 836 |
///@} |
677 | 837 |
|
678 | 838 |
} //namespace lemon |
679 | 839 |
|
680 | 840 |
#endif //LEMON_GROSSO_LOCATELLI_PULLAN_MC_H |
... | ... |
@@ -26,52 +26,52 @@ |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <algorithm> |
30 | 30 |
|
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup min_cost_flow_algs |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
/// \brief Implementation of the primal Network Simplex algorithm |
40 | 40 |
/// for finding a \ref min_cost_flow "minimum cost flow". |
41 | 41 |
/// |
42 | 42 |
/// \ref NetworkSimplex implements the primal Network Simplex algorithm |
43 | 43 |
/// for finding a \ref min_cost_flow "minimum cost flow" |
44 | 44 |
/// \ref amo93networkflows, \ref dantzig63linearprog, |
45 | 45 |
/// \ref kellyoneill91netsimplex. |
46 | 46 |
/// This algorithm is a highly efficient specialized version of the |
47 | 47 |
/// linear programming simplex method directly for the minimum cost |
48 | 48 |
/// flow problem. |
49 | 49 |
/// |
50 |
/// In general, %NetworkSimplex is the fastest implementation available |
|
51 |
/// in LEMON for this problem. |
|
52 |
/// Moreover, it supports both directions of the supply/demand inequality |
|
53 |
/// constraints. For more information, see \ref SupplyType. |
|
50 |
/// In general, \ref NetworkSimplex and \ref CostScaling are the fastest |
|
51 |
/// implementations available in LEMON for this problem. |
|
52 |
/// Furthermore, this class supports both directions of the supply/demand |
|
53 |
/// inequality constraints. For more information, see \ref SupplyType. |
|
54 | 54 |
/// |
55 | 55 |
/// Most of the parameters of the problem (except for the digraph) |
56 | 56 |
/// can be given using separate functions, and the algorithm can be |
57 | 57 |
/// executed using the \ref run() function. If some parameters are not |
58 | 58 |
/// specified, then default values will be used. |
59 | 59 |
/// |
60 | 60 |
/// \tparam GR The digraph type the algorithm runs on. |
61 | 61 |
/// \tparam V The number type used for flow amounts, capacity bounds |
62 | 62 |
/// and supply values in the algorithm. By default, it is \c int. |
63 | 63 |
/// \tparam C The number type used for costs and potentials in the |
64 | 64 |
/// algorithm. By default, it is the same as \c V. |
65 | 65 |
/// |
66 | 66 |
/// \warning Both \c V and \c C must be signed number types. |
67 | 67 |
/// \warning All input data (capacities, supply values, and costs) must |
68 | 68 |
/// be integer. |
69 | 69 |
/// |
70 | 70 |
/// \note %NetworkSimplex provides five different pivot rule |
71 | 71 |
/// implementations, from which the most efficient one is used |
72 | 72 |
/// by default. For more information, see \ref PivotRule. |
73 | 73 |
template <typename GR, typename V = int, typename C = V> |
74 | 74 |
class NetworkSimplex |
75 | 75 |
{ |
76 | 76 |
public: |
77 | 77 |
|
... | ... |
@@ -105,49 +105,49 @@ |
105 | 105 |
/// i.e. the direction of the inequalities in the supply/demand |
106 | 106 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
107 | 107 |
/// |
108 | 108 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
109 | 109 |
/// selected using \ref supplyType(). |
110 | 110 |
/// The equality form is a special case of both supply types. |
111 | 111 |
enum SupplyType { |
112 | 112 |
/// This option means that there are <em>"greater or equal"</em> |
113 | 113 |
/// supply/demand constraints in the definition of the problem. |
114 | 114 |
GEQ, |
115 | 115 |
/// This option means that there are <em>"less or equal"</em> |
116 | 116 |
/// supply/demand constraints in the definition of the problem. |
117 | 117 |
LEQ |
118 | 118 |
}; |
119 | 119 |
|
120 | 120 |
/// \brief Constants for selecting the pivot rule. |
121 | 121 |
/// |
122 | 122 |
/// Enum type containing constants for selecting the pivot rule for |
123 | 123 |
/// the \ref run() function. |
124 | 124 |
/// |
125 | 125 |
/// \ref NetworkSimplex provides five different pivot rule |
126 | 126 |
/// implementations that significantly affect the running time |
127 | 127 |
/// of the algorithm. |
128 | 128 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
129 |
/// |
|
129 |
/// turend out to be the most efficient and the most robust on various |
|
130 | 130 |
/// test inputs. |
131 | 131 |
/// However, another pivot rule can be selected using the \ref run() |
132 | 132 |
/// function with the proper parameter. |
133 | 133 |
enum PivotRule { |
134 | 134 |
|
135 | 135 |
/// The \e First \e Eligible pivot rule. |
136 | 136 |
/// The next eligible arc is selected in a wraparound fashion |
137 | 137 |
/// in every iteration. |
138 | 138 |
FIRST_ELIGIBLE, |
139 | 139 |
|
140 | 140 |
/// The \e Best \e Eligible pivot rule. |
141 | 141 |
/// The best eligible arc is selected in every iteration. |
142 | 142 |
BEST_ELIGIBLE, |
143 | 143 |
|
144 | 144 |
/// The \e Block \e Search pivot rule. |
145 | 145 |
/// A specified number of arcs are examined in every iteration |
146 | 146 |
/// in a wraparound fashion and the best eligible arc is selected |
147 | 147 |
/// from this block. |
148 | 148 |
BLOCK_SEARCH, |
149 | 149 |
|
150 | 150 |
/// The \e Candidate \e List pivot rule. |
151 | 151 |
/// In a major iteration a candidate list is built from eligible arcs |
152 | 152 |
/// in a wraparound fashion and in the following minor iterations |
153 | 153 |
/// the best eligible arc is selected from this list. |
... | ... |
@@ -714,65 +714,67 @@ |
714 | 714 |
/// \param map An arc map storing the costs. |
715 | 715 |
/// Its \c Value type must be convertible to the \c Cost type |
716 | 716 |
/// of the algorithm. |
717 | 717 |
/// |
718 | 718 |
/// \return <tt>(*this)</tt> |
719 | 719 |
template<typename CostMap> |
720 | 720 |
NetworkSimplex& costMap(const CostMap& map) { |
721 | 721 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
722 | 722 |
_cost[_arc_id[a]] = map[a]; |
723 | 723 |
} |
724 | 724 |
return *this; |
725 | 725 |
} |
726 | 726 |
|
727 | 727 |
/// \brief Set the supply values of the nodes. |
728 | 728 |
/// |
729 | 729 |
/// This function sets the supply values of the nodes. |
730 | 730 |
/// If neither this function nor \ref stSupply() is used before |
731 | 731 |
/// calling \ref run(), the supply of each node will be set to zero. |
732 | 732 |
/// |
733 | 733 |
/// \param map A node map storing the supply values. |
734 | 734 |
/// Its \c Value type must be convertible to the \c Value type |
735 | 735 |
/// of the algorithm. |
736 | 736 |
/// |
737 | 737 |
/// \return <tt>(*this)</tt> |
738 |
/// |
|
739 |
/// \sa supplyType() |
|
738 | 740 |
template<typename SupplyMap> |
739 | 741 |
NetworkSimplex& supplyMap(const SupplyMap& map) { |
740 | 742 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
741 | 743 |
_supply[_node_id[n]] = map[n]; |
742 | 744 |
} |
743 | 745 |
return *this; |
744 | 746 |
} |
745 | 747 |
|
746 | 748 |
/// \brief Set single source and target nodes and a supply value. |
747 | 749 |
/// |
748 | 750 |
/// This function sets a single source node and a single target node |
749 | 751 |
/// and the required flow value. |
750 | 752 |
/// If neither this function nor \ref supplyMap() is used before |
751 | 753 |
/// calling \ref run(), the supply of each node will be set to zero. |
752 | 754 |
/// |
753 | 755 |
/// Using this function has the same effect as using \ref supplyMap() |
754 |
/// with |
|
756 |
/// with a map in which \c k is assigned to \c s, \c -k is |
|
755 | 757 |
/// assigned to \c t and all other nodes have zero supply value. |
756 | 758 |
/// |
757 | 759 |
/// \param s The source node. |
758 | 760 |
/// \param t The target node. |
759 | 761 |
/// \param k The required amount of flow from node \c s to node \c t |
760 | 762 |
/// (i.e. the supply of \c s and the demand of \c t). |
761 | 763 |
/// |
762 | 764 |
/// \return <tt>(*this)</tt> |
763 | 765 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
764 | 766 |
for (int i = 0; i != _node_num; ++i) { |
765 | 767 |
_supply[i] = 0; |
766 | 768 |
} |
767 | 769 |
_supply[_node_id[s]] = k; |
768 | 770 |
_supply[_node_id[t]] = -k; |
769 | 771 |
return *this; |
770 | 772 |
} |
771 | 773 |
|
772 | 774 |
/// \brief Set the type of the supply constraints. |
773 | 775 |
/// |
774 | 776 |
/// This function sets the type of the supply/demand constraints. |
775 | 777 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
776 | 778 |
/// type will be used. |
777 | 779 |
/// |
778 | 780 |
/// For more information, see \ref SupplyType. |
... | ... |
@@ -22,49 +22,49 @@ |
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_PATH_H |
25 | 25 |
#define LEMON_PATH_H |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <algorithm> |
29 | 29 |
|
30 | 30 |
#include <lemon/error.h> |
31 | 31 |
#include <lemon/core.h> |
32 | 32 |
#include <lemon/concepts/path.h> |
33 | 33 |
|
34 | 34 |
namespace lemon { |
35 | 35 |
|
36 | 36 |
/// \addtogroup paths |
37 | 37 |
/// @{ |
38 | 38 |
|
39 | 39 |
|
40 | 40 |
/// \brief A structure for representing directed paths in a digraph. |
41 | 41 |
/// |
42 | 42 |
/// A structure for representing directed path in a digraph. |
43 | 43 |
/// \tparam GR The digraph type in which the path is. |
44 | 44 |
/// |
45 | 45 |
/// In a sense, the path can be treated as a list of arcs. The |
46 |
/// |
|
46 |
/// LEMON path type stores just this list. As a consequence, it |
|
47 | 47 |
/// cannot enumerate the nodes of the path and the source node of |
48 | 48 |
/// a zero length path is undefined. |
49 | 49 |
/// |
50 | 50 |
/// This implementation is a back and front insertable and erasable |
51 | 51 |
/// path type. It can be indexed in O(1) time. The front and back |
52 | 52 |
/// insertion and erase is done in O(1) (amortized) time. The |
53 | 53 |
/// implementation uses two vectors for storing the front and back |
54 | 54 |
/// insertions. |
55 | 55 |
template <typename GR> |
56 | 56 |
class Path { |
57 | 57 |
public: |
58 | 58 |
|
59 | 59 |
typedef GR Digraph; |
60 | 60 |
typedef typename Digraph::Arc Arc; |
61 | 61 |
|
62 | 62 |
/// \brief Default constructor |
63 | 63 |
/// |
64 | 64 |
/// Default constructor |
65 | 65 |
Path() {} |
66 | 66 |
|
67 | 67 |
/// \brief Template copy constructor |
68 | 68 |
/// |
69 | 69 |
/// This constuctor initializes the path from any other path type. |
70 | 70 |
/// It simply makes a copy of the given path. |
... | ... |
@@ -114,57 +114,57 @@ |
114 | 114 |
if (idx >= path->length()) idx = -1; |
115 | 115 |
return *this; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
/// \brief Comparison operator |
119 | 119 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
120 | 120 |
/// \brief Comparison operator |
121 | 121 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
122 | 122 |
/// \brief Comparison operator |
123 | 123 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
124 | 124 |
|
125 | 125 |
private: |
126 | 126 |
const Path *path; |
127 | 127 |
int idx; |
128 | 128 |
}; |
129 | 129 |
|
130 | 130 |
/// \brief Length of the path. |
131 | 131 |
int length() const { return head.size() + tail.size(); } |
132 | 132 |
/// \brief Return whether the path is empty. |
133 | 133 |
bool empty() const { return head.empty() && tail.empty(); } |
134 | 134 |
|
135 | 135 |
/// \brief Reset the path to an empty one. |
136 | 136 |
void clear() { head.clear(); tail.clear(); } |
137 | 137 |
|
138 |
/// \brief The |
|
138 |
/// \brief The n-th arc. |
|
139 | 139 |
/// |
140 | 140 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
141 | 141 |
const Arc& nth(int n) const { |
142 | 142 |
return n < int(head.size()) ? *(head.rbegin() + n) : |
143 | 143 |
*(tail.begin() + (n - head.size())); |
144 | 144 |
} |
145 | 145 |
|
146 |
/// \brief Initialize arc iterator to point to the |
|
146 |
/// \brief Initialize arc iterator to point to the n-th arc |
|
147 | 147 |
/// |
148 | 148 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
149 | 149 |
ArcIt nthIt(int n) const { |
150 | 150 |
return ArcIt(*this, n); |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
/// \brief The first arc of the path |
154 | 154 |
const Arc& front() const { |
155 | 155 |
return head.empty() ? tail.front() : head.back(); |
156 | 156 |
} |
157 | 157 |
|
158 | 158 |
/// \brief Add a new arc before the current path |
159 | 159 |
void addFront(const Arc& arc) { |
160 | 160 |
head.push_back(arc); |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
/// \brief Erase the first arc of the path |
164 | 164 |
void eraseFront() { |
165 | 165 |
if (!head.empty()) { |
166 | 166 |
head.pop_back(); |
167 | 167 |
} else { |
168 | 168 |
head.clear(); |
169 | 169 |
int halfsize = tail.size() / 2; |
170 | 170 |
head.resize(halfsize); |
... | ... |
@@ -210,49 +210,49 @@ |
210 | 210 |
} |
211 | 211 |
} |
212 | 212 |
|
213 | 213 |
template <typename CPath> |
214 | 214 |
void buildRev(const CPath& path) { |
215 | 215 |
int len = path.length(); |
216 | 216 |
head.reserve(len); |
217 | 217 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
218 | 218 |
head.push_back(it); |
219 | 219 |
} |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
protected: |
223 | 223 |
typedef std::vector<Arc> Container; |
224 | 224 |
Container head, tail; |
225 | 225 |
|
226 | 226 |
}; |
227 | 227 |
|
228 | 228 |
/// \brief A structure for representing directed paths in a digraph. |
229 | 229 |
/// |
230 | 230 |
/// A structure for representing directed path in a digraph. |
231 | 231 |
/// \tparam GR The digraph type in which the path is. |
232 | 232 |
/// |
233 | 233 |
/// In a sense, the path can be treated as a list of arcs. The |
234 |
/// |
|
234 |
/// LEMON path type stores just this list. As a consequence it |
|
235 | 235 |
/// cannot enumerate the nodes in the path and the zero length paths |
236 | 236 |
/// cannot store the source. |
237 | 237 |
/// |
238 | 238 |
/// This implementation is a just back insertable and erasable path |
239 | 239 |
/// type. It can be indexed in O(1) time. The back insertion and |
240 | 240 |
/// erasure is amortized O(1) time. This implementation is faster |
241 | 241 |
/// then the \c Path type because it use just one vector for the |
242 | 242 |
/// arcs. |
243 | 243 |
template <typename GR> |
244 | 244 |
class SimplePath { |
245 | 245 |
public: |
246 | 246 |
|
247 | 247 |
typedef GR Digraph; |
248 | 248 |
typedef typename Digraph::Arc Arc; |
249 | 249 |
|
250 | 250 |
/// \brief Default constructor |
251 | 251 |
/// |
252 | 252 |
/// Default constructor |
253 | 253 |
SimplePath() {} |
254 | 254 |
|
255 | 255 |
/// \brief Template copy constructor |
256 | 256 |
/// |
257 | 257 |
/// This path can be initialized with any other path type. It just |
258 | 258 |
/// makes a copy of the given path. |
... | ... |
@@ -306,56 +306,56 @@ |
306 | 306 |
if (idx >= path->length()) idx = -1; |
307 | 307 |
return *this; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
/// Comparison operator |
311 | 311 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
312 | 312 |
/// Comparison operator |
313 | 313 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
314 | 314 |
/// Comparison operator |
315 | 315 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
316 | 316 |
|
317 | 317 |
private: |
318 | 318 |
const SimplePath *path; |
319 | 319 |
int idx; |
320 | 320 |
}; |
321 | 321 |
|
322 | 322 |
/// \brief Length of the path. |
323 | 323 |
int length() const { return data.size(); } |
324 | 324 |
/// \brief Return true if the path is empty. |
325 | 325 |
bool empty() const { return data.empty(); } |
326 | 326 |
|
327 | 327 |
/// \brief Reset the path to an empty one. |
328 | 328 |
void clear() { data.clear(); } |
329 | 329 |
|
330 |
/// \brief The |
|
330 |
/// \brief The n-th arc. |
|
331 | 331 |
/// |
332 | 332 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
333 | 333 |
const Arc& nth(int n) const { |
334 | 334 |
return data[n]; |
335 | 335 |
} |
336 | 336 |
|
337 |
/// \brief Initializes arc iterator to point to the |
|
337 |
/// \brief Initializes arc iterator to point to the n-th arc. |
|
338 | 338 |
ArcIt nthIt(int n) const { |
339 | 339 |
return ArcIt(*this, n); |
340 | 340 |
} |
341 | 341 |
|
342 | 342 |
/// \brief The first arc of the path. |
343 | 343 |
const Arc& front() const { |
344 | 344 |
return data.front(); |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
/// \brief The last arc of the path. |
348 | 348 |
const Arc& back() const { |
349 | 349 |
return data.back(); |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
/// \brief Add a new arc behind the current path. |
353 | 353 |
void addBack(const Arc& arc) { |
354 | 354 |
data.push_back(arc); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
/// \brief Erase the last arc of the path |
358 | 358 |
void eraseBack() { |
359 | 359 |
data.pop_back(); |
360 | 360 |
} |
361 | 361 |
|
... | ... |
@@ -374,49 +374,49 @@ |
374 | 374 |
|
375 | 375 |
template <typename CPath> |
376 | 376 |
void buildRev(const CPath& path) { |
377 | 377 |
int len = path.length(); |
378 | 378 |
data.resize(len); |
379 | 379 |
int index = len; |
380 | 380 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
381 | 381 |
--index; |
382 | 382 |
data[index] = it;; |
383 | 383 |
} |
384 | 384 |
} |
385 | 385 |
|
386 | 386 |
protected: |
387 | 387 |
typedef std::vector<Arc> Container; |
388 | 388 |
Container data; |
389 | 389 |
|
390 | 390 |
}; |
391 | 391 |
|
392 | 392 |
/// \brief A structure for representing directed paths in a digraph. |
393 | 393 |
/// |
394 | 394 |
/// A structure for representing directed path in a digraph. |
395 | 395 |
/// \tparam GR The digraph type in which the path is. |
396 | 396 |
/// |
397 | 397 |
/// In a sense, the path can be treated as a list of arcs. The |
398 |
/// |
|
398 |
/// LEMON path type stores just this list. As a consequence it |
|
399 | 399 |
/// cannot enumerate the nodes in the path and the zero length paths |
400 | 400 |
/// cannot store the source. |
401 | 401 |
/// |
402 | 402 |
/// This implementation is a back and front insertable and erasable |
403 | 403 |
/// path type. It can be indexed in O(k) time, where k is the rank |
404 | 404 |
/// of the arc in the path. The length can be computed in O(n) |
405 | 405 |
/// time. The front and back insertion and erasure is O(1) time |
406 | 406 |
/// and it can be splited and spliced in O(1) time. |
407 | 407 |
template <typename GR> |
408 | 408 |
class ListPath { |
409 | 409 |
public: |
410 | 410 |
|
411 | 411 |
typedef GR Digraph; |
412 | 412 |
typedef typename Digraph::Arc Arc; |
413 | 413 |
|
414 | 414 |
protected: |
415 | 415 |
|
416 | 416 |
// the std::list<> is incompatible |
417 | 417 |
// hard to create invalid iterator |
418 | 418 |
struct Node { |
419 | 419 |
Arc arc; |
420 | 420 |
Node *next, *prev; |
421 | 421 |
}; |
422 | 422 |
|
... | ... |
@@ -483,61 +483,61 @@ |
483 | 483 |
|
484 | 484 |
///Conversion to Digraph::Arc |
485 | 485 |
operator const Arc&() const { |
486 | 486 |
return node->arc; |
487 | 487 |
} |
488 | 488 |
|
489 | 489 |
/// Next arc |
490 | 490 |
ArcIt& operator++() { |
491 | 491 |
node = node->next; |
492 | 492 |
return *this; |
493 | 493 |
} |
494 | 494 |
|
495 | 495 |
/// Comparison operator |
496 | 496 |
bool operator==(const ArcIt& e) const { return node==e.node; } |
497 | 497 |
/// Comparison operator |
498 | 498 |
bool operator!=(const ArcIt& e) const { return node!=e.node; } |
499 | 499 |
/// Comparison operator |
500 | 500 |
bool operator<(const ArcIt& e) const { return node<e.node; } |
501 | 501 |
|
502 | 502 |
private: |
503 | 503 |
const ListPath *path; |
504 | 504 |
Node *node; |
505 | 505 |
}; |
506 | 506 |
|
507 |
/// \brief The |
|
507 |
/// \brief The n-th arc. |
|
508 | 508 |
/// |
509 |
/// This function looks for the |
|
509 |
/// This function looks for the n-th arc in O(n) time. |
|
510 | 510 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
511 | 511 |
const Arc& nth(int n) const { |
512 | 512 |
Node *node = first; |
513 | 513 |
for (int i = 0; i < n; ++i) { |
514 | 514 |
node = node->next; |
515 | 515 |
} |
516 | 516 |
return node->arc; |
517 | 517 |
} |
518 | 518 |
|
519 |
/// \brief Initializes arc iterator to point to the |
|
519 |
/// \brief Initializes arc iterator to point to the n-th arc. |
|
520 | 520 |
ArcIt nthIt(int n) const { |
521 | 521 |
Node *node = first; |
522 | 522 |
for (int i = 0; i < n; ++i) { |
523 | 523 |
node = node->next; |
524 | 524 |
} |
525 | 525 |
return ArcIt(*this, node); |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
/// \brief Length of the path. |
529 | 529 |
int length() const { |
530 | 530 |
int len = 0; |
531 | 531 |
Node *node = first; |
532 | 532 |
while (node != 0) { |
533 | 533 |
node = node->next; |
534 | 534 |
++len; |
535 | 535 |
} |
536 | 536 |
return len; |
537 | 537 |
} |
538 | 538 |
|
539 | 539 |
/// \brief Return true if the path is empty. |
540 | 540 |
bool empty() const { return first == 0; } |
541 | 541 |
|
542 | 542 |
/// \brief Reset the path to an empty one. |
543 | 543 |
void clear() { |
... | ... |
@@ -714,49 +714,49 @@ |
714 | 714 |
typedef True BuildTag; |
715 | 715 |
|
716 | 716 |
template <typename CPath> |
717 | 717 |
void build(const CPath& path) { |
718 | 718 |
for (typename CPath::ArcIt it(path); it != INVALID; ++it) { |
719 | 719 |
addBack(it); |
720 | 720 |
} |
721 | 721 |
} |
722 | 722 |
|
723 | 723 |
template <typename CPath> |
724 | 724 |
void buildRev(const CPath& path) { |
725 | 725 |
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) { |
726 | 726 |
addFront(it); |
727 | 727 |
} |
728 | 728 |
} |
729 | 729 |
|
730 | 730 |
}; |
731 | 731 |
|
732 | 732 |
/// \brief A structure for representing directed paths in a digraph. |
733 | 733 |
/// |
734 | 734 |
/// A structure for representing directed path in a digraph. |
735 | 735 |
/// \tparam GR The digraph type in which the path is. |
736 | 736 |
/// |
737 | 737 |
/// In a sense, the path can be treated as a list of arcs. The |
738 |
/// |
|
738 |
/// LEMON path type stores just this list. As a consequence it |
|
739 | 739 |
/// cannot enumerate the nodes in the path and the source node of |
740 | 740 |
/// a zero length path is undefined. |
741 | 741 |
/// |
742 | 742 |
/// This implementation is completly static, i.e. it can be copy constucted |
743 | 743 |
/// or copy assigned from another path, but otherwise it cannot be |
744 | 744 |
/// modified. |
745 | 745 |
/// |
746 | 746 |
/// Being the the most memory efficient path type in LEMON, |
747 | 747 |
/// it is intented to be |
748 | 748 |
/// used when you want to store a large number of paths. |
749 | 749 |
template <typename GR> |
750 | 750 |
class StaticPath { |
751 | 751 |
public: |
752 | 752 |
|
753 | 753 |
typedef GR Digraph; |
754 | 754 |
typedef typename Digraph::Arc Arc; |
755 | 755 |
|
756 | 756 |
/// \brief Default constructor |
757 | 757 |
/// |
758 | 758 |
/// Default constructor |
759 | 759 |
StaticPath() : len(0), arcs(0) {} |
760 | 760 |
|
761 | 761 |
/// \brief Template copy constructor |
762 | 762 |
/// |
... | ... |
@@ -810,56 +810,56 @@ |
810 | 810 |
///Conversion to Digraph::Arc |
811 | 811 |
operator const Arc&() const { |
812 | 812 |
return path->nth(idx); |
813 | 813 |
} |
814 | 814 |
|
815 | 815 |
/// Next arc |
816 | 816 |
ArcIt& operator++() { |
817 | 817 |
++idx; |
818 | 818 |
if (idx >= path->length()) idx = -1; |
819 | 819 |
return *this; |
820 | 820 |
} |
821 | 821 |
|
822 | 822 |
/// Comparison operator |
823 | 823 |
bool operator==(const ArcIt& e) const { return idx==e.idx; } |
824 | 824 |
/// Comparison operator |
825 | 825 |
bool operator!=(const ArcIt& e) const { return idx!=e.idx; } |
826 | 826 |
/// Comparison operator |
827 | 827 |
bool operator<(const ArcIt& e) const { return idx<e.idx; } |
828 | 828 |
|
829 | 829 |
private: |
830 | 830 |
const StaticPath *path; |
831 | 831 |
int idx; |
832 | 832 |
}; |
833 | 833 |
|
834 |
/// \brief The |
|
834 |
/// \brief The n-th arc. |
|
835 | 835 |
/// |
836 | 836 |
/// \pre \c n is in the <tt>[0..length() - 1]</tt> range. |
837 | 837 |
const Arc& nth(int n) const { |
838 | 838 |
return arcs[n]; |
839 | 839 |
} |
840 | 840 |
|
841 |
/// \brief The arc iterator pointing to the |
|
841 |
/// \brief The arc iterator pointing to the n-th arc. |
|
842 | 842 |
ArcIt nthIt(int n) const { |
843 | 843 |
return ArcIt(*this, n); |
844 | 844 |
} |
845 | 845 |
|
846 | 846 |
/// \brief The length of the path. |
847 | 847 |
int length() const { return len; } |
848 | 848 |
|
849 | 849 |
/// \brief Return true when the path is empty. |
850 | 850 |
int empty() const { return len == 0; } |
851 | 851 |
|
852 | 852 |
/// \brief Erase all arcs in the digraph. |
853 | 853 |
void clear() { |
854 | 854 |
len = 0; |
855 | 855 |
if (arcs) delete[] arcs; |
856 | 856 |
arcs = 0; |
857 | 857 |
} |
858 | 858 |
|
859 | 859 |
/// \brief The first arc of the path. |
860 | 860 |
const Arc& front() const { |
861 | 861 |
return arcs[0]; |
862 | 862 |
} |
863 | 863 |
|
864 | 864 |
/// \brief The last arc of the path. |
865 | 865 |
const Arc& back() const { |
... | ... |
@@ -1021,49 +1021,49 @@ |
1021 | 1021 |
return true; |
1022 | 1022 |
} |
1023 | 1023 |
|
1024 | 1024 |
/// \brief The source of a path |
1025 | 1025 |
/// |
1026 | 1026 |
/// This function returns the source node of the given path. |
1027 | 1027 |
/// If the path is empty, then it returns \c INVALID. |
1028 | 1028 |
template <typename Digraph, typename Path> |
1029 | 1029 |
typename Digraph::Node pathSource(const Digraph& digraph, const Path& path) { |
1030 | 1030 |
return path.empty() ? INVALID : digraph.source(path.front()); |
1031 | 1031 |
} |
1032 | 1032 |
|
1033 | 1033 |
/// \brief The target of a path |
1034 | 1034 |
/// |
1035 | 1035 |
/// This function returns the target node of the given path. |
1036 | 1036 |
/// If the path is empty, then it returns \c INVALID. |
1037 | 1037 |
template <typename Digraph, typename Path> |
1038 | 1038 |
typename Digraph::Node pathTarget(const Digraph& digraph, const Path& path) { |
1039 | 1039 |
return path.empty() ? INVALID : digraph.target(path.back()); |
1040 | 1040 |
} |
1041 | 1041 |
|
1042 | 1042 |
/// \brief Class which helps to iterate through the nodes of a path |
1043 | 1043 |
/// |
1044 | 1044 |
/// In a sense, the path can be treated as a list of arcs. The |
1045 |
/// |
|
1045 |
/// LEMON path type stores only this list. As a consequence, it |
|
1046 | 1046 |
/// cannot enumerate the nodes in the path and the zero length paths |
1047 | 1047 |
/// cannot have a source node. |
1048 | 1048 |
/// |
1049 | 1049 |
/// This class implements the node iterator of a path structure. To |
1050 | 1050 |
/// provide this feature, the underlying digraph should be passed to |
1051 | 1051 |
/// the constructor of the iterator. |
1052 | 1052 |
template <typename Path> |
1053 | 1053 |
class PathNodeIt { |
1054 | 1054 |
private: |
1055 | 1055 |
const typename Path::Digraph *_digraph; |
1056 | 1056 |
typename Path::ArcIt _it; |
1057 | 1057 |
typename Path::Digraph::Node _nd; |
1058 | 1058 |
|
1059 | 1059 |
public: |
1060 | 1060 |
|
1061 | 1061 |
typedef typename Path::Digraph Digraph; |
1062 | 1062 |
typedef typename Digraph::Node Node; |
1063 | 1063 |
|
1064 | 1064 |
/// Default constructor |
1065 | 1065 |
PathNodeIt() {} |
1066 | 1066 |
/// Invalid constructor |
1067 | 1067 |
PathNodeIt(Invalid) |
1068 | 1068 |
: _digraph(0), _it(INVALID), _nd(INVALID) {} |
1069 | 1069 |
/// Constructor |
... | ... |
@@ -37,140 +37,152 @@ |
37 | 37 |
"5 1\n" |
38 | 38 |
"6 1\n" |
39 | 39 |
"7 1\n" |
40 | 40 |
"@edges\n" |
41 | 41 |
" label\n" |
42 | 42 |
"1 2 1\n" |
43 | 43 |
"1 3 2\n" |
44 | 44 |
"1 4 3\n" |
45 | 45 |
"1 6 4\n" |
46 | 46 |
"2 3 5\n" |
47 | 47 |
"2 5 6\n" |
48 | 48 |
"2 7 7\n" |
49 | 49 |
"3 4 8\n" |
50 | 50 |
"3 5 9\n" |
51 | 51 |
"4 5 10\n" |
52 | 52 |
"4 6 11\n" |
53 | 53 |
"4 7 12\n" |
54 | 54 |
"5 6 13\n" |
55 | 55 |
"5 7 14\n" |
56 | 56 |
"6 7 15\n"; |
57 | 57 |
|
58 | 58 |
|
59 | 59 |
// Check with general graphs |
60 | 60 |
template <typename Param> |
61 |
void checkMaxCliqueGeneral( |
|
61 |
void checkMaxCliqueGeneral(Param rule) { |
|
62 | 62 |
typedef ListGraph GR; |
63 | 63 |
typedef GrossoLocatelliPullanMc<GR> McAlg; |
64 | 64 |
typedef McAlg::CliqueNodeIt CliqueIt; |
65 | 65 |
|
66 | 66 |
// Basic tests |
67 | 67 |
{ |
68 | 68 |
GR g; |
69 | 69 |
GR::NodeMap<bool> map(g); |
70 | 70 |
McAlg mc(g); |
71 |
|
|
71 |
mc.iterationLimit(50); |
|
72 |
check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause"); |
|
72 | 73 |
check(mc.cliqueSize() == 0, "Wrong clique size"); |
73 | 74 |
check(CliqueIt(mc) == INVALID, "Wrong CliqueNodeIt"); |
74 | 75 |
|
75 | 76 |
GR::Node u = g.addNode(); |
76 |
check(mc.run( |
|
77 |
check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause"); |
|
77 | 78 |
check(mc.cliqueSize() == 1, "Wrong clique size"); |
78 | 79 |
mc.cliqueMap(map); |
79 | 80 |
check(map[u], "Wrong clique map"); |
80 | 81 |
CliqueIt it1(mc); |
81 | 82 |
check(static_cast<GR::Node>(it1) == u && ++it1 == INVALID, |
82 | 83 |
"Wrong CliqueNodeIt"); |
83 | 84 |
|
84 | 85 |
GR::Node v = g.addNode(); |
85 |
check(mc.run( |
|
86 |
check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause"); |
|
86 | 87 |
check(mc.cliqueSize() == 1, "Wrong clique size"); |
87 | 88 |
mc.cliqueMap(map); |
88 | 89 |
check((map[u] && !map[v]) || (map[v] && !map[u]), "Wrong clique map"); |
89 | 90 |
CliqueIt it2(mc); |
90 | 91 |
check(it2 != INVALID && ++it2 == INVALID, "Wrong CliqueNodeIt"); |
91 | 92 |
|
92 | 93 |
g.addEdge(u, v); |
93 |
check(mc.run( |
|
94 |
check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause"); |
|
94 | 95 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
95 | 96 |
mc.cliqueMap(map); |
96 | 97 |
check(map[u] && map[v], "Wrong clique map"); |
97 | 98 |
CliqueIt it3(mc); |
98 | 99 |
check(it3 != INVALID && ++it3 != INVALID && ++it3 == INVALID, |
99 | 100 |
"Wrong CliqueNodeIt"); |
100 | 101 |
} |
101 | 102 |
|
102 | 103 |
// Test graph |
103 | 104 |
{ |
104 | 105 |
GR g; |
105 | 106 |
GR::NodeMap<bool> max_clique(g); |
106 | 107 |
GR::NodeMap<bool> map(g); |
107 | 108 |
std::istringstream input(test_lgf); |
108 | 109 |
graphReader(g, input) |
109 | 110 |
.nodeMap("max_clique", max_clique) |
110 | 111 |
.run(); |
111 | 112 |
|
112 | 113 |
McAlg mc(g); |
113 |
|
|
114 |
mc.iterationLimit(50); |
|
115 |
check(mc.run(rule) == McAlg::ITERATION_LIMIT, "Wrong termination cause"); |
|
114 | 116 |
check(mc.cliqueSize() == 4, "Wrong clique size"); |
115 | 117 |
mc.cliqueMap(map); |
116 | 118 |
for (GR::NodeIt n(g); n != INVALID; ++n) { |
117 | 119 |
check(map[n] == max_clique[n], "Wrong clique map"); |
118 | 120 |
} |
119 | 121 |
int cnt = 0; |
120 | 122 |
for (CliqueIt n(mc); n != INVALID; ++n) { |
121 | 123 |
cnt++; |
122 | 124 |
check(map[n] && max_clique[n], "Wrong CliqueNodeIt"); |
123 | 125 |
} |
124 | 126 |
check(cnt == 4, "Wrong CliqueNodeIt"); |
125 | 127 |
} |
126 | 128 |
} |
127 | 129 |
|
128 | 130 |
// Check with full graphs |
129 | 131 |
template <typename Param> |
130 |
void checkMaxCliqueFullGraph( |
|
132 |
void checkMaxCliqueFullGraph(Param rule) { |
|
131 | 133 |
typedef FullGraph GR; |
132 | 134 |
typedef GrossoLocatelliPullanMc<FullGraph> McAlg; |
133 | 135 |
typedef McAlg::CliqueNodeIt CliqueIt; |
134 | 136 |
|
135 | 137 |
for (int size = 0; size <= 40; size = size * 3 + 1) { |
136 | 138 |
GR g(size); |
137 | 139 |
GR::NodeMap<bool> map(g); |
138 | 140 |
McAlg mc(g); |
139 |
check(mc.run( |
|
141 |
check(mc.run(rule) == McAlg::SIZE_LIMIT, "Wrong termination cause"); |
|
140 | 142 |
check(mc.cliqueSize() == size, "Wrong clique size"); |
141 | 143 |
mc.cliqueMap(map); |
142 | 144 |
for (GR::NodeIt n(g); n != INVALID; ++n) { |
143 | 145 |
check(map[n], "Wrong clique map"); |
144 | 146 |
} |
145 | 147 |
int cnt = 0; |
146 | 148 |
for (CliqueIt n(mc); n != INVALID; ++n) cnt++; |
147 | 149 |
check(cnt == size, "Wrong CliqueNodeIt"); |
148 | 150 |
} |
149 | 151 |
} |
150 | 152 |
|
151 | 153 |
// Check with grid graphs |
152 | 154 |
template <typename Param> |
153 |
void checkMaxCliqueGridGraph( |
|
155 |
void checkMaxCliqueGridGraph(Param rule) { |
|
154 | 156 |
GridGraph g(5, 7); |
155 | 157 |
GridGraph::NodeMap<char> map(g); |
156 | 158 |
GrossoLocatelliPullanMc<GridGraph> mc(g); |
157 |
|
|
159 |
|
|
160 |
mc.iterationLimit(100); |
|
161 |
check(mc.run(rule) == mc.ITERATION_LIMIT, "Wrong termination cause"); |
|
162 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
|
163 |
|
|
164 |
mc.stepLimit(100); |
|
165 |
check(mc.run(rule) == mc.STEP_LIMIT, "Wrong termination cause"); |
|
166 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
|
167 |
|
|
168 |
mc.sizeLimit(2); |
|
169 |
check(mc.run(rule) == mc.SIZE_LIMIT, "Wrong termination cause"); |
|
158 | 170 |
check(mc.cliqueSize() == 2, "Wrong clique size"); |
159 | 171 |
} |
160 | 172 |
|
161 | 173 |
|
162 | 174 |
int main() { |
163 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::RANDOM); |
|
164 |
checkMaxCliqueGeneral(50, GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED); |
|
165 |
checkMaxCliqueGeneral( |
|
175 |
checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::RANDOM); |
|
176 |
checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::DEGREE_BASED); |
|
177 |
checkMaxCliqueGeneral(GrossoLocatelliPullanMc<ListGraph>::PENALTY_BASED); |
|
166 | 178 |
|
167 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::RANDOM); |
|
168 |
checkMaxCliqueFullGraph(50, GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED); |
|
169 |
checkMaxCliqueFullGraph( |
|
179 |
checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::RANDOM); |
|
180 |
checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::DEGREE_BASED); |
|
181 |
checkMaxCliqueFullGraph(GrossoLocatelliPullanMc<FullGraph>::PENALTY_BASED); |
|
170 | 182 |
|
171 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::RANDOM); |
|
172 |
checkMaxCliqueGridGraph(50, GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED); |
|
173 |
checkMaxCliqueGridGraph( |
|
183 |
checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::RANDOM); |
|
184 |
checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::DEGREE_BASED); |
|
185 |
checkMaxCliqueGridGraph(GrossoLocatelliPullanMc<GridGraph>::PENALTY_BASED); |
|
174 | 186 |
|
175 | 187 |
return 0; |
176 | 188 |
} |
0 comments (0 inline)