... | ... |
@@ -369,541 +369,545 @@ |
369 | 369 |
/// using this function. |
370 | 370 |
const Elevator& elevator() const { |
371 | 371 |
return *_level; |
372 | 372 |
} |
373 | 373 |
|
374 | 374 |
/// \brief Sets the tolerance used by algorithm. |
375 | 375 |
/// |
376 | 376 |
/// Sets the tolerance used by algorithm. |
377 | 377 |
Preflow& tolerance(const Tolerance& tolerance) { |
378 | 378 |
_tolerance = tolerance; |
379 | 379 |
return *this; |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
/// \brief Returns a const reference to the tolerance. |
383 | 383 |
/// |
384 | 384 |
/// Returns a const reference to the tolerance. |
385 | 385 |
const Tolerance& tolerance() const { |
386 | 386 |
return _tolerance; |
387 | 387 |
} |
388 | 388 |
|
389 | 389 |
/// \name Execution Control |
390 | 390 |
/// The simplest way to execute the preflow algorithm is to use |
391 | 391 |
/// \ref run() or \ref runMinCut().\n |
392 | 392 |
/// If you need more control on the initial solution or the execution, |
393 | 393 |
/// first you have to call one of the \ref init() functions, then |
394 | 394 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
395 | 395 |
|
396 | 396 |
///@{ |
397 | 397 |
|
398 | 398 |
/// \brief Initializes the internal data structures. |
399 | 399 |
/// |
400 | 400 |
/// Initializes the internal data structures and sets the initial |
401 | 401 |
/// flow to zero on each arc. |
402 | 402 |
void init() { |
403 | 403 |
createStructures(); |
404 | 404 |
|
405 | 405 |
_phase = true; |
406 | 406 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
407 | 407 |
(*_excess)[n] = 0; |
408 | 408 |
} |
409 | 409 |
|
410 | 410 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
411 | 411 |
_flow->set(e, 0); |
412 | 412 |
} |
413 | 413 |
|
414 | 414 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
415 | 415 |
|
416 | 416 |
_level->initStart(); |
417 | 417 |
_level->initAddItem(_target); |
418 | 418 |
|
419 | 419 |
std::vector<Node> queue; |
420 | 420 |
reached[_source] = true; |
421 | 421 |
|
422 | 422 |
queue.push_back(_target); |
423 | 423 |
reached[_target] = true; |
424 | 424 |
while (!queue.empty()) { |
425 | 425 |
_level->initNewLevel(); |
426 | 426 |
std::vector<Node> nqueue; |
427 | 427 |
for (int i = 0; i < int(queue.size()); ++i) { |
428 | 428 |
Node n = queue[i]; |
429 | 429 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
430 | 430 |
Node u = _graph.source(e); |
431 | 431 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
432 | 432 |
reached[u] = true; |
433 | 433 |
_level->initAddItem(u); |
434 | 434 |
nqueue.push_back(u); |
435 | 435 |
} |
436 | 436 |
} |
437 | 437 |
} |
438 | 438 |
queue.swap(nqueue); |
439 | 439 |
} |
440 | 440 |
_level->initFinish(); |
441 | 441 |
|
442 | 442 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
443 | 443 |
if (_tolerance.positive((*_capacity)[e])) { |
444 | 444 |
Node u = _graph.target(e); |
445 | 445 |
if ((*_level)[u] == _level->maxLevel()) continue; |
446 | 446 |
_flow->set(e, (*_capacity)[e]); |
447 | 447 |
(*_excess)[u] += (*_capacity)[e]; |
448 | 448 |
if (u != _target && !_level->active(u)) { |
449 | 449 |
_level->activate(u); |
450 | 450 |
} |
451 | 451 |
} |
452 | 452 |
} |
453 | 453 |
} |
454 | 454 |
|
455 | 455 |
/// \brief Initializes the internal data structures using the |
456 | 456 |
/// given flow map. |
457 | 457 |
/// |
458 | 458 |
/// Initializes the internal data structures and sets the initial |
459 | 459 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
460 | 460 |
/// flow or at least a preflow, i.e. at each node excluding the |
461 | 461 |
/// source node the incoming flow should greater or equal to the |
462 | 462 |
/// outgoing flow. |
463 | 463 |
/// \return \c false if the given \c flowMap is not a preflow. |
464 | 464 |
template <typename FlowMap> |
465 | 465 |
bool init(const FlowMap& flowMap) { |
466 | 466 |
createStructures(); |
467 | 467 |
|
468 | 468 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
469 | 469 |
_flow->set(e, flowMap[e]); |
470 | 470 |
} |
471 | 471 |
|
472 | 472 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
473 | 473 |
Value excess = 0; |
474 | 474 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
475 | 475 |
excess += (*_flow)[e]; |
476 | 476 |
} |
477 | 477 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
478 | 478 |
excess -= (*_flow)[e]; |
479 | 479 |
} |
480 | 480 |
if (excess < 0 && n != _source) return false; |
481 | 481 |
(*_excess)[n] = excess; |
482 | 482 |
} |
483 | 483 |
|
484 | 484 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
485 | 485 |
|
486 | 486 |
_level->initStart(); |
487 | 487 |
_level->initAddItem(_target); |
488 | 488 |
|
489 | 489 |
std::vector<Node> queue; |
490 | 490 |
reached[_source] = true; |
491 | 491 |
|
492 | 492 |
queue.push_back(_target); |
493 | 493 |
reached[_target] = true; |
494 | 494 |
while (!queue.empty()) { |
495 | 495 |
_level->initNewLevel(); |
496 | 496 |
std::vector<Node> nqueue; |
497 | 497 |
for (int i = 0; i < int(queue.size()); ++i) { |
498 | 498 |
Node n = queue[i]; |
499 | 499 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
500 | 500 |
Node u = _graph.source(e); |
501 | 501 |
if (!reached[u] && |
502 | 502 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
503 | 503 |
reached[u] = true; |
504 | 504 |
_level->initAddItem(u); |
505 | 505 |
nqueue.push_back(u); |
506 | 506 |
} |
507 | 507 |
} |
508 | 508 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
509 | 509 |
Node v = _graph.target(e); |
510 | 510 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
511 | 511 |
reached[v] = true; |
512 | 512 |
_level->initAddItem(v); |
513 | 513 |
nqueue.push_back(v); |
514 | 514 |
} |
515 | 515 |
} |
516 | 516 |
} |
517 | 517 |
queue.swap(nqueue); |
518 | 518 |
} |
519 | 519 |
_level->initFinish(); |
520 | 520 |
|
521 | 521 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
522 | 522 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
523 | 523 |
if (_tolerance.positive(rem)) { |
524 | 524 |
Node u = _graph.target(e); |
525 | 525 |
if ((*_level)[u] == _level->maxLevel()) continue; |
526 | 526 |
_flow->set(e, (*_capacity)[e]); |
527 | 527 |
(*_excess)[u] += rem; |
528 | 528 |
if (u != _target && !_level->active(u)) { |
529 | 529 |
_level->activate(u); |
530 | 530 |
} |
531 | 531 |
} |
532 | 532 |
} |
533 | 533 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
534 | 534 |
Value rem = (*_flow)[e]; |
535 | 535 |
if (_tolerance.positive(rem)) { |
536 | 536 |
Node v = _graph.source(e); |
537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
538 | 538 |
_flow->set(e, 0); |
539 | 539 |
(*_excess)[v] += rem; |
540 | 540 |
if (v != _target && !_level->active(v)) { |
541 | 541 |
_level->activate(v); |
542 | 542 |
} |
543 | 543 |
} |
544 | 544 |
} |
545 | 545 |
return true; |
546 | 546 |
} |
547 | 547 |
|
548 | 548 |
/// \brief Starts the first phase of the preflow algorithm. |
549 | 549 |
/// |
550 | 550 |
/// The preflow algorithm consists of two phases, this method runs |
551 | 551 |
/// the first phase. After the first phase the maximum flow value |
552 | 552 |
/// and a minimum value cut can already be computed, although a |
553 | 553 |
/// maximum flow is not yet obtained. So after calling this method |
554 | 554 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
555 | 555 |
/// minCut() returns a minimum cut. |
556 | 556 |
/// \pre One of the \ref init() functions must be called before |
557 | 557 |
/// using this function. |
558 | 558 |
void startFirstPhase() { |
559 | 559 |
_phase = true; |
560 | 560 |
|
561 |
Node n = _level->highestActive(); |
|
562 |
int level = _level->highestActiveLevel(); |
|
563 |
while ( |
|
561 |
while (true) { |
|
564 | 562 |
int num = _node_num; |
565 | 563 |
|
566 |
|
|
564 |
Node n = INVALID; |
|
565 |
int level = -1; |
|
566 |
|
|
567 |
while (num > 0) { |
|
568 |
n = _level->highestActive(); |
|
569 |
if (n == INVALID) goto first_phase_done; |
|
570 |
level = _level->highestActiveLevel(); |
|
571 |
--num; |
|
572 |
|
|
567 | 573 |
Value excess = (*_excess)[n]; |
568 | 574 |
int new_level = _level->maxLevel(); |
569 | 575 |
|
570 | 576 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 | 577 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
572 | 578 |
if (!_tolerance.positive(rem)) continue; |
573 | 579 |
Node v = _graph.target(e); |
574 | 580 |
if ((*_level)[v] < level) { |
575 | 581 |
if (!_level->active(v) && v != _target) { |
576 | 582 |
_level->activate(v); |
577 | 583 |
} |
578 | 584 |
if (!_tolerance.less(rem, excess)) { |
579 | 585 |
_flow->set(e, (*_flow)[e] + excess); |
580 | 586 |
(*_excess)[v] += excess; |
581 | 587 |
excess = 0; |
582 | 588 |
goto no_more_push_1; |
583 | 589 |
} else { |
584 | 590 |
excess -= rem; |
585 | 591 |
(*_excess)[v] += rem; |
586 | 592 |
_flow->set(e, (*_capacity)[e]); |
587 | 593 |
} |
588 | 594 |
} else if (new_level > (*_level)[v]) { |
589 | 595 |
new_level = (*_level)[v]; |
590 | 596 |
} |
591 | 597 |
} |
592 | 598 |
|
593 | 599 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
594 | 600 |
Value rem = (*_flow)[e]; |
595 | 601 |
if (!_tolerance.positive(rem)) continue; |
596 | 602 |
Node v = _graph.source(e); |
597 | 603 |
if ((*_level)[v] < level) { |
598 | 604 |
if (!_level->active(v) && v != _target) { |
599 | 605 |
_level->activate(v); |
600 | 606 |
} |
601 | 607 |
if (!_tolerance.less(rem, excess)) { |
602 | 608 |
_flow->set(e, (*_flow)[e] - excess); |
603 | 609 |
(*_excess)[v] += excess; |
604 | 610 |
excess = 0; |
605 | 611 |
goto no_more_push_1; |
606 | 612 |
} else { |
607 | 613 |
excess -= rem; |
608 | 614 |
(*_excess)[v] += rem; |
609 | 615 |
_flow->set(e, 0); |
610 | 616 |
} |
611 | 617 |
} else if (new_level > (*_level)[v]) { |
612 | 618 |
new_level = (*_level)[v]; |
613 | 619 |
} |
614 | 620 |
} |
615 | 621 |
|
616 | 622 |
no_more_push_1: |
617 | 623 |
|
618 | 624 |
(*_excess)[n] = excess; |
619 | 625 |
|
620 | 626 |
if (excess != 0) { |
621 | 627 |
if (new_level + 1 < _level->maxLevel()) { |
622 | 628 |
_level->liftHighestActive(new_level + 1); |
623 | 629 |
} else { |
624 | 630 |
_level->liftHighestActiveToTop(); |
625 | 631 |
} |
626 | 632 |
if (_level->emptyLevel(level)) { |
627 | 633 |
_level->liftToTop(level); |
628 | 634 |
} |
629 | 635 |
} else { |
630 | 636 |
_level->deactivate(n); |
631 | 637 |
} |
632 |
|
|
633 |
n = _level->highestActive(); |
|
634 |
level = _level->highestActiveLevel(); |
|
635 |
--num; |
|
636 | 638 |
} |
637 | 639 |
|
638 | 640 |
num = _node_num * 20; |
639 |
while (num > 0 |
|
641 |
while (num > 0) { |
|
642 |
while (level >= 0 && _level->activeFree(level)) { |
|
643 |
--level; |
|
644 |
} |
|
645 |
if (level == -1) { |
|
646 |
n = _level->highestActive(); |
|
647 |
level = _level->highestActiveLevel(); |
|
648 |
if (n == INVALID) goto first_phase_done; |
|
649 |
} else { |
|
650 |
n = _level->activeOn(level); |
|
651 |
} |
|
652 |
--num; |
|
653 |
|
|
640 | 654 |
Value excess = (*_excess)[n]; |
641 | 655 |
int new_level = _level->maxLevel(); |
642 | 656 |
|
643 | 657 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 | 658 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
645 | 659 |
if (!_tolerance.positive(rem)) continue; |
646 | 660 |
Node v = _graph.target(e); |
647 | 661 |
if ((*_level)[v] < level) { |
648 | 662 |
if (!_level->active(v) && v != _target) { |
649 | 663 |
_level->activate(v); |
650 | 664 |
} |
651 | 665 |
if (!_tolerance.less(rem, excess)) { |
652 | 666 |
_flow->set(e, (*_flow)[e] + excess); |
653 | 667 |
(*_excess)[v] += excess; |
654 | 668 |
excess = 0; |
655 | 669 |
goto no_more_push_2; |
656 | 670 |
} else { |
657 | 671 |
excess -= rem; |
658 | 672 |
(*_excess)[v] += rem; |
659 | 673 |
_flow->set(e, (*_capacity)[e]); |
660 | 674 |
} |
661 | 675 |
} else if (new_level > (*_level)[v]) { |
662 | 676 |
new_level = (*_level)[v]; |
663 | 677 |
} |
664 | 678 |
} |
665 | 679 |
|
666 | 680 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
667 | 681 |
Value rem = (*_flow)[e]; |
668 | 682 |
if (!_tolerance.positive(rem)) continue; |
669 | 683 |
Node v = _graph.source(e); |
670 | 684 |
if ((*_level)[v] < level) { |
671 | 685 |
if (!_level->active(v) && v != _target) { |
672 | 686 |
_level->activate(v); |
673 | 687 |
} |
674 | 688 |
if (!_tolerance.less(rem, excess)) { |
675 | 689 |
_flow->set(e, (*_flow)[e] - excess); |
676 | 690 |
(*_excess)[v] += excess; |
677 | 691 |
excess = 0; |
678 | 692 |
goto no_more_push_2; |
679 | 693 |
} else { |
680 | 694 |
excess -= rem; |
681 | 695 |
(*_excess)[v] += rem; |
682 | 696 |
_flow->set(e, 0); |
683 | 697 |
} |
684 | 698 |
} else if (new_level > (*_level)[v]) { |
685 | 699 |
new_level = (*_level)[v]; |
686 | 700 |
} |
687 | 701 |
} |
688 | 702 |
|
689 | 703 |
no_more_push_2: |
690 | 704 |
|
691 | 705 |
(*_excess)[n] = excess; |
692 | 706 |
|
693 | 707 |
if (excess != 0) { |
694 | 708 |
if (new_level + 1 < _level->maxLevel()) { |
695 | 709 |
_level->liftActiveOn(level, new_level + 1); |
696 | 710 |
} else { |
697 | 711 |
_level->liftActiveToTop(level); |
698 | 712 |
} |
699 | 713 |
if (_level->emptyLevel(level)) { |
700 | 714 |
_level->liftToTop(level); |
701 | 715 |
} |
702 | 716 |
} else { |
703 | 717 |
_level->deactivate(n); |
704 | 718 |
} |
705 |
|
|
706 |
while (level >= 0 && _level->activeFree(level)) { |
|
707 |
--level; |
|
708 | 719 |
} |
709 |
if (level == -1) { |
|
710 |
n = _level->highestActive(); |
|
711 |
level = _level->highestActiveLevel(); |
|
712 |
} else { |
|
713 |
n = _level->activeOn(level); |
|
714 | 720 |
} |
715 |
--num; |
|
716 |
} |
|
717 |
|
|
721 |
first_phase_done:; |
|
718 | 722 |
} |
719 | 723 |
|
720 | 724 |
/// \brief Starts the second phase of the preflow algorithm. |
721 | 725 |
/// |
722 | 726 |
/// The preflow algorithm consists of two phases, this method runs |
723 | 727 |
/// the second phase. After calling one of the \ref init() functions |
724 | 728 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
725 | 729 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
726 | 730 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
727 | 731 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
728 | 732 |
/// must be called before using this function. |
729 | 733 |
void startSecondPhase() { |
730 | 734 |
_phase = false; |
731 | 735 |
|
732 | 736 |
typename Digraph::template NodeMap<bool> reached(_graph); |
733 | 737 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
734 | 738 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
735 | 739 |
} |
736 | 740 |
|
737 | 741 |
_level->initStart(); |
738 | 742 |
_level->initAddItem(_source); |
739 | 743 |
|
740 | 744 |
std::vector<Node> queue; |
741 | 745 |
queue.push_back(_source); |
742 | 746 |
reached[_source] = true; |
743 | 747 |
|
744 | 748 |
while (!queue.empty()) { |
745 | 749 |
_level->initNewLevel(); |
746 | 750 |
std::vector<Node> nqueue; |
747 | 751 |
for (int i = 0; i < int(queue.size()); ++i) { |
748 | 752 |
Node n = queue[i]; |
749 | 753 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
750 | 754 |
Node v = _graph.target(e); |
751 | 755 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
752 | 756 |
reached[v] = true; |
753 | 757 |
_level->initAddItem(v); |
754 | 758 |
nqueue.push_back(v); |
755 | 759 |
} |
756 | 760 |
} |
757 | 761 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
758 | 762 |
Node u = _graph.source(e); |
759 | 763 |
if (!reached[u] && |
760 | 764 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
761 | 765 |
reached[u] = true; |
762 | 766 |
_level->initAddItem(u); |
763 | 767 |
nqueue.push_back(u); |
764 | 768 |
} |
765 | 769 |
} |
766 | 770 |
} |
767 | 771 |
queue.swap(nqueue); |
768 | 772 |
} |
769 | 773 |
_level->initFinish(); |
770 | 774 |
|
771 | 775 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
772 | 776 |
if (!reached[n]) { |
773 | 777 |
_level->dirtyTopButOne(n); |
774 | 778 |
} else if ((*_excess)[n] > 0 && _target != n) { |
775 | 779 |
_level->activate(n); |
776 | 780 |
} |
777 | 781 |
} |
778 | 782 |
|
779 | 783 |
Node n; |
780 | 784 |
while ((n = _level->highestActive()) != INVALID) { |
781 | 785 |
Value excess = (*_excess)[n]; |
782 | 786 |
int level = _level->highestActiveLevel(); |
783 | 787 |
int new_level = _level->maxLevel(); |
784 | 788 |
|
785 | 789 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
786 | 790 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
787 | 791 |
if (!_tolerance.positive(rem)) continue; |
788 | 792 |
Node v = _graph.target(e); |
789 | 793 |
if ((*_level)[v] < level) { |
790 | 794 |
if (!_level->active(v) && v != _source) { |
791 | 795 |
_level->activate(v); |
792 | 796 |
} |
793 | 797 |
if (!_tolerance.less(rem, excess)) { |
794 | 798 |
_flow->set(e, (*_flow)[e] + excess); |
795 | 799 |
(*_excess)[v] += excess; |
796 | 800 |
excess = 0; |
797 | 801 |
goto no_more_push; |
798 | 802 |
} else { |
799 | 803 |
excess -= rem; |
800 | 804 |
(*_excess)[v] += rem; |
801 | 805 |
_flow->set(e, (*_capacity)[e]); |
802 | 806 |
} |
803 | 807 |
} else if (new_level > (*_level)[v]) { |
804 | 808 |
new_level = (*_level)[v]; |
805 | 809 |
} |
806 | 810 |
} |
807 | 811 |
|
808 | 812 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
809 | 813 |
Value rem = (*_flow)[e]; |
810 | 814 |
if (!_tolerance.positive(rem)) continue; |
811 | 815 |
Node v = _graph.source(e); |
812 | 816 |
if ((*_level)[v] < level) { |
813 | 817 |
if (!_level->active(v) && v != _source) { |
814 | 818 |
_level->activate(v); |
815 | 819 |
} |
816 | 820 |
if (!_tolerance.less(rem, excess)) { |
817 | 821 |
_flow->set(e, (*_flow)[e] - excess); |
818 | 822 |
(*_excess)[v] += excess; |
819 | 823 |
excess = 0; |
820 | 824 |
goto no_more_push; |
821 | 825 |
} else { |
822 | 826 |
excess -= rem; |
823 | 827 |
(*_excess)[v] += rem; |
824 | 828 |
_flow->set(e, 0); |
825 | 829 |
} |
826 | 830 |
} else if (new_level > (*_level)[v]) { |
827 | 831 |
new_level = (*_level)[v]; |
828 | 832 |
} |
829 | 833 |
} |
830 | 834 |
|
831 | 835 |
no_more_push: |
832 | 836 |
|
833 | 837 |
(*_excess)[n] = excess; |
834 | 838 |
|
835 | 839 |
if (excess != 0) { |
836 | 840 |
if (new_level + 1 < _level->maxLevel()) { |
837 | 841 |
_level->liftHighestActive(new_level + 1); |
838 | 842 |
} else { |
839 | 843 |
// Calculation error |
840 | 844 |
_level->liftHighestActiveToTop(); |
841 | 845 |
} |
842 | 846 |
if (_level->emptyLevel(level)) { |
843 | 847 |
// Calculation error |
844 | 848 |
_level->liftToTop(level); |
845 | 849 |
} |
846 | 850 |
} else { |
847 | 851 |
_level->deactivate(n); |
848 | 852 |
} |
849 | 853 |
|
850 | 854 |
} |
851 | 855 |
} |
852 | 856 |
|
853 | 857 |
/// \brief Runs the preflow algorithm. |
854 | 858 |
/// |
855 | 859 |
/// Runs the preflow algorithm. |
856 | 860 |
/// \note pf.run() is just a shortcut of the following code. |
857 | 861 |
/// \code |
858 | 862 |
/// pf.init(); |
859 | 863 |
/// pf.startFirstPhase(); |
860 | 864 |
/// pf.startSecondPhase(); |
861 | 865 |
/// \endcode |
862 | 866 |
void run() { |
863 | 867 |
init(); |
864 | 868 |
startFirstPhase(); |
865 | 869 |
startSecondPhase(); |
866 | 870 |
} |
867 | 871 |
|
868 | 872 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
869 | 873 |
/// |
870 | 874 |
/// Runs the preflow algorithm to compute the minimum cut. |
871 | 875 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
872 | 876 |
/// \code |
873 | 877 |
/// pf.init(); |
874 | 878 |
/// pf.startFirstPhase(); |
875 | 879 |
/// \endcode |
876 | 880 |
void runMinCut() { |
877 | 881 |
init(); |
878 | 882 |
startFirstPhase(); |
879 | 883 |
} |
880 | 884 |
|
881 | 885 |
/// @} |
882 | 886 |
|
883 | 887 |
/// \name Query Functions |
884 | 888 |
/// The results of the preflow algorithm can be obtained using these |
885 | 889 |
/// functions.\n |
886 | 890 |
/// Either one of the \ref run() "run*()" functions or one of the |
887 | 891 |
/// \ref startFirstPhase() "start*()" functions should be called |
888 | 892 |
/// before using them. |
889 | 893 |
|
890 | 894 |
///@{ |
891 | 895 |
|
892 | 896 |
/// \brief Returns the value of the maximum flow. |
893 | 897 |
/// |
894 | 898 |
/// Returns the value of the maximum flow by returning the excess |
895 | 899 |
/// of the target node. This value equals to the value of |
896 | 900 |
/// the maximum flow already after the first phase of the algorithm. |
897 | 901 |
/// |
898 | 902 |
/// \pre Either \ref run() or \ref init() must be called before |
899 | 903 |
/// using this function. |
900 | 904 |
Value flowValue() const { |
901 | 905 |
return (*_excess)[_target]; |
902 | 906 |
} |
903 | 907 |
|
904 | 908 |
/// \brief Returns the flow value on the given arc. |
905 | 909 |
/// |
906 | 910 |
/// Returns the flow value on the given arc. This method can |
907 | 911 |
/// be called after the second phase of the algorithm. |
908 | 912 |
/// |
909 | 913 |
/// \pre Either \ref run() or \ref init() must be called before |
0 comments (0 inline)