... | ... |
@@ -537,54 +537,60 @@ |
537 | 537 |
if ((*_level)[v] == _level->maxLevel()) continue; |
538 | 538 |
_flow->set(e, 0); |
539 | 539 |
(*_excess)[v] += rem; |
540 | 540 |
if (v != _target && !_level->active(v)) { |
541 | 541 |
_level->activate(v); |
542 | 542 |
} |
543 | 543 |
} |
544 | 544 |
} |
545 | 545 |
return true; |
546 | 546 |
} |
547 | 547 |
|
548 | 548 |
/// \brief Starts the first phase of the preflow algorithm. |
549 | 549 |
/// |
550 | 550 |
/// The preflow algorithm consists of two phases, this method runs |
551 | 551 |
/// the first phase. After the first phase the maximum flow value |
552 | 552 |
/// and a minimum value cut can already be computed, although a |
553 | 553 |
/// maximum flow is not yet obtained. So after calling this method |
554 | 554 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
555 | 555 |
/// minCut() returns a minimum cut. |
556 | 556 |
/// \pre One of the \ref init() functions must be called before |
557 | 557 |
/// using this function. |
558 | 558 |
void startFirstPhase() { |
559 | 559 |
_phase = true; |
560 | 560 |
|
561 |
Node n = _level->highestActive(); |
|
562 |
int level = _level->highestActiveLevel(); |
|
563 |
while ( |
|
561 |
while (true) { |
|
564 | 562 |
int num = _node_num; |
565 | 563 |
|
566 |
|
|
564 |
Node n = INVALID; |
|
565 |
int level = -1; |
|
566 |
|
|
567 |
while (num > 0) { |
|
568 |
n = _level->highestActive(); |
|
569 |
if (n == INVALID) goto first_phase_done; |
|
570 |
level = _level->highestActiveLevel(); |
|
571 |
--num; |
|
572 |
|
|
567 | 573 |
Value excess = (*_excess)[n]; |
568 | 574 |
int new_level = _level->maxLevel(); |
569 | 575 |
|
570 | 576 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
571 | 577 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
572 | 578 |
if (!_tolerance.positive(rem)) continue; |
573 | 579 |
Node v = _graph.target(e); |
574 | 580 |
if ((*_level)[v] < level) { |
575 | 581 |
if (!_level->active(v) && v != _target) { |
576 | 582 |
_level->activate(v); |
577 | 583 |
} |
578 | 584 |
if (!_tolerance.less(rem, excess)) { |
579 | 585 |
_flow->set(e, (*_flow)[e] + excess); |
580 | 586 |
(*_excess)[v] += excess; |
581 | 587 |
excess = 0; |
582 | 588 |
goto no_more_push_1; |
583 | 589 |
} else { |
584 | 590 |
excess -= rem; |
585 | 591 |
(*_excess)[v] += rem; |
586 | 592 |
_flow->set(e, (*_capacity)[e]); |
587 | 593 |
} |
588 | 594 |
} else if (new_level > (*_level)[v]) { |
589 | 595 |
new_level = (*_level)[v]; |
590 | 596 |
} |
... | ... |
@@ -608,56 +614,64 @@ |
608 | 614 |
(*_excess)[v] += rem; |
609 | 615 |
_flow->set(e, 0); |
610 | 616 |
} |
611 | 617 |
} else if (new_level > (*_level)[v]) { |
612 | 618 |
new_level = (*_level)[v]; |
613 | 619 |
} |
614 | 620 |
} |
615 | 621 |
|
616 | 622 |
no_more_push_1: |
617 | 623 |
|
618 | 624 |
(*_excess)[n] = excess; |
619 | 625 |
|
620 | 626 |
if (excess != 0) { |
621 | 627 |
if (new_level + 1 < _level->maxLevel()) { |
622 | 628 |
_level->liftHighestActive(new_level + 1); |
623 | 629 |
} else { |
624 | 630 |
_level->liftHighestActiveToTop(); |
625 | 631 |
} |
626 | 632 |
if (_level->emptyLevel(level)) { |
627 | 633 |
_level->liftToTop(level); |
628 | 634 |
} |
629 | 635 |
} else { |
630 | 636 |
_level->deactivate(n); |
631 | 637 |
} |
632 |
|
|
633 |
n = _level->highestActive(); |
|
634 |
level = _level->highestActiveLevel(); |
|
635 |
--num; |
|
636 | 638 |
} |
637 | 639 |
|
638 | 640 |
num = _node_num * 20; |
639 |
while (num > 0 |
|
641 |
while (num > 0) { |
|
642 |
while (level >= 0 && _level->activeFree(level)) { |
|
643 |
--level; |
|
644 |
} |
|
645 |
if (level == -1) { |
|
646 |
n = _level->highestActive(); |
|
647 |
level = _level->highestActiveLevel(); |
|
648 |
if (n == INVALID) goto first_phase_done; |
|
649 |
} else { |
|
650 |
n = _level->activeOn(level); |
|
651 |
} |
|
652 |
--num; |
|
653 |
|
|
640 | 654 |
Value excess = (*_excess)[n]; |
641 | 655 |
int new_level = _level->maxLevel(); |
642 | 656 |
|
643 | 657 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
644 | 658 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
645 | 659 |
if (!_tolerance.positive(rem)) continue; |
646 | 660 |
Node v = _graph.target(e); |
647 | 661 |
if ((*_level)[v] < level) { |
648 | 662 |
if (!_level->active(v) && v != _target) { |
649 | 663 |
_level->activate(v); |
650 | 664 |
} |
651 | 665 |
if (!_tolerance.less(rem, excess)) { |
652 | 666 |
_flow->set(e, (*_flow)[e] + excess); |
653 | 667 |
(*_excess)[v] += excess; |
654 | 668 |
excess = 0; |
655 | 669 |
goto no_more_push_2; |
656 | 670 |
} else { |
657 | 671 |
excess -= rem; |
658 | 672 |
(*_excess)[v] += rem; |
659 | 673 |
_flow->set(e, (*_capacity)[e]); |
660 | 674 |
} |
661 | 675 |
} else if (new_level > (*_level)[v]) { |
662 | 676 |
new_level = (*_level)[v]; |
663 | 677 |
} |
... | ... |
@@ -681,61 +695,51 @@ |
681 | 695 |
(*_excess)[v] += rem; |
682 | 696 |
_flow->set(e, 0); |
683 | 697 |
} |
684 | 698 |
} else if (new_level > (*_level)[v]) { |
685 | 699 |
new_level = (*_level)[v]; |
686 | 700 |
} |
687 | 701 |
} |
688 | 702 |
|
689 | 703 |
no_more_push_2: |
690 | 704 |
|
691 | 705 |
(*_excess)[n] = excess; |
692 | 706 |
|
693 | 707 |
if (excess != 0) { |
694 | 708 |
if (new_level + 1 < _level->maxLevel()) { |
695 | 709 |
_level->liftActiveOn(level, new_level + 1); |
696 | 710 |
} else { |
697 | 711 |
_level->liftActiveToTop(level); |
698 | 712 |
} |
699 | 713 |
if (_level->emptyLevel(level)) { |
700 | 714 |
_level->liftToTop(level); |
701 | 715 |
} |
702 | 716 |
} else { |
703 | 717 |
_level->deactivate(n); |
704 | 718 |
} |
705 |
|
|
706 |
while (level >= 0 && _level->activeFree(level)) { |
|
707 |
--level; |
|
708 |
} |
|
709 |
if (level == -1) { |
|
710 |
n = _level->highestActive(); |
|
711 |
level = _level->highestActiveLevel(); |
|
712 |
} else { |
|
713 |
n = _level->activeOn(level); |
|
714 |
} |
|
715 |
--num; |
|
716 | 719 |
} |
717 | 720 |
} |
721 |
first_phase_done:; |
|
718 | 722 |
} |
719 | 723 |
|
720 | 724 |
/// \brief Starts the second phase of the preflow algorithm. |
721 | 725 |
/// |
722 | 726 |
/// The preflow algorithm consists of two phases, this method runs |
723 | 727 |
/// the second phase. After calling one of the \ref init() functions |
724 | 728 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
725 | 729 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
726 | 730 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
727 | 731 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
728 | 732 |
/// must be called before using this function. |
729 | 733 |
void startSecondPhase() { |
730 | 734 |
_phase = false; |
731 | 735 |
|
732 | 736 |
typename Digraph::template NodeMap<bool> reached(_graph); |
733 | 737 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
734 | 738 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
735 | 739 |
} |
736 | 740 |
|
737 | 741 |
_level->initStart(); |
738 | 742 |
_level->initAddItem(_source); |
739 | 743 |
|
740 | 744 |
std::vector<Node> queue; |
741 | 745 |
queue.push_back(_source); |
0 comments (0 inline)