0
2
1
1 |
/* -*- C++ -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2008 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_HARTMANN_ORLIN_H |
|
20 |
#define LEMON_HARTMANN_ORLIN_H |
|
21 |
|
|
22 |
/// \ingroup shortest_path |
|
23 |
/// |
|
24 |
/// \file |
|
25 |
/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. |
|
26 |
|
|
27 |
#include <vector> |
|
28 |
#include <limits> |
|
29 |
#include <lemon/core.h> |
|
30 |
#include <lemon/path.h> |
|
31 |
#include <lemon/tolerance.h> |
|
32 |
#include <lemon/connectivity.h> |
|
33 |
|
|
34 |
namespace lemon { |
|
35 |
|
|
36 |
/// \brief Default traits class of HartmannOrlin algorithm. |
|
37 |
/// |
|
38 |
/// Default traits class of HartmannOrlin algorithm. |
|
39 |
/// \tparam GR The type of the digraph. |
|
40 |
/// \tparam LEN The type of the length map. |
|
41 |
/// It must conform to the \ref concepts::Rea_data "Rea_data" concept. |
|
42 |
#ifdef DOXYGEN |
|
43 |
template <typename GR, typename LEN> |
|
44 |
#else |
|
45 |
template <typename GR, typename LEN, |
|
46 |
bool integer = std::numeric_limits<typename LEN::Value>::is_integer> |
|
47 |
#endif |
|
48 |
struct HartmannOrlinDefaultTraits |
|
49 |
{ |
|
50 |
/// The type of the digraph |
|
51 |
typedef GR Digraph; |
|
52 |
/// The type of the length map |
|
53 |
typedef LEN LengthMap; |
|
54 |
/// The type of the arc lengths |
|
55 |
typedef typename LengthMap::Value Value; |
|
56 |
|
|
57 |
/// \brief The large value type used for internal computations |
|
58 |
/// |
|
59 |
/// The large value type used for internal computations. |
|
60 |
/// It is \c long \c long if the \c Value type is integer, |
|
61 |
/// otherwise it is \c double. |
|
62 |
/// \c Value must be convertible to \c LargeValue. |
|
63 |
typedef double LargeValue; |
|
64 |
|
|
65 |
/// The tolerance type used for internal computations |
|
66 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
67 |
|
|
68 |
/// \brief The path type of the found cycles |
|
69 |
/// |
|
70 |
/// The path type of the found cycles. |
|
71 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
72 |
/// and it must have an \c addBack() function. |
|
73 |
typedef lemon::Path<Digraph> Path; |
|
74 |
}; |
|
75 |
|
|
76 |
// Default traits class for integer value types |
|
77 |
template <typename GR, typename LEN> |
|
78 |
struct HartmannOrlinDefaultTraits<GR, LEN, true> |
|
79 |
{ |
|
80 |
typedef GR Digraph; |
|
81 |
typedef LEN LengthMap; |
|
82 |
typedef typename LengthMap::Value Value; |
|
83 |
#ifdef LEMON_HAVE_LONG_LONG |
|
84 |
typedef long long LargeValue; |
|
85 |
#else |
|
86 |
typedef long LargeValue; |
|
87 |
#endif |
|
88 |
typedef lemon::Tolerance<LargeValue> Tolerance; |
|
89 |
typedef lemon::Path<Digraph> Path; |
|
90 |
}; |
|
91 |
|
|
92 |
|
|
93 |
/// \addtogroup shortest_path |
|
94 |
/// @{ |
|
95 |
|
|
96 |
/// \brief Implementation of the Hartmann-Orlin algorithm for finding |
|
97 |
/// a minimum mean cycle. |
|
98 |
/// |
|
99 |
/// This class implements the Hartmann-Orlin algorithm for finding |
|
100 |
/// a directed cycle of minimum mean length (cost) in a digraph. |
|
101 |
/// It is an improved version of \ref Karp "Karp's original algorithm", |
|
102 |
/// it applies an efficient early termination scheme. |
|
103 |
/// |
|
104 |
/// \tparam GR The type of the digraph the algorithm runs on. |
|
105 |
/// \tparam LEN The type of the length map. The default |
|
106 |
/// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
|
107 |
#ifdef DOXYGEN |
|
108 |
template <typename GR, typename LEN, typename TR> |
|
109 |
#else |
|
110 |
template < typename GR, |
|
111 |
typename LEN = typename GR::template ArcMap<int>, |
|
112 |
typename TR = HartmannOrlinDefaultTraits<GR, LEN> > |
|
113 |
#endif |
|
114 |
class HartmannOrlin |
|
115 |
{ |
|
116 |
public: |
|
117 |
|
|
118 |
/// The type of the digraph |
|
119 |
typedef typename TR::Digraph Digraph; |
|
120 |
/// The type of the length map |
|
121 |
typedef typename TR::LengthMap LengthMap; |
|
122 |
/// The type of the arc lengths |
|
123 |
typedef typename TR::Value Value; |
|
124 |
|
|
125 |
/// \brief The large value type |
|
126 |
/// |
|
127 |
/// The large value type used for internal computations. |
|
128 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
129 |
/// it is \c long \c long if the \c Value type is integer, |
|
130 |
/// otherwise it is \c double. |
|
131 |
typedef typename TR::LargeValue LargeValue; |
|
132 |
|
|
133 |
/// The tolerance type |
|
134 |
typedef typename TR::Tolerance Tolerance; |
|
135 |
|
|
136 |
/// \brief The path type of the found cycles |
|
137 |
/// |
|
138 |
/// The path type of the found cycles. |
|
139 |
/// Using the \ref HartmannOrlinDefaultTraits "default traits class", |
|
140 |
/// it is \ref lemon::Path "Path<Digraph>". |
|
141 |
typedef typename TR::Path Path; |
|
142 |
|
|
143 |
/// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm |
|
144 |
typedef TR Traits; |
|
145 |
|
|
146 |
private: |
|
147 |
|
|
148 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
|
149 |
|
|
150 |
// Data sturcture for path data |
|
151 |
struct PathData |
|
152 |
{ |
|
153 |
bool found; |
|
154 |
LargeValue dist; |
|
155 |
Arc pred; |
|
156 |
PathData(bool f = false, LargeValue d = 0, Arc p = INVALID) : |
|
157 |
found(f), dist(d), pred(p) {} |
|
158 |
}; |
|
159 |
|
|
160 |
typedef typename Digraph::template NodeMap<std::vector<PathData> > |
|
161 |
PathDataNodeMap; |
|
162 |
|
|
163 |
private: |
|
164 |
|
|
165 |
// The digraph the algorithm runs on |
|
166 |
const Digraph &_gr; |
|
167 |
// The length of the arcs |
|
168 |
const LengthMap &_length; |
|
169 |
|
|
170 |
// Data for storing the strongly connected components |
|
171 |
int _comp_num; |
|
172 |
typename Digraph::template NodeMap<int> _comp; |
|
173 |
std::vector<std::vector<Node> > _comp_nodes; |
|
174 |
std::vector<Node>* _nodes; |
|
175 |
typename Digraph::template NodeMap<std::vector<Arc> > _out_arcs; |
|
176 |
|
|
177 |
// Data for the found cycles |
|
178 |
bool _curr_found, _best_found; |
|
179 |
LargeValue _curr_length, _best_length; |
|
180 |
int _curr_size, _best_size; |
|
181 |
Node _curr_node, _best_node; |
|
182 |
int _curr_level, _best_level; |
|
183 |
|
|
184 |
Path *_cycle_path; |
|
185 |
bool _local_path; |
|
186 |
|
|
187 |
// Node map for storing path data |
|
188 |
PathDataNodeMap _data; |
|
189 |
// The processed nodes in the last round |
|
190 |
std::vector<Node> _process; |
|
191 |
|
|
192 |
Tolerance _tolerance; |
|
193 |
|
|
194 |
public: |
|
195 |
|
|
196 |
/// \name Named Template Parameters |
|
197 |
/// @{ |
|
198 |
|
|
199 |
template <typename T> |
|
200 |
struct SetLargeValueTraits : public Traits { |
|
201 |
typedef T LargeValue; |
|
202 |
typedef lemon::Tolerance<T> Tolerance; |
|
203 |
}; |
|
204 |
|
|
205 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
206 |
/// \c LargeValue type. |
|
207 |
/// |
|
208 |
/// \ref named-templ-param "Named parameter" for setting \c LargeValue |
|
209 |
/// type. It is used for internal computations in the algorithm. |
|
210 |
template <typename T> |
|
211 |
struct SetLargeValue |
|
212 |
: public HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > { |
|
213 |
typedef HartmannOrlin<GR, LEN, SetLargeValueTraits<T> > Create; |
|
214 |
}; |
|
215 |
|
|
216 |
template <typename T> |
|
217 |
struct SetPathTraits : public Traits { |
|
218 |
typedef T Path; |
|
219 |
}; |
|
220 |
|
|
221 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
222 |
/// \c %Path type. |
|
223 |
/// |
|
224 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
|
225 |
/// type of the found cycles. |
|
226 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
|
227 |
/// and it must have an \c addFront() function. |
|
228 |
template <typename T> |
|
229 |
struct SetPath |
|
230 |
: public HartmannOrlin<GR, LEN, SetPathTraits<T> > { |
|
231 |
typedef HartmannOrlin<GR, LEN, SetPathTraits<T> > Create; |
|
232 |
}; |
|
233 |
|
|
234 |
/// @} |
|
235 |
|
|
236 |
public: |
|
237 |
|
|
238 |
/// \brief Constructor. |
|
239 |
/// |
|
240 |
/// The constructor of the class. |
|
241 |
/// |
|
242 |
/// \param digraph The digraph the algorithm runs on. |
|
243 |
/// \param length The lengths (costs) of the arcs. |
|
244 |
HartmannOrlin( const Digraph &digraph, |
|
245 |
const LengthMap &length ) : |
|
246 |
_gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), |
|
247 |
_best_found(false), _best_length(0), _best_size(1), |
|
248 |
_cycle_path(NULL), _local_path(false), _data(digraph) |
|
249 |
{} |
|
250 |
|
|
251 |
/// Destructor. |
|
252 |
~HartmannOrlin() { |
|
253 |
if (_local_path) delete _cycle_path; |
|
254 |
} |
|
255 |
|
|
256 |
/// \brief Set the path structure for storing the found cycle. |
|
257 |
/// |
|
258 |
/// This function sets an external path structure for storing the |
|
259 |
/// found cycle. |
|
260 |
/// |
|
261 |
/// If you don't call this function before calling \ref run() or |
|
262 |
/// \ref findMinMean(), it will allocate a local \ref Path "path" |
|
263 |
/// structure. The destuctor deallocates this automatically |
|
264 |
/// allocated object, of course. |
|
265 |
/// |
|
266 |
/// \note The algorithm calls only the \ref lemon::Path::addFront() |
|
267 |
/// "addFront()" function of the given path structure. |
|
268 |
/// |
|
269 |
/// \return <tt>(*this)</tt> |
|
270 |
HartmannOrlin& cycle(Path &path) { |
|
271 |
if (_local_path) { |
|
272 |
delete _cycle_path; |
|
273 |
_local_path = false; |
|
274 |
} |
|
275 |
_cycle_path = &path; |
|
276 |
return *this; |
|
277 |
} |
|
278 |
|
|
279 |
/// \name Execution control |
|
280 |
/// The simplest way to execute the algorithm is to call the \ref run() |
|
281 |
/// function.\n |
|
282 |
/// If you only need the minimum mean length, you may call |
|
283 |
/// \ref findMinMean(). |
|
284 |
|
|
285 |
/// @{ |
|
286 |
|
|
287 |
/// \brief Run the algorithm. |
|
288 |
/// |
|
289 |
/// This function runs the algorithm. |
|
290 |
/// It can be called more than once (e.g. if the underlying digraph |
|
291 |
/// and/or the arc lengths have been modified). |
|
292 |
/// |
|
293 |
/// \return \c true if a directed cycle exists in the digraph. |
|
294 |
/// |
|
295 |
/// \note <tt>mmc.run()</tt> is just a shortcut of the following code. |
|
296 |
/// \code |
|
297 |
/// return mmc.findMinMean() && mmc.findCycle(); |
|
298 |
/// \endcode |
|
299 |
bool run() { |
|
300 |
return findMinMean() && findCycle(); |
|
301 |
} |
|
302 |
|
|
303 |
/// \brief Find the minimum cycle mean. |
|
304 |
/// |
|
305 |
/// This function finds the minimum mean length of the directed |
|
306 |
/// cycles in the digraph. |
|
307 |
/// |
|
308 |
/// \return \c true if a directed cycle exists in the digraph. |
|
309 |
bool findMinMean() { |
|
310 |
// Initialization and find strongly connected components |
|
311 |
init(); |
|
312 |
findComponents(); |
|
313 |
|
|
314 |
// Find the minimum cycle mean in the components |
|
315 |
for (int comp = 0; comp < _comp_num; ++comp) { |
|
316 |
if (!initComponent(comp)) continue; |
|
317 |
processRounds(); |
|
318 |
|
|
319 |
// Update the best cycle (global minimum mean cycle) |
|
320 |
if ( _curr_found && (!_best_found || |
|
321 |
_curr_length * _best_size < _best_length * _curr_size) ) { |
|
322 |
_best_found = true; |
|
323 |
_best_length = _curr_length; |
|
324 |
_best_size = _curr_size; |
|
325 |
_best_node = _curr_node; |
|
326 |
_best_level = _curr_level; |
|
327 |
} |
|
328 |
} |
|
329 |
return _best_found; |
|
330 |
} |
|
331 |
|
|
332 |
/// \brief Find a minimum mean directed cycle. |
|
333 |
/// |
|
334 |
/// This function finds a directed cycle of minimum mean length |
|
335 |
/// in the digraph using the data computed by findMinMean(). |
|
336 |
/// |
|
337 |
/// \return \c true if a directed cycle exists in the digraph. |
|
338 |
/// |
|
339 |
/// \pre \ref findMinMean() must be called before using this function. |
|
340 |
bool findCycle() { |
|
341 |
if (!_best_found) return false; |
|
342 |
IntNodeMap reached(_gr, -1); |
|
343 |
int r = _best_level + 1; |
|
344 |
Node u = _best_node; |
|
345 |
while (reached[u] < 0) { |
|
346 |
reached[u] = --r; |
|
347 |
u = _gr.source(_data[u][r].pred); |
|
348 |
} |
|
349 |
r = reached[u]; |
|
350 |
Arc e = _data[u][r].pred; |
|
351 |
_cycle_path->addFront(e); |
|
352 |
_best_length = _length[e]; |
|
353 |
_best_size = 1; |
|
354 |
Node v; |
|
355 |
while ((v = _gr.source(e)) != u) { |
|
356 |
e = _data[v][--r].pred; |
|
357 |
_cycle_path->addFront(e); |
|
358 |
_best_length += _length[e]; |
|
359 |
++_best_size; |
|
360 |
} |
|
361 |
return true; |
|
362 |
} |
|
363 |
|
|
364 |
/// @} |
|
365 |
|
|
366 |
/// \name Query Functions |
|
367 |
/// The results of the algorithm can be obtained using these |
|
368 |
/// functions.\n |
|
369 |
/// The algorithm should be executed before using them. |
|
370 |
|
|
371 |
/// @{ |
|
372 |
|
|
373 |
/// \brief Return the total length of the found cycle. |
|
374 |
/// |
|
375 |
/// This function returns the total length of the found cycle. |
|
376 |
/// |
|
377 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
378 |
/// using this function. |
|
379 |
LargeValue cycleLength() const { |
|
380 |
return _best_length; |
|
381 |
} |
|
382 |
|
|
383 |
/// \brief Return the number of arcs on the found cycle. |
|
384 |
/// |
|
385 |
/// This function returns the number of arcs on the found cycle. |
|
386 |
/// |
|
387 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
388 |
/// using this function. |
|
389 |
int cycleArcNum() const { |
|
390 |
return _best_size; |
|
391 |
} |
|
392 |
|
|
393 |
/// \brief Return the mean length of the found cycle. |
|
394 |
/// |
|
395 |
/// This function returns the mean length of the found cycle. |
|
396 |
/// |
|
397 |
/// \note <tt>alg.cycleMean()</tt> is just a shortcut of the |
|
398 |
/// following code. |
|
399 |
/// \code |
|
400 |
/// return static_cast<double>(alg.cycleLength()) / alg.cycleArcNum(); |
|
401 |
/// \endcode |
|
402 |
/// |
|
403 |
/// \pre \ref run() or \ref findMinMean() must be called before |
|
404 |
/// using this function. |
|
405 |
double cycleMean() const { |
|
406 |
return static_cast<double>(_best_length) / _best_size; |
|
407 |
} |
|
408 |
|
|
409 |
/// \brief Return the found cycle. |
|
410 |
/// |
|
411 |
/// This function returns a const reference to the path structure |
|
412 |
/// storing the found cycle. |
|
413 |
/// |
|
414 |
/// \pre \ref run() or \ref findCycle() must be called before using |
|
415 |
/// this function. |
|
416 |
const Path& cycle() const { |
|
417 |
return *_cycle_path; |
|
418 |
} |
|
419 |
|
|
420 |
///@} |
|
421 |
|
|
422 |
private: |
|
423 |
|
|
424 |
// Initialization |
|
425 |
void init() { |
|
426 |
if (!_cycle_path) { |
|
427 |
_local_path = true; |
|
428 |
_cycle_path = new Path; |
|
429 |
} |
|
430 |
_cycle_path->clear(); |
|
431 |
_best_found = false; |
|
432 |
_best_length = 0; |
|
433 |
_best_size = 1; |
|
434 |
_cycle_path->clear(); |
|
435 |
for (NodeIt u(_gr); u != INVALID; ++u) |
|
436 |
_data[u].clear(); |
|
437 |
} |
|
438 |
|
|
439 |
// Find strongly connected components and initialize _comp_nodes |
|
440 |
// and _out_arcs |
|
441 |
void findComponents() { |
|
442 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
|
443 |
_comp_nodes.resize(_comp_num); |
|
444 |
if (_comp_num == 1) { |
|
445 |
_comp_nodes[0].clear(); |
|
446 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
447 |
_comp_nodes[0].push_back(n); |
|
448 |
_out_arcs[n].clear(); |
|
449 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
|
450 |
_out_arcs[n].push_back(a); |
|
451 |
} |
|
452 |
} |
|
453 |
} else { |
|
454 |
for (int i = 0; i < _comp_num; ++i) |
|
455 |
_comp_nodes[i].clear(); |
|
456 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
|
457 |
int k = _comp[n]; |
|
458 |
_comp_nodes[k].push_back(n); |
|
459 |
_out_arcs[n].clear(); |
|
460 |
for (OutArcIt a(_gr, n); a != INVALID; ++a) { |
|
461 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
|
462 |
} |
|
463 |
} |
|
464 |
} |
|
465 |
} |
|
466 |
|
|
467 |
// Initialize path data for the current component |
|
468 |
bool initComponent(int comp) { |
|
469 |
_nodes = &(_comp_nodes[comp]); |
|
470 |
int n = _nodes->size(); |
|
471 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
|
472 |
return false; |
|
473 |
} |
|
474 |
for (int i = 0; i < n; ++i) { |
|
475 |
_data[(*_nodes)[i]].resize(n + 1); |
|
476 |
} |
|
477 |
return true; |
|
478 |
} |
|
479 |
|
|
480 |
// Process all rounds of computing path data for the current component. |
|
481 |
// _data[v][k] is the length of a shortest directed walk from the root |
|
482 |
// node to node v containing exactly k arcs. |
|
483 |
void processRounds() { |
|
484 |
Node start = (*_nodes)[0]; |
|
485 |
_data[start][0] = PathData(true, 0); |
|
486 |
_process.clear(); |
|
487 |
_process.push_back(start); |
|
488 |
|
|
489 |
int k, n = _nodes->size(); |
|
490 |
int next_check = 4; |
|
491 |
bool terminate = false; |
|
492 |
for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) { |
|
493 |
processNextBuildRound(k); |
|
494 |
if (k == next_check || k == n) { |
|
495 |
terminate = checkTermination(k); |
|
496 |
next_check = next_check * 3 / 2; |
|
497 |
} |
|
498 |
} |
|
499 |
for ( ; k <= n && !terminate; ++k) { |
|
500 |
processNextFullRound(k); |
|
501 |
if (k == next_check || k == n) { |
|
502 |
terminate = checkTermination(k); |
|
503 |
next_check = next_check * 3 / 2; |
|
504 |
} |
|
505 |
} |
|
506 |
} |
|
507 |
|
|
508 |
// Process one round and rebuild _process |
|
509 |
void processNextBuildRound(int k) { |
|
510 |
std::vector<Node> next; |
|
511 |
Node u, v; |
|
512 |
Arc e; |
|
513 |
LargeValue d; |
|
514 |
for (int i = 0; i < int(_process.size()); ++i) { |
|
515 |
u = _process[i]; |
|
516 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
|
517 |
e = _out_arcs[u][j]; |
|
518 |
v = _gr.target(e); |
|
519 |
d = _data[u][k-1].dist + _length[e]; |
|
520 |
if (!_data[v][k].found) { |
|
521 |
next.push_back(v); |
|
522 |
_data[v][k] = PathData(true, _data[u][k-1].dist + _length[e], e); |
|
523 |
} |
|
524 |
else if (_tolerance.less(d, _data[v][k].dist)) { |
|
525 |
_data[v][k] = PathData(true, d, e); |
|
526 |
} |
|
527 |
} |
|
528 |
} |
|
529 |
_process.swap(next); |
|
530 |
} |
|
531 |
|
|
532 |
// Process one round using _nodes instead of _process |
|
533 |
void processNextFullRound(int k) { |
|
534 |
Node u, v; |
|
535 |
Arc e; |
|
536 |
LargeValue d; |
|
537 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
|
538 |
u = (*_nodes)[i]; |
|
539 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
|
540 |
e = _out_arcs[u][j]; |
|
541 |
v = _gr.target(e); |
|
542 |
d = _data[u][k-1].dist + _length[e]; |
|
543 |
if (!_data[v][k].found || _tolerance.less(d, _data[v][k].dist)) { |
|
544 |
_data[v][k] = PathData(true, d, e); |
|
545 |
} |
|
546 |
} |
|
547 |
} |
|
548 |
} |
|
549 |
|
|
550 |
// Check early termination |
|
551 |
bool checkTermination(int k) { |
|
552 |
typedef std::pair<int, int> Pair; |
|
553 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
|
554 |
typename GR::template NodeMap<LargeValue> pi(_gr); |
|
555 |
int n = _nodes->size(); |
|
556 |
LargeValue length; |
|
557 |
int size; |
|
558 |
Node u; |
|
559 |
|
|
560 |
// Search for cycles that are already found |
|
561 |
_curr_found = false; |
|
562 |
for (int i = 0; i < n; ++i) { |
|
563 |
u = (*_nodes)[i]; |
|
564 |
if (!_data[u][k].found) continue; |
|
565 |
for (int j = k; j >= 0; --j) { |
|
566 |
if (level[u].first == i && level[u].second > 0) { |
|
567 |
// A cycle is found |
|
568 |
length = _data[u][level[u].second].dist - _data[u][j].dist; |
|
569 |
size = level[u].second - j; |
|
570 |
if (!_curr_found || length * _curr_size < _curr_length * size) { |
|
571 |
_curr_length = length; |
|
572 |
_curr_size = size; |
|
573 |
_curr_node = u; |
|
574 |
_curr_level = level[u].second; |
|
575 |
_curr_found = true; |
|
576 |
} |
|
577 |
} |
|
578 |
level[u] = Pair(i, j); |
|
579 |
u = _gr.source(_data[u][j].pred); |
|
580 |
} |
|
581 |
} |
|
582 |
|
|
583 |
// If at least one cycle is found, check the optimality condition |
|
584 |
LargeValue d; |
|
585 |
if (_curr_found && k < n) { |
|
586 |
// Find node potentials |
|
587 |
for (int i = 0; i < n; ++i) { |
|
588 |
u = (*_nodes)[i]; |
|
589 |
pi[u] = std::numeric_limits<LargeValue>::max(); |
|
590 |
for (int j = 0; j <= k; ++j) { |
|
591 |
d = _data[u][j].dist * _curr_size - j * _curr_length; |
|
592 |
if (_data[u][j].found && _tolerance.less(d, pi[u])) { |
|
593 |
pi[u] = d; |
|
594 |
} |
|
595 |
} |
|
596 |
} |
|
597 |
|
|
598 |
// Check the optimality condition for all arcs |
|
599 |
bool done = true; |
|
600 |
for (ArcIt a(_gr); a != INVALID; ++a) { |
|
601 |
if (_tolerance.less(_length[a] * _curr_size - _curr_length, |
|
602 |
pi[_gr.target(a)] - pi[_gr.source(a)]) ) { |
|
603 |
done = false; |
|
604 |
break; |
|
605 |
} |
|
606 |
} |
|
607 |
return done; |
|
608 |
} |
|
609 |
return (k == n); |
|
610 |
} |
|
611 |
|
|
612 |
}; //class HartmannOrlin |
|
613 |
|
|
614 |
///@} |
|
615 |
|
|
616 |
} //namespace lemon |
|
617 |
|
|
618 |
#endif //LEMON_HARTMANN_ORLIN_H |
... | ... |
@@ -28,2 +28,3 @@ |
28 | 28 |
#include <lemon/karp.h> |
29 |
#include <lemon/hartmann_orlin.h> |
|
29 | 30 |
#include <lemon/howard.h> |
... | ... |
@@ -152,2 +153,8 @@ |
152 | 153 |
|
154 |
// HartmannOrlin |
|
155 |
checkConcept< MmcClassConcept<GR, int>, |
|
156 |
HartmannOrlin<GR, concepts::ReadMap<GR::Arc, int> > >(); |
|
157 |
checkConcept< MmcClassConcept<GR, float>, |
|
158 |
HartmannOrlin<GR, concepts::ReadMap<GR::Arc, float> > >(); |
|
159 |
|
|
153 | 160 |
// Howard |
... | ... |
@@ -191,2 +198,8 @@ |
191 | 198 |
|
199 |
// HartmannOrlin |
|
200 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l1, c1, 6, 3); |
|
201 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l2, c2, 5, 2); |
|
202 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l3, c3, 0, 1); |
|
203 |
checkMmcAlg<HartmannOrlin<GR, IntArcMap> >(gr, l4, c4, -1, 1); |
|
204 |
|
|
192 | 205 |
// Howard |
0 comments (0 inline)