| ... | ... |
@@ -1429,432 +1429,432 @@ |
| 1429 | 1429 |
for(typename T1::MapIt i(t); i!=INVALID; ++i){
|
| 1430 | 1430 |
colUpperBound(*i, value); |
| 1431 | 1431 |
} |
| 1432 | 1432 |
} |
| 1433 | 1433 |
#endif |
| 1434 | 1434 |
|
| 1435 | 1435 |
/// Set the lower and the upper bounds of a column (i.e a variable) |
| 1436 | 1436 |
|
| 1437 | 1437 |
/// The lower and the upper bounds of |
| 1438 | 1438 |
/// a variable (column) have to be given by an |
| 1439 | 1439 |
/// extended number of type Value, i.e. a finite number of type |
| 1440 | 1440 |
/// Value, -\ref INF or \ref INF. |
| 1441 | 1441 |
void colBounds(Col c, Value lower, Value upper) {
|
| 1442 | 1442 |
_setColLowerBound(cols(id(c)),lower); |
| 1443 | 1443 |
_setColUpperBound(cols(id(c)),upper); |
| 1444 | 1444 |
} |
| 1445 | 1445 |
|
| 1446 | 1446 |
///\brief Set the lower and the upper bound of several columns |
| 1447 | 1447 |
///(i.e variables) at once |
| 1448 | 1448 |
/// |
| 1449 | 1449 |
///This magic function takes a container as its argument |
| 1450 | 1450 |
///and applies the function on all of its elements. |
| 1451 | 1451 |
/// The lower and the upper bounds of |
| 1452 | 1452 |
/// a variable (column) have to be given by an |
| 1453 | 1453 |
/// extended number of type Value, i.e. a finite number of type |
| 1454 | 1454 |
/// Value, -\ref INF or \ref INF. |
| 1455 | 1455 |
#ifdef DOXYGEN |
| 1456 | 1456 |
template<class T> |
| 1457 | 1457 |
void colBounds(T &t, Value lower, Value upper) { return 0;}
|
| 1458 | 1458 |
#else |
| 1459 | 1459 |
template<class T2> |
| 1460 | 1460 |
typename enable_if<typename T2::value_type::LpCol,void>::type |
| 1461 | 1461 |
colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) {
|
| 1462 | 1462 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) {
|
| 1463 | 1463 |
colBounds(*i, lower, upper); |
| 1464 | 1464 |
} |
| 1465 | 1465 |
} |
| 1466 | 1466 |
template<class T2> |
| 1467 | 1467 |
typename enable_if<typename T2::value_type::second_type::LpCol, void>::type |
| 1468 | 1468 |
colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) {
|
| 1469 | 1469 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) {
|
| 1470 | 1470 |
colBounds(i->second, lower, upper); |
| 1471 | 1471 |
} |
| 1472 | 1472 |
} |
| 1473 | 1473 |
template<class T2> |
| 1474 | 1474 |
typename enable_if<typename T2::MapIt::Value::LpCol, void>::type |
| 1475 | 1475 |
colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) {
|
| 1476 | 1476 |
for(typename T2::MapIt i(t); i!=INVALID; ++i){
|
| 1477 | 1477 |
colBounds(*i, lower, upper); |
| 1478 | 1478 |
} |
| 1479 | 1479 |
} |
| 1480 | 1480 |
#endif |
| 1481 | 1481 |
|
| 1482 | 1482 |
/// Set the lower bound of a row (i.e a constraint) |
| 1483 | 1483 |
|
| 1484 | 1484 |
/// The lower bound of a constraint (row) has to be given by an |
| 1485 | 1485 |
/// extended number of type Value, i.e. a finite number of type |
| 1486 | 1486 |
/// Value or -\ref INF. |
| 1487 | 1487 |
void rowLowerBound(Row r, Value value) {
|
| 1488 | 1488 |
_setRowLowerBound(rows(id(r)),value); |
| 1489 | 1489 |
} |
| 1490 | 1490 |
|
| 1491 | 1491 |
/// Get the lower bound of a row (i.e a constraint) |
| 1492 | 1492 |
|
| 1493 | 1493 |
/// This function returns the lower bound for row (constraint) \c c |
| 1494 | 1494 |
/// (this might be -\ref INF as well). |
| 1495 | 1495 |
///\return The lower bound for row \c r |
| 1496 | 1496 |
Value rowLowerBound(Row r) const {
|
| 1497 | 1497 |
return _getRowLowerBound(rows(id(r))); |
| 1498 | 1498 |
} |
| 1499 | 1499 |
|
| 1500 | 1500 |
/// Set the upper bound of a row (i.e a constraint) |
| 1501 | 1501 |
|
| 1502 | 1502 |
/// The upper bound of a constraint (row) has to be given by an |
| 1503 | 1503 |
/// extended number of type Value, i.e. a finite number of type |
| 1504 | 1504 |
/// Value or -\ref INF. |
| 1505 | 1505 |
void rowUpperBound(Row r, Value value) {
|
| 1506 | 1506 |
_setRowUpperBound(rows(id(r)),value); |
| 1507 | 1507 |
} |
| 1508 | 1508 |
|
| 1509 | 1509 |
/// Get the upper bound of a row (i.e a constraint) |
| 1510 | 1510 |
|
| 1511 | 1511 |
/// This function returns the upper bound for row (constraint) \c c |
| 1512 | 1512 |
/// (this might be -\ref INF as well). |
| 1513 | 1513 |
///\return The upper bound for row \c r |
| 1514 | 1514 |
Value rowUpperBound(Row r) const {
|
| 1515 | 1515 |
return _getRowUpperBound(rows(id(r))); |
| 1516 | 1516 |
} |
| 1517 | 1517 |
|
| 1518 | 1518 |
///Set an element of the objective function |
| 1519 | 1519 |
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };
|
| 1520 | 1520 |
|
| 1521 | 1521 |
///Get an element of the objective function |
| 1522 | 1522 |
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };
|
| 1523 | 1523 |
|
| 1524 | 1524 |
///Set the objective function |
| 1525 | 1525 |
|
| 1526 | 1526 |
///\param e is a linear expression of type \ref Expr. |
| 1527 | 1527 |
/// |
| 1528 | 1528 |
void obj(const Expr& e) {
|
| 1529 | 1529 |
_setObjCoeffs(ExprIterator(e.comps.begin(), cols), |
| 1530 | 1530 |
ExprIterator(e.comps.end(), cols)); |
| 1531 | 1531 |
obj_const_comp = *e; |
| 1532 | 1532 |
} |
| 1533 | 1533 |
|
| 1534 | 1534 |
///Get the objective function |
| 1535 | 1535 |
|
| 1536 | 1536 |
///\return the objective function as a linear expression of type |
| 1537 | 1537 |
///Expr. |
| 1538 | 1538 |
Expr obj() const {
|
| 1539 | 1539 |
Expr e; |
| 1540 | 1540 |
_getObjCoeffs(InsertIterator(e.comps, cols)); |
| 1541 | 1541 |
*e = obj_const_comp; |
| 1542 | 1542 |
return e; |
| 1543 | 1543 |
} |
| 1544 | 1544 |
|
| 1545 | 1545 |
|
| 1546 | 1546 |
///Set the direction of optimization |
| 1547 | 1547 |
void sense(Sense sense) { _setSense(sense); }
|
| 1548 | 1548 |
|
| 1549 | 1549 |
///Query the direction of the optimization |
| 1550 | 1550 |
Sense sense() const {return _getSense(); }
|
| 1551 | 1551 |
|
| 1552 | 1552 |
///Set the sense to maximization |
| 1553 | 1553 |
void max() { _setSense(MAX); }
|
| 1554 | 1554 |
|
| 1555 | 1555 |
///Set the sense to maximization |
| 1556 | 1556 |
void min() { _setSense(MIN); }
|
| 1557 | 1557 |
|
| 1558 | 1558 |
///Clears the problem |
| 1559 | 1559 |
void clear() { _clear(); }
|
| 1560 | 1560 |
|
| 1561 | 1561 |
/// Sets the message level of the solver |
| 1562 | 1562 |
void messageLevel(MessageLevel level) { _messageLevel(level); }
|
| 1563 | 1563 |
|
| 1564 | 1564 |
///@} |
| 1565 | 1565 |
|
| 1566 | 1566 |
}; |
| 1567 | 1567 |
|
| 1568 | 1568 |
/// Addition |
| 1569 | 1569 |
|
| 1570 | 1570 |
///\relates LpBase::Expr |
| 1571 | 1571 |
/// |
| 1572 | 1572 |
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
|
| 1573 | 1573 |
LpBase::Expr tmp(a); |
| 1574 | 1574 |
tmp+=b; |
| 1575 | 1575 |
return tmp; |
| 1576 | 1576 |
} |
| 1577 | 1577 |
///Substraction |
| 1578 | 1578 |
|
| 1579 | 1579 |
///\relates LpBase::Expr |
| 1580 | 1580 |
/// |
| 1581 | 1581 |
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
|
| 1582 | 1582 |
LpBase::Expr tmp(a); |
| 1583 | 1583 |
tmp-=b; |
| 1584 | 1584 |
return tmp; |
| 1585 | 1585 |
} |
| 1586 | 1586 |
///Multiply with constant |
| 1587 | 1587 |
|
| 1588 | 1588 |
///\relates LpBase::Expr |
| 1589 | 1589 |
/// |
| 1590 | 1590 |
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
|
| 1591 | 1591 |
LpBase::Expr tmp(a); |
| 1592 | 1592 |
tmp*=b; |
| 1593 | 1593 |
return tmp; |
| 1594 | 1594 |
} |
| 1595 | 1595 |
|
| 1596 | 1596 |
///Multiply with constant |
| 1597 | 1597 |
|
| 1598 | 1598 |
///\relates LpBase::Expr |
| 1599 | 1599 |
/// |
| 1600 | 1600 |
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
|
| 1601 | 1601 |
LpBase::Expr tmp(b); |
| 1602 | 1602 |
tmp*=a; |
| 1603 | 1603 |
return tmp; |
| 1604 | 1604 |
} |
| 1605 | 1605 |
///Divide with constant |
| 1606 | 1606 |
|
| 1607 | 1607 |
///\relates LpBase::Expr |
| 1608 | 1608 |
/// |
| 1609 | 1609 |
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
|
| 1610 | 1610 |
LpBase::Expr tmp(a); |
| 1611 | 1611 |
tmp/=b; |
| 1612 | 1612 |
return tmp; |
| 1613 | 1613 |
} |
| 1614 | 1614 |
|
| 1615 | 1615 |
///Create constraint |
| 1616 | 1616 |
|
| 1617 | 1617 |
///\relates LpBase::Constr |
| 1618 | 1618 |
/// |
| 1619 | 1619 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
| 1620 | 1620 |
const LpBase::Expr &f) {
|
| 1621 |
return LpBase::Constr(0, f - e, LpBase:: |
|
| 1621 |
return LpBase::Constr(0, f - e, LpBase::NaN); |
|
| 1622 | 1622 |
} |
| 1623 | 1623 |
|
| 1624 | 1624 |
///Create constraint |
| 1625 | 1625 |
|
| 1626 | 1626 |
///\relates LpBase::Constr |
| 1627 | 1627 |
/// |
| 1628 | 1628 |
inline LpBase::Constr operator<=(const LpBase::Value &e, |
| 1629 | 1629 |
const LpBase::Expr &f) {
|
| 1630 | 1630 |
return LpBase::Constr(e, f, LpBase::NaN); |
| 1631 | 1631 |
} |
| 1632 | 1632 |
|
| 1633 | 1633 |
///Create constraint |
| 1634 | 1634 |
|
| 1635 | 1635 |
///\relates LpBase::Constr |
| 1636 | 1636 |
/// |
| 1637 | 1637 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
| 1638 | 1638 |
const LpBase::Value &f) {
|
| 1639 |
return LpBase::Constr( |
|
| 1639 |
return LpBase::Constr(LpBase::NaN, e, f); |
|
| 1640 | 1640 |
} |
| 1641 | 1641 |
|
| 1642 | 1642 |
///Create constraint |
| 1643 | 1643 |
|
| 1644 | 1644 |
///\relates LpBase::Constr |
| 1645 | 1645 |
/// |
| 1646 | 1646 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
| 1647 | 1647 |
const LpBase::Expr &f) {
|
| 1648 |
return LpBase::Constr(0, e - f, LpBase:: |
|
| 1648 |
return LpBase::Constr(0, e - f, LpBase::NaN); |
|
| 1649 | 1649 |
} |
| 1650 | 1650 |
|
| 1651 | 1651 |
|
| 1652 | 1652 |
///Create constraint |
| 1653 | 1653 |
|
| 1654 | 1654 |
///\relates LpBase::Constr |
| 1655 | 1655 |
/// |
| 1656 | 1656 |
inline LpBase::Constr operator>=(const LpBase::Value &e, |
| 1657 | 1657 |
const LpBase::Expr &f) {
|
| 1658 | 1658 |
return LpBase::Constr(LpBase::NaN, f, e); |
| 1659 | 1659 |
} |
| 1660 | 1660 |
|
| 1661 | 1661 |
|
| 1662 | 1662 |
///Create constraint |
| 1663 | 1663 |
|
| 1664 | 1664 |
///\relates LpBase::Constr |
| 1665 | 1665 |
/// |
| 1666 | 1666 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
| 1667 | 1667 |
const LpBase::Value &f) {
|
| 1668 |
return LpBase::Constr(f, e, LpBase:: |
|
| 1668 |
return LpBase::Constr(f, e, LpBase::NaN); |
|
| 1669 | 1669 |
} |
| 1670 | 1670 |
|
| 1671 | 1671 |
///Create constraint |
| 1672 | 1672 |
|
| 1673 | 1673 |
///\relates LpBase::Constr |
| 1674 | 1674 |
/// |
| 1675 | 1675 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
| 1676 | 1676 |
const LpBase::Value &f) {
|
| 1677 | 1677 |
return LpBase::Constr(f, e, f); |
| 1678 | 1678 |
} |
| 1679 | 1679 |
|
| 1680 | 1680 |
///Create constraint |
| 1681 | 1681 |
|
| 1682 | 1682 |
///\relates LpBase::Constr |
| 1683 | 1683 |
/// |
| 1684 | 1684 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
| 1685 | 1685 |
const LpBase::Expr &f) {
|
| 1686 | 1686 |
return LpBase::Constr(0, f - e, 0); |
| 1687 | 1687 |
} |
| 1688 | 1688 |
|
| 1689 | 1689 |
///Create constraint |
| 1690 | 1690 |
|
| 1691 | 1691 |
///\relates LpBase::Constr |
| 1692 | 1692 |
/// |
| 1693 | 1693 |
inline LpBase::Constr operator<=(const LpBase::Value &n, |
| 1694 | 1694 |
const LpBase::Constr &c) {
|
| 1695 | 1695 |
LpBase::Constr tmp(c); |
| 1696 | 1696 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
| 1697 | 1697 |
tmp.lowerBound()=n; |
| 1698 | 1698 |
return tmp; |
| 1699 | 1699 |
} |
| 1700 | 1700 |
///Create constraint |
| 1701 | 1701 |
|
| 1702 | 1702 |
///\relates LpBase::Constr |
| 1703 | 1703 |
/// |
| 1704 | 1704 |
inline LpBase::Constr operator<=(const LpBase::Constr &c, |
| 1705 | 1705 |
const LpBase::Value &n) |
| 1706 | 1706 |
{
|
| 1707 | 1707 |
LpBase::Constr tmp(c); |
| 1708 | 1708 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
| 1709 | 1709 |
tmp.upperBound()=n; |
| 1710 | 1710 |
return tmp; |
| 1711 | 1711 |
} |
| 1712 | 1712 |
|
| 1713 | 1713 |
///Create constraint |
| 1714 | 1714 |
|
| 1715 | 1715 |
///\relates LpBase::Constr |
| 1716 | 1716 |
/// |
| 1717 | 1717 |
inline LpBase::Constr operator>=(const LpBase::Value &n, |
| 1718 | 1718 |
const LpBase::Constr &c) {
|
| 1719 | 1719 |
LpBase::Constr tmp(c); |
| 1720 | 1720 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
| 1721 | 1721 |
tmp.upperBound()=n; |
| 1722 | 1722 |
return tmp; |
| 1723 | 1723 |
} |
| 1724 | 1724 |
///Create constraint |
| 1725 | 1725 |
|
| 1726 | 1726 |
///\relates LpBase::Constr |
| 1727 | 1727 |
/// |
| 1728 | 1728 |
inline LpBase::Constr operator>=(const LpBase::Constr &c, |
| 1729 | 1729 |
const LpBase::Value &n) |
| 1730 | 1730 |
{
|
| 1731 | 1731 |
LpBase::Constr tmp(c); |
| 1732 | 1732 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
| 1733 | 1733 |
tmp.lowerBound()=n; |
| 1734 | 1734 |
return tmp; |
| 1735 | 1735 |
} |
| 1736 | 1736 |
|
| 1737 | 1737 |
///Addition |
| 1738 | 1738 |
|
| 1739 | 1739 |
///\relates LpBase::DualExpr |
| 1740 | 1740 |
/// |
| 1741 | 1741 |
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, |
| 1742 | 1742 |
const LpBase::DualExpr &b) {
|
| 1743 | 1743 |
LpBase::DualExpr tmp(a); |
| 1744 | 1744 |
tmp+=b; |
| 1745 | 1745 |
return tmp; |
| 1746 | 1746 |
} |
| 1747 | 1747 |
///Substraction |
| 1748 | 1748 |
|
| 1749 | 1749 |
///\relates LpBase::DualExpr |
| 1750 | 1750 |
/// |
| 1751 | 1751 |
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, |
| 1752 | 1752 |
const LpBase::DualExpr &b) {
|
| 1753 | 1753 |
LpBase::DualExpr tmp(a); |
| 1754 | 1754 |
tmp-=b; |
| 1755 | 1755 |
return tmp; |
| 1756 | 1756 |
} |
| 1757 | 1757 |
///Multiply with constant |
| 1758 | 1758 |
|
| 1759 | 1759 |
///\relates LpBase::DualExpr |
| 1760 | 1760 |
/// |
| 1761 | 1761 |
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, |
| 1762 | 1762 |
const LpBase::Value &b) {
|
| 1763 | 1763 |
LpBase::DualExpr tmp(a); |
| 1764 | 1764 |
tmp*=b; |
| 1765 | 1765 |
return tmp; |
| 1766 | 1766 |
} |
| 1767 | 1767 |
|
| 1768 | 1768 |
///Multiply with constant |
| 1769 | 1769 |
|
| 1770 | 1770 |
///\relates LpBase::DualExpr |
| 1771 | 1771 |
/// |
| 1772 | 1772 |
inline LpBase::DualExpr operator*(const LpBase::Value &a, |
| 1773 | 1773 |
const LpBase::DualExpr &b) {
|
| 1774 | 1774 |
LpBase::DualExpr tmp(b); |
| 1775 | 1775 |
tmp*=a; |
| 1776 | 1776 |
return tmp; |
| 1777 | 1777 |
} |
| 1778 | 1778 |
///Divide with constant |
| 1779 | 1779 |
|
| 1780 | 1780 |
///\relates LpBase::DualExpr |
| 1781 | 1781 |
/// |
| 1782 | 1782 |
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, |
| 1783 | 1783 |
const LpBase::Value &b) {
|
| 1784 | 1784 |
LpBase::DualExpr tmp(a); |
| 1785 | 1785 |
tmp/=b; |
| 1786 | 1786 |
return tmp; |
| 1787 | 1787 |
} |
| 1788 | 1788 |
|
| 1789 | 1789 |
/// \ingroup lp_group |
| 1790 | 1790 |
/// |
| 1791 | 1791 |
/// \brief Common base class for LP solvers |
| 1792 | 1792 |
/// |
| 1793 | 1793 |
/// This class is an abstract base class for LP solvers. This class |
| 1794 | 1794 |
/// provides a full interface for set and modify an LP problem, |
| 1795 | 1795 |
/// solve it and retrieve the solution. You can use one of the |
| 1796 | 1796 |
/// descendants as a concrete implementation, or the \c Lp |
| 1797 | 1797 |
/// default LP solver. However, if you would like to handle LP |
| 1798 | 1798 |
/// solvers as reference or pointer in a generic way, you can use |
| 1799 | 1799 |
/// this class directly. |
| 1800 | 1800 |
class LpSolver : virtual public LpBase {
|
| 1801 | 1801 |
public: |
| 1802 | 1802 |
|
| 1803 | 1803 |
/// The problem types for primal and dual problems |
| 1804 | 1804 |
enum ProblemType {
|
| 1805 | 1805 |
/// = 0. Feasible solution hasn't been found (but may exist). |
| 1806 | 1806 |
UNDEFINED = 0, |
| 1807 | 1807 |
/// = 1. The problem has no feasible solution. |
| 1808 | 1808 |
INFEASIBLE = 1, |
| 1809 | 1809 |
/// = 2. Feasible solution found. |
| 1810 | 1810 |
FEASIBLE = 2, |
| 1811 | 1811 |
/// = 3. Optimal solution exists and found. |
| 1812 | 1812 |
OPTIMAL = 3, |
| 1813 | 1813 |
/// = 4. The cost function is unbounded. |
| 1814 | 1814 |
UNBOUNDED = 4 |
| 1815 | 1815 |
}; |
| 1816 | 1816 |
|
| 1817 | 1817 |
///The basis status of variables |
| 1818 | 1818 |
enum VarStatus {
|
| 1819 | 1819 |
/// The variable is in the basis |
| 1820 | 1820 |
BASIC, |
| 1821 | 1821 |
/// The variable is free, but not basic |
| 1822 | 1822 |
FREE, |
| 1823 | 1823 |
/// The variable has active lower bound |
| 1824 | 1824 |
LOWER, |
| 1825 | 1825 |
/// The variable has active upper bound |
| 1826 | 1826 |
UPPER, |
| 1827 | 1827 |
/// The variable is non-basic and fixed |
| 1828 | 1828 |
FIXED |
| 1829 | 1829 |
}; |
| 1830 | 1830 |
|
| 1831 | 1831 |
protected: |
| 1832 | 1832 |
|
| 1833 | 1833 |
virtual SolveExitStatus _solve() = 0; |
| 1834 | 1834 |
|
| 1835 | 1835 |
virtual Value _getPrimal(int i) const = 0; |
| 1836 | 1836 |
virtual Value _getDual(int i) const = 0; |
| 1837 | 1837 |
|
| 1838 | 1838 |
virtual Value _getPrimalRay(int i) const = 0; |
| 1839 | 1839 |
virtual Value _getDualRay(int i) const = 0; |
| 1840 | 1840 |
|
| 1841 | 1841 |
virtual Value _getPrimalValue() const = 0; |
| 1842 | 1842 |
|
| 1843 | 1843 |
virtual VarStatus _getColStatus(int i) const = 0; |
| 1844 | 1844 |
virtual VarStatus _getRowStatus(int i) const = 0; |
| 1845 | 1845 |
|
| 1846 | 1846 |
virtual ProblemType _getPrimalType() const = 0; |
| 1847 | 1847 |
virtual ProblemType _getDualType() const = 0; |
| 1848 | 1848 |
|
| 1849 | 1849 |
public: |
| 1850 | 1850 |
|
| 1851 | 1851 |
///Allocate a new LP problem instance |
| 1852 | 1852 |
virtual LpSolver* newSolver() const = 0; |
| 1853 | 1853 |
///Make a copy of the LP problem |
| 1854 | 1854 |
virtual LpSolver* cloneSolver() const = 0; |
| 1855 | 1855 |
|
| 1856 | 1856 |
///\name Solve the LP |
| 1857 | 1857 |
|
| 1858 | 1858 |
///@{
|
| 1859 | 1859 |
|
| 1860 | 1860 |
///\e Solve the LP problem at hand |
| 1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
| 2 | 2 |
* |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2009 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <sstream> |
| 20 | 20 |
#include <lemon/lp_skeleton.h> |
| 21 | 21 |
#include "test_tools.h" |
| 22 | 22 |
#include <lemon/tolerance.h> |
| 23 | 23 |
|
| 24 | 24 |
#include <lemon/config.h> |
| 25 | 25 |
|
| 26 | 26 |
#ifdef LEMON_HAVE_GLPK |
| 27 | 27 |
#include <lemon/glpk.h> |
| 28 | 28 |
#endif |
| 29 | 29 |
|
| 30 | 30 |
#ifdef LEMON_HAVE_CPLEX |
| 31 | 31 |
#include <lemon/cplex.h> |
| 32 | 32 |
#endif |
| 33 | 33 |
|
| 34 | 34 |
#ifdef LEMON_HAVE_SOPLEX |
| 35 | 35 |
#include <lemon/soplex.h> |
| 36 | 36 |
#endif |
| 37 | 37 |
|
| 38 | 38 |
#ifdef LEMON_HAVE_CLP |
| 39 | 39 |
#include <lemon/clp.h> |
| 40 | 40 |
#endif |
| 41 | 41 |
|
| 42 | 42 |
using namespace lemon; |
| 43 | 43 |
|
| 44 | 44 |
void lpTest(LpSolver& lp) |
| 45 | 45 |
{
|
| 46 | 46 |
|
| 47 | 47 |
typedef LpSolver LP; |
| 48 | 48 |
|
| 49 | 49 |
std::vector<LP::Col> x(10); |
| 50 | 50 |
// for(int i=0;i<10;i++) x.push_back(lp.addCol()); |
| 51 | 51 |
lp.addColSet(x); |
| 52 | 52 |
lp.colLowerBound(x,1); |
| 53 | 53 |
lp.colUpperBound(x,1); |
| 54 | 54 |
lp.colBounds(x,1,2); |
| 55 | 55 |
|
| 56 | 56 |
std::vector<LP::Col> y(10); |
| 57 | 57 |
lp.addColSet(y); |
| 58 | 58 |
|
| 59 | 59 |
lp.colLowerBound(y,1); |
| 60 | 60 |
lp.colUpperBound(y,1); |
| 61 | 61 |
lp.colBounds(y,1,2); |
| 62 | 62 |
|
| 63 | 63 |
std::map<int,LP::Col> z; |
| 64 | 64 |
|
| 65 | 65 |
z.insert(std::make_pair(12,INVALID)); |
| 66 | 66 |
z.insert(std::make_pair(2,INVALID)); |
| 67 | 67 |
z.insert(std::make_pair(7,INVALID)); |
| 68 | 68 |
z.insert(std::make_pair(5,INVALID)); |
| 69 | 69 |
|
| 70 | 70 |
lp.addColSet(z); |
| 71 | 71 |
|
| 72 | 72 |
lp.colLowerBound(z,1); |
| 73 | 73 |
lp.colUpperBound(z,1); |
| 74 | 74 |
lp.colBounds(z,1,2); |
| 75 | 75 |
|
| 76 | 76 |
{
|
| 77 | 77 |
LP::Expr e,f,g; |
| 78 | 78 |
LP::Col p1,p2,p3,p4,p5; |
| 79 | 79 |
LP::Constr c; |
| 80 | 80 |
|
| 81 | 81 |
p1=lp.addCol(); |
| 82 | 82 |
p2=lp.addCol(); |
| 83 | 83 |
p3=lp.addCol(); |
| 84 | 84 |
p4=lp.addCol(); |
| 85 | 85 |
p5=lp.addCol(); |
| 86 | 86 |
|
| 87 | 87 |
e[p1]=2; |
| 88 | 88 |
*e=12; |
| 89 | 89 |
e[p1]+=2; |
| 90 | 90 |
*e+=12; |
| 91 | 91 |
e[p1]-=2; |
| 92 | 92 |
*e-=12; |
| 93 | 93 |
|
| 94 | 94 |
e=2; |
| 95 | 95 |
e=2.2; |
| 96 | 96 |
e=p1; |
| 97 | 97 |
e=f; |
| 98 | 98 |
|
| 99 | 99 |
e+=2; |
| 100 | 100 |
e+=2.2; |
| 101 | 101 |
e+=p1; |
| 102 | 102 |
e+=f; |
| 103 | 103 |
|
| 104 | 104 |
e-=2; |
| 105 | 105 |
e-=2.2; |
| 106 | 106 |
e-=p1; |
| 107 | 107 |
e-=f; |
| 108 | 108 |
|
| 109 | 109 |
e*=2; |
| 110 | 110 |
e*=2.2; |
| 111 | 111 |
e/=2; |
| 112 | 112 |
e/=2.2; |
| 113 | 113 |
|
| 114 | 114 |
e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+ |
| 115 | 115 |
(f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+ |
| 116 | 116 |
(f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+ |
| 117 | 117 |
2.2*f+f*2.2+f/2.2+ |
| 118 | 118 |
2*f+f*2+f/2+ |
| 119 | 119 |
2.2*p1+p1*2.2+p1/2.2+ |
| 120 | 120 |
2*p1+p1*2+p1/2 |
| 121 | 121 |
); |
| 122 | 122 |
|
| 123 | 123 |
|
| 124 | 124 |
c = (e <= f ); |
| 125 | 125 |
c = (e <= 2.2); |
| 126 | 126 |
c = (e <= 2 ); |
| 127 | 127 |
c = (e <= p1 ); |
| 128 | 128 |
c = (2.2<= f ); |
| 129 | 129 |
c = (2 <= f ); |
| 130 | 130 |
c = (p1 <= f ); |
| 131 | 131 |
c = (p1 <= p2 ); |
| 132 | 132 |
c = (p1 <= 2.2); |
| 133 | 133 |
c = (p1 <= 2 ); |
| 134 | 134 |
c = (2.2<= p2 ); |
| 135 | 135 |
c = (2 <= p2 ); |
| 136 | 136 |
|
| 137 | 137 |
c = (e >= f ); |
| 138 | 138 |
c = (e >= 2.2); |
| 139 | 139 |
c = (e >= 2 ); |
| 140 | 140 |
c = (e >= p1 ); |
| 141 | 141 |
c = (2.2>= f ); |
| 142 | 142 |
c = (2 >= f ); |
| 143 | 143 |
c = (p1 >= f ); |
| 144 | 144 |
c = (p1 >= p2 ); |
| 145 | 145 |
c = (p1 >= 2.2); |
| 146 | 146 |
c = (p1 >= 2 ); |
| 147 | 147 |
c = (2.2>= p2 ); |
| 148 | 148 |
c = (2 >= p2 ); |
| 149 | 149 |
|
| 150 | 150 |
c = (e == f ); |
| 151 | 151 |
c = (e == 2.2); |
| 152 | 152 |
c = (e == 2 ); |
| 153 | 153 |
c = (e == p1 ); |
| 154 | 154 |
c = (2.2== f ); |
| 155 | 155 |
c = (2 == f ); |
| 156 | 156 |
c = (p1 == f ); |
| 157 | 157 |
//c = (p1 == p2 ); |
| 158 | 158 |
c = (p1 == 2.2); |
| 159 | 159 |
c = (p1 == 2 ); |
| 160 | 160 |
c = (2.2== p2 ); |
| 161 | 161 |
c = (2 == p2 ); |
| 162 | 162 |
|
| 163 | 163 |
c = ((2 <= e) <= 3); |
| 164 | 164 |
c = ((2 <= p1) <= 3); |
| 165 | 165 |
|
| 166 | 166 |
c = ((2 >= e) >= 3); |
| 167 | 167 |
c = ((2 >= p1) >= 3); |
| 168 | 168 |
|
| 169 |
{ //Tests for #430
|
|
| 170 |
LP::Col v=lp.addCol(); |
|
| 171 |
LP::Constr c = v >= -3; |
|
| 172 |
c = c <= 4; |
|
| 173 |
LP::Constr c2; |
|
| 174 |
c2 = -3 <= v <= 4; |
|
| 175 |
} |
|
| 176 |
|
|
| 169 | 177 |
e[x[3]]=2; |
| 170 | 178 |
e[x[3]]=4; |
| 171 | 179 |
e[x[3]]=1; |
| 172 | 180 |
*e=12; |
| 173 | 181 |
|
| 174 | 182 |
lp.addRow(-LP::INF,e,23); |
| 175 | 183 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]/2)-x[3],23); |
| 176 | 184 |
lp.addRow(-LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23); |
| 177 | 185 |
|
| 178 | 186 |
lp.addRow(x[1]+x[3]<=x[5]-3); |
| 179 | 187 |
lp.addRow((-7<=x[1]+x[3]-12)<=3); |
| 180 | 188 |
lp.addRow(x[1]<=x[5]); |
| 181 | 189 |
|
| 182 | 190 |
std::ostringstream buf; |
| 183 | 191 |
|
| 184 | 192 |
|
| 185 | 193 |
e=((p1+p2)+(p1-0.99*p2)); |
| 186 | 194 |
//e.prettyPrint(std::cout); |
| 187 | 195 |
//(e<=2).prettyPrint(std::cout); |
| 188 | 196 |
double tolerance=0.001; |
| 189 | 197 |
e.simplify(tolerance); |
| 190 | 198 |
buf << "Coeff. of p2 should be 0.01"; |
| 191 | 199 |
check(e[p2]>0, buf.str()); |
| 192 | 200 |
|
| 193 | 201 |
tolerance=0.02; |
| 194 | 202 |
e.simplify(tolerance); |
| 195 | 203 |
buf << "Coeff. of p2 should be 0"; |
| 196 | 204 |
check(const_cast<const LpSolver::Expr&>(e)[p2]==0, buf.str()); |
| 197 | 205 |
|
| 198 | 206 |
//Test for clone/new |
| 199 | 207 |
LP* lpnew = lp.newSolver(); |
| 200 | 208 |
LP* lpclone = lp.cloneSolver(); |
| 201 | 209 |
delete lpnew; |
| 202 | 210 |
delete lpclone; |
| 203 | 211 |
|
| 204 | 212 |
} |
| 205 | 213 |
|
| 206 | 214 |
{
|
| 207 | 215 |
LP::DualExpr e,f,g; |
| 208 | 216 |
LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID, |
| 209 | 217 |
p4 = INVALID, p5 = INVALID; |
| 210 | 218 |
|
| 211 | 219 |
e[p1]=2; |
| 212 | 220 |
e[p1]+=2; |
| 213 | 221 |
e[p1]-=2; |
| 214 | 222 |
|
| 215 | 223 |
e=p1; |
| 216 | 224 |
e=f; |
| 217 | 225 |
|
| 218 | 226 |
e+=p1; |
| 219 | 227 |
e+=f; |
| 220 | 228 |
|
| 221 | 229 |
e-=p1; |
| 222 | 230 |
e-=f; |
| 223 | 231 |
|
| 224 | 232 |
e*=2; |
| 225 | 233 |
e*=2.2; |
| 226 | 234 |
e/=2; |
| 227 | 235 |
e/=2.2; |
| 228 | 236 |
|
| 229 | 237 |
e=((p1+p2)+(p1-p2)+ |
| 230 | 238 |
(p1+f)+(f+p1)+(f+g)+ |
| 231 | 239 |
(p1-f)+(f-p1)+(f-g)+ |
| 232 | 240 |
2.2*f+f*2.2+f/2.2+ |
| 233 | 241 |
2*f+f*2+f/2+ |
| 234 | 242 |
2.2*p1+p1*2.2+p1/2.2+ |
| 235 | 243 |
2*p1+p1*2+p1/2 |
| 236 | 244 |
); |
| 237 | 245 |
} |
| 238 | 246 |
|
| 239 | 247 |
} |
| 240 | 248 |
|
| 241 | 249 |
void solveAndCheck(LpSolver& lp, LpSolver::ProblemType stat, |
| 242 | 250 |
double exp_opt) {
|
| 243 | 251 |
using std::string; |
| 244 | 252 |
lp.solve(); |
| 245 | 253 |
|
| 246 | 254 |
std::ostringstream buf; |
| 247 | 255 |
buf << "PrimalType should be: " << int(stat) << int(lp.primalType()); |
| 248 | 256 |
|
| 249 | 257 |
check(lp.primalType()==stat, buf.str()); |
| 250 | 258 |
|
| 251 | 259 |
if (stat == LpSolver::OPTIMAL) {
|
| 252 | 260 |
std::ostringstream sbuf; |
| 253 | 261 |
sbuf << "Wrong optimal value (" << lp.primal() <<") with "
|
| 254 | 262 |
<< lp.solverName() <<"\n the right optimum is " << exp_opt; |
| 255 | 263 |
check(std::abs(lp.primal()-exp_opt) < 1e-3, sbuf.str()); |
| 256 | 264 |
} |
| 257 | 265 |
} |
| 258 | 266 |
|
| 259 | 267 |
void aTest(LpSolver & lp) |
| 260 | 268 |
{
|
| 261 | 269 |
typedef LpSolver LP; |
| 262 | 270 |
|
| 263 | 271 |
//The following example is very simple |
| 264 | 272 |
|
| 265 | 273 |
typedef LpSolver::Row Row; |
| 266 | 274 |
typedef LpSolver::Col Col; |
| 267 | 275 |
|
| 268 | 276 |
|
| 269 | 277 |
Col x1 = lp.addCol(); |
| 270 | 278 |
Col x2 = lp.addCol(); |
| 271 | 279 |
|
| 272 | 280 |
|
| 273 | 281 |
//Constraints |
| 274 | 282 |
Row upright=lp.addRow(x1+2*x2 <=1); |
| 275 | 283 |
lp.addRow(x1+x2 >=-1); |
| 276 | 284 |
lp.addRow(x1-x2 <=1); |
| 277 | 285 |
lp.addRow(x1-x2 >=-1); |
| 278 | 286 |
//Nonnegativity of the variables |
| 279 | 287 |
lp.colLowerBound(x1, 0); |
| 280 | 288 |
lp.colLowerBound(x2, 0); |
| 281 | 289 |
//Objective function |
| 282 | 290 |
lp.obj(x1+x2); |
| 283 | 291 |
|
| 284 | 292 |
lp.sense(lp.MAX); |
| 285 | 293 |
|
| 286 | 294 |
//Testing the problem retrieving routines |
| 287 | 295 |
check(lp.objCoeff(x1)==1,"First term should be 1 in the obj function!"); |
| 288 | 296 |
check(lp.sense() == lp.MAX,"This is a maximization!"); |
| 289 | 297 |
check(lp.coeff(upright,x1)==1,"The coefficient in question is 1!"); |
| 290 | 298 |
check(lp.colLowerBound(x1)==0, |
| 291 | 299 |
"The lower bound for variable x1 should be 0."); |
| 292 | 300 |
check(lp.colUpperBound(x1)==LpSolver::INF, |
| 293 | 301 |
"The upper bound for variable x1 should be infty."); |
| 294 | 302 |
check(lp.rowLowerBound(upright) == -LpSolver::INF, |
| 295 | 303 |
"The lower bound for the first row should be -infty."); |
| 296 | 304 |
check(lp.rowUpperBound(upright)==1, |
| 297 | 305 |
"The upper bound for the first row should be 1."); |
| 298 | 306 |
LpSolver::Expr e = lp.row(upright); |
| 299 | 307 |
check(e[x1] == 1, "The first coefficient should 1."); |
| 300 | 308 |
check(e[x2] == 2, "The second coefficient should 1."); |
| 301 | 309 |
|
| 302 | 310 |
lp.row(upright, x1+x2 <=1); |
| 303 | 311 |
e = lp.row(upright); |
| 304 | 312 |
check(e[x1] == 1, "The first coefficient should 1."); |
| 305 | 313 |
check(e[x2] == 1, "The second coefficient should 1."); |
| 306 | 314 |
|
| 307 | 315 |
LpSolver::DualExpr de = lp.col(x1); |
| 308 | 316 |
check( de[upright] == 1, "The first coefficient should 1."); |
| 309 | 317 |
|
| 310 | 318 |
LpSolver* clp = lp.cloneSolver(); |
| 311 | 319 |
|
| 312 | 320 |
//Testing the problem retrieving routines |
| 313 | 321 |
check(clp->objCoeff(x1)==1,"First term should be 1 in the obj function!"); |
| 314 | 322 |
check(clp->sense() == clp->MAX,"This is a maximization!"); |
| 315 | 323 |
check(clp->coeff(upright,x1)==1,"The coefficient in question is 1!"); |
| 316 | 324 |
// std::cout<<lp.colLowerBound(x1)<<std::endl; |
| 317 | 325 |
check(clp->colLowerBound(x1)==0, |
| 318 | 326 |
"The lower bound for variable x1 should be 0."); |
| 319 | 327 |
check(clp->colUpperBound(x1)==LpSolver::INF, |
| 320 | 328 |
"The upper bound for variable x1 should be infty."); |
| 321 | 329 |
|
| 322 | 330 |
check(lp.rowLowerBound(upright)==-LpSolver::INF, |
| 323 | 331 |
"The lower bound for the first row should be -infty."); |
| 324 | 332 |
check(lp.rowUpperBound(upright)==1, |
| 325 | 333 |
"The upper bound for the first row should be 1."); |
| 326 | 334 |
e = clp->row(upright); |
| 327 | 335 |
check(e[x1] == 1, "The first coefficient should 1."); |
| 328 | 336 |
check(e[x2] == 1, "The second coefficient should 1."); |
| 329 | 337 |
|
| 330 | 338 |
de = clp->col(x1); |
| 331 | 339 |
check(de[upright] == 1, "The first coefficient should 1."); |
| 332 | 340 |
|
| 333 | 341 |
delete clp; |
| 334 | 342 |
|
| 335 | 343 |
//Maximization of x1+x2 |
| 336 | 344 |
//over the triangle with vertices (0,0) (0,1) (1,0) |
| 337 | 345 |
double expected_opt=1; |
| 338 | 346 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
| 339 | 347 |
|
| 340 | 348 |
//Minimization |
| 341 | 349 |
lp.sense(lp.MIN); |
| 342 | 350 |
expected_opt=0; |
| 343 | 351 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
| 344 | 352 |
|
| 345 | 353 |
//Vertex (-1,0) instead of (0,0) |
| 346 | 354 |
lp.colLowerBound(x1, -LpSolver::INF); |
| 347 | 355 |
expected_opt=-1; |
| 348 | 356 |
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt); |
| 349 | 357 |
|
| 350 | 358 |
//Erase one constraint and return to maximization |
| 351 | 359 |
lp.erase(upright); |
| 352 | 360 |
lp.sense(lp.MAX); |
| 353 | 361 |
expected_opt=LpSolver::INF; |
| 354 | 362 |
solveAndCheck(lp, LpSolver::UNBOUNDED, expected_opt); |
| 355 | 363 |
|
| 356 | 364 |
//Infeasibilty |
| 357 | 365 |
lp.addRow(x1+x2 <=-2); |
| 358 | 366 |
solveAndCheck(lp, LpSolver::INFEASIBLE, expected_opt); |
| 359 | 367 |
|
| 360 | 368 |
} |
0 comments (0 inline)