gravatar
deba@inf.elte.hu
deba@inf.elte.hu
Renamings in connectivity.h and bug fix in DfsVisit (#61) - The include guard, the private namespace and some local varibles are renamed - The stop() must be called in DfsVisit, if there are not outgoing arcs from the added node
0 2 0
default
2 files changed with 65 insertions and 61 deletions:
↑ Collapse diff ↑
Ignore white space 16 line context
... ...
@@ -11,18 +11,18 @@
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19
#ifndef LEMON_TOPOLOGY_H
20
#define LEMON_TOPOLOGY_H
19
#ifndef LEMON_CONNECTIVITY_H
20
#define LEMON_CONNECTIVITY_H
21 21

	
22 22
#include <lemon/dfs.h>
23 23
#include <lemon/bfs.h>
24 24
#include <lemon/core.h>
25 25
#include <lemon/maps.h>
26 26
#include <lemon/adaptors.h>
27 27

	
28 28
#include <lemon/concepts/digraph.h>
... ...
@@ -149,17 +149,17 @@
149 149
          bfs.processNextNode();
150 150
        }
151 151
        ++compNum;
152 152
      }
153 153
    }
154 154
    return compNum;
155 155
  }
156 156

	
157
  namespace _topology_bits {
157
  namespace _connectivity_bits {
158 158

	
159 159
    template <typename Digraph, typename Iterator >
160 160
    struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
161 161
    public:
162 162
      typedef typename Digraph::Node Node;
163 163
      LeaveOrderVisitor(Iterator it) : _it(it) {}
164 164

	
165 165
      void leave(const Node& node) {
... ...
@@ -183,29 +183,29 @@
183 183
        _map.set(node, _value);
184 184
      }
185 185
    private:
186 186
      Map& _map;
187 187
      Value& _value;
188 188
    };
189 189

	
190 190
    template <typename Digraph, typename ArcMap>
191
    struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
191
    struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
192 192
    public:
193 193
      typedef typename Digraph::Node Node;
194 194
      typedef typename Digraph::Arc Arc;
195 195

	
196
      StronglyConnectedCutEdgesVisitor(const Digraph& digraph,
197
                                       ArcMap& cutMap,
198
                                       int& cutNum)
196
      StronglyConnectedCutArcsVisitor(const Digraph& digraph,
197
                                      ArcMap& cutMap,
198
                                      int& cutNum)
199 199
        : _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
200
          _compMap(digraph), _num(0) {
200
          _compMap(digraph, -1), _num(-1) {
201 201
      }
202 202

	
203
      void stop(const Node&) {
203
      void start(const Node&) {
204 204
        ++_num;
205 205
      }
206 206

	
207 207
      void reach(const Node& node) {
208 208
        _compMap.set(node, _num);
209 209
      }
210 210

	
211 211
      void examine(const Arc& arc) {
... ...
@@ -243,44 +243,45 @@
243 243
    checkConcept<concepts::Digraph, Digraph>();
244 244

	
245 245
    typedef typename Digraph::Node Node;
246 246
    typedef typename Digraph::NodeIt NodeIt;
247 247

	
248 248
    typename Digraph::Node source = NodeIt(digraph);
249 249
    if (source == INVALID) return true;
250 250

	
251
    using namespace _topology_bits;
251
    using namespace _connectivity_bits;
252 252

	
253 253
    typedef DfsVisitor<Digraph> Visitor;
254 254
    Visitor visitor;
255 255

	
256 256
    DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
257 257
    dfs.init();
258 258
    dfs.addSource(source);
259 259
    dfs.start();
260 260

	
261 261
    for (NodeIt it(digraph); it != INVALID; ++it) {
262 262
      if (!dfs.reached(it)) {
263 263
        return false;
264 264
      }
265 265
    }
266 266

	
267 267
    typedef ReverseDigraph<const Digraph> RDigraph;
268
    typedef typename RDigraph::NodeIt RNodeIt;
268 269
    RDigraph rdigraph(digraph);
269 270

	
270 271
    typedef DfsVisitor<Digraph> RVisitor;
271 272
    RVisitor rvisitor;
272 273

	
273 274
    DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
274 275
    rdfs.init();
275 276
    rdfs.addSource(source);
276 277
    rdfs.start();
277 278

	
278
    for (NodeIt it(rdigraph); it != INVALID; ++it) {
279
    for (RNodeIt it(rdigraph); it != INVALID; ++it) {
279 280
      if (!rdfs.reached(it)) {
280 281
        return false;
281 282
      }
282 283
    }
283 284

	
284 285
    return true;
285 286
  }
286 287

	
... ...
@@ -297,17 +298,17 @@
297 298
  /// \param graph The graph.
298 299
  /// \return The number of components
299 300
  /// \note By definition, the empty graph has zero
300 301
  /// strongly connected components.
301 302
  template <typename Digraph>
302 303
  int countStronglyConnectedComponents(const Digraph& digraph) {
303 304
    checkConcept<concepts::Digraph, Digraph>();
304 305

	
305
    using namespace _topology_bits;
306
    using namespace _connectivity_bits;
306 307

	
307 308
    typedef typename Digraph::Node Node;
308 309
    typedef typename Digraph::Arc Arc;
309 310
    typedef typename Digraph::NodeIt NodeIt;
310 311
    typedef typename Digraph::ArcIt ArcIt;
311 312

	
312 313
    typedef std::vector<Node> Container;
313 314
    typedef typename Container::iterator Iterator;
... ...
@@ -369,17 +370,17 @@
369 370
  ///
370 371
  template <typename Digraph, typename NodeMap>
371 372
  int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
372 373
    checkConcept<concepts::Digraph, Digraph>();
373 374
    typedef typename Digraph::Node Node;
374 375
    typedef typename Digraph::NodeIt NodeIt;
375 376
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
376 377

	
377
    using namespace _topology_bits;
378
    using namespace _connectivity_bits;
378 379

	
379 380
    typedef std::vector<Node> Container;
380 381
    typedef typename Container::iterator Iterator;
381 382

	
382 383
    Container nodes(countNodes(digraph));
383 384
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
384 385
    Visitor visitor(nodes.begin());
385 386

	
... ...
@@ -433,17 +434,17 @@
433 434
  template <typename Digraph, typename ArcMap>
434 435
  int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
435 436
    checkConcept<concepts::Digraph, Digraph>();
436 437
    typedef typename Digraph::Node Node;
437 438
    typedef typename Digraph::Arc Arc;
438 439
    typedef typename Digraph::NodeIt NodeIt;
439 440
    checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
440 441

	
441
    using namespace _topology_bits;
442
    using namespace _connectivity_bits;
442 443

	
443 444
    typedef std::vector<Node> Container;
444 445
    typedef typename Container::iterator Iterator;
445 446

	
446 447
    Container nodes(countNodes(graph));
447 448
    typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
448 449
    Visitor visitor(nodes.begin());
449 450

	
... ...
@@ -458,32 +459,32 @@
458 459

	
459 460
    typedef typename Container::reverse_iterator RIterator;
460 461
    typedef ReverseDigraph<const Digraph> RDigraph;
461 462

	
462 463
    RDigraph rgraph(graph);
463 464

	
464 465
    int cutNum = 0;
465 466

	
466
    typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor;
467
    typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
467 468
    RVisitor rvisitor(rgraph, cutMap, cutNum);
468 469

	
469 470
    DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
470 471

	
471 472
    rdfs.init();
472 473
    for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
473 474
      if (!rdfs.reached(*it)) {
474 475
        rdfs.addSource(*it);
475 476
        rdfs.start();
476 477
      }
477 478
    }
478 479
    return cutNum;
479 480
  }
480 481

	
481
  namespace _topology_bits {
482
  namespace _connectivity_bits {
482 483

	
483 484
    template <typename Digraph>
484 485
    class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
485 486
    public:
486 487
      typedef typename Digraph::Node Node;
487 488
      typedef typename Digraph::Arc Arc;
488 489
      typedef typename Digraph::Edge Edge;
489 490

	
... ...
@@ -725,17 +726,17 @@
725 726
  ///
726 727
  /// \param graph The graph.
727 728
  /// \return The number of components.
728 729
  template <typename Graph>
729 730
  int countBiNodeConnectedComponents(const Graph& graph) {
730 731
    checkConcept<concepts::Graph, Graph>();
731 732
    typedef typename Graph::NodeIt NodeIt;
732 733

	
733
    using namespace _topology_bits;
734
    using namespace _connectivity_bits;
734 735

	
735 736
    typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
736 737

	
737 738
    int compNum = 0;
738 739
    Visitor visitor(graph, compNum);
739 740

	
740 741
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
741 742
    dfs.init();
... ...
@@ -768,17 +769,17 @@
768 769
  template <typename Graph, typename EdgeMap>
769 770
  int biNodeConnectedComponents(const Graph& graph,
770 771
                                EdgeMap& compMap) {
771 772
    checkConcept<concepts::Graph, Graph>();
772 773
    typedef typename Graph::NodeIt NodeIt;
773 774
    typedef typename Graph::Edge Edge;
774 775
    checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
775 776

	
776
    using namespace _topology_bits;
777
    using namespace _connectivity_bits;
777 778

	
778 779
    typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
779 780

	
780 781
    int compNum = 0;
781 782
    Visitor visitor(graph, compMap, compNum);
782 783

	
783 784
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
784 785
    dfs.init();
... ...
@@ -808,17 +809,17 @@
808 809
  /// \return The number of the cut nodes.
809 810
  template <typename Graph, typename NodeMap>
810 811
  int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
811 812
    checkConcept<concepts::Graph, Graph>();
812 813
    typedef typename Graph::Node Node;
813 814
    typedef typename Graph::NodeIt NodeIt;
814 815
    checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
815 816

	
816
    using namespace _topology_bits;
817
    using namespace _connectivity_bits;
817 818

	
818 819
    typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
819 820

	
820 821
    int cutNum = 0;
821 822
    Visitor visitor(graph, cutMap, cutNum);
822 823

	
823 824
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
824 825
    dfs.init();
... ...
@@ -827,17 +828,17 @@
827 828
      if (!dfs.reached(it)) {
828 829
        dfs.addSource(it);
829 830
        dfs.start();
830 831
      }
831 832
    }
832 833
    return cutNum;
833 834
  }
834 835

	
835
  namespace _topology_bits {
836
  namespace _connectivity_bits {
836 837

	
837 838
    template <typename Digraph>
838 839
    class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
839 840
    public:
840 841
      typedef typename Digraph::Node Node;
841 842
      typedef typename Digraph::Arc Arc;
842 843
      typedef typename Digraph::Edge Edge;
843 844

	
... ...
@@ -1048,17 +1049,17 @@
1048 1049
  ///
1049 1050
  /// \param graph The undirected graph.
1050 1051
  /// \return The number of components.
1051 1052
  template <typename Graph>
1052 1053
  int countBiEdgeConnectedComponents(const Graph& graph) {
1053 1054
    checkConcept<concepts::Graph, Graph>();
1054 1055
    typedef typename Graph::NodeIt NodeIt;
1055 1056

	
1056
    using namespace _topology_bits;
1057
    using namespace _connectivity_bits;
1057 1058

	
1058 1059
    typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
1059 1060

	
1060 1061
    int compNum = 0;
1061 1062
    Visitor visitor(graph, compNum);
1062 1063

	
1063 1064
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1064 1065
    dfs.init();
... ...
@@ -1090,17 +1091,17 @@
1090 1091
  ///
1091 1092
  template <typename Graph, typename NodeMap>
1092 1093
  int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
1093 1094
    checkConcept<concepts::Graph, Graph>();
1094 1095
    typedef typename Graph::NodeIt NodeIt;
1095 1096
    typedef typename Graph::Node Node;
1096 1097
    checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
1097 1098

	
1098
    using namespace _topology_bits;
1099
    using namespace _connectivity_bits;
1099 1100

	
1100 1101
    typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
1101 1102

	
1102 1103
    int compNum = 0;
1103 1104
    Visitor visitor(graph, compMap, compNum);
1104 1105

	
1105 1106
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1106 1107
    dfs.init();
... ...
@@ -1131,17 +1132,17 @@
1131 1132
  /// \return The number of cut edges.
1132 1133
  template <typename Graph, typename EdgeMap>
1133 1134
  int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
1134 1135
    checkConcept<concepts::Graph, Graph>();
1135 1136
    typedef typename Graph::NodeIt NodeIt;
1136 1137
    typedef typename Graph::Edge Edge;
1137 1138
    checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
1138 1139

	
1139
    using namespace _topology_bits;
1140
    using namespace _connectivity_bits;
1140 1141

	
1141 1142
    typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
1142 1143

	
1143 1144
    int cutNum = 0;
1144 1145
    Visitor visitor(graph, cutMap, cutNum);
1145 1146

	
1146 1147
    DfsVisit<Graph, Visitor> dfs(graph, visitor);
1147 1148
    dfs.init();
... ...
@@ -1151,17 +1152,17 @@
1151 1152
        dfs.addSource(it);
1152 1153
        dfs.start();
1153 1154
      }
1154 1155
    }
1155 1156
    return cutNum;
1156 1157
  }
1157 1158

	
1158 1159

	
1159
  namespace _topology_bits {
1160
  namespace _connectivity_bits {
1160 1161

	
1161 1162
    template <typename Digraph, typename IntNodeMap>
1162 1163
    class TopologicalSortVisitor : public DfsVisitor<Digraph> {
1163 1164
    public:
1164 1165
      typedef typename Digraph::Node Node;
1165 1166
      typedef typename Digraph::Arc edge;
1166 1167

	
1167 1168
      TopologicalSortVisitor(IntNodeMap& order, int num)
... ...
@@ -1188,17 +1189,17 @@
1188 1189
  /// \retval order A writable node map. The values will be set from 0 to
1189 1190
  /// the number of the nodes in the graph minus one. Each values of the map
1190 1191
  /// will be set exactly once, the values  will be set descending order.
1191 1192
  ///
1192 1193
  /// \see checkedTopologicalSort
1193 1194
  /// \see dag
1194 1195
  template <typename Digraph, typename NodeMap>
1195 1196
  void topologicalSort(const Digraph& graph, NodeMap& order) {
1196
    using namespace _topology_bits;
1197
    using namespace _connectivity_bits;
1197 1198

	
1198 1199
    checkConcept<concepts::Digraph, Digraph>();
1199 1200
    checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
1200 1201

	
1201 1202
    typedef typename Digraph::Node Node;
1202 1203
    typedef typename Digraph::NodeIt NodeIt;
1203 1204
    typedef typename Digraph::Arc Arc;
1204 1205

	
... ...
@@ -1229,42 +1230,44 @@
1229 1230
  /// from 0 to the number of the nodes in the graph minus one. Each values
1230 1231
  /// of the map will be set exactly once, the values will be set descending
1231 1232
  /// order.
1232 1233
  /// \return %False when the graph is not DAG.
1233 1234
  ///
1234 1235
  /// \see topologicalSort
1235 1236
  /// \see dag
1236 1237
  template <typename Digraph, typename NodeMap>
1237
  bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) {
1238
    using namespace _topology_bits;
1238
  bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
1239
    using namespace _connectivity_bits;
1239 1240

	
1240 1241
    checkConcept<concepts::Digraph, Digraph>();
1241 1242
    checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
1242 1243
      NodeMap>();
1243 1244

	
1244 1245
    typedef typename Digraph::Node Node;
1245 1246
    typedef typename Digraph::NodeIt NodeIt;
1246 1247
    typedef typename Digraph::Arc Arc;
1247 1248

	
1248
    order = constMap<Node, int, -1>();
1249
    for (NodeIt it(digraph); it != INVALID; ++it) {
1250
      order.set(it, -1);
1251
    }
1249 1252

	
1250 1253
    TopologicalSortVisitor<Digraph, NodeMap>
1251
      visitor(order, countNodes(graph));
1254
      visitor(order, countNodes(digraph));
1252 1255

	
1253 1256
    DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
1254
      dfs(graph, visitor);
1257
      dfs(digraph, visitor);
1255 1258

	
1256 1259
    dfs.init();
1257
    for (NodeIt it(graph); it != INVALID; ++it) {
1260
    for (NodeIt it(digraph); it != INVALID; ++it) {
1258 1261
      if (!dfs.reached(it)) {
1259 1262
        dfs.addSource(it);
1260 1263
        while (!dfs.emptyQueue()) {
1261
           Arc edge = dfs.nextArc();
1262
           Node target = graph.target(edge);
1264
           Arc arc = dfs.nextArc();
1265
           Node target = digraph.target(arc);
1263 1266
           if (dfs.reached(target) && order[target] == -1) {
1264 1267
             return false;
1265 1268
           }
1266 1269
           dfs.processNextArc();
1267 1270
         }
1268 1271
      }
1269 1272
    }
1270 1273
    return true;
... ...
@@ -1274,39 +1277,39 @@
1274 1277
  ///
1275 1278
  /// \brief Check that the given directed graph is a DAG.
1276 1279
  ///
1277 1280
  /// Check that the given directed graph is a DAG. The DAG is
1278 1281
  /// an Directed Acyclic Digraph.
1279 1282
  /// \return %False when the graph is not DAG.
1280 1283
  /// \see acyclic
1281 1284
  template <typename Digraph>
1282
  bool dag(const Digraph& graph) {
1285
  bool dag(const Digraph& digraph) {
1283 1286

	
1284 1287
    checkConcept<concepts::Digraph, Digraph>();
1285 1288

	
1286 1289
    typedef typename Digraph::Node Node;
1287 1290
    typedef typename Digraph::NodeIt NodeIt;
1288 1291
    typedef typename Digraph::Arc Arc;
1289 1292

	
1290 1293
    typedef typename Digraph::template NodeMap<bool> ProcessedMap;
1291 1294

	
1292 1295
    typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
1293
      Create dfs(graph);
1296
      Create dfs(digraph);
1294 1297

	
1295
    ProcessedMap processed(graph);
1298
    ProcessedMap processed(digraph);
1296 1299
    dfs.processedMap(processed);
1297 1300

	
1298 1301
    dfs.init();
1299
    for (NodeIt it(graph); it != INVALID; ++it) {
1302
    for (NodeIt it(digraph); it != INVALID; ++it) {
1300 1303
      if (!dfs.reached(it)) {
1301 1304
        dfs.addSource(it);
1302 1305
        while (!dfs.emptyQueue()) {
1303 1306
          Arc edge = dfs.nextArc();
1304
          Node target = graph.target(edge);
1307
          Node target = digraph.target(edge);
1305 1308
          if (dfs.reached(target) && !processed[target]) {
1306 1309
            return false;
1307 1310
          }
1308 1311
          dfs.processNextArc();
1309 1312
        }
1310 1313
      }
1311 1314
    }
1312 1315
    return true;
... ...
@@ -1375,17 +1378,17 @@
1375 1378
    for (NodeIt it(graph); it != INVALID; ++it) {
1376 1379
      if (!dfs.reached(it)) {
1377 1380
        return false;
1378 1381
      }
1379 1382
    }
1380 1383
    return true;
1381 1384
  }
1382 1385

	
1383
  namespace _topology_bits {
1386
  namespace _connectivity_bits {
1384 1387

	
1385 1388
    template <typename Digraph>
1386 1389
    class BipartiteVisitor : public BfsVisitor<Digraph> {
1387 1390
    public:
1388 1391
      typedef typename Digraph::Arc Arc;
1389 1392
      typedef typename Digraph::Node Node;
1390 1393

	
1391 1394
      BipartiteVisitor(const Digraph& graph, bool& bipartite)
... ...
@@ -1444,17 +1447,17 @@
1444 1447
  ///
1445 1448
  /// The function checks if the given undirected \c graph graph is bipartite
1446 1449
  /// or not. The \ref Bfs algorithm is used to calculate the result.
1447 1450
  /// \param graph The undirected graph.
1448 1451
  /// \return %True if \c graph is bipartite, %false otherwise.
1449 1452
  /// \sa bipartitePartitions
1450 1453
  template<typename Graph>
1451 1454
  inline bool bipartite(const Graph &graph){
1452
    using namespace _topology_bits;
1455
    using namespace _connectivity_bits;
1453 1456

	
1454 1457
    checkConcept<concepts::Graph, Graph>();
1455 1458

	
1456 1459
    typedef typename Graph::NodeIt NodeIt;
1457 1460
    typedef typename Graph::ArcIt ArcIt;
1458 1461

	
1459 1462
    bool bipartite = true;
1460 1463

	
... ...
@@ -1484,17 +1487,17 @@
1484 1487
  /// During the execution, the \c partMap will be set as the two
1485 1488
  /// partitions of the graph.
1486 1489
  /// \param graph The undirected graph.
1487 1490
  /// \retval partMap A writable bool map of nodes. It will be set as the
1488 1491
  /// two partitions of the graph.
1489 1492
  /// \return %True if \c graph is bipartite, %false otherwise.
1490 1493
  template<typename Graph, typename NodeMap>
1491 1494
  inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
1492
    using namespace _topology_bits;
1495
    using namespace _connectivity_bits;
1493 1496

	
1494 1497
    checkConcept<concepts::Graph, Graph>();
1495 1498

	
1496 1499
    typedef typename Graph::Node Node;
1497 1500
    typedef typename Graph::NodeIt NodeIt;
1498 1501
    typedef typename Graph::ArcIt ArcIt;
1499 1502

	
1500 1503
    bool bipartite = true;
... ...
@@ -1515,58 +1518,58 @@
1515 1518
    }
1516 1519
    return true;
1517 1520
  }
1518 1521

	
1519 1522
  /// \brief Returns true when there are not loop edges in the graph.
1520 1523
  ///
1521 1524
  /// Returns true when there are not loop edges in the graph.
1522 1525
  template <typename Digraph>
1523
  bool loopFree(const Digraph& graph) {
1524
    for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) {
1525
      if (graph.source(it) == graph.target(it)) return false;
1526
  bool loopFree(const Digraph& digraph) {
1527
    for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
1528
      if (digraph.source(it) == digraph.target(it)) return false;
1526 1529
    }
1527 1530
    return true;
1528 1531
  }
1529 1532

	
1530 1533
  /// \brief Returns true when there are not parallel edges in the graph.
1531 1534
  ///
1532 1535
  /// Returns true when there are not parallel edges in the graph.
1533 1536
  template <typename Digraph>
1534
  bool parallelFree(const Digraph& graph) {
1535
    typename Digraph::template NodeMap<bool> reached(graph, false);
1536
    for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
1537
      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
1538
        if (reached[graph.target(e)]) return false;
1539
        reached.set(graph.target(e), true);
1537
  bool parallelFree(const Digraph& digraph) {
1538
    typename Digraph::template NodeMap<bool> reached(digraph, false);
1539
    for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
1540
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1541
        if (reached[digraph.target(a)]) return false;
1542
        reached.set(digraph.target(a), true);
1540 1543
      }
1541
      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
1542
        reached.set(graph.target(e), false);
1544
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1545
        reached.set(digraph.target(a), false);
1543 1546
      }
1544 1547
    }
1545 1548
    return true;
1546 1549
  }
1547 1550

	
1548 1551
  /// \brief Returns true when there are not loop edges and parallel
1549 1552
  /// edges in the graph.
1550 1553
  ///
1551 1554
  /// Returns true when there are not loop edges and parallel edges in
1552 1555
  /// the graph.
1553 1556
  template <typename Digraph>
1554
  bool simpleDigraph(const Digraph& graph) {
1555
    typename Digraph::template NodeMap<bool> reached(graph, false);
1556
    for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
1557
  bool simpleDigraph(const Digraph& digraph) {
1558
    typename Digraph::template NodeMap<bool> reached(digraph, false);
1559
    for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
1557 1560
      reached.set(n, true);
1558
      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
1559
        if (reached[graph.target(e)]) return false;
1560
        reached.set(graph.target(e), true);
1561
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1562
        if (reached[digraph.target(a)]) return false;
1563
        reached.set(digraph.target(a), true);
1561 1564
      }
1562
      for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
1563
        reached.set(graph.target(e), false);
1565
      for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
1566
        reached.set(digraph.target(a), false);
1564 1567
      }
1565 1568
      reached.set(n, false);
1566 1569
    }
1567 1570
    return true;
1568 1571
  }
1569 1572

	
1570 1573
} //namespace lemon
1571 1574

	
1572
#endif //LEMON_TOPOLOGY_H
1575
#endif //LEMON_CONNECTIVITY_H
Ignore white space 6 line context
... ...
@@ -1405,16 +1405,17 @@
1405 1405
          _visitor->start(s);
1406 1406
          _visitor->reach(s);
1407 1407
          Arc e;
1408 1408
          _digraph->firstOut(e, s);
1409 1409
          if (e != INVALID) {
1410 1410
            _stack[++_stack_head] = e;
1411 1411
          } else {
1412 1412
            _visitor->leave(s);
1413
            _visitor->stop(s);
1413 1414
          }
1414 1415
        }
1415 1416
    }
1416 1417

	
1417 1418
    /// \brief Processes the next arc.
1418 1419
    ///
1419 1420
    /// Processes the next arc.
1420 1421
    ///
0 comments (0 inline)