| 1 |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
| 2 |
2 |
*
|
| 3 |
3 |
* This file is a part of LEMON, a generic C++ optimization library.
|
| 4 |
4 |
*
|
| 5 |
5 |
* Copyright (C) 2003-2008
|
| 6 |
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
| 7 |
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
| 8 |
8 |
*
|
| 9 |
9 |
* Permission to use, modify and distribute this software is granted
|
| 10 |
10 |
* provided that this copyright notice appears in all copies. For
|
| 11 |
11 |
* precise terms see the accompanying LICENSE file.
|
| 12 |
12 |
*
|
| 13 |
13 |
* This software is provided "AS IS" with no warranty of any kind,
|
| 14 |
14 |
* express or implied, and with no claim as to its suitability for any
|
| 15 |
15 |
* purpose.
|
| 16 |
16 |
*
|
| 17 |
17 |
*/
|
| 18 |
18 |
|
| 19 |
|
#ifndef LEMON_TOPOLOGY_H
|
| 20 |
|
#define LEMON_TOPOLOGY_H
|
|
19 |
#ifndef LEMON_CONNECTIVITY_H
|
|
20 |
#define LEMON_CONNECTIVITY_H
|
| 21 |
21 |
|
| 22 |
22 |
#include <lemon/dfs.h>
|
| 23 |
23 |
#include <lemon/bfs.h>
|
| 24 |
24 |
#include <lemon/core.h>
|
| 25 |
25 |
#include <lemon/maps.h>
|
| 26 |
26 |
#include <lemon/adaptors.h>
|
| 27 |
27 |
|
| 28 |
28 |
#include <lemon/concepts/digraph.h>
|
| 29 |
29 |
#include <lemon/concepts/graph.h>
|
| 30 |
30 |
#include <lemon/concept_check.h>
|
| 31 |
31 |
|
| 32 |
32 |
#include <stack>
|
| 33 |
33 |
#include <functional>
|
| 34 |
34 |
|
| 35 |
35 |
/// \ingroup connectivity
|
| 36 |
36 |
/// \file
|
| 37 |
37 |
/// \brief Connectivity algorithms
|
| 38 |
38 |
///
|
| 39 |
39 |
/// Connectivity algorithms
|
| 40 |
40 |
|
| 41 |
41 |
namespace lemon {
|
| 42 |
42 |
|
| 43 |
43 |
/// \ingroup connectivity
|
| 44 |
44 |
///
|
| 45 |
45 |
/// \brief Check whether the given undirected graph is connected.
|
| 46 |
46 |
///
|
| 47 |
47 |
/// Check whether the given undirected graph is connected.
|
| 48 |
48 |
/// \param graph The undirected graph.
|
| 49 |
49 |
/// \return %True when there is path between any two nodes in the graph.
|
| 50 |
50 |
/// \note By definition, the empty graph is connected.
|
| 51 |
51 |
template <typename Graph>
|
| 52 |
52 |
bool connected(const Graph& graph) {
|
| 53 |
53 |
checkConcept<concepts::Graph, Graph>();
|
| 54 |
54 |
typedef typename Graph::NodeIt NodeIt;
|
| 55 |
55 |
if (NodeIt(graph) == INVALID) return true;
|
| 56 |
56 |
Dfs<Graph> dfs(graph);
|
| 57 |
57 |
dfs.run(NodeIt(graph));
|
| 58 |
58 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 59 |
59 |
if (!dfs.reached(it)) {
|
| 60 |
60 |
return false;
|
| 61 |
61 |
}
|
| 62 |
62 |
}
|
| 63 |
63 |
return true;
|
| 64 |
64 |
}
|
| 65 |
65 |
|
| 66 |
66 |
/// \ingroup connectivity
|
| 67 |
67 |
///
|
| 68 |
68 |
/// \brief Count the number of connected components of an undirected graph
|
| 69 |
69 |
///
|
| 70 |
70 |
/// Count the number of connected components of an undirected graph
|
| 71 |
71 |
///
|
| 72 |
72 |
/// \param graph The graph. It must be undirected.
|
| 73 |
73 |
/// \return The number of components
|
| 74 |
74 |
/// \note By definition, the empty graph consists
|
| 75 |
75 |
/// of zero connected components.
|
| 76 |
76 |
template <typename Graph>
|
| 77 |
77 |
int countConnectedComponents(const Graph &graph) {
|
| 78 |
78 |
checkConcept<concepts::Graph, Graph>();
|
| 79 |
79 |
typedef typename Graph::Node Node;
|
| 80 |
80 |
typedef typename Graph::Arc Arc;
|
| 81 |
81 |
|
| 82 |
82 |
typedef NullMap<Node, Arc> PredMap;
|
| 83 |
83 |
typedef NullMap<Node, int> DistMap;
|
| 84 |
84 |
|
| 85 |
85 |
int compNum = 0;
|
| 86 |
86 |
typename Bfs<Graph>::
|
| 87 |
87 |
template SetPredMap<PredMap>::
|
| 88 |
88 |
template SetDistMap<DistMap>::
|
| 89 |
89 |
Create bfs(graph);
|
| 90 |
90 |
|
| 91 |
91 |
PredMap predMap;
|
| 92 |
92 |
bfs.predMap(predMap);
|
| 93 |
93 |
|
| 94 |
94 |
DistMap distMap;
|
| 95 |
95 |
bfs.distMap(distMap);
|
| 96 |
96 |
|
| 97 |
97 |
bfs.init();
|
| 98 |
98 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 99 |
99 |
if (!bfs.reached(n)) {
|
| 100 |
100 |
bfs.addSource(n);
|
| 101 |
101 |
bfs.start();
|
| 102 |
102 |
++compNum;
|
| 103 |
103 |
}
|
| 104 |
104 |
}
|
| 105 |
105 |
return compNum;
|
| 106 |
106 |
}
|
| 107 |
107 |
|
| 108 |
108 |
/// \ingroup connectivity
|
| 109 |
109 |
///
|
| 110 |
110 |
/// \brief Find the connected components of an undirected graph
|
| 111 |
111 |
///
|
| 112 |
112 |
/// Find the connected components of an undirected graph.
|
| 113 |
113 |
///
|
| 114 |
114 |
/// \param graph The graph. It must be undirected.
|
| 115 |
115 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
| 116 |
116 |
/// the number of the connected components minus one. Each values of the map
|
| 117 |
117 |
/// will be set exactly once, the values of a certain component will be
|
| 118 |
118 |
/// set continuously.
|
| 119 |
119 |
/// \return The number of components
|
| 120 |
120 |
///
|
| 121 |
121 |
template <class Graph, class NodeMap>
|
| 122 |
122 |
int connectedComponents(const Graph &graph, NodeMap &compMap) {
|
| 123 |
123 |
checkConcept<concepts::Graph, Graph>();
|
| 124 |
124 |
typedef typename Graph::Node Node;
|
| 125 |
125 |
typedef typename Graph::Arc Arc;
|
| 126 |
126 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
| 127 |
127 |
|
| 128 |
128 |
typedef NullMap<Node, Arc> PredMap;
|
| 129 |
129 |
typedef NullMap<Node, int> DistMap;
|
| 130 |
130 |
|
| 131 |
131 |
int compNum = 0;
|
| 132 |
132 |
typename Bfs<Graph>::
|
| 133 |
133 |
template SetPredMap<PredMap>::
|
| 134 |
134 |
template SetDistMap<DistMap>::
|
| 135 |
135 |
Create bfs(graph);
|
| 136 |
136 |
|
| 137 |
137 |
PredMap predMap;
|
| 138 |
138 |
bfs.predMap(predMap);
|
| 139 |
139 |
|
| 140 |
140 |
DistMap distMap;
|
| 141 |
141 |
bfs.distMap(distMap);
|
| 142 |
142 |
|
| 143 |
143 |
bfs.init();
|
| 144 |
144 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) {
|
| 145 |
145 |
if(!bfs.reached(n)) {
|
| 146 |
146 |
bfs.addSource(n);
|
| 147 |
147 |
while (!bfs.emptyQueue()) {
|
| 148 |
148 |
compMap.set(bfs.nextNode(), compNum);
|
| 149 |
149 |
bfs.processNextNode();
|
| 150 |
150 |
}
|
| 151 |
151 |
++compNum;
|
| 152 |
152 |
}
|
| 153 |
153 |
}
|
| 154 |
154 |
return compNum;
|
| 155 |
155 |
}
|
| 156 |
156 |
|
| 157 |
|
namespace _topology_bits {
|
|
157 |
namespace _connectivity_bits {
|
| 158 |
158 |
|
| 159 |
159 |
template <typename Digraph, typename Iterator >
|
| 160 |
160 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> {
|
| 161 |
161 |
public:
|
| 162 |
162 |
typedef typename Digraph::Node Node;
|
| 163 |
163 |
LeaveOrderVisitor(Iterator it) : _it(it) {}
|
| 164 |
164 |
|
| 165 |
165 |
void leave(const Node& node) {
|
| 166 |
166 |
*(_it++) = node;
|
| 167 |
167 |
}
|
| 168 |
168 |
|
| 169 |
169 |
private:
|
| 170 |
170 |
Iterator _it;
|
| 171 |
171 |
};
|
| 172 |
172 |
|
| 173 |
173 |
template <typename Digraph, typename Map>
|
| 174 |
174 |
struct FillMapVisitor : public DfsVisitor<Digraph> {
|
| 175 |
175 |
public:
|
| 176 |
176 |
typedef typename Digraph::Node Node;
|
| 177 |
177 |
typedef typename Map::Value Value;
|
| 178 |
178 |
|
| 179 |
179 |
FillMapVisitor(Map& map, Value& value)
|
| 180 |
180 |
: _map(map), _value(value) {}
|
| 181 |
181 |
|
| 182 |
182 |
void reach(const Node& node) {
|
| 183 |
183 |
_map.set(node, _value);
|
| 184 |
184 |
}
|
| 185 |
185 |
private:
|
| 186 |
186 |
Map& _map;
|
| 187 |
187 |
Value& _value;
|
| 188 |
188 |
};
|
| 189 |
189 |
|
| 190 |
190 |
template <typename Digraph, typename ArcMap>
|
| 191 |
|
struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
|
|
191 |
struct StronglyConnectedCutArcsVisitor : public DfsVisitor<Digraph> {
|
| 192 |
192 |
public:
|
| 193 |
193 |
typedef typename Digraph::Node Node;
|
| 194 |
194 |
typedef typename Digraph::Arc Arc;
|
| 195 |
195 |
|
| 196 |
|
StronglyConnectedCutEdgesVisitor(const Digraph& digraph,
|
| 197 |
|
ArcMap& cutMap,
|
| 198 |
|
int& cutNum)
|
|
196 |
StronglyConnectedCutArcsVisitor(const Digraph& digraph,
|
|
197 |
ArcMap& cutMap,
|
|
198 |
int& cutNum)
|
| 199 |
199 |
: _digraph(digraph), _cutMap(cutMap), _cutNum(cutNum),
|
| 200 |
|
_compMap(digraph), _num(0) {
|
|
200 |
_compMap(digraph, -1), _num(-1) {
|
| 201 |
201 |
}
|
| 202 |
202 |
|
| 203 |
|
void stop(const Node&) {
|
|
203 |
void start(const Node&) {
|
| 204 |
204 |
++_num;
|
| 205 |
205 |
}
|
| 206 |
206 |
|
| 207 |
207 |
void reach(const Node& node) {
|
| 208 |
208 |
_compMap.set(node, _num);
|
| 209 |
209 |
}
|
| 210 |
210 |
|
| 211 |
211 |
void examine(const Arc& arc) {
|
| 212 |
212 |
if (_compMap[_digraph.source(arc)] !=
|
| 213 |
213 |
_compMap[_digraph.target(arc)]) {
|
| 214 |
214 |
_cutMap.set(arc, true);
|
| 215 |
215 |
++_cutNum;
|
| 216 |
216 |
}
|
| 217 |
217 |
}
|
| 218 |
218 |
private:
|
| 219 |
219 |
const Digraph& _digraph;
|
| 220 |
220 |
ArcMap& _cutMap;
|
| 221 |
221 |
int& _cutNum;
|
| 222 |
222 |
|
| 223 |
223 |
typename Digraph::template NodeMap<int> _compMap;
|
| 224 |
224 |
int _num;
|
| 225 |
225 |
};
|
| 226 |
226 |
|
| 227 |
227 |
}
|
| 228 |
228 |
|
| 229 |
229 |
|
| 230 |
230 |
/// \ingroup connectivity
|
| 231 |
231 |
///
|
| 232 |
232 |
/// \brief Check whether the given directed graph is strongly connected.
|
| 233 |
233 |
///
|
| 234 |
234 |
/// Check whether the given directed graph is strongly connected. The
|
| 235 |
235 |
/// graph is strongly connected when any two nodes of the graph are
|
| 236 |
236 |
/// connected with directed paths in both direction.
|
| 237 |
237 |
/// \return %False when the graph is not strongly connected.
|
| 238 |
238 |
/// \see connected
|
| 239 |
239 |
///
|
| 240 |
240 |
/// \note By definition, the empty graph is strongly connected.
|
| 241 |
241 |
template <typename Digraph>
|
| 242 |
242 |
bool stronglyConnected(const Digraph& digraph) {
|
| 243 |
243 |
checkConcept<concepts::Digraph, Digraph>();
|
| 244 |
244 |
|
| 245 |
245 |
typedef typename Digraph::Node Node;
|
| 246 |
246 |
typedef typename Digraph::NodeIt NodeIt;
|
| 247 |
247 |
|
| 248 |
248 |
typename Digraph::Node source = NodeIt(digraph);
|
| 249 |
249 |
if (source == INVALID) return true;
|
| 250 |
250 |
|
| 251 |
|
using namespace _topology_bits;
|
|
251 |
using namespace _connectivity_bits;
|
| 252 |
252 |
|
| 253 |
253 |
typedef DfsVisitor<Digraph> Visitor;
|
| 254 |
254 |
Visitor visitor;
|
| 255 |
255 |
|
| 256 |
256 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
| 257 |
257 |
dfs.init();
|
| 258 |
258 |
dfs.addSource(source);
|
| 259 |
259 |
dfs.start();
|
| 260 |
260 |
|
| 261 |
261 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 262 |
262 |
if (!dfs.reached(it)) {
|
| 263 |
263 |
return false;
|
| 264 |
264 |
}
|
| 265 |
265 |
}
|
| 266 |
266 |
|
| 267 |
267 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
|
268 |
typedef typename RDigraph::NodeIt RNodeIt;
|
| 268 |
269 |
RDigraph rdigraph(digraph);
|
| 269 |
270 |
|
| 270 |
271 |
typedef DfsVisitor<Digraph> RVisitor;
|
| 271 |
272 |
RVisitor rvisitor;
|
| 272 |
273 |
|
| 273 |
274 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
| 274 |
275 |
rdfs.init();
|
| 275 |
276 |
rdfs.addSource(source);
|
| 276 |
277 |
rdfs.start();
|
| 277 |
278 |
|
| 278 |
|
for (NodeIt it(rdigraph); it != INVALID; ++it) {
|
|
279 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) {
|
| 279 |
280 |
if (!rdfs.reached(it)) {
|
| 280 |
281 |
return false;
|
| 281 |
282 |
}
|
| 282 |
283 |
}
|
| 283 |
284 |
|
| 284 |
285 |
return true;
|
| 285 |
286 |
}
|
| 286 |
287 |
|
| 287 |
288 |
/// \ingroup connectivity
|
| 288 |
289 |
///
|
| 289 |
290 |
/// \brief Count the strongly connected components of a directed graph
|
| 290 |
291 |
///
|
| 291 |
292 |
/// Count the strongly connected components of a directed graph.
|
| 292 |
293 |
/// The strongly connected components are the classes of an
|
| 293 |
294 |
/// equivalence relation on the nodes of the graph. Two nodes are in
|
| 294 |
295 |
/// the same class if they are connected with directed paths in both
|
| 295 |
296 |
/// direction.
|
| 296 |
297 |
///
|
| 297 |
298 |
/// \param graph The graph.
|
| 298 |
299 |
/// \return The number of components
|
| 299 |
300 |
/// \note By definition, the empty graph has zero
|
| 300 |
301 |
/// strongly connected components.
|
| 301 |
302 |
template <typename Digraph>
|
| 302 |
303 |
int countStronglyConnectedComponents(const Digraph& digraph) {
|
| 303 |
304 |
checkConcept<concepts::Digraph, Digraph>();
|
| 304 |
305 |
|
| 305 |
|
using namespace _topology_bits;
|
|
306 |
using namespace _connectivity_bits;
|
| 306 |
307 |
|
| 307 |
308 |
typedef typename Digraph::Node Node;
|
| 308 |
309 |
typedef typename Digraph::Arc Arc;
|
| 309 |
310 |
typedef typename Digraph::NodeIt NodeIt;
|
| 310 |
311 |
typedef typename Digraph::ArcIt ArcIt;
|
| 311 |
312 |
|
| 312 |
313 |
typedef std::vector<Node> Container;
|
| 313 |
314 |
typedef typename Container::iterator Iterator;
|
| 314 |
315 |
|
| 315 |
316 |
Container nodes(countNodes(digraph));
|
| 316 |
317 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
| 317 |
318 |
Visitor visitor(nodes.begin());
|
| 318 |
319 |
|
| 319 |
320 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
| 320 |
321 |
dfs.init();
|
| 321 |
322 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 322 |
323 |
if (!dfs.reached(it)) {
|
| 323 |
324 |
dfs.addSource(it);
|
| 324 |
325 |
dfs.start();
|
| 325 |
326 |
}
|
| 326 |
327 |
}
|
| 327 |
328 |
|
| 328 |
329 |
typedef typename Container::reverse_iterator RIterator;
|
| 329 |
330 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
| 330 |
331 |
|
| 331 |
332 |
RDigraph rdigraph(digraph);
|
| 332 |
333 |
|
| 333 |
334 |
typedef DfsVisitor<Digraph> RVisitor;
|
| 334 |
335 |
RVisitor rvisitor;
|
| 335 |
336 |
|
| 336 |
337 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
| 337 |
338 |
|
| 338 |
339 |
int compNum = 0;
|
| 339 |
340 |
|
| 340 |
341 |
rdfs.init();
|
| 341 |
342 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 342 |
343 |
if (!rdfs.reached(*it)) {
|
| 343 |
344 |
rdfs.addSource(*it);
|
| 344 |
345 |
rdfs.start();
|
| 345 |
346 |
++compNum;
|
| 346 |
347 |
}
|
| 347 |
348 |
}
|
| 348 |
349 |
return compNum;
|
| 349 |
350 |
}
|
| 350 |
351 |
|
| 351 |
352 |
/// \ingroup connectivity
|
| 352 |
353 |
///
|
| 353 |
354 |
/// \brief Find the strongly connected components of a directed graph
|
| 354 |
355 |
///
|
| 355 |
356 |
/// Find the strongly connected components of a directed graph. The
|
| 356 |
357 |
/// strongly connected components are the classes of an equivalence
|
| 357 |
358 |
/// relation on the nodes of the graph. Two nodes are in
|
| 358 |
359 |
/// relationship when there are directed paths between them in both
|
| 359 |
360 |
/// direction. In addition, the numbering of components will satisfy
|
| 360 |
361 |
/// that there is no arc going from a higher numbered component to
|
| 361 |
362 |
/// a lower.
|
| 362 |
363 |
///
|
| 363 |
364 |
/// \param digraph The digraph.
|
| 364 |
365 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
| 365 |
366 |
/// the number of the strongly connected components minus one. Each value
|
| 366 |
367 |
/// of the map will be set exactly once, the values of a certain component
|
| 367 |
368 |
/// will be set continuously.
|
| 368 |
369 |
/// \return The number of components
|
| 369 |
370 |
///
|
| 370 |
371 |
template <typename Digraph, typename NodeMap>
|
| 371 |
372 |
int stronglyConnectedComponents(const Digraph& digraph, NodeMap& compMap) {
|
| 372 |
373 |
checkConcept<concepts::Digraph, Digraph>();
|
| 373 |
374 |
typedef typename Digraph::Node Node;
|
| 374 |
375 |
typedef typename Digraph::NodeIt NodeIt;
|
| 375 |
376 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
| 376 |
377 |
|
| 377 |
|
using namespace _topology_bits;
|
|
378 |
using namespace _connectivity_bits;
|
| 378 |
379 |
|
| 379 |
380 |
typedef std::vector<Node> Container;
|
| 380 |
381 |
typedef typename Container::iterator Iterator;
|
| 381 |
382 |
|
| 382 |
383 |
Container nodes(countNodes(digraph));
|
| 383 |
384 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
| 384 |
385 |
Visitor visitor(nodes.begin());
|
| 385 |
386 |
|
| 386 |
387 |
DfsVisit<Digraph, Visitor> dfs(digraph, visitor);
|
| 387 |
388 |
dfs.init();
|
| 388 |
389 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 389 |
390 |
if (!dfs.reached(it)) {
|
| 390 |
391 |
dfs.addSource(it);
|
| 391 |
392 |
dfs.start();
|
| 392 |
393 |
}
|
| 393 |
394 |
}
|
| 394 |
395 |
|
| 395 |
396 |
typedef typename Container::reverse_iterator RIterator;
|
| 396 |
397 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
| 397 |
398 |
|
| 398 |
399 |
RDigraph rdigraph(digraph);
|
| 399 |
400 |
|
| 400 |
401 |
int compNum = 0;
|
| 401 |
402 |
|
| 402 |
403 |
typedef FillMapVisitor<RDigraph, NodeMap> RVisitor;
|
| 403 |
404 |
RVisitor rvisitor(compMap, compNum);
|
| 404 |
405 |
|
| 405 |
406 |
DfsVisit<RDigraph, RVisitor> rdfs(rdigraph, rvisitor);
|
| 406 |
407 |
|
| 407 |
408 |
rdfs.init();
|
| 408 |
409 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 409 |
410 |
if (!rdfs.reached(*it)) {
|
| 410 |
411 |
rdfs.addSource(*it);
|
| 411 |
412 |
rdfs.start();
|
| 412 |
413 |
++compNum;
|
| 413 |
414 |
}
|
| 414 |
415 |
}
|
| 415 |
416 |
return compNum;
|
| 416 |
417 |
}
|
| 417 |
418 |
|
| 418 |
419 |
/// \ingroup connectivity
|
| 419 |
420 |
///
|
| 420 |
421 |
/// \brief Find the cut arcs of the strongly connected components.
|
| 421 |
422 |
///
|
| 422 |
423 |
/// Find the cut arcs of the strongly connected components.
|
| 423 |
424 |
/// The strongly connected components are the classes of an equivalence
|
| 424 |
425 |
/// relation on the nodes of the graph. Two nodes are in relationship
|
| 425 |
426 |
/// when there are directed paths between them in both direction.
|
| 426 |
427 |
/// The strongly connected components are separated by the cut arcs.
|
| 427 |
428 |
///
|
| 428 |
429 |
/// \param graph The graph.
|
| 429 |
430 |
/// \retval cutMap A writable node map. The values will be set true when the
|
| 430 |
431 |
/// arc is a cut arc.
|
| 431 |
432 |
///
|
| 432 |
433 |
/// \return The number of cut arcs
|
| 433 |
434 |
template <typename Digraph, typename ArcMap>
|
| 434 |
435 |
int stronglyConnectedCutArcs(const Digraph& graph, ArcMap& cutMap) {
|
| 435 |
436 |
checkConcept<concepts::Digraph, Digraph>();
|
| 436 |
437 |
typedef typename Digraph::Node Node;
|
| 437 |
438 |
typedef typename Digraph::Arc Arc;
|
| 438 |
439 |
typedef typename Digraph::NodeIt NodeIt;
|
| 439 |
440 |
checkConcept<concepts::WriteMap<Arc, bool>, ArcMap>();
|
| 440 |
441 |
|
| 441 |
|
using namespace _topology_bits;
|
|
442 |
using namespace _connectivity_bits;
|
| 442 |
443 |
|
| 443 |
444 |
typedef std::vector<Node> Container;
|
| 444 |
445 |
typedef typename Container::iterator Iterator;
|
| 445 |
446 |
|
| 446 |
447 |
Container nodes(countNodes(graph));
|
| 447 |
448 |
typedef LeaveOrderVisitor<Digraph, Iterator> Visitor;
|
| 448 |
449 |
Visitor visitor(nodes.begin());
|
| 449 |
450 |
|
| 450 |
451 |
DfsVisit<Digraph, Visitor> dfs(graph, visitor);
|
| 451 |
452 |
dfs.init();
|
| 452 |
453 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 453 |
454 |
if (!dfs.reached(it)) {
|
| 454 |
455 |
dfs.addSource(it);
|
| 455 |
456 |
dfs.start();
|
| 456 |
457 |
}
|
| 457 |
458 |
}
|
| 458 |
459 |
|
| 459 |
460 |
typedef typename Container::reverse_iterator RIterator;
|
| 460 |
461 |
typedef ReverseDigraph<const Digraph> RDigraph;
|
| 461 |
462 |
|
| 462 |
463 |
RDigraph rgraph(graph);
|
| 463 |
464 |
|
| 464 |
465 |
int cutNum = 0;
|
| 465 |
466 |
|
| 466 |
|
typedef StronglyConnectedCutEdgesVisitor<RDigraph, ArcMap> RVisitor;
|
|
467 |
typedef StronglyConnectedCutArcsVisitor<RDigraph, ArcMap> RVisitor;
|
| 467 |
468 |
RVisitor rvisitor(rgraph, cutMap, cutNum);
|
| 468 |
469 |
|
| 469 |
470 |
DfsVisit<RDigraph, RVisitor> rdfs(rgraph, rvisitor);
|
| 470 |
471 |
|
| 471 |
472 |
rdfs.init();
|
| 472 |
473 |
for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
|
| 473 |
474 |
if (!rdfs.reached(*it)) {
|
| 474 |
475 |
rdfs.addSource(*it);
|
| 475 |
476 |
rdfs.start();
|
| 476 |
477 |
}
|
| 477 |
478 |
}
|
| 478 |
479 |
return cutNum;
|
| 479 |
480 |
}
|
| 480 |
481 |
|
| 481 |
|
namespace _topology_bits {
|
|
482 |
namespace _connectivity_bits {
|
| 482 |
483 |
|
| 483 |
484 |
template <typename Digraph>
|
| 484 |
485 |
class CountBiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 485 |
486 |
public:
|
| 486 |
487 |
typedef typename Digraph::Node Node;
|
| 487 |
488 |
typedef typename Digraph::Arc Arc;
|
| 488 |
489 |
typedef typename Digraph::Edge Edge;
|
| 489 |
490 |
|
| 490 |
491 |
CountBiNodeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
|
| 491 |
492 |
: _graph(graph), _compNum(compNum),
|
| 492 |
493 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 493 |
494 |
|
| 494 |
495 |
void start(const Node& node) {
|
| 495 |
496 |
_predMap.set(node, INVALID);
|
| 496 |
497 |
}
|
| 497 |
498 |
|
| 498 |
499 |
void reach(const Node& node) {
|
| 499 |
500 |
_numMap.set(node, _num);
|
| 500 |
501 |
_retMap.set(node, _num);
|
| 501 |
502 |
++_num;
|
| 502 |
503 |
}
|
| 503 |
504 |
|
| 504 |
505 |
void discover(const Arc& edge) {
|
| 505 |
506 |
_predMap.set(_graph.target(edge), _graph.source(edge));
|
| 506 |
507 |
}
|
| 507 |
508 |
|
| 508 |
509 |
void examine(const Arc& edge) {
|
| 509 |
510 |
if (_graph.source(edge) == _graph.target(edge) &&
|
| 510 |
511 |
_graph.direction(edge)) {
|
| 511 |
512 |
++_compNum;
|
| 512 |
513 |
return;
|
| 513 |
514 |
}
|
| 514 |
515 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
|
| 515 |
516 |
return;
|
| 516 |
517 |
}
|
| 517 |
518 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
| 518 |
519 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
|
| 519 |
520 |
}
|
| 520 |
521 |
}
|
| 521 |
522 |
|
| 522 |
523 |
void backtrack(const Arc& edge) {
|
| 523 |
524 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 524 |
525 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
| 525 |
526 |
}
|
| 526 |
527 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
| 527 |
528 |
++_compNum;
|
| 528 |
529 |
}
|
| 529 |
530 |
}
|
| 530 |
531 |
|
| 531 |
532 |
private:
|
| 532 |
533 |
const Digraph& _graph;
|
| 533 |
534 |
int& _compNum;
|
| 534 |
535 |
|
| 535 |
536 |
typename Digraph::template NodeMap<int> _numMap;
|
| 536 |
537 |
typename Digraph::template NodeMap<int> _retMap;
|
| 537 |
538 |
typename Digraph::template NodeMap<Node> _predMap;
|
| 538 |
539 |
int _num;
|
| 539 |
540 |
};
|
| 540 |
541 |
|
| 541 |
542 |
template <typename Digraph, typename ArcMap>
|
| 542 |
543 |
class BiNodeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 543 |
544 |
public:
|
| 544 |
545 |
typedef typename Digraph::Node Node;
|
| 545 |
546 |
typedef typename Digraph::Arc Arc;
|
| 546 |
547 |
typedef typename Digraph::Edge Edge;
|
| 547 |
548 |
|
| 548 |
549 |
BiNodeConnectedComponentsVisitor(const Digraph& graph,
|
| 549 |
550 |
ArcMap& compMap, int &compNum)
|
| 550 |
551 |
: _graph(graph), _compMap(compMap), _compNum(compNum),
|
| 551 |
552 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 552 |
553 |
|
| 553 |
554 |
void start(const Node& node) {
|
| 554 |
555 |
_predMap.set(node, INVALID);
|
| 555 |
556 |
}
|
| 556 |
557 |
|
| 557 |
558 |
void reach(const Node& node) {
|
| 558 |
559 |
_numMap.set(node, _num);
|
| 559 |
560 |
_retMap.set(node, _num);
|
| 560 |
561 |
++_num;
|
| 561 |
562 |
}
|
| 562 |
563 |
|
| 563 |
564 |
void discover(const Arc& edge) {
|
| 564 |
565 |
Node target = _graph.target(edge);
|
| 565 |
566 |
_predMap.set(target, edge);
|
| 566 |
567 |
_edgeStack.push(edge);
|
| 567 |
568 |
}
|
| 568 |
569 |
|
| 569 |
570 |
void examine(const Arc& edge) {
|
| 570 |
571 |
Node source = _graph.source(edge);
|
| 571 |
572 |
Node target = _graph.target(edge);
|
| 572 |
573 |
if (source == target && _graph.direction(edge)) {
|
| 573 |
574 |
_compMap.set(edge, _compNum);
|
| 574 |
575 |
++_compNum;
|
| 575 |
576 |
return;
|
| 576 |
577 |
}
|
| 577 |
578 |
if (_numMap[target] < _numMap[source]) {
|
| ... |
... |
@@ -637,295 +638,295 @@
|
| 637 |
638 |
|
| 638 |
639 |
void reach(const Node& node) {
|
| 639 |
640 |
_numMap.set(node, _num);
|
| 640 |
641 |
_retMap.set(node, _num);
|
| 641 |
642 |
++_num;
|
| 642 |
643 |
}
|
| 643 |
644 |
|
| 644 |
645 |
void discover(const Arc& edge) {
|
| 645 |
646 |
_predMap.set(_graph.target(edge), _graph.source(edge));
|
| 646 |
647 |
}
|
| 647 |
648 |
|
| 648 |
649 |
void examine(const Arc& edge) {
|
| 649 |
650 |
if (_graph.source(edge) == _graph.target(edge) &&
|
| 650 |
651 |
_graph.direction(edge)) {
|
| 651 |
652 |
if (!_cutMap[_graph.source(edge)]) {
|
| 652 |
653 |
_cutMap.set(_graph.source(edge), true);
|
| 653 |
654 |
++_cutNum;
|
| 654 |
655 |
}
|
| 655 |
656 |
return;
|
| 656 |
657 |
}
|
| 657 |
658 |
if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
|
| 658 |
659 |
if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
|
| 659 |
660 |
_retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
|
| 660 |
661 |
}
|
| 661 |
662 |
}
|
| 662 |
663 |
|
| 663 |
664 |
void backtrack(const Arc& edge) {
|
| 664 |
665 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 665 |
666 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
| 666 |
667 |
}
|
| 667 |
668 |
if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
|
| 668 |
669 |
if (_predMap[_graph.source(edge)] != INVALID) {
|
| 669 |
670 |
if (!_cutMap[_graph.source(edge)]) {
|
| 670 |
671 |
_cutMap.set(_graph.source(edge), true);
|
| 671 |
672 |
++_cutNum;
|
| 672 |
673 |
}
|
| 673 |
674 |
} else if (rootCut) {
|
| 674 |
675 |
if (!_cutMap[_graph.source(edge)]) {
|
| 675 |
676 |
_cutMap.set(_graph.source(edge), true);
|
| 676 |
677 |
++_cutNum;
|
| 677 |
678 |
}
|
| 678 |
679 |
} else {
|
| 679 |
680 |
rootCut = true;
|
| 680 |
681 |
}
|
| 681 |
682 |
}
|
| 682 |
683 |
}
|
| 683 |
684 |
|
| 684 |
685 |
private:
|
| 685 |
686 |
const Digraph& _graph;
|
| 686 |
687 |
NodeMap& _cutMap;
|
| 687 |
688 |
int& _cutNum;
|
| 688 |
689 |
|
| 689 |
690 |
typename Digraph::template NodeMap<int> _numMap;
|
| 690 |
691 |
typename Digraph::template NodeMap<int> _retMap;
|
| 691 |
692 |
typename Digraph::template NodeMap<Node> _predMap;
|
| 692 |
693 |
std::stack<Edge> _edgeStack;
|
| 693 |
694 |
int _num;
|
| 694 |
695 |
bool rootCut;
|
| 695 |
696 |
};
|
| 696 |
697 |
|
| 697 |
698 |
}
|
| 698 |
699 |
|
| 699 |
700 |
template <typename Graph>
|
| 700 |
701 |
int countBiNodeConnectedComponents(const Graph& graph);
|
| 701 |
702 |
|
| 702 |
703 |
/// \ingroup connectivity
|
| 703 |
704 |
///
|
| 704 |
705 |
/// \brief Checks the graph is bi-node-connected.
|
| 705 |
706 |
///
|
| 706 |
707 |
/// This function checks that the undirected graph is bi-node-connected
|
| 707 |
708 |
/// graph. The graph is bi-node-connected if any two undirected edge is
|
| 708 |
709 |
/// on same circle.
|
| 709 |
710 |
///
|
| 710 |
711 |
/// \param graph The graph.
|
| 711 |
712 |
/// \return %True when the graph bi-node-connected.
|
| 712 |
713 |
template <typename Graph>
|
| 713 |
714 |
bool biNodeConnected(const Graph& graph) {
|
| 714 |
715 |
return countBiNodeConnectedComponents(graph) <= 1;
|
| 715 |
716 |
}
|
| 716 |
717 |
|
| 717 |
718 |
/// \ingroup connectivity
|
| 718 |
719 |
///
|
| 719 |
720 |
/// \brief Count the biconnected components.
|
| 720 |
721 |
///
|
| 721 |
722 |
/// This function finds the bi-node-connected components in an undirected
|
| 722 |
723 |
/// graph. The biconnected components are the classes of an equivalence
|
| 723 |
724 |
/// relation on the undirected edges. Two undirected edge is in relationship
|
| 724 |
725 |
/// when they are on same circle.
|
| 725 |
726 |
///
|
| 726 |
727 |
/// \param graph The graph.
|
| 727 |
728 |
/// \return The number of components.
|
| 728 |
729 |
template <typename Graph>
|
| 729 |
730 |
int countBiNodeConnectedComponents(const Graph& graph) {
|
| 730 |
731 |
checkConcept<concepts::Graph, Graph>();
|
| 731 |
732 |
typedef typename Graph::NodeIt NodeIt;
|
| 732 |
733 |
|
| 733 |
|
using namespace _topology_bits;
|
|
734 |
using namespace _connectivity_bits;
|
| 734 |
735 |
|
| 735 |
736 |
typedef CountBiNodeConnectedComponentsVisitor<Graph> Visitor;
|
| 736 |
737 |
|
| 737 |
738 |
int compNum = 0;
|
| 738 |
739 |
Visitor visitor(graph, compNum);
|
| 739 |
740 |
|
| 740 |
741 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
| 741 |
742 |
dfs.init();
|
| 742 |
743 |
|
| 743 |
744 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 744 |
745 |
if (!dfs.reached(it)) {
|
| 745 |
746 |
dfs.addSource(it);
|
| 746 |
747 |
dfs.start();
|
| 747 |
748 |
}
|
| 748 |
749 |
}
|
| 749 |
750 |
return compNum;
|
| 750 |
751 |
}
|
| 751 |
752 |
|
| 752 |
753 |
/// \ingroup connectivity
|
| 753 |
754 |
///
|
| 754 |
755 |
/// \brief Find the bi-node-connected components.
|
| 755 |
756 |
///
|
| 756 |
757 |
/// This function finds the bi-node-connected components in an undirected
|
| 757 |
758 |
/// graph. The bi-node-connected components are the classes of an equivalence
|
| 758 |
759 |
/// relation on the undirected edges. Two undirected edge are in relationship
|
| 759 |
760 |
/// when they are on same circle.
|
| 760 |
761 |
///
|
| 761 |
762 |
/// \param graph The graph.
|
| 762 |
763 |
/// \retval compMap A writable uedge map. The values will be set from 0
|
| 763 |
764 |
/// to the number of the biconnected components minus one. Each values
|
| 764 |
765 |
/// of the map will be set exactly once, the values of a certain component
|
| 765 |
766 |
/// will be set continuously.
|
| 766 |
767 |
/// \return The number of components.
|
| 767 |
768 |
///
|
| 768 |
769 |
template <typename Graph, typename EdgeMap>
|
| 769 |
770 |
int biNodeConnectedComponents(const Graph& graph,
|
| 770 |
771 |
EdgeMap& compMap) {
|
| 771 |
772 |
checkConcept<concepts::Graph, Graph>();
|
| 772 |
773 |
typedef typename Graph::NodeIt NodeIt;
|
| 773 |
774 |
typedef typename Graph::Edge Edge;
|
| 774 |
775 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>();
|
| 775 |
776 |
|
| 776 |
|
using namespace _topology_bits;
|
|
777 |
using namespace _connectivity_bits;
|
| 777 |
778 |
|
| 778 |
779 |
typedef BiNodeConnectedComponentsVisitor<Graph, EdgeMap> Visitor;
|
| 779 |
780 |
|
| 780 |
781 |
int compNum = 0;
|
| 781 |
782 |
Visitor visitor(graph, compMap, compNum);
|
| 782 |
783 |
|
| 783 |
784 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
| 784 |
785 |
dfs.init();
|
| 785 |
786 |
|
| 786 |
787 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 787 |
788 |
if (!dfs.reached(it)) {
|
| 788 |
789 |
dfs.addSource(it);
|
| 789 |
790 |
dfs.start();
|
| 790 |
791 |
}
|
| 791 |
792 |
}
|
| 792 |
793 |
return compNum;
|
| 793 |
794 |
}
|
| 794 |
795 |
|
| 795 |
796 |
/// \ingroup connectivity
|
| 796 |
797 |
///
|
| 797 |
798 |
/// \brief Find the bi-node-connected cut nodes.
|
| 798 |
799 |
///
|
| 799 |
800 |
/// This function finds the bi-node-connected cut nodes in an undirected
|
| 800 |
801 |
/// graph. The bi-node-connected components are the classes of an equivalence
|
| 801 |
802 |
/// relation on the undirected edges. Two undirected edges are in
|
| 802 |
803 |
/// relationship when they are on same circle. The biconnected components
|
| 803 |
804 |
/// are separted by nodes which are the cut nodes of the components.
|
| 804 |
805 |
///
|
| 805 |
806 |
/// \param graph The graph.
|
| 806 |
807 |
/// \retval cutMap A writable edge map. The values will be set true when
|
| 807 |
808 |
/// the node separate two or more components.
|
| 808 |
809 |
/// \return The number of the cut nodes.
|
| 809 |
810 |
template <typename Graph, typename NodeMap>
|
| 810 |
811 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) {
|
| 811 |
812 |
checkConcept<concepts::Graph, Graph>();
|
| 812 |
813 |
typedef typename Graph::Node Node;
|
| 813 |
814 |
typedef typename Graph::NodeIt NodeIt;
|
| 814 |
815 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>();
|
| 815 |
816 |
|
| 816 |
|
using namespace _topology_bits;
|
|
817 |
using namespace _connectivity_bits;
|
| 817 |
818 |
|
| 818 |
819 |
typedef BiNodeConnectedCutNodesVisitor<Graph, NodeMap> Visitor;
|
| 819 |
820 |
|
| 820 |
821 |
int cutNum = 0;
|
| 821 |
822 |
Visitor visitor(graph, cutMap, cutNum);
|
| 822 |
823 |
|
| 823 |
824 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
| 824 |
825 |
dfs.init();
|
| 825 |
826 |
|
| 826 |
827 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 827 |
828 |
if (!dfs.reached(it)) {
|
| 828 |
829 |
dfs.addSource(it);
|
| 829 |
830 |
dfs.start();
|
| 830 |
831 |
}
|
| 831 |
832 |
}
|
| 832 |
833 |
return cutNum;
|
| 833 |
834 |
}
|
| 834 |
835 |
|
| 835 |
|
namespace _topology_bits {
|
|
836 |
namespace _connectivity_bits {
|
| 836 |
837 |
|
| 837 |
838 |
template <typename Digraph>
|
| 838 |
839 |
class CountBiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 839 |
840 |
public:
|
| 840 |
841 |
typedef typename Digraph::Node Node;
|
| 841 |
842 |
typedef typename Digraph::Arc Arc;
|
| 842 |
843 |
typedef typename Digraph::Edge Edge;
|
| 843 |
844 |
|
| 844 |
845 |
CountBiEdgeConnectedComponentsVisitor(const Digraph& graph, int &compNum)
|
| 845 |
846 |
: _graph(graph), _compNum(compNum),
|
| 846 |
847 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 847 |
848 |
|
| 848 |
849 |
void start(const Node& node) {
|
| 849 |
850 |
_predMap.set(node, INVALID);
|
| 850 |
851 |
}
|
| 851 |
852 |
|
| 852 |
853 |
void reach(const Node& node) {
|
| 853 |
854 |
_numMap.set(node, _num);
|
| 854 |
855 |
_retMap.set(node, _num);
|
| 855 |
856 |
++_num;
|
| 856 |
857 |
}
|
| 857 |
858 |
|
| 858 |
859 |
void leave(const Node& node) {
|
| 859 |
860 |
if (_numMap[node] <= _retMap[node]) {
|
| 860 |
861 |
++_compNum;
|
| 861 |
862 |
}
|
| 862 |
863 |
}
|
| 863 |
864 |
|
| 864 |
865 |
void discover(const Arc& edge) {
|
| 865 |
866 |
_predMap.set(_graph.target(edge), edge);
|
| 866 |
867 |
}
|
| 867 |
868 |
|
| 868 |
869 |
void examine(const Arc& edge) {
|
| 869 |
870 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
| 870 |
871 |
return;
|
| 871 |
872 |
}
|
| 872 |
873 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 873 |
874 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
| 874 |
875 |
}
|
| 875 |
876 |
}
|
| 876 |
877 |
|
| 877 |
878 |
void backtrack(const Arc& edge) {
|
| 878 |
879 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 879 |
880 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
| 880 |
881 |
}
|
| 881 |
882 |
}
|
| 882 |
883 |
|
| 883 |
884 |
private:
|
| 884 |
885 |
const Digraph& _graph;
|
| 885 |
886 |
int& _compNum;
|
| 886 |
887 |
|
| 887 |
888 |
typename Digraph::template NodeMap<int> _numMap;
|
| 888 |
889 |
typename Digraph::template NodeMap<int> _retMap;
|
| 889 |
890 |
typename Digraph::template NodeMap<Arc> _predMap;
|
| 890 |
891 |
int _num;
|
| 891 |
892 |
};
|
| 892 |
893 |
|
| 893 |
894 |
template <typename Digraph, typename NodeMap>
|
| 894 |
895 |
class BiEdgeConnectedComponentsVisitor : public DfsVisitor<Digraph> {
|
| 895 |
896 |
public:
|
| 896 |
897 |
typedef typename Digraph::Node Node;
|
| 897 |
898 |
typedef typename Digraph::Arc Arc;
|
| 898 |
899 |
typedef typename Digraph::Edge Edge;
|
| 899 |
900 |
|
| 900 |
901 |
BiEdgeConnectedComponentsVisitor(const Digraph& graph,
|
| 901 |
902 |
NodeMap& compMap, int &compNum)
|
| 902 |
903 |
: _graph(graph), _compMap(compMap), _compNum(compNum),
|
| 903 |
904 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 904 |
905 |
|
| 905 |
906 |
void start(const Node& node) {
|
| 906 |
907 |
_predMap.set(node, INVALID);
|
| 907 |
908 |
}
|
| 908 |
909 |
|
| 909 |
910 |
void reach(const Node& node) {
|
| 910 |
911 |
_numMap.set(node, _num);
|
| 911 |
912 |
_retMap.set(node, _num);
|
| 912 |
913 |
_nodeStack.push(node);
|
| 913 |
914 |
++_num;
|
| 914 |
915 |
}
|
| 915 |
916 |
|
| 916 |
917 |
void leave(const Node& node) {
|
| 917 |
918 |
if (_numMap[node] <= _retMap[node]) {
|
| 918 |
919 |
while (_nodeStack.top() != node) {
|
| 919 |
920 |
_compMap.set(_nodeStack.top(), _compNum);
|
| 920 |
921 |
_nodeStack.pop();
|
| 921 |
922 |
}
|
| 922 |
923 |
_compMap.set(node, _compNum);
|
| 923 |
924 |
_nodeStack.pop();
|
| 924 |
925 |
++_compNum;
|
| 925 |
926 |
}
|
| 926 |
927 |
}
|
| 927 |
928 |
|
| 928 |
929 |
void discover(const Arc& edge) {
|
| 929 |
930 |
_predMap.set(_graph.target(edge), edge);
|
| 930 |
931 |
}
|
| 931 |
932 |
|
| ... |
... |
@@ -960,613 +961,615 @@
|
| 960 |
961 |
template <typename Digraph, typename ArcMap>
|
| 961 |
962 |
class BiEdgeConnectedCutEdgesVisitor : public DfsVisitor<Digraph> {
|
| 962 |
963 |
public:
|
| 963 |
964 |
typedef typename Digraph::Node Node;
|
| 964 |
965 |
typedef typename Digraph::Arc Arc;
|
| 965 |
966 |
typedef typename Digraph::Edge Edge;
|
| 966 |
967 |
|
| 967 |
968 |
BiEdgeConnectedCutEdgesVisitor(const Digraph& graph,
|
| 968 |
969 |
ArcMap& cutMap, int &cutNum)
|
| 969 |
970 |
: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
|
| 970 |
971 |
_numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
|
| 971 |
972 |
|
| 972 |
973 |
void start(const Node& node) {
|
| 973 |
974 |
_predMap[node] = INVALID;
|
| 974 |
975 |
}
|
| 975 |
976 |
|
| 976 |
977 |
void reach(const Node& node) {
|
| 977 |
978 |
_numMap.set(node, _num);
|
| 978 |
979 |
_retMap.set(node, _num);
|
| 979 |
980 |
++_num;
|
| 980 |
981 |
}
|
| 981 |
982 |
|
| 982 |
983 |
void leave(const Node& node) {
|
| 983 |
984 |
if (_numMap[node] <= _retMap[node]) {
|
| 984 |
985 |
if (_predMap[node] != INVALID) {
|
| 985 |
986 |
_cutMap.set(_predMap[node], true);
|
| 986 |
987 |
++_cutNum;
|
| 987 |
988 |
}
|
| 988 |
989 |
}
|
| 989 |
990 |
}
|
| 990 |
991 |
|
| 991 |
992 |
void discover(const Arc& edge) {
|
| 992 |
993 |
_predMap.set(_graph.target(edge), edge);
|
| 993 |
994 |
}
|
| 994 |
995 |
|
| 995 |
996 |
void examine(const Arc& edge) {
|
| 996 |
997 |
if (_predMap[_graph.source(edge)] == _graph.oppositeArc(edge)) {
|
| 997 |
998 |
return;
|
| 998 |
999 |
}
|
| 999 |
1000 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 1000 |
1001 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
| 1001 |
1002 |
}
|
| 1002 |
1003 |
}
|
| 1003 |
1004 |
|
| 1004 |
1005 |
void backtrack(const Arc& edge) {
|
| 1005 |
1006 |
if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
|
| 1006 |
1007 |
_retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
|
| 1007 |
1008 |
}
|
| 1008 |
1009 |
}
|
| 1009 |
1010 |
|
| 1010 |
1011 |
private:
|
| 1011 |
1012 |
const Digraph& _graph;
|
| 1012 |
1013 |
ArcMap& _cutMap;
|
| 1013 |
1014 |
int& _cutNum;
|
| 1014 |
1015 |
|
| 1015 |
1016 |
typename Digraph::template NodeMap<int> _numMap;
|
| 1016 |
1017 |
typename Digraph::template NodeMap<int> _retMap;
|
| 1017 |
1018 |
typename Digraph::template NodeMap<Arc> _predMap;
|
| 1018 |
1019 |
int _num;
|
| 1019 |
1020 |
};
|
| 1020 |
1021 |
}
|
| 1021 |
1022 |
|
| 1022 |
1023 |
template <typename Graph>
|
| 1023 |
1024 |
int countBiEdgeConnectedComponents(const Graph& graph);
|
| 1024 |
1025 |
|
| 1025 |
1026 |
/// \ingroup connectivity
|
| 1026 |
1027 |
///
|
| 1027 |
1028 |
/// \brief Checks that the graph is bi-edge-connected.
|
| 1028 |
1029 |
///
|
| 1029 |
1030 |
/// This function checks that the graph is bi-edge-connected. The undirected
|
| 1030 |
1031 |
/// graph is bi-edge-connected when any two nodes are connected with two
|
| 1031 |
1032 |
/// edge-disjoint paths.
|
| 1032 |
1033 |
///
|
| 1033 |
1034 |
/// \param graph The undirected graph.
|
| 1034 |
1035 |
/// \return The number of components.
|
| 1035 |
1036 |
template <typename Graph>
|
| 1036 |
1037 |
bool biEdgeConnected(const Graph& graph) {
|
| 1037 |
1038 |
return countBiEdgeConnectedComponents(graph) <= 1;
|
| 1038 |
1039 |
}
|
| 1039 |
1040 |
|
| 1040 |
1041 |
/// \ingroup connectivity
|
| 1041 |
1042 |
///
|
| 1042 |
1043 |
/// \brief Count the bi-edge-connected components.
|
| 1043 |
1044 |
///
|
| 1044 |
1045 |
/// This function count the bi-edge-connected components in an undirected
|
| 1045 |
1046 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
| 1046 |
1047 |
/// relation on the nodes. Two nodes are in relationship when they are
|
| 1047 |
1048 |
/// connected with at least two edge-disjoint paths.
|
| 1048 |
1049 |
///
|
| 1049 |
1050 |
/// \param graph The undirected graph.
|
| 1050 |
1051 |
/// \return The number of components.
|
| 1051 |
1052 |
template <typename Graph>
|
| 1052 |
1053 |
int countBiEdgeConnectedComponents(const Graph& graph) {
|
| 1053 |
1054 |
checkConcept<concepts::Graph, Graph>();
|
| 1054 |
1055 |
typedef typename Graph::NodeIt NodeIt;
|
| 1055 |
1056 |
|
| 1056 |
|
using namespace _topology_bits;
|
|
1057 |
using namespace _connectivity_bits;
|
| 1057 |
1058 |
|
| 1058 |
1059 |
typedef CountBiEdgeConnectedComponentsVisitor<Graph> Visitor;
|
| 1059 |
1060 |
|
| 1060 |
1061 |
int compNum = 0;
|
| 1061 |
1062 |
Visitor visitor(graph, compNum);
|
| 1062 |
1063 |
|
| 1063 |
1064 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
| 1064 |
1065 |
dfs.init();
|
| 1065 |
1066 |
|
| 1066 |
1067 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1067 |
1068 |
if (!dfs.reached(it)) {
|
| 1068 |
1069 |
dfs.addSource(it);
|
| 1069 |
1070 |
dfs.start();
|
| 1070 |
1071 |
}
|
| 1071 |
1072 |
}
|
| 1072 |
1073 |
return compNum;
|
| 1073 |
1074 |
}
|
| 1074 |
1075 |
|
| 1075 |
1076 |
/// \ingroup connectivity
|
| 1076 |
1077 |
///
|
| 1077 |
1078 |
/// \brief Find the bi-edge-connected components.
|
| 1078 |
1079 |
///
|
| 1079 |
1080 |
/// This function finds the bi-edge-connected components in an undirected
|
| 1080 |
1081 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
| 1081 |
1082 |
/// relation on the nodes. Two nodes are in relationship when they are
|
| 1082 |
1083 |
/// connected at least two edge-disjoint paths.
|
| 1083 |
1084 |
///
|
| 1084 |
1085 |
/// \param graph The graph.
|
| 1085 |
1086 |
/// \retval compMap A writable node map. The values will be set from 0 to
|
| 1086 |
1087 |
/// the number of the biconnected components minus one. Each values
|
| 1087 |
1088 |
/// of the map will be set exactly once, the values of a certain component
|
| 1088 |
1089 |
/// will be set continuously.
|
| 1089 |
1090 |
/// \return The number of components.
|
| 1090 |
1091 |
///
|
| 1091 |
1092 |
template <typename Graph, typename NodeMap>
|
| 1092 |
1093 |
int biEdgeConnectedComponents(const Graph& graph, NodeMap& compMap) {
|
| 1093 |
1094 |
checkConcept<concepts::Graph, Graph>();
|
| 1094 |
1095 |
typedef typename Graph::NodeIt NodeIt;
|
| 1095 |
1096 |
typedef typename Graph::Node Node;
|
| 1096 |
1097 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>();
|
| 1097 |
1098 |
|
| 1098 |
|
using namespace _topology_bits;
|
|
1099 |
using namespace _connectivity_bits;
|
| 1099 |
1100 |
|
| 1100 |
1101 |
typedef BiEdgeConnectedComponentsVisitor<Graph, NodeMap> Visitor;
|
| 1101 |
1102 |
|
| 1102 |
1103 |
int compNum = 0;
|
| 1103 |
1104 |
Visitor visitor(graph, compMap, compNum);
|
| 1104 |
1105 |
|
| 1105 |
1106 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
| 1106 |
1107 |
dfs.init();
|
| 1107 |
1108 |
|
| 1108 |
1109 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1109 |
1110 |
if (!dfs.reached(it)) {
|
| 1110 |
1111 |
dfs.addSource(it);
|
| 1111 |
1112 |
dfs.start();
|
| 1112 |
1113 |
}
|
| 1113 |
1114 |
}
|
| 1114 |
1115 |
return compNum;
|
| 1115 |
1116 |
}
|
| 1116 |
1117 |
|
| 1117 |
1118 |
/// \ingroup connectivity
|
| 1118 |
1119 |
///
|
| 1119 |
1120 |
/// \brief Find the bi-edge-connected cut edges.
|
| 1120 |
1121 |
///
|
| 1121 |
1122 |
/// This function finds the bi-edge-connected components in an undirected
|
| 1122 |
1123 |
/// graph. The bi-edge-connected components are the classes of an equivalence
|
| 1123 |
1124 |
/// relation on the nodes. Two nodes are in relationship when they are
|
| 1124 |
1125 |
/// connected with at least two edge-disjoint paths. The bi-edge-connected
|
| 1125 |
1126 |
/// components are separted by edges which are the cut edges of the
|
| 1126 |
1127 |
/// components.
|
| 1127 |
1128 |
///
|
| 1128 |
1129 |
/// \param graph The graph.
|
| 1129 |
1130 |
/// \retval cutMap A writable node map. The values will be set true when the
|
| 1130 |
1131 |
/// edge is a cut edge.
|
| 1131 |
1132 |
/// \return The number of cut edges.
|
| 1132 |
1133 |
template <typename Graph, typename EdgeMap>
|
| 1133 |
1134 |
int biEdgeConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
|
| 1134 |
1135 |
checkConcept<concepts::Graph, Graph>();
|
| 1135 |
1136 |
typedef typename Graph::NodeIt NodeIt;
|
| 1136 |
1137 |
typedef typename Graph::Edge Edge;
|
| 1137 |
1138 |
checkConcept<concepts::WriteMap<Edge, bool>, EdgeMap>();
|
| 1138 |
1139 |
|
| 1139 |
|
using namespace _topology_bits;
|
|
1140 |
using namespace _connectivity_bits;
|
| 1140 |
1141 |
|
| 1141 |
1142 |
typedef BiEdgeConnectedCutEdgesVisitor<Graph, EdgeMap> Visitor;
|
| 1142 |
1143 |
|
| 1143 |
1144 |
int cutNum = 0;
|
| 1144 |
1145 |
Visitor visitor(graph, cutMap, cutNum);
|
| 1145 |
1146 |
|
| 1146 |
1147 |
DfsVisit<Graph, Visitor> dfs(graph, visitor);
|
| 1147 |
1148 |
dfs.init();
|
| 1148 |
1149 |
|
| 1149 |
1150 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1150 |
1151 |
if (!dfs.reached(it)) {
|
| 1151 |
1152 |
dfs.addSource(it);
|
| 1152 |
1153 |
dfs.start();
|
| 1153 |
1154 |
}
|
| 1154 |
1155 |
}
|
| 1155 |
1156 |
return cutNum;
|
| 1156 |
1157 |
}
|
| 1157 |
1158 |
|
| 1158 |
1159 |
|
| 1159 |
|
namespace _topology_bits {
|
|
1160 |
namespace _connectivity_bits {
|
| 1160 |
1161 |
|
| 1161 |
1162 |
template <typename Digraph, typename IntNodeMap>
|
| 1162 |
1163 |
class TopologicalSortVisitor : public DfsVisitor<Digraph> {
|
| 1163 |
1164 |
public:
|
| 1164 |
1165 |
typedef typename Digraph::Node Node;
|
| 1165 |
1166 |
typedef typename Digraph::Arc edge;
|
| 1166 |
1167 |
|
| 1167 |
1168 |
TopologicalSortVisitor(IntNodeMap& order, int num)
|
| 1168 |
1169 |
: _order(order), _num(num) {}
|
| 1169 |
1170 |
|
| 1170 |
1171 |
void leave(const Node& node) {
|
| 1171 |
1172 |
_order.set(node, --_num);
|
| 1172 |
1173 |
}
|
| 1173 |
1174 |
|
| 1174 |
1175 |
private:
|
| 1175 |
1176 |
IntNodeMap& _order;
|
| 1176 |
1177 |
int _num;
|
| 1177 |
1178 |
};
|
| 1178 |
1179 |
|
| 1179 |
1180 |
}
|
| 1180 |
1181 |
|
| 1181 |
1182 |
/// \ingroup connectivity
|
| 1182 |
1183 |
///
|
| 1183 |
1184 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
| 1184 |
1185 |
///
|
| 1185 |
1186 |
/// Sort the nodes of a DAG into topolgical order.
|
| 1186 |
1187 |
///
|
| 1187 |
1188 |
/// \param graph The graph. It must be directed and acyclic.
|
| 1188 |
1189 |
/// \retval order A writable node map. The values will be set from 0 to
|
| 1189 |
1190 |
/// the number of the nodes in the graph minus one. Each values of the map
|
| 1190 |
1191 |
/// will be set exactly once, the values will be set descending order.
|
| 1191 |
1192 |
///
|
| 1192 |
1193 |
/// \see checkedTopologicalSort
|
| 1193 |
1194 |
/// \see dag
|
| 1194 |
1195 |
template <typename Digraph, typename NodeMap>
|
| 1195 |
1196 |
void topologicalSort(const Digraph& graph, NodeMap& order) {
|
| 1196 |
|
using namespace _topology_bits;
|
|
1197 |
using namespace _connectivity_bits;
|
| 1197 |
1198 |
|
| 1198 |
1199 |
checkConcept<concepts::Digraph, Digraph>();
|
| 1199 |
1200 |
checkConcept<concepts::WriteMap<typename Digraph::Node, int>, NodeMap>();
|
| 1200 |
1201 |
|
| 1201 |
1202 |
typedef typename Digraph::Node Node;
|
| 1202 |
1203 |
typedef typename Digraph::NodeIt NodeIt;
|
| 1203 |
1204 |
typedef typename Digraph::Arc Arc;
|
| 1204 |
1205 |
|
| 1205 |
1206 |
TopologicalSortVisitor<Digraph, NodeMap>
|
| 1206 |
1207 |
visitor(order, countNodes(graph));
|
| 1207 |
1208 |
|
| 1208 |
1209 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
|
| 1209 |
1210 |
dfs(graph, visitor);
|
| 1210 |
1211 |
|
| 1211 |
1212 |
dfs.init();
|
| 1212 |
1213 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1213 |
1214 |
if (!dfs.reached(it)) {
|
| 1214 |
1215 |
dfs.addSource(it);
|
| 1215 |
1216 |
dfs.start();
|
| 1216 |
1217 |
}
|
| 1217 |
1218 |
}
|
| 1218 |
1219 |
}
|
| 1219 |
1220 |
|
| 1220 |
1221 |
/// \ingroup connectivity
|
| 1221 |
1222 |
///
|
| 1222 |
1223 |
/// \brief Sort the nodes of a DAG into topolgical order.
|
| 1223 |
1224 |
///
|
| 1224 |
1225 |
/// Sort the nodes of a DAG into topolgical order. It also checks
|
| 1225 |
1226 |
/// that the given graph is DAG.
|
| 1226 |
1227 |
///
|
| 1227 |
1228 |
/// \param graph The graph. It must be directed and acyclic.
|
| 1228 |
1229 |
/// \retval order A readable - writable node map. The values will be set
|
| 1229 |
1230 |
/// from 0 to the number of the nodes in the graph minus one. Each values
|
| 1230 |
1231 |
/// of the map will be set exactly once, the values will be set descending
|
| 1231 |
1232 |
/// order.
|
| 1232 |
1233 |
/// \return %False when the graph is not DAG.
|
| 1233 |
1234 |
///
|
| 1234 |
1235 |
/// \see topologicalSort
|
| 1235 |
1236 |
/// \see dag
|
| 1236 |
1237 |
template <typename Digraph, typename NodeMap>
|
| 1237 |
|
bool checkedTopologicalSort(const Digraph& graph, NodeMap& order) {
|
| 1238 |
|
using namespace _topology_bits;
|
|
1238 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) {
|
|
1239 |
using namespace _connectivity_bits;
|
| 1239 |
1240 |
|
| 1240 |
1241 |
checkConcept<concepts::Digraph, Digraph>();
|
| 1241 |
1242 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>,
|
| 1242 |
1243 |
NodeMap>();
|
| 1243 |
1244 |
|
| 1244 |
1245 |
typedef typename Digraph::Node Node;
|
| 1245 |
1246 |
typedef typename Digraph::NodeIt NodeIt;
|
| 1246 |
1247 |
typedef typename Digraph::Arc Arc;
|
| 1247 |
1248 |
|
| 1248 |
|
order = constMap<Node, int, -1>();
|
|
1249 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
|
1250 |
order.set(it, -1);
|
|
1251 |
}
|
| 1249 |
1252 |
|
| 1250 |
1253 |
TopologicalSortVisitor<Digraph, NodeMap>
|
| 1251 |
|
visitor(order, countNodes(graph));
|
|
1254 |
visitor(order, countNodes(digraph));
|
| 1252 |
1255 |
|
| 1253 |
1256 |
DfsVisit<Digraph, TopologicalSortVisitor<Digraph, NodeMap> >
|
| 1254 |
|
dfs(graph, visitor);
|
|
1257 |
dfs(digraph, visitor);
|
| 1255 |
1258 |
|
| 1256 |
1259 |
dfs.init();
|
| 1257 |
|
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
1260 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1258 |
1261 |
if (!dfs.reached(it)) {
|
| 1259 |
1262 |
dfs.addSource(it);
|
| 1260 |
1263 |
while (!dfs.emptyQueue()) {
|
| 1261 |
|
Arc edge = dfs.nextArc();
|
| 1262 |
|
Node target = graph.target(edge);
|
|
1264 |
Arc arc = dfs.nextArc();
|
|
1265 |
Node target = digraph.target(arc);
|
| 1263 |
1266 |
if (dfs.reached(target) && order[target] == -1) {
|
| 1264 |
1267 |
return false;
|
| 1265 |
1268 |
}
|
| 1266 |
1269 |
dfs.processNextArc();
|
| 1267 |
1270 |
}
|
| 1268 |
1271 |
}
|
| 1269 |
1272 |
}
|
| 1270 |
1273 |
return true;
|
| 1271 |
1274 |
}
|
| 1272 |
1275 |
|
| 1273 |
1276 |
/// \ingroup connectivity
|
| 1274 |
1277 |
///
|
| 1275 |
1278 |
/// \brief Check that the given directed graph is a DAG.
|
| 1276 |
1279 |
///
|
| 1277 |
1280 |
/// Check that the given directed graph is a DAG. The DAG is
|
| 1278 |
1281 |
/// an Directed Acyclic Digraph.
|
| 1279 |
1282 |
/// \return %False when the graph is not DAG.
|
| 1280 |
1283 |
/// \see acyclic
|
| 1281 |
1284 |
template <typename Digraph>
|
| 1282 |
|
bool dag(const Digraph& graph) {
|
|
1285 |
bool dag(const Digraph& digraph) {
|
| 1283 |
1286 |
|
| 1284 |
1287 |
checkConcept<concepts::Digraph, Digraph>();
|
| 1285 |
1288 |
|
| 1286 |
1289 |
typedef typename Digraph::Node Node;
|
| 1287 |
1290 |
typedef typename Digraph::NodeIt NodeIt;
|
| 1288 |
1291 |
typedef typename Digraph::Arc Arc;
|
| 1289 |
1292 |
|
| 1290 |
1293 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap;
|
| 1291 |
1294 |
|
| 1292 |
1295 |
typename Dfs<Digraph>::template SetProcessedMap<ProcessedMap>::
|
| 1293 |
|
Create dfs(graph);
|
|
1296 |
Create dfs(digraph);
|
| 1294 |
1297 |
|
| 1295 |
|
ProcessedMap processed(graph);
|
|
1298 |
ProcessedMap processed(digraph);
|
| 1296 |
1299 |
dfs.processedMap(processed);
|
| 1297 |
1300 |
|
| 1298 |
1301 |
dfs.init();
|
| 1299 |
|
for (NodeIt it(graph); it != INVALID; ++it) {
|
|
1302 |
for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1300 |
1303 |
if (!dfs.reached(it)) {
|
| 1301 |
1304 |
dfs.addSource(it);
|
| 1302 |
1305 |
while (!dfs.emptyQueue()) {
|
| 1303 |
1306 |
Arc edge = dfs.nextArc();
|
| 1304 |
|
Node target = graph.target(edge);
|
|
1307 |
Node target = digraph.target(edge);
|
| 1305 |
1308 |
if (dfs.reached(target) && !processed[target]) {
|
| 1306 |
1309 |
return false;
|
| 1307 |
1310 |
}
|
| 1308 |
1311 |
dfs.processNextArc();
|
| 1309 |
1312 |
}
|
| 1310 |
1313 |
}
|
| 1311 |
1314 |
}
|
| 1312 |
1315 |
return true;
|
| 1313 |
1316 |
}
|
| 1314 |
1317 |
|
| 1315 |
1318 |
/// \ingroup connectivity
|
| 1316 |
1319 |
///
|
| 1317 |
1320 |
/// \brief Check that the given undirected graph is acyclic.
|
| 1318 |
1321 |
///
|
| 1319 |
1322 |
/// Check that the given undirected graph acyclic.
|
| 1320 |
1323 |
/// \param graph The undirected graph.
|
| 1321 |
1324 |
/// \return %True when there is no circle in the graph.
|
| 1322 |
1325 |
/// \see dag
|
| 1323 |
1326 |
template <typename Graph>
|
| 1324 |
1327 |
bool acyclic(const Graph& graph) {
|
| 1325 |
1328 |
checkConcept<concepts::Graph, Graph>();
|
| 1326 |
1329 |
typedef typename Graph::Node Node;
|
| 1327 |
1330 |
typedef typename Graph::NodeIt NodeIt;
|
| 1328 |
1331 |
typedef typename Graph::Arc Arc;
|
| 1329 |
1332 |
Dfs<Graph> dfs(graph);
|
| 1330 |
1333 |
dfs.init();
|
| 1331 |
1334 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1332 |
1335 |
if (!dfs.reached(it)) {
|
| 1333 |
1336 |
dfs.addSource(it);
|
| 1334 |
1337 |
while (!dfs.emptyQueue()) {
|
| 1335 |
1338 |
Arc edge = dfs.nextArc();
|
| 1336 |
1339 |
Node source = graph.source(edge);
|
| 1337 |
1340 |
Node target = graph.target(edge);
|
| 1338 |
1341 |
if (dfs.reached(target) &&
|
| 1339 |
1342 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
| 1340 |
1343 |
return false;
|
| 1341 |
1344 |
}
|
| 1342 |
1345 |
dfs.processNextArc();
|
| 1343 |
1346 |
}
|
| 1344 |
1347 |
}
|
| 1345 |
1348 |
}
|
| 1346 |
1349 |
return true;
|
| 1347 |
1350 |
}
|
| 1348 |
1351 |
|
| 1349 |
1352 |
/// \ingroup connectivity
|
| 1350 |
1353 |
///
|
| 1351 |
1354 |
/// \brief Check that the given undirected graph is tree.
|
| 1352 |
1355 |
///
|
| 1353 |
1356 |
/// Check that the given undirected graph is tree.
|
| 1354 |
1357 |
/// \param graph The undirected graph.
|
| 1355 |
1358 |
/// \return %True when the graph is acyclic and connected.
|
| 1356 |
1359 |
template <typename Graph>
|
| 1357 |
1360 |
bool tree(const Graph& graph) {
|
| 1358 |
1361 |
checkConcept<concepts::Graph, Graph>();
|
| 1359 |
1362 |
typedef typename Graph::Node Node;
|
| 1360 |
1363 |
typedef typename Graph::NodeIt NodeIt;
|
| 1361 |
1364 |
typedef typename Graph::Arc Arc;
|
| 1362 |
1365 |
Dfs<Graph> dfs(graph);
|
| 1363 |
1366 |
dfs.init();
|
| 1364 |
1367 |
dfs.addSource(NodeIt(graph));
|
| 1365 |
1368 |
while (!dfs.emptyQueue()) {
|
| 1366 |
1369 |
Arc edge = dfs.nextArc();
|
| 1367 |
1370 |
Node source = graph.source(edge);
|
| 1368 |
1371 |
Node target = graph.target(edge);
|
| 1369 |
1372 |
if (dfs.reached(target) &&
|
| 1370 |
1373 |
dfs.predArc(source) != graph.oppositeArc(edge)) {
|
| 1371 |
1374 |
return false;
|
| 1372 |
1375 |
}
|
| 1373 |
1376 |
dfs.processNextArc();
|
| 1374 |
1377 |
}
|
| 1375 |
1378 |
for (NodeIt it(graph); it != INVALID; ++it) {
|
| 1376 |
1379 |
if (!dfs.reached(it)) {
|
| 1377 |
1380 |
return false;
|
| 1378 |
1381 |
}
|
| 1379 |
1382 |
}
|
| 1380 |
1383 |
return true;
|
| 1381 |
1384 |
}
|
| 1382 |
1385 |
|
| 1383 |
|
namespace _topology_bits {
|
|
1386 |
namespace _connectivity_bits {
|
| 1384 |
1387 |
|
| 1385 |
1388 |
template <typename Digraph>
|
| 1386 |
1389 |
class BipartiteVisitor : public BfsVisitor<Digraph> {
|
| 1387 |
1390 |
public:
|
| 1388 |
1391 |
typedef typename Digraph::Arc Arc;
|
| 1389 |
1392 |
typedef typename Digraph::Node Node;
|
| 1390 |
1393 |
|
| 1391 |
1394 |
BipartiteVisitor(const Digraph& graph, bool& bipartite)
|
| 1392 |
1395 |
: _graph(graph), _part(graph), _bipartite(bipartite) {}
|
| 1393 |
1396 |
|
| 1394 |
1397 |
void start(const Node& node) {
|
| 1395 |
1398 |
_part[node] = true;
|
| 1396 |
1399 |
}
|
| 1397 |
1400 |
void discover(const Arc& edge) {
|
| 1398 |
1401 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]);
|
| 1399 |
1402 |
}
|
| 1400 |
1403 |
void examine(const Arc& edge) {
|
| 1401 |
1404 |
_bipartite = _bipartite &&
|
| 1402 |
1405 |
_part[_graph.target(edge)] != _part[_graph.source(edge)];
|
| 1403 |
1406 |
}
|
| 1404 |
1407 |
|
| 1405 |
1408 |
private:
|
| 1406 |
1409 |
|
| 1407 |
1410 |
const Digraph& _graph;
|
| 1408 |
1411 |
typename Digraph::template NodeMap<bool> _part;
|
| 1409 |
1412 |
bool& _bipartite;
|
| 1410 |
1413 |
};
|
| 1411 |
1414 |
|
| 1412 |
1415 |
template <typename Digraph, typename PartMap>
|
| 1413 |
1416 |
class BipartitePartitionsVisitor : public BfsVisitor<Digraph> {
|
| 1414 |
1417 |
public:
|
| 1415 |
1418 |
typedef typename Digraph::Arc Arc;
|
| 1416 |
1419 |
typedef typename Digraph::Node Node;
|
| 1417 |
1420 |
|
| 1418 |
1421 |
BipartitePartitionsVisitor(const Digraph& graph,
|
| 1419 |
1422 |
PartMap& part, bool& bipartite)
|
| 1420 |
1423 |
: _graph(graph), _part(part), _bipartite(bipartite) {}
|
| 1421 |
1424 |
|
| 1422 |
1425 |
void start(const Node& node) {
|
| 1423 |
1426 |
_part.set(node, true);
|
| 1424 |
1427 |
}
|
| 1425 |
1428 |
void discover(const Arc& edge) {
|
| 1426 |
1429 |
_part.set(_graph.target(edge), !_part[_graph.source(edge)]);
|
| 1427 |
1430 |
}
|
| 1428 |
1431 |
void examine(const Arc& edge) {
|
| 1429 |
1432 |
_bipartite = _bipartite &&
|
| 1430 |
1433 |
_part[_graph.target(edge)] != _part[_graph.source(edge)];
|
| 1431 |
1434 |
}
|
| 1432 |
1435 |
|
| 1433 |
1436 |
private:
|
| 1434 |
1437 |
|
| 1435 |
1438 |
const Digraph& _graph;
|
| 1436 |
1439 |
PartMap& _part;
|
| 1437 |
1440 |
bool& _bipartite;
|
| 1438 |
1441 |
};
|
| 1439 |
1442 |
}
|
| 1440 |
1443 |
|
| 1441 |
1444 |
/// \ingroup connectivity
|
| 1442 |
1445 |
///
|
| 1443 |
1446 |
/// \brief Check if the given undirected graph is bipartite or not
|
| 1444 |
1447 |
///
|
| 1445 |
1448 |
/// The function checks if the given undirected \c graph graph is bipartite
|
| 1446 |
1449 |
/// or not. The \ref Bfs algorithm is used to calculate the result.
|
| 1447 |
1450 |
/// \param graph The undirected graph.
|
| 1448 |
1451 |
/// \return %True if \c graph is bipartite, %false otherwise.
|
| 1449 |
1452 |
/// \sa bipartitePartitions
|
| 1450 |
1453 |
template<typename Graph>
|
| 1451 |
1454 |
inline bool bipartite(const Graph &graph){
|
| 1452 |
|
using namespace _topology_bits;
|
|
1455 |
using namespace _connectivity_bits;
|
| 1453 |
1456 |
|
| 1454 |
1457 |
checkConcept<concepts::Graph, Graph>();
|
| 1455 |
1458 |
|
| 1456 |
1459 |
typedef typename Graph::NodeIt NodeIt;
|
| 1457 |
1460 |
typedef typename Graph::ArcIt ArcIt;
|
| 1458 |
1461 |
|
| 1459 |
1462 |
bool bipartite = true;
|
| 1460 |
1463 |
|
| 1461 |
1464 |
BipartiteVisitor<Graph>
|
| 1462 |
1465 |
visitor(graph, bipartite);
|
| 1463 |
1466 |
BfsVisit<Graph, BipartiteVisitor<Graph> >
|
| 1464 |
1467 |
bfs(graph, visitor);
|
| 1465 |
1468 |
bfs.init();
|
| 1466 |
1469 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
| 1467 |
1470 |
if(!bfs.reached(it)){
|
| 1468 |
1471 |
bfs.addSource(it);
|
| 1469 |
1472 |
while (!bfs.emptyQueue()) {
|
| 1470 |
1473 |
bfs.processNextNode();
|
| 1471 |
1474 |
if (!bipartite) return false;
|
| 1472 |
1475 |
}
|
| 1473 |
1476 |
}
|
| 1474 |
1477 |
}
|
| 1475 |
1478 |
return true;
|
| 1476 |
1479 |
}
|
| 1477 |
1480 |
|
| 1478 |
1481 |
/// \ingroup connectivity
|
| 1479 |
1482 |
///
|
| 1480 |
1483 |
/// \brief Check if the given undirected graph is bipartite or not
|
| 1481 |
1484 |
///
|
| 1482 |
1485 |
/// The function checks if the given undirected graph is bipartite
|
| 1483 |
1486 |
/// or not. The \ref Bfs algorithm is used to calculate the result.
|
| 1484 |
1487 |
/// During the execution, the \c partMap will be set as the two
|
| 1485 |
1488 |
/// partitions of the graph.
|
| 1486 |
1489 |
/// \param graph The undirected graph.
|
| 1487 |
1490 |
/// \retval partMap A writable bool map of nodes. It will be set as the
|
| 1488 |
1491 |
/// two partitions of the graph.
|
| 1489 |
1492 |
/// \return %True if \c graph is bipartite, %false otherwise.
|
| 1490 |
1493 |
template<typename Graph, typename NodeMap>
|
| 1491 |
1494 |
inline bool bipartitePartitions(const Graph &graph, NodeMap &partMap){
|
| 1492 |
|
using namespace _topology_bits;
|
|
1495 |
using namespace _connectivity_bits;
|
| 1493 |
1496 |
|
| 1494 |
1497 |
checkConcept<concepts::Graph, Graph>();
|
| 1495 |
1498 |
|
| 1496 |
1499 |
typedef typename Graph::Node Node;
|
| 1497 |
1500 |
typedef typename Graph::NodeIt NodeIt;
|
| 1498 |
1501 |
typedef typename Graph::ArcIt ArcIt;
|
| 1499 |
1502 |
|
| 1500 |
1503 |
bool bipartite = true;
|
| 1501 |
1504 |
|
| 1502 |
1505 |
BipartitePartitionsVisitor<Graph, NodeMap>
|
| 1503 |
1506 |
visitor(graph, partMap, bipartite);
|
| 1504 |
1507 |
BfsVisit<Graph, BipartitePartitionsVisitor<Graph, NodeMap> >
|
| 1505 |
1508 |
bfs(graph, visitor);
|
| 1506 |
1509 |
bfs.init();
|
| 1507 |
1510 |
for(NodeIt it(graph); it != INVALID; ++it) {
|
| 1508 |
1511 |
if(!bfs.reached(it)){
|
| 1509 |
1512 |
bfs.addSource(it);
|
| 1510 |
1513 |
while (!bfs.emptyQueue()) {
|
| 1511 |
1514 |
bfs.processNextNode();
|
| 1512 |
1515 |
if (!bipartite) return false;
|
| 1513 |
1516 |
}
|
| 1514 |
1517 |
}
|
| 1515 |
1518 |
}
|
| 1516 |
1519 |
return true;
|
| 1517 |
1520 |
}
|
| 1518 |
1521 |
|
| 1519 |
1522 |
/// \brief Returns true when there are not loop edges in the graph.
|
| 1520 |
1523 |
///
|
| 1521 |
1524 |
/// Returns true when there are not loop edges in the graph.
|
| 1522 |
1525 |
template <typename Digraph>
|
| 1523 |
|
bool loopFree(const Digraph& graph) {
|
| 1524 |
|
for (typename Digraph::ArcIt it(graph); it != INVALID; ++it) {
|
| 1525 |
|
if (graph.source(it) == graph.target(it)) return false;
|
|
1526 |
bool loopFree(const Digraph& digraph) {
|
|
1527 |
for (typename Digraph::ArcIt it(digraph); it != INVALID; ++it) {
|
|
1528 |
if (digraph.source(it) == digraph.target(it)) return false;
|
| 1526 |
1529 |
}
|
| 1527 |
1530 |
return true;
|
| 1528 |
1531 |
}
|
| 1529 |
1532 |
|
| 1530 |
1533 |
/// \brief Returns true when there are not parallel edges in the graph.
|
| 1531 |
1534 |
///
|
| 1532 |
1535 |
/// Returns true when there are not parallel edges in the graph.
|
| 1533 |
1536 |
template <typename Digraph>
|
| 1534 |
|
bool parallelFree(const Digraph& graph) {
|
| 1535 |
|
typename Digraph::template NodeMap<bool> reached(graph, false);
|
| 1536 |
|
for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
|
| 1537 |
|
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
| 1538 |
|
if (reached[graph.target(e)]) return false;
|
| 1539 |
|
reached.set(graph.target(e), true);
|
|
1537 |
bool parallelFree(const Digraph& digraph) {
|
|
1538 |
typename Digraph::template NodeMap<bool> reached(digraph, false);
|
|
1539 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
|
1540 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
1541 |
if (reached[digraph.target(a)]) return false;
|
|
1542 |
reached.set(digraph.target(a), true);
|
| 1540 |
1543 |
}
|
| 1541 |
|
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
| 1542 |
|
reached.set(graph.target(e), false);
|
|
1544 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
1545 |
reached.set(digraph.target(a), false);
|
| 1543 |
1546 |
}
|
| 1544 |
1547 |
}
|
| 1545 |
1548 |
return true;
|
| 1546 |
1549 |
}
|
| 1547 |
1550 |
|
| 1548 |
1551 |
/// \brief Returns true when there are not loop edges and parallel
|
| 1549 |
1552 |
/// edges in the graph.
|
| 1550 |
1553 |
///
|
| 1551 |
1554 |
/// Returns true when there are not loop edges and parallel edges in
|
| 1552 |
1555 |
/// the graph.
|
| 1553 |
1556 |
template <typename Digraph>
|
| 1554 |
|
bool simpleDigraph(const Digraph& graph) {
|
| 1555 |
|
typename Digraph::template NodeMap<bool> reached(graph, false);
|
| 1556 |
|
for (typename Digraph::NodeIt n(graph); n != INVALID; ++n) {
|
|
1557 |
bool simpleDigraph(const Digraph& digraph) {
|
|
1558 |
typename Digraph::template NodeMap<bool> reached(digraph, false);
|
|
1559 |
for (typename Digraph::NodeIt n(digraph); n != INVALID; ++n) {
|
| 1557 |
1560 |
reached.set(n, true);
|
| 1558 |
|
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
| 1559 |
|
if (reached[graph.target(e)]) return false;
|
| 1560 |
|
reached.set(graph.target(e), true);
|
|
1561 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
1562 |
if (reached[digraph.target(a)]) return false;
|
|
1563 |
reached.set(digraph.target(a), true);
|
| 1561 |
1564 |
}
|
| 1562 |
|
for (typename Digraph::OutArcIt e(graph, n); e != INVALID; ++e) {
|
| 1563 |
|
reached.set(graph.target(e), false);
|
|
1565 |
for (typename Digraph::OutArcIt a(digraph, n); a != INVALID; ++a) {
|
|
1566 |
reached.set(digraph.target(a), false);
|
| 1564 |
1567 |
}
|
| 1565 |
1568 |
reached.set(n, false);
|
| 1566 |
1569 |
}
|
| 1567 |
1570 |
return true;
|
| 1568 |
1571 |
}
|
| 1569 |
1572 |
|
| 1570 |
1573 |
} //namespace lemon
|
| 1571 |
1574 |
|
| 1572 |
|
#endif //LEMON_TOPOLOGY_H
|
|
1575 |
#endif //LEMON_CONNECTIVITY_H
|