gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Hide all docs in variant.h (#196)
0 1 0
default
1 file changed with 144 insertions and 144 deletions:
↑ Collapse diff ↑
Show white space 96 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_VARIANT_H
20 20
#define LEMON_BITS_VARIANT_H
21 21

	
22 22
#include <lemon/assert.h>
23 23

	
24
/// \file
25
/// \brief Variant types
24
// \file
25
// \brief Variant types
26 26

	
27 27
namespace lemon {
28 28

	
29 29
  namespace _variant_bits {
30 30

	
31 31
    template <int left, int right>
32 32
    struct CTMax {
33 33
      static const int value = left < right ? right : left;
34 34
    };
35 35

	
36 36
  }
37 37

	
38 38

	
39
  /// \brief Simple Variant type for two types
40
  ///
41
  /// Simple Variant type for two types. The Variant type is a type
42
  /// safe union. The C++ has strong limitations for using unions, by
43
  /// example we can not store type with non default constructor or
44
  /// destructor in an union. This class always knowns the current
45
  /// state of the variant and it cares for the proper construction
46
  /// and destruction.
39
  // \brief Simple Variant type for two types
40
  //
41
  // Simple Variant type for two types. The Variant type is a type-safe
42
  // union. C++ has strong limitations for using unions, for
43
  // example you cannot store a type with non-default constructor or
44
  // destructor in a union. This class always knowns the current
45
  // state of the variant and it cares for the proper construction
46
  // and destruction.
47 47
  template <typename _First, typename _Second>
48 48
  class BiVariant {
49 49
  public:
50 50

	
51
    /// \brief The \c First type.
51
    // \brief The \c First type.
52 52
    typedef _First First;
53
    /// \brief The \c Second type.
53
    // \brief The \c Second type.
54 54
    typedef _Second Second;
55 55

	
56
    /// \brief Constructor
57
    ///
58
    /// This constructor initalizes to the default value of the \c First
59
    /// type.
56
    // \brief Constructor
57
    //
58
    // This constructor initalizes to the default value of the \c First
59
    // type.
60 60
    BiVariant() {
61 61
      flag = true;
62 62
      new(reinterpret_cast<First*>(data)) First();
63 63
    }
64 64

	
65
    /// \brief Constructor
66
    ///
67
    /// This constructor initalizes to the given value of the \c First
68
    /// type.
65
    // \brief Constructor
66
    //
67
    // This constructor initalizes to the given value of the \c First
68
    // type.
69 69
    BiVariant(const First& f) {
70 70
      flag = true;
71 71
      new(reinterpret_cast<First*>(data)) First(f);
72 72
    }
73 73

	
74
    /// \brief Constructor
75
    ///
76
    /// This constructor initalizes to the given value of the \c
77
    /// Second type.
74
    // \brief Constructor
75
    //
76
    // This constructor initalizes to the given value of the \c
77
    // Second type.
78 78
    BiVariant(const Second& s) {
79 79
      flag = false;
80 80
      new(reinterpret_cast<Second*>(data)) Second(s);
81 81
    }
82 82

	
83
    /// \brief Copy constructor
84
    ///
85
    /// Copy constructor
83
    // \brief Copy constructor
84
    //
85
    // Copy constructor
86 86
    BiVariant(const BiVariant& bivariant) {
87 87
      flag = bivariant.flag;
88 88
      if (flag) {
89 89
        new(reinterpret_cast<First*>(data)) First(bivariant.first());
90 90
      } else {
91 91
        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
92 92
      }
93 93
    }
94 94

	
95
    /// \brief Destrcutor
96
    ///
97
    /// Destructor
95
    // \brief Destrcutor
96
    //
97
    // Destructor
98 98
    ~BiVariant() {
99 99
      destroy();
100 100
    }
101 101

	
102
    /// \brief Set to the default value of the \c First type.
103
    ///
104
    /// This function sets the variant to the default value of the \c
105
    /// First type.
102
    // \brief Set to the default value of the \c First type.
103
    //
104
    // This function sets the variant to the default value of the \c
105
    // First type.
106 106
    BiVariant& setFirst() {
107 107
      destroy();
108 108
      flag = true;
109 109
      new(reinterpret_cast<First*>(data)) First();
110 110
      return *this;
111 111
    }
112 112

	
113
    /// \brief Set to the given value of the \c First type.
114
    ///
115
    /// This function sets the variant to the given value of the \c
116
    /// First type.
113
    // \brief Set to the given value of the \c First type.
114
    //
115
    // This function sets the variant to the given value of the \c
116
    // First type.
117 117
    BiVariant& setFirst(const First& f) {
118 118
      destroy();
119 119
      flag = true;
120 120
      new(reinterpret_cast<First*>(data)) First(f);
121 121
      return *this;
122 122
    }
123 123

	
124
    /// \brief Set to the default value of the \c Second type.
125
    ///
126
    /// This function sets the variant to the default value of the \c
127
    /// Second type.
124
    // \brief Set to the default value of the \c Second type.
125
    //
126
    // This function sets the variant to the default value of the \c
127
    // Second type.
128 128
    BiVariant& setSecond() {
129 129
      destroy();
130 130
      flag = false;
131 131
      new(reinterpret_cast<Second*>(data)) Second();
132 132
      return *this;
133 133
    }
134 134

	
135
    /// \brief Set to the given value of the \c Second type.
136
    ///
137
    /// This function sets the variant to the given value of the \c
138
    /// Second type.
135
    // \brief Set to the given value of the \c Second type.
136
    //
137
    // This function sets the variant to the given value of the \c
138
    // Second type.
139 139
    BiVariant& setSecond(const Second& s) {
140 140
      destroy();
141 141
      flag = false;
142 142
      new(reinterpret_cast<Second*>(data)) Second(s);
143 143
      return *this;
144 144
    }
145 145

	
146
    /// \brief Operator form of the \c setFirst()
146
    // \brief Operator form of the \c setFirst()
147 147
    BiVariant& operator=(const First& f) {
148 148
      return setFirst(f);
149 149
    }
150 150

	
151
    /// \brief Operator form of the \c setSecond()
151
    // \brief Operator form of the \c setSecond()
152 152
    BiVariant& operator=(const Second& s) {
153 153
      return setSecond(s);
154 154
    }
155 155

	
156
    /// \brief Assign operator
156
    // \brief Assign operator
157 157
    BiVariant& operator=(const BiVariant& bivariant) {
158 158
      if (this == &bivariant) return *this;
159 159
      destroy();
160 160
      flag = bivariant.flag;
161 161
      if (flag) {
162 162
        new(reinterpret_cast<First*>(data)) First(bivariant.first());
163 163
      } else {
164 164
        new(reinterpret_cast<Second*>(data)) Second(bivariant.second());
165 165
      }
166 166
      return *this;
167 167
    }
168 168

	
169
    /// \brief Reference to the value
170
    ///
171
    /// Reference to the value of the \c First type.
172
    /// \pre The BiVariant should store value of \c First type.
169
    // \brief Reference to the value
170
    //
171
    // Reference to the value of the \c First type.
172
    // \pre The BiVariant should store value of \c First type.
173 173
    First& first() {
174 174
      LEMON_DEBUG(flag, "Variant wrong state");
175 175
      return *reinterpret_cast<First*>(data); 
176 176
    }
177 177

	
178
    /// \brief Const reference to the value
179
    ///
180
    /// Const reference to the value of the \c First type.
181
    /// \pre The BiVariant should store value of \c First type.
178
    // \brief Const reference to the value
179
    //
180
    // Const reference to the value of the \c First type.
181
    // \pre The BiVariant should store value of \c First type.
182 182
    const First& first() const { 
183 183
      LEMON_DEBUG(flag, "Variant wrong state");
184 184
      return *reinterpret_cast<const First*>(data); 
185 185
    }
186 186

	
187
    /// \brief Operator form of the \c first()
187
    // \brief Operator form of the \c first()
188 188
    operator First&() { return first(); }
189
    /// \brief Operator form of the const \c first()
189
    // \brief Operator form of the const \c first()
190 190
    operator const First&() const { return first(); }
191 191

	
192
    /// \brief Reference to the value
193
    ///
194
    /// Reference to the value of the \c Second type.
195
    /// \pre The BiVariant should store value of \c Second type.
192
    // \brief Reference to the value
193
    //
194
    // Reference to the value of the \c Second type.
195
    // \pre The BiVariant should store value of \c Second type.
196 196
    Second& second() { 
197 197
      LEMON_DEBUG(!flag, "Variant wrong state");
198 198
      return *reinterpret_cast<Second*>(data); 
199 199
    }
200 200

	
201
    /// \brief Const reference to the value
202
    ///
203
    /// Const reference to the value of the \c Second type.
204
    /// \pre The BiVariant should store value of \c Second type.
201
    // \brief Const reference to the value
202
    //
203
    // Const reference to the value of the \c Second type.
204
    // \pre The BiVariant should store value of \c Second type.
205 205
    const Second& second() const { 
206 206
      LEMON_DEBUG(!flag, "Variant wrong state");
207 207
      return *reinterpret_cast<const Second*>(data); 
208 208
    }
209 209

	
210
    /// \brief Operator form of the \c second()
210
    // \brief Operator form of the \c second()
211 211
    operator Second&() { return second(); }
212
    /// \brief Operator form of the const \c second()
212
    // \brief Operator form of the const \c second()
213 213
    operator const Second&() const { return second(); }
214 214

	
215
    /// \brief %True when the variant is in the first state
216
    ///
217
    /// %True when the variant stores value of the \c First type.
215
    // \brief %True when the variant is in the first state
216
    //
217
    // %True when the variant stores value of the \c First type.
218 218
    bool firstState() const { return flag; }
219 219

	
220
    /// \brief %True when the variant is in the second state
221
    ///
222
    /// %True when the variant stores value of the \c Second type.
220
    // \brief %True when the variant is in the second state
221
    //
222
    // %True when the variant stores value of the \c Second type.
223 223
    bool secondState() const { return !flag; }
224 224

	
225 225
  private:
226 226

	
227 227
    void destroy() {
228 228
      if (flag) {
229 229
        reinterpret_cast<First*>(data)->~First();
230 230
      } else {
231 231
        reinterpret_cast<Second*>(data)->~Second();
232 232
      }
233 233
    }
234 234

	
235 235
    char data[_variant_bits::CTMax<sizeof(First), sizeof(Second)>::value];
236 236
    bool flag;
237 237
  };
238 238

	
239 239
  namespace _variant_bits {
240 240

	
241 241
    template <int _idx, typename _TypeMap>
242 242
    struct Memory {
243 243

	
244 244
      typedef typename _TypeMap::template Map<_idx>::Type Current;
245 245

	
246 246
      static void destroy(int index, char* place) {
247 247
        if (index == _idx) {
248 248
          reinterpret_cast<Current*>(place)->~Current();
249 249
        } else {
250 250
          Memory<_idx - 1, _TypeMap>::destroy(index, place);
251 251
        }
252 252
      }
253 253

	
254 254
      static void copy(int index, char* to, const char* from) {
255 255
        if (index == _idx) {
256 256
          new (reinterpret_cast<Current*>(to))
257 257
            Current(reinterpret_cast<const Current*>(from));
258 258
        } else {
259 259
          Memory<_idx - 1, _TypeMap>::copy(index, to, from);
260 260
        }
261 261
      }
262 262

	
263 263
    };
264 264

	
265 265
    template <typename _TypeMap>
266 266
    struct Memory<-1, _TypeMap> {
267 267

	
268 268
      static void destroy(int, char*) {
269 269
        LEMON_DEBUG(false, "Variant wrong index.");
270 270
      }
271 271

	
272 272
      static void copy(int, char*, const char*) {
273 273
        LEMON_DEBUG(false, "Variant wrong index.");
274 274
      }
275 275
    };
276 276

	
277 277
    template <int _idx, typename _TypeMap>
278 278
    struct Size {
279 279
      static const int value =
280 280
      CTMax<sizeof(typename _TypeMap::template Map<_idx>::Type),
281 281
            Size<_idx - 1, _TypeMap>::value>::value;
282 282
    };
283 283

	
284 284
    template <typename _TypeMap>
285 285
    struct Size<0, _TypeMap> {
286 286
      static const int value =
287 287
      sizeof(typename _TypeMap::template Map<0>::Type);
288 288
    };
289 289

	
290 290
  }
291 291

	
292
  /// \brief Variant type
293
  ///
294
  /// Simple Variant type. The Variant type is a type safe union. The
295
  /// C++ has strong limitations for using unions, for example we
296
  /// cannot store type with non default constructor or destructor in
297
  /// a union. This class always knowns the current state of the
298
  /// variant and it cares for the proper construction and
299
  /// destruction.
300
  ///
301
  /// \param _num The number of the types which can be stored in the
302
  /// variant type.
303
  /// \param _TypeMap This class describes the types of the Variant. The
304
  /// _TypeMap::Map<index>::Type should be a valid type for each index
305
  /// in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
306
  /// class to define such type mappings up to 10 types.
307
  ///
308
  /// And the usage of the class:
309
  ///\code
310
  /// typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
311
  /// MyVariant var;
312
  /// var.set<0>(12);
313
  /// std::cout << var.get<0>() << std::endl;
314
  /// var.set<1>("alpha");
315
  /// std::cout << var.get<1>() << std::endl;
316
  /// var.set<2>(0.75);
317
  /// std::cout << var.get<2>() << std::endl;
318
  ///\endcode
319
  ///
320
  /// The result of course:
321
  ///\code
322
  /// 12
323
  /// alpha
324
  /// 0.75
325
  ///\endcode
292
  // \brief Variant type
293
  //
294
  // Simple Variant type. The Variant type is a type-safe union.
295
  // C++ has strong limitations for using unions, for example you
296
  // cannot store type with non-default constructor or destructor in
297
  // a union. This class always knowns the current state of the
298
  // variant and it cares for the proper construction and
299
  // destruction.
300
  //
301
  // \param _num The number of the types which can be stored in the
302
  // variant type.
303
  // \param _TypeMap This class describes the types of the Variant. The
304
  // _TypeMap::Map<index>::Type should be a valid type for each index
305
  // in the range {0, 1, ..., _num - 1}. The \c VariantTypeMap is helper
306
  // class to define such type mappings up to 10 types.
307
  //
308
  // And the usage of the class:
309
  //\code
310
  // typedef Variant<3, VariantTypeMap<int, std::string, double> > MyVariant;
311
  // MyVariant var;
312
  // var.set<0>(12);
313
  // std::cout << var.get<0>() << std::endl;
314
  // var.set<1>("alpha");
315
  // std::cout << var.get<1>() << std::endl;
316
  // var.set<2>(0.75);
317
  // std::cout << var.get<2>() << std::endl;
318
  //\endcode
319
  //
320
  // The result of course:
321
  //\code
322
  // 12
323
  // alpha
324
  // 0.75
325
  //\endcode
326 326
  template <int _num, typename _TypeMap>
327 327
  class Variant {
328 328
  public:
329 329

	
330 330
    static const int num = _num;
331 331

	
332 332
    typedef _TypeMap TypeMap;
333 333

	
334
    /// \brief Constructor
335
    ///
336
    /// This constructor initalizes to the default value of the \c type
337
    /// with 0 index.
334
    // \brief Constructor
335
    //
336
    // This constructor initalizes to the default value of the \c type
337
    // with 0 index.
338 338
    Variant() {
339 339
      flag = 0;
340 340
      new(reinterpret_cast<typename TypeMap::template Map<0>::Type*>(data))
341 341
        typename TypeMap::template Map<0>::Type();
342 342
    }
343 343

	
344 344

	
345
    /// \brief Copy constructor
346
    ///
347
    /// Copy constructor
345
    // \brief Copy constructor
346
    //
347
    // Copy constructor
348 348
    Variant(const Variant& variant) {
349 349
      flag = variant.flag;
350 350
      _variant_bits::Memory<num - 1, TypeMap>::copy(flag, data, variant.data);
351 351
    }
352 352

	
353
    /// \brief Assign operator
354
    ///
355
    /// Assign operator
353
    // \brief Assign operator
354
    //
355
    // Assign operator
356 356
    Variant& operator=(const Variant& variant) {
357 357
      if (this == &variant) return *this;
358 358
      _variant_bits::Memory<num - 1, TypeMap>::
359 359
        destroy(flag, data);
360 360
      flag = variant.flag;
361 361
      _variant_bits::Memory<num - 1, TypeMap>::
362 362
        copy(flag, data, variant.data);
363 363
      return *this;
364 364
    }
365 365

	
366
    /// \brief Destrcutor
367
    ///
368
    /// Destructor
366
    // \brief Destrcutor
367
    //
368
    // Destructor
369 369
    ~Variant() {
370 370
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
371 371
    }
372 372

	
373
    /// \brief Set to the default value of the type with \c _idx index.
374
    ///
375
    /// This function sets the variant to the default value of the
376
    /// type with \c _idx index.
373
    // \brief Set to the default value of the type with \c _idx index.
374
    //
375
    // This function sets the variant to the default value of the
376
    // type with \c _idx index.
377 377
    template <int _idx>
378 378
    Variant& set() {
379 379
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
380 380
      flag = _idx;
381 381
      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
382 382
        typename TypeMap::template Map<_idx>::Type();
383 383
      return *this;
384 384
    }
385 385

	
386
    /// \brief Set to the given value of the type with \c _idx index.
387
    ///
388
    /// This function sets the variant to the given value of the type
389
    /// with \c _idx index.
386
    // \brief Set to the given value of the type with \c _idx index.
387
    //
388
    // This function sets the variant to the given value of the type
389
    // with \c _idx index.
390 390
    template <int _idx>
391 391
    Variant& set(const typename _TypeMap::template Map<_idx>::Type& init) {
392 392
      _variant_bits::Memory<num - 1, TypeMap>::destroy(flag, data);
393 393
      flag = _idx;
394 394
      new(reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>(data))
395 395
        typename TypeMap::template Map<_idx>::Type(init);
396 396
      return *this;
397 397
    }
398 398

	
399
    /// \brief Gets the current value of the type with \c _idx index.
400
    ///
401
    /// Gets the current value of the type with \c _idx index.
399
    // \brief Gets the current value of the type with \c _idx index.
400
    //
401
    // Gets the current value of the type with \c _idx index.
402 402
    template <int _idx>
403 403
    const typename TypeMap::template Map<_idx>::Type& get() const {
404 404
      LEMON_DEBUG(_idx == flag, "Variant wrong index");
405 405
      return *reinterpret_cast<const typename TypeMap::
406 406
        template Map<_idx>::Type*>(data);
407 407
    }
408 408

	
409
    /// \brief Gets the current value of the type with \c _idx index.
410
    ///
411
    /// Gets the current value of the type with \c _idx index.
409
    // \brief Gets the current value of the type with \c _idx index.
410
    //
411
    // Gets the current value of the type with \c _idx index.
412 412
    template <int _idx>
413 413
    typename _TypeMap::template Map<_idx>::Type& get() {
414 414
      LEMON_DEBUG(_idx == flag, "Variant wrong index");
415 415
      return *reinterpret_cast<typename TypeMap::template Map<_idx>::Type*>
416 416
        (data);
417 417
    }
418 418

	
419
    /// \brief Returns the current state of the variant.
420
    ///
421
    /// Returns the current state of the variant.
419
    // \brief Returns the current state of the variant.
420
    //
421
    // Returns the current state of the variant.
422 422
    int state() const {
423 423
      return flag;
424 424
    }
425 425

	
426 426
  private:
427 427

	
428 428
    char data[_variant_bits::Size<num - 1, TypeMap>::value];
429 429
    int flag;
430 430
  };
431 431

	
432 432
  namespace _variant_bits {
433 433

	
434 434
    template <int _index, typename _List>
435 435
    struct Get {
436 436
      typedef typename Get<_index - 1, typename _List::Next>::Type Type;
437 437
    };
438 438

	
439 439
    template <typename _List>
440 440
    struct Get<0, _List> {
441 441
      typedef typename _List::Type Type;
442 442
    };
443 443

	
444 444
    struct List {};
445 445

	
446 446
    template <typename _Type, typename _List>
447 447
    struct Insert {
448 448
      typedef _List Next;
449 449
      typedef _Type Type;
450 450
    };
451 451

	
452 452
    template <int _idx, typename _T0, typename _T1, typename _T2,
453 453
              typename _T3, typename _T4, typename _T5, typename _T6,
454 454
              typename _T7, typename _T8, typename _T9>
455 455
    struct Mapper {
456 456
      typedef List L10;
457 457
      typedef Insert<_T9, L10> L9;
458 458
      typedef Insert<_T8, L9> L8;
459 459
      typedef Insert<_T7, L8> L7;
460 460
      typedef Insert<_T6, L7> L6;
461 461
      typedef Insert<_T5, L6> L5;
462 462
      typedef Insert<_T4, L5> L4;
463 463
      typedef Insert<_T3, L4> L3;
464 464
      typedef Insert<_T2, L3> L2;
465 465
      typedef Insert<_T1, L2> L1;
466 466
      typedef Insert<_T0, L1> L0;
467 467
      typedef typename Get<_idx, L0>::Type Type;
468 468
    };
469 469

	
470 470
  }
471 471

	
472
  /// \brief Helper class for Variant
473
  ///
474
  /// Helper class to define type mappings for Variant. This class
475
  /// converts the template parameters to be mappable by integer.
476
  /// \see Variant
472
  // \brief Helper class for Variant
473
  //
474
  // Helper class to define type mappings for Variant. This class
475
  // converts the template parameters to be mappable by integer.
476
  // \see Variant
477 477
  template <
478 478
    typename _T0,
479 479
    typename _T1 = void, typename _T2 = void, typename _T3 = void,
480 480
    typename _T4 = void, typename _T5 = void, typename _T6 = void,
481 481
    typename _T7 = void, typename _T8 = void, typename _T9 = void>
482 482
  struct VariantTypeMap {
483 483
    template <int _idx>
484 484
    struct Map {
485 485
      typedef typename _variant_bits::
486 486
      Mapper<_idx, _T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7, _T8, _T9>::Type
487 487
      Type;
488 488
    };
489 489
  };
490 490

	
491 491
}
492 492

	
493 493

	
494 494
#endif
0 comments (0 inline)