... |
... |
@@ -19,144 +19,250 @@
|
19 |
19 |
#ifndef HYPERCUBE_GRAPH_H
|
20 |
20 |
#define HYPERCUBE_GRAPH_H
|
21 |
21 |
|
22 |
|
#include <iostream>
|
23 |
22 |
#include <vector>
|
24 |
23 |
#include <lemon/core.h>
|
25 |
|
#include <lemon/error.h>
|
26 |
|
|
27 |
|
#include <lemon/bits/base_extender.h>
|
|
24 |
#include <lemon/assert.h>
|
28 |
25 |
#include <lemon/bits/graph_extender.h>
|
29 |
26 |
|
30 |
27 |
///\ingroup graphs
|
31 |
28 |
///\file
|
32 |
|
///\brief HypercubeDigraph class.
|
|
29 |
///\brief HypercubeGraph class.
|
33 |
30 |
|
34 |
31 |
namespace lemon {
|
35 |
32 |
|
36 |
|
class HypercubeDigraphBase {
|
|
33 |
class HypercubeGraphBase {
|
37 |
34 |
|
38 |
35 |
public:
|
39 |
36 |
|
40 |
|
typedef HypercubeDigraphBase Digraph;
|
|
37 |
typedef HypercubeGraphBase Graph;
|
41 |
38 |
|
42 |
39 |
class Node;
|
|
40 |
class Edge;
|
43 |
41 |
class Arc;
|
44 |
42 |
|
45 |
43 |
public:
|
46 |
44 |
|
47 |
|
HypercubeDigraphBase() {}
|
|
45 |
HypercubeGraphBase() {}
|
48 |
46 |
|
49 |
47 |
protected:
|
50 |
48 |
|
51 |
49 |
void construct(int dim) {
|
|
50 |
LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1.");
|
52 |
51 |
_dim = dim;
|
53 |
|
_nodeNum = 1 << dim;
|
|
52 |
_node_num = 1 << dim;
|
|
53 |
_edge_num = dim * (1 << dim-1);
|
54 |
54 |
}
|
55 |
55 |
|
56 |
56 |
public:
|
57 |
57 |
|
58 |
58 |
typedef True NodeNumTag;
|
|
59 |
typedef True EdgeNumTag;
|
59 |
60 |
typedef True ArcNumTag;
|
60 |
61 |
|
61 |
|
int nodeNum() const { return _nodeNum; }
|
62 |
|
int arcNum() const { return _nodeNum * _dim; }
|
|
62 |
int nodeNum() const { return _node_num; }
|
|
63 |
int edgeNum() const { return _edge_num; }
|
|
64 |
int arcNum() const { return 2 * _edge_num; }
|
63 |
65 |
|
64 |
|
int maxNodeId() const { return nodeNum() - 1; }
|
65 |
|
int maxArcId() const { return arcNum() - 1; }
|
|
66 |
int maxNodeId() const { return _node_num - 1; }
|
|
67 |
int maxEdgeId() const { return _edge_num - 1; }
|
|
68 |
int maxArcId() const { return 2 * _edge_num - 1; }
|
66 |
69 |
|
67 |
|
Node source(Arc e) const {
|
68 |
|
return e.id / _dim;
|
|
70 |
static Node nodeFromId(int id) { return Node(id); }
|
|
71 |
static Edge edgeFromId(int id) { return Edge(id); }
|
|
72 |
static Arc arcFromId(int id) { return Arc(id); }
|
|
73 |
|
|
74 |
static int id(Node node) { return node._id; }
|
|
75 |
static int id(Edge edge) { return edge._id; }
|
|
76 |
static int id(Arc arc) { return arc._id; }
|
|
77 |
|
|
78 |
Node u(Edge edge) const {
|
|
79 |
int base = edge._id & ((1 << _dim-1) - 1);
|
|
80 |
int k = edge._id >> _dim-1;
|
|
81 |
return ((base >> k) << k+1) | (base & ((1 << k) - 1));
|
69 |
82 |
}
|
70 |
83 |
|
71 |
|
Node target(Arc e) const {
|
72 |
|
return (e.id / _dim) ^ (1 << (e.id % _dim));
|
|
84 |
Node v(Edge edge) const {
|
|
85 |
int base = edge._id & ((1 << _dim-1) - 1);
|
|
86 |
int k = edge._id >> _dim-1;
|
|
87 |
return ((base >> k) << k+1) | (base & ((1 << k) - 1)) | (1 << k);
|
73 |
88 |
}
|
74 |
89 |
|
75 |
|
static int id(Node v) { return v.id; }
|
76 |
|
static int id(Arc e) { return e.id; }
|
|
90 |
Node source(Arc arc) const {
|
|
91 |
return (arc._id & 1) == 1 ? u(arc) : v(arc);
|
|
92 |
}
|
77 |
93 |
|
78 |
|
static Node nodeFromId(int id) { return Node(id); }
|
|
94 |
Node target(Arc arc) const {
|
|
95 |
return (arc._id & 1) == 1 ? v(arc) : u(arc);
|
|
96 |
}
|
79 |
97 |
|
80 |
|
static Arc arcFromId(int id) { return Arc(id); }
|
|
98 |
typedef True FindEdgeTag;
|
|
99 |
typedef True FindArcTag;
|
|
100 |
|
|
101 |
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
|
|
102 |
if (prev != INVALID) return INVALID;
|
|
103 |
int d = u._id ^ v._id;
|
|
104 |
int k = 0;
|
|
105 |
if (d == 0) return INVALID;
|
|
106 |
for ( ; (d & 1) == 0; d >>= 1) ++k;
|
|
107 |
if (d >> 1 != 0) return INVALID;
|
|
108 |
return (k << _dim-1) | ((u._id >> k+1) << k) | (u._id & ((1 << k) - 1));
|
|
109 |
}
|
|
110 |
|
|
111 |
Arc findArc(Node u, Node v, Arc prev = INVALID) const {
|
|
112 |
Edge edge = findEdge(u, v, prev);
|
|
113 |
if (edge == INVALID) return INVALID;
|
|
114 |
int k = edge._id >> _dim-1;
|
|
115 |
return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1;
|
|
116 |
}
|
81 |
117 |
|
82 |
118 |
class Node {
|
83 |
|
friend class HypercubeDigraphBase;
|
|
119 |
friend class HypercubeGraphBase;
|
|
120 |
|
84 |
121 |
protected:
|
85 |
|
int id;
|
86 |
|
Node(int _id) { id = _id;}
|
|
122 |
int _id;
|
|
123 |
Node(int id) : _id(id) {}
|
87 |
124 |
public:
|
88 |
125 |
Node() {}
|
89 |
|
Node (Invalid) { id = -1; }
|
90 |
|
bool operator==(const Node node) const { return id == node.id; }
|
91 |
|
bool operator!=(const Node node) const { return id != node.id; }
|
92 |
|
bool operator<(const Node node) const { return id < node.id; }
|
|
126 |
Node (Invalid) : _id(-1) {}
|
|
127 |
bool operator==(const Node node) const {return _id == node._id;}
|
|
128 |
bool operator!=(const Node node) const {return _id != node._id;}
|
|
129 |
bool operator<(const Node node) const {return _id < node._id;}
|
|
130 |
};
|
|
131 |
|
|
132 |
class Edge {
|
|
133 |
friend class HypercubeGraphBase;
|
|
134 |
friend class Arc;
|
|
135 |
|
|
136 |
protected:
|
|
137 |
int _id;
|
|
138 |
|
|
139 |
Edge(int id) : _id(id) {}
|
|
140 |
|
|
141 |
public:
|
|
142 |
Edge() {}
|
|
143 |
Edge (Invalid) : _id(-1) {}
|
|
144 |
bool operator==(const Edge edge) const {return _id == edge._id;}
|
|
145 |
bool operator!=(const Edge edge) const {return _id != edge._id;}
|
|
146 |
bool operator<(const Edge edge) const {return _id < edge._id;}
|
93 |
147 |
};
|
94 |
148 |
|
95 |
149 |
class Arc {
|
96 |
|
friend class HypercubeDigraphBase;
|
|
150 |
friend class HypercubeGraphBase;
|
|
151 |
|
97 |
152 |
protected:
|
98 |
|
int id;
|
99 |
|
Arc(int _id) : id(_id) {}
|
|
153 |
int _id;
|
|
154 |
|
|
155 |
Arc(int id) : _id(id) {}
|
|
156 |
|
100 |
157 |
public:
|
101 |
|
Arc() { }
|
102 |
|
Arc (Invalid) { id = -1; }
|
103 |
|
bool operator==(const Arc arc) const { return id == arc.id; }
|
104 |
|
bool operator!=(const Arc arc) const { return id != arc.id; }
|
105 |
|
bool operator<(const Arc arc) const { return id < arc.id; }
|
|
158 |
Arc() {}
|
|
159 |
Arc (Invalid) : _id(-1) {}
|
|
160 |
operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; }
|
|
161 |
bool operator==(const Arc arc) const {return _id == arc._id;}
|
|
162 |
bool operator!=(const Arc arc) const {return _id != arc._id;}
|
|
163 |
bool operator<(const Arc arc) const {return _id < arc._id;}
|
106 |
164 |
};
|
107 |
165 |
|
108 |
166 |
void first(Node& node) const {
|
109 |
|
node.id = nodeNum() - 1;
|
|
167 |
node._id = _node_num - 1;
|
110 |
168 |
}
|
111 |
169 |
|
112 |
170 |
static void next(Node& node) {
|
113 |
|
--node.id;
|
|
171 |
--node._id;
|
|
172 |
}
|
|
173 |
|
|
174 |
void first(Edge& edge) const {
|
|
175 |
edge._id = _edge_num - 1;
|
|
176 |
}
|
|
177 |
|
|
178 |
static void next(Edge& edge) {
|
|
179 |
--edge._id;
|
114 |
180 |
}
|
115 |
181 |
|
116 |
182 |
void first(Arc& arc) const {
|
117 |
|
arc.id = arcNum() - 1;
|
|
183 |
arc._id = 2 * _edge_num - 1;
|
118 |
184 |
}
|
119 |
185 |
|
120 |
186 |
static void next(Arc& arc) {
|
121 |
|
--arc.id;
|
|
187 |
--arc._id;
|
|
188 |
}
|
|
189 |
|
|
190 |
void firstInc(Edge& edge, bool& dir, const Node& node) const {
|
|
191 |
edge._id = node._id >> 1;
|
|
192 |
dir = (node._id & 1) == 0;
|
|
193 |
}
|
|
194 |
|
|
195 |
void nextInc(Edge& edge, bool& dir) const {
|
|
196 |
Node n = dir ? u(edge) : v(edge);
|
|
197 |
int k = (edge._id >> _dim-1) + 1;
|
|
198 |
if (k < _dim) {
|
|
199 |
edge._id = (k << _dim-1) |
|
|
200 |
((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
|
|
201 |
dir = ((n._id >> k) & 1) == 0;
|
|
202 |
} else {
|
|
203 |
edge._id = -1;
|
|
204 |
dir = true;
|
|
205 |
}
|
122 |
206 |
}
|
123 |
207 |
|
124 |
208 |
void firstOut(Arc& arc, const Node& node) const {
|
125 |
|
arc.id = node.id * _dim;
|
|
209 |
arc._id = ((node._id >> 1) << 1) | (~node._id & 1);
|
126 |
210 |
}
|
127 |
211 |
|
128 |
212 |
void nextOut(Arc& arc) const {
|
129 |
|
++arc.id;
|
130 |
|
if (arc.id % _dim == 0) arc.id = -1;
|
|
213 |
Node n = (arc._id & 1) == 1 ? u(arc) : v(arc);
|
|
214 |
int k = (arc._id >> _dim) + 1;
|
|
215 |
if (k < _dim) {
|
|
216 |
arc._id = (k << _dim-1) |
|
|
217 |
((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
|
|
218 |
arc._id = (arc._id << 1) | (~(n._id >> k) & 1);
|
|
219 |
} else {
|
|
220 |
arc._id = -1;
|
|
221 |
}
|
131 |
222 |
}
|
132 |
223 |
|
133 |
224 |
void firstIn(Arc& arc, const Node& node) const {
|
134 |
|
arc.id = (node.id ^ 1) * _dim;
|
|
225 |
arc._id = ((node._id >> 1) << 1) | (node._id & 1);
|
135 |
226 |
}
|
136 |
227 |
|
137 |
228 |
void nextIn(Arc& arc) const {
|
138 |
|
int cnt = arc.id % _dim;
|
139 |
|
if ((cnt + 1) % _dim == 0) {
|
140 |
|
arc.id = -1;
|
|
229 |
Node n = (arc._id & 1) == 1 ? v(arc) : u(arc);
|
|
230 |
int k = (arc._id >> _dim) + 1;
|
|
231 |
if (k < _dim) {
|
|
232 |
arc._id = (k << _dim-1) |
|
|
233 |
((n._id >> k+1) << k) | (n._id & ((1 << k) - 1));
|
|
234 |
arc._id = (arc._id << 1) | ((n._id >> k) & 1);
|
141 |
235 |
} else {
|
142 |
|
arc.id = ((arc.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1;
|
|
236 |
arc._id = -1;
|
143 |
237 |
}
|
144 |
238 |
}
|
145 |
239 |
|
|
240 |
static bool direction(Arc arc) {
|
|
241 |
return (arc._id & 1) == 1;
|
|
242 |
}
|
|
243 |
|
|
244 |
static Arc direct(Edge edge, bool dir) {
|
|
245 |
return Arc((edge._id << 1) | (dir ? 1 : 0));
|
|
246 |
}
|
|
247 |
|
146 |
248 |
int dimension() const {
|
147 |
249 |
return _dim;
|
148 |
250 |
}
|
149 |
251 |
|
150 |
252 |
bool projection(Node node, int n) const {
|
151 |
|
return static_cast<bool>(node.id & (1 << n));
|
|
253 |
return static_cast<bool>(node._id & (1 << n));
|
|
254 |
}
|
|
255 |
|
|
256 |
int dimension(Edge edge) const {
|
|
257 |
return edge._id >> _dim-1;
|
152 |
258 |
}
|
153 |
259 |
|
154 |
260 |
int dimension(Arc arc) const {
|
155 |
|
return arc.id % _dim;
|
|
261 |
return arc._id >> _dim;
|
156 |
262 |
}
|
157 |
263 |
|
158 |
264 |
int index(Node node) const {
|
159 |
|
return node.id;
|
|
265 |
return node._id;
|
160 |
266 |
}
|
161 |
267 |
|
162 |
268 |
Node operator()(int ix) const {
|
... |
... |
@@ -164,131 +270,148 @@
|
164 |
270 |
}
|
165 |
271 |
|
166 |
272 |
private:
|
167 |
|
int _dim, _nodeNum;
|
|
273 |
int _dim;
|
|
274 |
int _node_num, _edge_num;
|
168 |
275 |
};
|
169 |
276 |
|
170 |
277 |
|
171 |
|
typedef DigraphExtender<HypercubeDigraphBase> ExtendedHypercubeDigraphBase;
|
|
278 |
typedef GraphExtender<HypercubeGraphBase> ExtendedHypercubeGraphBase;
|
172 |
279 |
|
173 |
|
/// \ingroup digraphs
|
|
280 |
/// \ingroup graphs
|
174 |
281 |
///
|
175 |
|
/// \brief Hypercube digraph class
|
|
282 |
/// \brief Hypercube graph class
|
176 |
283 |
///
|
177 |
|
/// This class implements a special digraph type. The nodes of the
|
178 |
|
/// digraph are indiced with integers with at most \c dim binary digits.
|
179 |
|
/// Two nodes are connected in the digraph if the indices differ only
|
180 |
|
/// on one position in the binary form.
|
|
284 |
/// This class implements a special graph type. The nodes of the graph
|
|
285 |
/// are indiced with integers with at most \c dim binary digits.
|
|
286 |
/// Two nodes are connected in the graph if and only if their indices
|
|
287 |
/// differ only on one position in the binary form.
|
181 |
288 |
///
|
182 |
|
/// \note The type of the \c ids is chosen to \c int because efficiency
|
183 |
|
/// reasons. Thus the maximum dimension of this implementation is 26.
|
|
289 |
/// \note The type of the indices is chosen to \c int for efficiency
|
|
290 |
/// reasons. Thus the maximum dimension of this implementation is 26
|
|
291 |
/// (assuming that the size of \c int is 32 bit).
|
184 |
292 |
///
|
185 |
|
/// The digraph type is fully conform to the \ref concepts::Digraph
|
186 |
|
/// concept but it does not conform to \ref concepts::Graph.
|
187 |
|
class HypercubeDigraph : public ExtendedHypercubeDigraphBase {
|
|
293 |
/// This graph type is fully conform to the \ref concepts::Graph
|
|
294 |
/// "Graph" concept, and it also has an important extra feature
|
|
295 |
/// that its maps are real \ref concepts::ReferenceMap
|
|
296 |
/// "reference map"s.
|
|
297 |
class HypercubeGraph : public ExtendedHypercubeGraphBase {
|
188 |
298 |
public:
|
189 |
299 |
|
190 |
|
typedef ExtendedHypercubeDigraphBase Parent;
|
|
300 |
typedef ExtendedHypercubeGraphBase Parent;
|
191 |
301 |
|
192 |
|
/// \brief Construct a hypercube digraph with \c dim dimension.
|
|
302 |
/// \brief Constructs a hypercube graph with \c dim dimensions.
|
193 |
303 |
///
|
194 |
|
/// Construct a hypercube digraph with \c dim dimension.
|
195 |
|
HypercubeDigraph(int dim) { construct(dim); }
|
|
304 |
/// Constructs a hypercube graph with \c dim dimensions.
|
|
305 |
HypercubeGraph(int dim) { construct(dim); }
|
196 |
306 |
|
197 |
|
/// \brief Gives back the number of the dimensions.
|
|
307 |
/// \brief The number of dimensions.
|
198 |
308 |
///
|
199 |
|
/// Gives back the number of the dimensions.
|
|
309 |
/// Gives back the number of dimensions.
|
200 |
310 |
int dimension() const {
|
201 |
311 |
return Parent::dimension();
|
202 |
312 |
}
|
203 |
313 |
|
204 |
|
/// \brief Returns true if the n'th bit of the node is one.
|
|
314 |
/// \brief Returns \c true if the n'th bit of the node is one.
|
205 |
315 |
///
|
206 |
|
/// Returns true if the n'th bit of the node is one.
|
|
316 |
/// Returns \c true if the n'th bit of the node is one.
|
207 |
317 |
bool projection(Node node, int n) const {
|
208 |
318 |
return Parent::projection(node, n);
|
209 |
319 |
}
|
210 |
320 |
|
211 |
|
/// \brief The dimension id of the arc.
|
|
321 |
/// \brief The dimension id of an edge.
|
212 |
322 |
///
|
213 |
|
/// It returns the dimension id of the arc. It can
|
214 |
|
/// be in the \f$ \{0, 1, \dots, dim-1\} \f$ interval.
|
|
323 |
/// Gives back the dimension id of the given edge.
|
|
324 |
/// It is in the [0..dim-1] range.
|
|
325 |
int dimension(Edge edge) const {
|
|
326 |
return Parent::dimension(edge);
|
|
327 |
}
|
|
328 |
|
|
329 |
/// \brief The dimension id of an arc.
|
|
330 |
///
|
|
331 |
/// Gives back the dimension id of the given arc.
|
|
332 |
/// It is in the [0..dim-1] range.
|
215 |
333 |
int dimension(Arc arc) const {
|
216 |
334 |
return Parent::dimension(arc);
|
217 |
335 |
}
|
218 |
336 |
|
219 |
|
/// \brief Gives back the index of the node.
|
|
337 |
/// \brief The index of a node.
|
220 |
338 |
///
|
221 |
|
/// Gives back the index of the node. The lower bits of the
|
222 |
|
/// integer describes the node.
|
|
339 |
/// Gives back the index of the given node.
|
|
340 |
/// The lower bits of the integer describes the node.
|
223 |
341 |
int index(Node node) const {
|
224 |
342 |
return Parent::index(node);
|
225 |
343 |
}
|
226 |
344 |
|
227 |
|
/// \brief Gives back the node by its index.
|
|
345 |
/// \brief Gives back a node by its index.
|
228 |
346 |
///
|
229 |
|
/// Gives back the node by its index.
|
|
347 |
/// Gives back a node by its index.
|
230 |
348 |
Node operator()(int ix) const {
|
231 |
349 |
return Parent::operator()(ix);
|
232 |
350 |
}
|
233 |
351 |
|
234 |
352 |
/// \brief Number of nodes.
|
235 |
353 |
int nodeNum() const { return Parent::nodeNum(); }
|
|
354 |
/// \brief Number of edges.
|
|
355 |
int edgeNum() const { return Parent::edgeNum(); }
|
236 |
356 |
/// \brief Number of arcs.
|
237 |
357 |
int arcNum() const { return Parent::arcNum(); }
|
238 |
358 |
|
239 |
359 |
/// \brief Linear combination map.
|
240 |
360 |
///
|
241 |
|
/// It makes possible to give back a linear combination
|
242 |
|
/// for each node. This function works like the \c std::accumulate
|
243 |
|
/// so it accumulates the \c bf binary function with the \c fv
|
244 |
|
/// first value. The map accumulates only on that dimensions where
|
245 |
|
/// the node's index is one. The accumulated values should be
|
246 |
|
/// given by the \c begin and \c end iterators and the length of this
|
247 |
|
/// range should be equal to the dimension number of the digraph.
|
|
361 |
/// This map makes possible to give back a linear combination
|
|
362 |
/// for each node. It works like the \c std::accumulate function,
|
|
363 |
/// so it accumulates the \c bf binary function with the \c fv first
|
|
364 |
/// value. The map accumulates only on that positions (dimensions)
|
|
365 |
/// where the index of the node is one. The values that have to be
|
|
366 |
/// accumulated should be given by the \c begin and \c end iterators
|
|
367 |
/// and the length of this range should be equal to the dimension
|
|
368 |
/// number of the graph.
|
248 |
369 |
///
|
249 |
370 |
///\code
|
250 |
371 |
/// const int DIM = 3;
|
251 |
|
/// HypercubeDigraph digraph(DIM);
|
|
372 |
/// HypercubeGraph graph(DIM);
|
252 |
373 |
/// dim2::Point<double> base[DIM];
|
253 |
374 |
/// for (int k = 0; k < DIM; ++k) {
|
254 |
375 |
/// base[k].x = rnd();
|
255 |
376 |
/// base[k].y = rnd();
|
256 |
377 |
/// }
|
257 |
|
/// HypercubeDigraph::HyperMap<dim2::Point<double> >
|
258 |
|
/// pos(digraph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
|
|
378 |
/// HypercubeGraph::HyperMap<dim2::Point<double> >
|
|
379 |
/// pos(graph, base, base + DIM, dim2::Point<double>(0.0, 0.0));
|
259 |
380 |
///\endcode
|
260 |
381 |
///
|
261 |
|
/// \see HypercubeDigraph
|
|
382 |
/// \see HypercubeGraph
|
262 |
383 |
template <typename T, typename BF = std::plus<T> >
|
263 |
384 |
class HyperMap {
|
264 |
385 |
public:
|
265 |
386 |
|
|
387 |
/// \brief The key type of the map
|
266 |
388 |
typedef Node Key;
|
|
389 |
/// \brief The value type of the map
|
267 |
390 |
typedef T Value;
|
268 |
391 |
|
269 |
|
|
270 |
392 |
/// \brief Constructor for HyperMap.
|
271 |
393 |
///
|
272 |
|
/// Construct a HyperMap for the given digraph. The accumulated values
|
273 |
|
/// should be given by the \c begin and \c end iterators and the length
|
274 |
|
/// of this range should be equal to the dimension number of the digraph.
|
|
394 |
/// Construct a HyperMap for the given graph. The values that have
|
|
395 |
/// to be accumulated should be given by the \c begin and \c end
|
|
396 |
/// iterators and the length of this range should be equal to the
|
|
397 |
/// dimension number of the graph.
|
275 |
398 |
///
|
276 |
|
/// This function accumulates the \c bf binary function with
|
277 |
|
/// the \c fv first value. The map accumulates only on that dimensions
|
278 |
|
/// where the node's index is one.
|
|
399 |
/// This map accumulates the \c bf binary function with the \c fv
|
|
400 |
/// first value on that positions (dimensions) where the index of
|
|
401 |
/// the node is one.
|
279 |
402 |
template <typename It>
|
280 |
|
HyperMap(const Digraph& digraph, It begin, It end,
|
281 |
|
T fv = 0.0, const BF& bf = BF())
|
282 |
|
: _graph(digraph), _values(begin, end), _first_value(fv), _bin_func(bf)
|
|
403 |
HyperMap(const Graph& graph, It begin, It end,
|
|
404 |
T fv = 0, const BF& bf = BF())
|
|
405 |
: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf)
|
283 |
406 |
{
|
284 |
|
LEMON_ASSERT(_values.size() == digraph.dimension(),
|
285 |
|
"Wrong size of dimension");
|
|
407 |
LEMON_ASSERT(_values.size() == graph.dimension(),
|
|
408 |
"Wrong size of range");
|
286 |
409 |
}
|
287 |
410 |
|
288 |
|
/// \brief Gives back the partial accumulated value.
|
|
411 |
/// \brief The partial accumulated value.
|
289 |
412 |
///
|
290 |
413 |
/// Gives back the partial accumulated value.
|
291 |
|
Value operator[](Key k) const {
|
|
414 |
Value operator[](const Key& k) const {
|
292 |
415 |
Value val = _first_value;
|
293 |
416 |
int id = _graph.index(k);
|
294 |
417 |
int n = 0;
|
... |
... |
@@ -303,7 +426,7 @@
|
303 |
426 |
}
|
304 |
427 |
|
305 |
428 |
private:
|
306 |
|
const Digraph& _graph;
|
|
429 |
const Graph& _graph;
|
307 |
430 |
std::vector<T> _values;
|
308 |
431 |
T _first_value;
|
309 |
432 |
BF _bin_func;
|