gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 3 0
merge default
1 file changed with 494 insertions and 12 deletions:
↑ Collapse diff ↑
Show white space 16384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_MAPS_H
20 20
#define LEMON_MAPS_H
21 21

	
22 22
#include <iterator>
23 23
#include <functional>
24 24
#include <vector>
25 25
#include <map>
26 26

	
27 27
#include <lemon/core.h>
28 28

	
29 29
///\file
30 30
///\ingroup maps
31 31
///\brief Miscellaneous property maps
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  /// \addtogroup maps
36 36
  /// @{
37 37

	
38 38
  /// Base class of maps.
39 39

	
40 40
  /// Base class of maps. It provides the necessary type definitions
41 41
  /// required by the map %concepts.
42 42
  template<typename K, typename V>
43 43
  class MapBase {
44 44
  public:
45 45
    /// \brief The key type of the map.
46 46
    typedef K Key;
47 47
    /// \brief The value type of the map.
48 48
    /// (The type of objects associated with the keys).
49 49
    typedef V Value;
50 50
  };
51 51

	
52 52

	
53 53
  /// Null map. (a.k.a. DoNothingMap)
54 54

	
55 55
  /// This map can be used if you have to provide a map only for
56 56
  /// its type definitions, or if you have to provide a writable map,
57 57
  /// but data written to it is not required (i.e. it will be sent to
58 58
  /// <tt>/dev/null</tt>).
59 59
  /// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
60 60
  ///
61 61
  /// \sa ConstMap
62 62
  template<typename K, typename V>
63 63
  class NullMap : public MapBase<K, V> {
64 64
  public:
65 65
    ///\e
66 66
    typedef K Key;
67 67
    ///\e
68 68
    typedef V Value;
69 69

	
70 70
    /// Gives back a default constructed element.
71 71
    Value operator[](const Key&) const { return Value(); }
72 72
    /// Absorbs the value.
73 73
    void set(const Key&, const Value&) {}
74 74
  };
75 75

	
76 76
  /// Returns a \c NullMap class
77 77

	
78 78
  /// This function just returns a \c NullMap class.
79 79
  /// \relates NullMap
80 80
  template <typename K, typename V>
81 81
  NullMap<K, V> nullMap() {
82 82
    return NullMap<K, V>();
83 83
  }
84 84

	
85 85

	
86 86
  /// Constant map.
87 87

	
88 88
  /// This \ref concepts::ReadMap "readable map" assigns a specified
89 89
  /// value to each key.
90 90
  ///
91 91
  /// In other aspects it is equivalent to \c NullMap.
92 92
  /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
93 93
  /// concept, but it absorbs the data written to it.
94 94
  ///
95 95
  /// The simplest way of using this map is through the constMap()
96 96
  /// function.
97 97
  ///
98 98
  /// \sa NullMap
99 99
  /// \sa IdentityMap
100 100
  template<typename K, typename V>
101 101
  class ConstMap : public MapBase<K, V> {
102 102
  private:
103 103
    V _value;
104 104
  public:
105 105
    ///\e
106 106
    typedef K Key;
107 107
    ///\e
108 108
    typedef V Value;
109 109

	
110 110
    /// Default constructor
111 111

	
112 112
    /// Default constructor.
113 113
    /// The value of the map will be default constructed.
114 114
    ConstMap() {}
115 115

	
116 116
    /// Constructor with specified initial value
117 117

	
118 118
    /// Constructor with specified initial value.
119 119
    /// \param v The initial value of the map.
120 120
    ConstMap(const Value &v) : _value(v) {}
121 121

	
122 122
    /// Gives back the specified value.
123 123
    Value operator[](const Key&) const { return _value; }
124 124

	
125 125
    /// Absorbs the value.
126 126
    void set(const Key&, const Value&) {}
127 127

	
128 128
    /// Sets the value that is assigned to each key.
129 129
    void setAll(const Value &v) {
130 130
      _value = v;
131 131
    }
132 132

	
133 133
    template<typename V1>
134 134
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
135 135
  };
136 136

	
137 137
  /// Returns a \c ConstMap class
138 138

	
139 139
  /// This function just returns a \c ConstMap class.
140 140
  /// \relates ConstMap
141 141
  template<typename K, typename V>
142 142
  inline ConstMap<K, V> constMap(const V &v) {
143 143
    return ConstMap<K, V>(v);
144 144
  }
145 145

	
146 146
  template<typename K, typename V>
147 147
  inline ConstMap<K, V> constMap() {
148 148
    return ConstMap<K, V>();
149 149
  }
150 150

	
151 151

	
152 152
  template<typename T, T v>
153 153
  struct Const {};
154 154

	
155 155
  /// Constant map with inlined constant value.
156 156

	
157 157
  /// This \ref concepts::ReadMap "readable map" assigns a specified
158 158
  /// value to each key.
159 159
  ///
160 160
  /// In other aspects it is equivalent to \c NullMap.
161 161
  /// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap"
162 162
  /// concept, but it absorbs the data written to it.
163 163
  ///
164 164
  /// The simplest way of using this map is through the constMap()
165 165
  /// function.
166 166
  ///
167 167
  /// \sa NullMap
168 168
  /// \sa IdentityMap
169 169
  template<typename K, typename V, V v>
170 170
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
171 171
  public:
172 172
    ///\e
173 173
    typedef K Key;
174 174
    ///\e
175 175
    typedef V Value;
176 176

	
177 177
    /// Constructor.
178 178
    ConstMap() {}
179 179

	
180 180
    /// Gives back the specified value.
181 181
    Value operator[](const Key&) const { return v; }
182 182

	
183 183
    /// Absorbs the value.
184 184
    void set(const Key&, const Value&) {}
185 185
  };
186 186

	
187 187
  /// Returns a \c ConstMap class with inlined constant value
188 188

	
189 189
  /// This function just returns a \c ConstMap class with inlined
190 190
  /// constant value.
191 191
  /// \relates ConstMap
192 192
  template<typename K, typename V, V v>
193 193
  inline ConstMap<K, Const<V, v> > constMap() {
194 194
    return ConstMap<K, Const<V, v> >();
195 195
  }
196 196

	
197 197

	
198 198
  /// Identity map.
199 199

	
200 200
  /// This \ref concepts::ReadMap "read-only map" gives back the given
201 201
  /// key as value without any modification.
202 202
  ///
203 203
  /// \sa ConstMap
204 204
  template <typename T>
205 205
  class IdentityMap : public MapBase<T, T> {
206 206
  public:
207 207
    ///\e
208 208
    typedef T Key;
209 209
    ///\e
210 210
    typedef T Value;
211 211

	
212 212
    /// Gives back the given value without any modification.
213 213
    Value operator[](const Key &k) const {
214 214
      return k;
215 215
    }
216 216
  };
217 217

	
218 218
  /// Returns an \c IdentityMap class
219 219

	
220 220
  /// This function just returns an \c IdentityMap class.
221 221
  /// \relates IdentityMap
222 222
  template<typename T>
223 223
  inline IdentityMap<T> identityMap() {
224 224
    return IdentityMap<T>();
225 225
  }
226 226

	
227 227

	
228 228
  /// \brief Map for storing values for integer keys from the range
229 229
  /// <tt>[0..size-1]</tt>.
230 230
  ///
231 231
  /// This map is essentially a wrapper for \c std::vector. It assigns
232 232
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
233 233
  /// It can be used together with some data structures, e.g.
234 234
  /// heap types and \c UnionFind, when the used items are small
235 235
  /// integers. This map conforms to the \ref concepts::ReferenceMap
236 236
  /// "ReferenceMap" concept. 
237 237
  ///
238 238
  /// The simplest way of using this map is through the rangeMap()
239 239
  /// function.
240 240
  template <typename V>
241 241
  class RangeMap : public MapBase<int, V> {
242 242
    template <typename V1>
243 243
    friend class RangeMap;
244 244
  private:
245 245

	
246 246
    typedef std::vector<V> Vector;
247 247
    Vector _vector;
248 248

	
249 249
  public:
250 250

	
251 251
    /// Key type
252 252
    typedef int Key;
253 253
    /// Value type
254 254
    typedef V Value;
255 255
    /// Reference type
256 256
    typedef typename Vector::reference Reference;
257 257
    /// Const reference type
258 258
    typedef typename Vector::const_reference ConstReference;
259 259

	
260 260
    typedef True ReferenceMapTag;
261 261

	
262 262
  public:
263 263

	
264 264
    /// Constructor with specified default value.
265 265
    RangeMap(int size = 0, const Value &value = Value())
266 266
      : _vector(size, value) {}
267 267

	
268 268
    /// Constructs the map from an appropriate \c std::vector.
269 269
    template <typename V1>
270 270
    RangeMap(const std::vector<V1>& vector)
271 271
      : _vector(vector.begin(), vector.end()) {}
272 272

	
273 273
    /// Constructs the map from another \c RangeMap.
274 274
    template <typename V1>
275 275
    RangeMap(const RangeMap<V1> &c)
276 276
      : _vector(c._vector.begin(), c._vector.end()) {}
277 277

	
278 278
    /// Returns the size of the map.
279 279
    int size() {
280 280
      return _vector.size();
281 281
    }
282 282

	
283 283
    /// Resizes the map.
284 284

	
285 285
    /// Resizes the underlying \c std::vector container, so changes the
286 286
    /// keyset of the map.
287 287
    /// \param size The new size of the map. The new keyset will be the
288 288
    /// range <tt>[0..size-1]</tt>.
289 289
    /// \param value The default value to assign to the new keys.
290 290
    void resize(int size, const Value &value = Value()) {
291 291
      _vector.resize(size, value);
292 292
    }
293 293

	
294 294
  private:
295 295

	
296 296
    RangeMap& operator=(const RangeMap&);
297 297

	
298 298
  public:
299 299

	
300 300
    ///\e
301 301
    Reference operator[](const Key &k) {
302 302
      return _vector[k];
303 303
    }
304 304

	
305 305
    ///\e
306 306
    ConstReference operator[](const Key &k) const {
307 307
      return _vector[k];
308 308
    }
309 309

	
310 310
    ///\e
311 311
    void set(const Key &k, const Value &v) {
312 312
      _vector[k] = v;
313 313
    }
314 314
  };
315 315

	
316 316
  /// Returns a \c RangeMap class
317 317

	
318 318
  /// This function just returns a \c RangeMap class.
319 319
  /// \relates RangeMap
320 320
  template<typename V>
321 321
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
322 322
    return RangeMap<V>(size, value);
323 323
  }
324 324

	
325 325
  /// \brief Returns a \c RangeMap class created from an appropriate
326 326
  /// \c std::vector
327 327

	
328 328
  /// This function just returns a \c RangeMap class created from an
329 329
  /// appropriate \c std::vector.
330 330
  /// \relates RangeMap
331 331
  template<typename V>
332 332
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
333 333
    return RangeMap<V>(vector);
334 334
  }
335 335

	
336 336

	
337 337
  /// Map type based on \c std::map
338 338

	
339 339
  /// This map is essentially a wrapper for \c std::map with addition
340 340
  /// that you can specify a default value for the keys that are not
341 341
  /// stored actually. This value can be different from the default
342 342
  /// contructed value (i.e. \c %Value()).
343 343
  /// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap"
344 344
  /// concept.
345 345
  ///
346 346
  /// This map is useful if a default value should be assigned to most of
347 347
  /// the keys and different values should be assigned only to a few
348 348
  /// keys (i.e. the map is "sparse").
349 349
  /// The name of this type also refers to this important usage.
350 350
  ///
351 351
  /// Apart form that, this map can be used in many other cases since it
352 352
  /// is based on \c std::map, which is a general associative container.
353 353
  /// However, keep in mind that it is usually not as efficient as other
354 354
  /// maps.
355 355
  ///
356 356
  /// The simplest way of using this map is through the sparseMap()
357 357
  /// function.
358 358
  template <typename K, typename V, typename Comp = std::less<K> >
359 359
  class SparseMap : public MapBase<K, V> {
360 360
    template <typename K1, typename V1, typename C1>
361 361
    friend class SparseMap;
362 362
  public:
363 363

	
364 364
    /// Key type
365 365
    typedef K Key;
366 366
    /// Value type
367 367
    typedef V Value;
368 368
    /// Reference type
369 369
    typedef Value& Reference;
370 370
    /// Const reference type
371 371
    typedef const Value& ConstReference;
372 372

	
373 373
    typedef True ReferenceMapTag;
374 374

	
375 375
  private:
376 376

	
377 377
    typedef std::map<K, V, Comp> Map;
378 378
    Map _map;
379 379
    Value _value;
380 380

	
381 381
  public:
382 382

	
383 383
    /// \brief Constructor with specified default value.
384 384
    SparseMap(const Value &value = Value()) : _value(value) {}
385 385
    /// \brief Constructs the map from an appropriate \c std::map, and
386 386
    /// explicitly specifies a default value.
387 387
    template <typename V1, typename Comp1>
388 388
    SparseMap(const std::map<Key, V1, Comp1> &map,
389 389
              const Value &value = Value())
390 390
      : _map(map.begin(), map.end()), _value(value) {}
391 391

	
392 392
    /// \brief Constructs the map from another \c SparseMap.
393 393
    template<typename V1, typename Comp1>
394 394
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
395 395
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
396 396

	
397 397
  private:
398 398

	
399 399
    SparseMap& operator=(const SparseMap&);
400 400

	
401 401
  public:
402 402

	
403 403
    ///\e
404 404
    Reference operator[](const Key &k) {
405 405
      typename Map::iterator it = _map.lower_bound(k);
406 406
      if (it != _map.end() && !_map.key_comp()(k, it->first))
407 407
        return it->second;
408 408
      else
409 409
        return _map.insert(it, std::make_pair(k, _value))->second;
410 410
    }
411 411

	
412 412
    ///\e
413 413
    ConstReference operator[](const Key &k) const {
414 414
      typename Map::const_iterator it = _map.find(k);
415 415
      if (it != _map.end())
416 416
        return it->second;
417 417
      else
418 418
        return _value;
419 419
    }
420 420

	
421 421
    ///\e
422 422
    void set(const Key &k, const Value &v) {
423 423
      typename Map::iterator it = _map.lower_bound(k);
424 424
      if (it != _map.end() && !_map.key_comp()(k, it->first))
425 425
        it->second = v;
426 426
      else
427 427
        _map.insert(it, std::make_pair(k, v));
428 428
    }
429 429

	
430 430
    ///\e
431 431
    void setAll(const Value &v) {
432 432
      _value = v;
433 433
      _map.clear();
434 434
    }
435 435
  };
436 436

	
437 437
  /// Returns a \c SparseMap class
438 438

	
439 439
  /// This function just returns a \c SparseMap class with specified
440 440
  /// default value.
441 441
  /// \relates SparseMap
442 442
  template<typename K, typename V, typename Compare>
443 443
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
444 444
    return SparseMap<K, V, Compare>(value);
445 445
  }
446 446

	
447 447
  template<typename K, typename V>
448 448
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
449 449
    return SparseMap<K, V, std::less<K> >(value);
450 450
  }
451 451

	
452 452
  /// \brief Returns a \c SparseMap class created from an appropriate
453 453
  /// \c std::map
454 454

	
455 455
  /// This function just returns a \c SparseMap class created from an
456 456
  /// appropriate \c std::map.
457 457
  /// \relates SparseMap
458 458
  template<typename K, typename V, typename Compare>
459 459
  inline SparseMap<K, V, Compare>
460 460
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
461 461
  {
462 462
    return SparseMap<K, V, Compare>(map, value);
463 463
  }
464 464

	
465 465
  /// @}
466 466

	
467 467
  /// \addtogroup map_adaptors
468 468
  /// @{
469 469

	
470 470
  /// Composition of two maps
471 471

	
472 472
  /// This \ref concepts::ReadMap "read-only map" returns the
473 473
  /// composition of two given maps. That is to say, if \c m1 is of
474 474
  /// type \c M1 and \c m2 is of \c M2, then for
475 475
  /// \code
476 476
  ///   ComposeMap<M1, M2> cm(m1,m2);
477 477
  /// \endcode
478 478
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
479 479
  ///
480 480
  /// The \c Key type of the map is inherited from \c M2 and the
481 481
  /// \c Value type is from \c M1.
482 482
  /// \c M2::Value must be convertible to \c M1::Key.
483 483
  ///
484 484
  /// The simplest way of using this map is through the composeMap()
485 485
  /// function.
486 486
  ///
487 487
  /// \sa CombineMap
488 488
  template <typename M1, typename M2>
489 489
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
490 490
    const M1 &_m1;
491 491
    const M2 &_m2;
492 492
  public:
493 493
    ///\e
494 494
    typedef typename M2::Key Key;
495 495
    ///\e
496 496
    typedef typename M1::Value Value;
497 497

	
498 498
    /// Constructor
499 499
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
500 500

	
501 501
    ///\e
502 502
    typename MapTraits<M1>::ConstReturnValue
503 503
    operator[](const Key &k) const { return _m1[_m2[k]]; }
504 504
  };
505 505

	
506 506
  /// Returns a \c ComposeMap class
507 507

	
508 508
  /// This function just returns a \c ComposeMap class.
509 509
  ///
510 510
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
511 511
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
512 512
  /// will be equal to <tt>m1[m2[x]]</tt>.
513 513
  ///
514 514
  /// \relates ComposeMap
515 515
  template <typename M1, typename M2>
516 516
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
517 517
    return ComposeMap<M1, M2>(m1, m2);
518 518
  }
519 519

	
520 520

	
521 521
  /// Combination of two maps using an STL (binary) functor.
522 522

	
523 523
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
524 524
  /// binary functor and returns the combination of the two given maps
525 525
  /// using the functor.
526 526
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
527 527
  /// and \c f is of \c F, then for
528 528
  /// \code
529 529
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
530 530
  /// \endcode
531 531
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
532 532
  ///
533 533
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
534 534
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
535 535
  /// \c M2::Value and \c M1::Value must be convertible to the
536 536
  /// corresponding input parameter of \c F and the return type of \c F
537 537
  /// must be convertible to \c V.
538 538
  ///
539 539
  /// The simplest way of using this map is through the combineMap()
540 540
  /// function.
541 541
  ///
542 542
  /// \sa ComposeMap
543 543
  template<typename M1, typename M2, typename F,
544 544
           typename V = typename F::result_type>
545 545
  class CombineMap : public MapBase<typename M1::Key, V> {
546 546
    const M1 &_m1;
547 547
    const M2 &_m2;
548 548
    F _f;
549 549
  public:
550 550
    ///\e
551 551
    typedef typename M1::Key Key;
552 552
    ///\e
553 553
    typedef V Value;
554 554

	
555 555
    /// Constructor
556 556
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
557 557
      : _m1(m1), _m2(m2), _f(f) {}
558 558
    ///\e
559 559
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
560 560
  };
561 561

	
562 562
  /// Returns a \c CombineMap class
563 563

	
564 564
  /// This function just returns a \c CombineMap class.
565 565
  ///
566 566
  /// For example, if \c m1 and \c m2 are both maps with \c double
567 567
  /// values, then
568 568
  /// \code
569 569
  ///   combineMap(m1,m2,std::plus<double>())
570 570
  /// \endcode
571 571
  /// is equivalent to
572 572
  /// \code
573 573
  ///   addMap(m1,m2)
574 574
  /// \endcode
575 575
  ///
576 576
  /// This function is specialized for adaptable binary function
577 577
  /// classes and C++ functions.
578 578
  ///
579 579
  /// \relates CombineMap
580 580
  template<typename M1, typename M2, typename F, typename V>
581 581
  inline CombineMap<M1, M2, F, V>
582 582
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
583 583
    return CombineMap<M1, M2, F, V>(m1,m2,f);
584 584
  }
585 585

	
586 586
  template<typename M1, typename M2, typename F>
587 587
  inline CombineMap<M1, M2, F, typename F::result_type>
588 588
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
589 589
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
590 590
  }
591 591

	
592 592
  template<typename M1, typename M2, typename K1, typename K2, typename V>
593 593
  inline CombineMap<M1, M2, V (*)(K1, K2), V>
594 594
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
595 595
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
596 596
  }
597 597

	
598 598

	
599 599
  /// Converts an STL style (unary) functor to a map
600 600

	
601 601
  /// This \ref concepts::ReadMap "read-only map" returns the value
602 602
  /// of a given functor. Actually, it just wraps the functor and
603 603
  /// provides the \c Key and \c Value typedefs.
604 604
  ///
605 605
  /// Template parameters \c K and \c V will become its \c Key and
606 606
  /// \c Value. In most cases they have to be given explicitly because
607 607
  /// a functor typically does not provide \c argument_type and
608 608
  /// \c result_type typedefs.
609 609
  /// Parameter \c F is the type of the used functor.
610 610
  ///
611 611
  /// The simplest way of using this map is through the functorToMap()
612 612
  /// function.
613 613
  ///
614 614
  /// \sa MapToFunctor
615 615
  template<typename F,
616 616
           typename K = typename F::argument_type,
617 617
           typename V = typename F::result_type>
618 618
  class FunctorToMap : public MapBase<K, V> {
619 619
    F _f;
620 620
  public:
621 621
    ///\e
622 622
    typedef K Key;
623 623
    ///\e
624 624
    typedef V Value;
625 625

	
626 626
    /// Constructor
627 627
    FunctorToMap(const F &f = F()) : _f(f) {}
628 628
    ///\e
629 629
    Value operator[](const Key &k) const { return _f(k); }
630 630
  };
631 631

	
632 632
  /// Returns a \c FunctorToMap class
633 633

	
634 634
  /// This function just returns a \c FunctorToMap class.
635 635
  ///
636 636
  /// This function is specialized for adaptable binary function
637 637
  /// classes and C++ functions.
638 638
  ///
639 639
  /// \relates FunctorToMap
640 640
  template<typename K, typename V, typename F>
641 641
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
642 642
    return FunctorToMap<F, K, V>(f);
643 643
  }
644 644

	
645 645
  template <typename F>
646 646
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
647 647
    functorToMap(const F &f)
648 648
  {
649 649
    return FunctorToMap<F, typename F::argument_type,
650 650
      typename F::result_type>(f);
651 651
  }
652 652

	
653 653
  template <typename K, typename V>
654 654
  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
655 655
    return FunctorToMap<V (*)(K), K, V>(f);
656 656
  }
657 657

	
658 658

	
659 659
  /// Converts a map to an STL style (unary) functor
660 660

	
661 661
  /// This class converts a map to an STL style (unary) functor.
662 662
  /// That is it provides an <tt>operator()</tt> to read its values.
663 663
  ///
664 664
  /// For the sake of convenience it also works as a usual
665 665
  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
666 666
  /// and the \c Key and \c Value typedefs also exist.
667 667
  ///
668 668
  /// The simplest way of using this map is through the mapToFunctor()
669 669
  /// function.
670 670
  ///
671 671
  ///\sa FunctorToMap
672 672
  template <typename M>
673 673
  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
674 674
    const M &_m;
675 675
  public:
676 676
    ///\e
677 677
    typedef typename M::Key Key;
678 678
    ///\e
679 679
    typedef typename M::Value Value;
680 680

	
681 681
    typedef typename M::Key argument_type;
682 682
    typedef typename M::Value result_type;
683 683

	
684 684
    /// Constructor
685 685
    MapToFunctor(const M &m) : _m(m) {}
686 686
    ///\e
687 687
    Value operator()(const Key &k) const { return _m[k]; }
688 688
    ///\e
689 689
    Value operator[](const Key &k) const { return _m[k]; }
690 690
  };
691 691

	
692 692
  /// Returns a \c MapToFunctor class
693 693

	
694 694
  /// This function just returns a \c MapToFunctor class.
695 695
  /// \relates MapToFunctor
696 696
  template<typename M>
697 697
  inline MapToFunctor<M> mapToFunctor(const M &m) {
698 698
    return MapToFunctor<M>(m);
699 699
  }
700 700

	
701 701

	
702 702
  /// \brief Map adaptor to convert the \c Value type of a map to
703 703
  /// another type using the default conversion.
704 704

	
705 705
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
706 706
  /// "readable map" to another type using the default conversion.
707 707
  /// The \c Key type of it is inherited from \c M and the \c Value
708 708
  /// type is \c V.
709 709
  /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
710 710
  ///
711 711
  /// The simplest way of using this map is through the convertMap()
712 712
  /// function.
713 713
  template <typename M, typename V>
714 714
  class ConvertMap : public MapBase<typename M::Key, V> {
715 715
    const M &_m;
716 716
  public:
717 717
    ///\e
718 718
    typedef typename M::Key Key;
719 719
    ///\e
720 720
    typedef V Value;
721 721

	
722 722
    /// Constructor
723 723

	
724 724
    /// Constructor.
725 725
    /// \param m The underlying map.
726 726
    ConvertMap(const M &m) : _m(m) {}
727 727

	
728 728
    ///\e
729 729
    Value operator[](const Key &k) const { return _m[k]; }
730 730
  };
731 731

	
732 732
  /// Returns a \c ConvertMap class
733 733

	
734 734
  /// This function just returns a \c ConvertMap class.
735 735
  /// \relates ConvertMap
736 736
  template<typename V, typename M>
737 737
  inline ConvertMap<M, V> convertMap(const M &map) {
738 738
    return ConvertMap<M, V>(map);
739 739
  }
740 740

	
741 741

	
742 742
  /// Applies all map setting operations to two maps
743 743

	
744 744
  /// This map has two \ref concepts::WriteMap "writable map" parameters
745 745
  /// and each write request will be passed to both of them.
746 746
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
747 747
  /// operations will return the corresponding values of \c M1.
748 748
  ///
749 749
  /// The \c Key and \c Value types are inherited from \c M1.
750 750
  /// The \c Key and \c Value of \c M2 must be convertible from those
751 751
  /// of \c M1.
752 752
  ///
753 753
  /// The simplest way of using this map is through the forkMap()
754 754
  /// function.
755 755
  template<typename  M1, typename M2>
756 756
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
757 757
    M1 &_m1;
758 758
    M2 &_m2;
759 759
  public:
760 760
    ///\e
761 761
    typedef typename M1::Key Key;
762 762
    ///\e
763 763
    typedef typename M1::Value Value;
764 764

	
765 765
    /// Constructor
766 766
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
767 767
    /// Returns the value associated with the given key in the first map.
768 768
    Value operator[](const Key &k) const { return _m1[k]; }
769 769
    /// Sets the value associated with the given key in both maps.
770 770
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
771 771
  };
772 772

	
773 773
  /// Returns a \c ForkMap class
774 774

	
775 775
  /// This function just returns a \c ForkMap class.
776 776
  /// \relates ForkMap
777 777
  template <typename M1, typename M2>
778 778
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
779 779
    return ForkMap<M1,M2>(m1,m2);
780 780
  }
781 781

	
782 782

	
783 783
  /// Sum of two maps
784 784

	
785 785
  /// This \ref concepts::ReadMap "read-only map" returns the sum
786 786
  /// of the values of the two given maps.
787 787
  /// Its \c Key and \c Value types are inherited from \c M1.
788 788
  /// The \c Key and \c Value of \c M2 must be convertible to those of
789 789
  /// \c M1.
790 790
  ///
791 791
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
792 792
  /// \code
793 793
  ///   AddMap<M1,M2> am(m1,m2);
794 794
  /// \endcode
795 795
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
796 796
  ///
797 797
  /// The simplest way of using this map is through the addMap()
798 798
  /// function.
799 799
  ///
800 800
  /// \sa SubMap, MulMap, DivMap
801 801
  /// \sa ShiftMap, ShiftWriteMap
802 802
  template<typename M1, typename M2>
803 803
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
804 804
    const M1 &_m1;
805 805
    const M2 &_m2;
806 806
  public:
807 807
    ///\e
808 808
    typedef typename M1::Key Key;
809 809
    ///\e
810 810
    typedef typename M1::Value Value;
811 811

	
812 812
    /// Constructor
813 813
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
814 814
    ///\e
815 815
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
816 816
  };
817 817

	
818 818
  /// Returns an \c AddMap class
819 819

	
820 820
  /// This function just returns an \c AddMap class.
821 821
  ///
822 822
  /// For example, if \c m1 and \c m2 are both maps with \c double
823 823
  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
824 824
  /// <tt>m1[x]+m2[x]</tt>.
825 825
  ///
826 826
  /// \relates AddMap
827 827
  template<typename M1, typename M2>
828 828
  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
829 829
    return AddMap<M1, M2>(m1,m2);
830 830
  }
831 831

	
832 832

	
833 833
  /// Difference of two maps
834 834

	
835 835
  /// This \ref concepts::ReadMap "read-only map" returns the difference
836 836
  /// of the values of the two given maps.
837 837
  /// Its \c Key and \c Value types are inherited from \c M1.
838 838
  /// The \c Key and \c Value of \c M2 must be convertible to those of
839 839
  /// \c M1.
840 840
  ///
841 841
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
842 842
  /// \code
843 843
  ///   SubMap<M1,M2> sm(m1,m2);
844 844
  /// \endcode
845 845
  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
846 846
  ///
847 847
  /// The simplest way of using this map is through the subMap()
848 848
  /// function.
849 849
  ///
850 850
  /// \sa AddMap, MulMap, DivMap
851 851
  template<typename M1, typename M2>
852 852
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
853 853
    const M1 &_m1;
854 854
    const M2 &_m2;
855 855
  public:
856 856
    ///\e
857 857
    typedef typename M1::Key Key;
858 858
    ///\e
859 859
    typedef typename M1::Value Value;
860 860

	
861 861
    /// Constructor
862 862
    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
863 863
    ///\e
864 864
    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
865 865
  };
866 866

	
867 867
  /// Returns a \c SubMap class
868 868

	
869 869
  /// This function just returns a \c SubMap class.
870 870
  ///
871 871
  /// For example, if \c m1 and \c m2 are both maps with \c double
872 872
  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
873 873
  /// <tt>m1[x]-m2[x]</tt>.
874 874
  ///
875 875
  /// \relates SubMap
876 876
  template<typename M1, typename M2>
877 877
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
878 878
    return SubMap<M1, M2>(m1,m2);
879 879
  }
880 880

	
881 881

	
882 882
  /// Product of two maps
883 883

	
884 884
  /// This \ref concepts::ReadMap "read-only map" returns the product
885 885
  /// of the values of the two given maps.
886 886
  /// Its \c Key and \c Value types are inherited from \c M1.
887 887
  /// The \c Key and \c Value of \c M2 must be convertible to those of
888 888
  /// \c M1.
889 889
  ///
890 890
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
891 891
  /// \code
892 892
  ///   MulMap<M1,M2> mm(m1,m2);
893 893
  /// \endcode
894 894
  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
895 895
  ///
896 896
  /// The simplest way of using this map is through the mulMap()
897 897
  /// function.
898 898
  ///
899 899
  /// \sa AddMap, SubMap, DivMap
900 900
  /// \sa ScaleMap, ScaleWriteMap
901 901
  template<typename M1, typename M2>
902 902
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
903 903
    const M1 &_m1;
904 904
    const M2 &_m2;
905 905
  public:
906 906
    ///\e
907 907
    typedef typename M1::Key Key;
908 908
    ///\e
909 909
    typedef typename M1::Value Value;
910 910

	
911 911
    /// Constructor
912 912
    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
913 913
    ///\e
914 914
    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
915 915
  };
916 916

	
917 917
  /// Returns a \c MulMap class
918 918

	
919 919
  /// This function just returns a \c MulMap class.
920 920
  ///
921 921
  /// For example, if \c m1 and \c m2 are both maps with \c double
922 922
  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
923 923
  /// <tt>m1[x]*m2[x]</tt>.
924 924
  ///
925 925
  /// \relates MulMap
926 926
  template<typename M1, typename M2>
927 927
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
928 928
    return MulMap<M1, M2>(m1,m2);
929 929
  }
930 930

	
931 931

	
932 932
  /// Quotient of two maps
933 933

	
934 934
  /// This \ref concepts::ReadMap "read-only map" returns the quotient
935 935
  /// of the values of the two given maps.
936 936
  /// Its \c Key and \c Value types are inherited from \c M1.
937 937
  /// The \c Key and \c Value of \c M2 must be convertible to those of
938 938
  /// \c M1.
939 939
  ///
940 940
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
941 941
  /// \code
942 942
  ///   DivMap<M1,M2> dm(m1,m2);
943 943
  /// \endcode
944 944
  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
945 945
  ///
946 946
  /// The simplest way of using this map is through the divMap()
947 947
  /// function.
948 948
  ///
949 949
  /// \sa AddMap, SubMap, MulMap
950 950
  template<typename M1, typename M2>
951 951
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
952 952
    const M1 &_m1;
953 953
    const M2 &_m2;
954 954
  public:
955 955
    ///\e
956 956
    typedef typename M1::Key Key;
957 957
    ///\e
958 958
    typedef typename M1::Value Value;
959 959

	
960 960
    /// Constructor
961 961
    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
962 962
    ///\e
963 963
    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
964 964
  };
965 965

	
966 966
  /// Returns a \c DivMap class
967 967

	
968 968
  /// This function just returns a \c DivMap class.
969 969
  ///
970 970
  /// For example, if \c m1 and \c m2 are both maps with \c double
971 971
  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
972 972
  /// <tt>m1[x]/m2[x]</tt>.
973 973
  ///
974 974
  /// \relates DivMap
975 975
  template<typename M1, typename M2>
976 976
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
977 977
    return DivMap<M1, M2>(m1,m2);
978 978
  }
979 979

	
980 980

	
981 981
  /// Shifts a map with a constant.
982 982

	
983 983
  /// This \ref concepts::ReadMap "read-only map" returns the sum of
984 984
  /// the given map and a constant value (i.e. it shifts the map with
985 985
  /// the constant). Its \c Key and \c Value are inherited from \c M.
986 986
  ///
987 987
  /// Actually,
988 988
  /// \code
989 989
  ///   ShiftMap<M> sh(m,v);
990 990
  /// \endcode
991 991
  /// is equivalent to
992 992
  /// \code
993 993
  ///   ConstMap<M::Key, M::Value> cm(v);
994 994
  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
995 995
  /// \endcode
996 996
  ///
997 997
  /// The simplest way of using this map is through the shiftMap()
998 998
  /// function.
999 999
  ///
1000 1000
  /// \sa ShiftWriteMap
1001 1001
  template<typename M, typename C = typename M::Value>
1002 1002
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
1003 1003
    const M &_m;
1004 1004
    C _v;
1005 1005
  public:
1006 1006
    ///\e
1007 1007
    typedef typename M::Key Key;
1008 1008
    ///\e
1009 1009
    typedef typename M::Value Value;
1010 1010

	
1011 1011
    /// Constructor
1012 1012

	
1013 1013
    /// Constructor.
1014 1014
    /// \param m The undelying map.
1015 1015
    /// \param v The constant value.
1016 1016
    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1017 1017
    ///\e
1018 1018
    Value operator[](const Key &k) const { return _m[k]+_v; }
1019 1019
  };
1020 1020

	
1021 1021
  /// Shifts a map with a constant (read-write version).
1022 1022

	
1023 1023
  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1024 1024
  /// of the given map and a constant value (i.e. it shifts the map with
1025 1025
  /// the constant). Its \c Key and \c Value are inherited from \c M.
1026 1026
  /// It makes also possible to write the map.
1027 1027
  ///
1028 1028
  /// The simplest way of using this map is through the shiftWriteMap()
1029 1029
  /// function.
1030 1030
  ///
1031 1031
  /// \sa ShiftMap
1032 1032
  template<typename M, typename C = typename M::Value>
1033 1033
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
1034 1034
    M &_m;
1035 1035
    C _v;
1036 1036
  public:
1037 1037
    ///\e
1038 1038
    typedef typename M::Key Key;
1039 1039
    ///\e
1040 1040
    typedef typename M::Value Value;
1041 1041

	
1042 1042
    /// Constructor
1043 1043

	
1044 1044
    /// Constructor.
1045 1045
    /// \param m The undelying map.
1046 1046
    /// \param v The constant value.
1047 1047
    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1048 1048
    ///\e
1049 1049
    Value operator[](const Key &k) const { return _m[k]+_v; }
1050 1050
    ///\e
1051 1051
    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1052 1052
  };
1053 1053

	
1054 1054
  /// Returns a \c ShiftMap class
1055 1055

	
1056 1056
  /// This function just returns a \c ShiftMap class.
1057 1057
  ///
1058 1058
  /// For example, if \c m is a map with \c double values and \c v is
1059 1059
  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1060 1060
  /// <tt>m[x]+v</tt>.
1061 1061
  ///
1062 1062
  /// \relates ShiftMap
1063 1063
  template<typename M, typename C>
1064 1064
  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
1065 1065
    return ShiftMap<M, C>(m,v);
1066 1066
  }
1067 1067

	
1068 1068
  /// Returns a \c ShiftWriteMap class
1069 1069

	
1070 1070
  /// This function just returns a \c ShiftWriteMap class.
1071 1071
  ///
1072 1072
  /// For example, if \c m is a map with \c double values and \c v is
1073 1073
  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1074 1074
  /// <tt>m[x]+v</tt>.
1075 1075
  /// Moreover it makes also possible to write the map.
1076 1076
  ///
1077 1077
  /// \relates ShiftWriteMap
1078 1078
  template<typename M, typename C>
1079 1079
  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
1080 1080
    return ShiftWriteMap<M, C>(m,v);
1081 1081
  }
1082 1082

	
1083 1083

	
1084 1084
  /// Scales a map with a constant.
1085 1085

	
1086 1086
  /// This \ref concepts::ReadMap "read-only map" returns the value of
1087 1087
  /// the given map multiplied from the left side with a constant value.
1088 1088
  /// Its \c Key and \c Value are inherited from \c M.
1089 1089
  ///
1090 1090
  /// Actually,
1091 1091
  /// \code
1092 1092
  ///   ScaleMap<M> sc(m,v);
1093 1093
  /// \endcode
1094 1094
  /// is equivalent to
1095 1095
  /// \code
1096 1096
  ///   ConstMap<M::Key, M::Value> cm(v);
1097 1097
  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1098 1098
  /// \endcode
1099 1099
  ///
1100 1100
  /// The simplest way of using this map is through the scaleMap()
1101 1101
  /// function.
1102 1102
  ///
1103 1103
  /// \sa ScaleWriteMap
1104 1104
  template<typename M, typename C = typename M::Value>
1105 1105
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
1106 1106
    const M &_m;
1107 1107
    C _v;
1108 1108
  public:
1109 1109
    ///\e
1110 1110
    typedef typename M::Key Key;
1111 1111
    ///\e
1112 1112
    typedef typename M::Value Value;
1113 1113

	
1114 1114
    /// Constructor
1115 1115

	
1116 1116
    /// Constructor.
1117 1117
    /// \param m The undelying map.
1118 1118
    /// \param v The constant value.
1119 1119
    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
1120 1120
    ///\e
1121 1121
    Value operator[](const Key &k) const { return _v*_m[k]; }
1122 1122
  };
1123 1123

	
1124 1124
  /// Scales a map with a constant (read-write version).
1125 1125

	
1126 1126
  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1127 1127
  /// the given map multiplied from the left side with a constant value.
1128 1128
  /// Its \c Key and \c Value are inherited from \c M.
1129 1129
  /// It can also be used as write map if the \c / operator is defined
1130 1130
  /// between \c Value and \c C and the given multiplier is not zero.
1131 1131
  ///
1132 1132
  /// The simplest way of using this map is through the scaleWriteMap()
1133 1133
  /// function.
1134 1134
  ///
1135 1135
  /// \sa ScaleMap
1136 1136
  template<typename M, typename C = typename M::Value>
1137 1137
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
1138 1138
    M &_m;
1139 1139
    C _v;
1140 1140
  public:
1141 1141
    ///\e
1142 1142
    typedef typename M::Key Key;
1143 1143
    ///\e
1144 1144
    typedef typename M::Value Value;
1145 1145

	
1146 1146
    /// Constructor
1147 1147

	
1148 1148
    /// Constructor.
1149 1149
    /// \param m The undelying map.
1150 1150
    /// \param v The constant value.
1151 1151
    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1152 1152
    ///\e
1153 1153
    Value operator[](const Key &k) const { return _v*_m[k]; }
1154 1154
    ///\e
1155 1155
    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1156 1156
  };
1157 1157

	
1158 1158
  /// Returns a \c ScaleMap class
1159 1159

	
1160 1160
  /// This function just returns a \c ScaleMap class.
1161 1161
  ///
1162 1162
  /// For example, if \c m is a map with \c double values and \c v is
1163 1163
  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1164 1164
  /// <tt>v*m[x]</tt>.
1165 1165
  ///
1166 1166
  /// \relates ScaleMap
1167 1167
  template<typename M, typename C>
1168 1168
  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
1169 1169
    return ScaleMap<M, C>(m,v);
1170 1170
  }
1171 1171

	
1172 1172
  /// Returns a \c ScaleWriteMap class
1173 1173

	
1174 1174
  /// This function just returns a \c ScaleWriteMap class.
1175 1175
  ///
1176 1176
  /// For example, if \c m is a map with \c double values and \c v is
1177 1177
  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1178 1178
  /// <tt>v*m[x]</tt>.
1179 1179
  /// Moreover it makes also possible to write the map.
1180 1180
  ///
1181 1181
  /// \relates ScaleWriteMap
1182 1182
  template<typename M, typename C>
1183 1183
  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
1184 1184
    return ScaleWriteMap<M, C>(m,v);
1185 1185
  }
1186 1186

	
1187 1187

	
1188 1188
  /// Negative of a map
1189 1189

	
1190 1190
  /// This \ref concepts::ReadMap "read-only map" returns the negative
1191 1191
  /// of the values of the given map (using the unary \c - operator).
1192 1192
  /// Its \c Key and \c Value are inherited from \c M.
1193 1193
  ///
1194 1194
  /// If M::Value is \c int, \c double etc., then
1195 1195
  /// \code
1196 1196
  ///   NegMap<M> neg(m);
1197 1197
  /// \endcode
1198 1198
  /// is equivalent to
1199 1199
  /// \code
1200 1200
  ///   ScaleMap<M> neg(m,-1);
1201 1201
  /// \endcode
1202 1202
  ///
1203 1203
  /// The simplest way of using this map is through the negMap()
1204 1204
  /// function.
1205 1205
  ///
1206 1206
  /// \sa NegWriteMap
1207 1207
  template<typename M>
1208 1208
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
1209 1209
    const M& _m;
1210 1210
  public:
1211 1211
    ///\e
1212 1212
    typedef typename M::Key Key;
1213 1213
    ///\e
1214 1214
    typedef typename M::Value Value;
1215 1215

	
1216 1216
    /// Constructor
1217 1217
    NegMap(const M &m) : _m(m) {}
1218 1218
    ///\e
1219 1219
    Value operator[](const Key &k) const { return -_m[k]; }
1220 1220
  };
1221 1221

	
1222 1222
  /// Negative of a map (read-write version)
1223 1223

	
1224 1224
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1225 1225
  /// negative of the values of the given map (using the unary \c -
1226 1226
  /// operator).
1227 1227
  /// Its \c Key and \c Value are inherited from \c M.
1228 1228
  /// It makes also possible to write the map.
1229 1229
  ///
1230 1230
  /// If M::Value is \c int, \c double etc., then
1231 1231
  /// \code
1232 1232
  ///   NegWriteMap<M> neg(m);
1233 1233
  /// \endcode
1234 1234
  /// is equivalent to
1235 1235
  /// \code
1236 1236
  ///   ScaleWriteMap<M> neg(m,-1);
1237 1237
  /// \endcode
1238 1238
  ///
1239 1239
  /// The simplest way of using this map is through the negWriteMap()
1240 1240
  /// function.
1241 1241
  ///
1242 1242
  /// \sa NegMap
1243 1243
  template<typename M>
1244 1244
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
1245 1245
    M &_m;
1246 1246
  public:
1247 1247
    ///\e
1248 1248
    typedef typename M::Key Key;
1249 1249
    ///\e
1250 1250
    typedef typename M::Value Value;
1251 1251

	
1252 1252
    /// Constructor
1253 1253
    NegWriteMap(M &m) : _m(m) {}
1254 1254
    ///\e
1255 1255
    Value operator[](const Key &k) const { return -_m[k]; }
1256 1256
    ///\e
1257 1257
    void set(const Key &k, const Value &v) { _m.set(k, -v); }
1258 1258
  };
1259 1259

	
1260 1260
  /// Returns a \c NegMap class
1261 1261

	
1262 1262
  /// This function just returns a \c NegMap class.
1263 1263
  ///
1264 1264
  /// For example, if \c m is a map with \c double values, then
1265 1265
  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1266 1266
  ///
1267 1267
  /// \relates NegMap
1268 1268
  template <typename M>
1269 1269
  inline NegMap<M> negMap(const M &m) {
1270 1270
    return NegMap<M>(m);
1271 1271
  }
1272 1272

	
1273 1273
  /// Returns a \c NegWriteMap class
1274 1274

	
1275 1275
  /// This function just returns a \c NegWriteMap class.
1276 1276
  ///
1277 1277
  /// For example, if \c m is a map with \c double values, then
1278 1278
  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1279 1279
  /// Moreover it makes also possible to write the map.
1280 1280
  ///
1281 1281
  /// \relates NegWriteMap
1282 1282
  template <typename M>
1283 1283
  inline NegWriteMap<M> negWriteMap(M &m) {
1284 1284
    return NegWriteMap<M>(m);
1285 1285
  }
1286 1286

	
1287 1287

	
1288 1288
  /// Absolute value of a map
1289 1289

	
1290 1290
  /// This \ref concepts::ReadMap "read-only map" returns the absolute
1291 1291
  /// value of the values of the given map.
1292 1292
  /// Its \c Key and \c Value are inherited from \c M.
1293 1293
  /// \c Value must be comparable to \c 0 and the unary \c -
1294 1294
  /// operator must be defined for it, of course.
1295 1295
  ///
1296 1296
  /// The simplest way of using this map is through the absMap()
1297 1297
  /// function.
1298 1298
  template<typename M>
1299 1299
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1300 1300
    const M &_m;
1301 1301
  public:
1302 1302
    ///\e
1303 1303
    typedef typename M::Key Key;
1304 1304
    ///\e
1305 1305
    typedef typename M::Value Value;
1306 1306

	
1307 1307
    /// Constructor
1308 1308
    AbsMap(const M &m) : _m(m) {}
1309 1309
    ///\e
1310 1310
    Value operator[](const Key &k) const {
1311 1311
      Value tmp = _m[k];
1312 1312
      return tmp >= 0 ? tmp : -tmp;
1313 1313
    }
1314 1314

	
1315 1315
  };
1316 1316

	
1317 1317
  /// Returns an \c AbsMap class
1318 1318

	
1319 1319
  /// This function just returns an \c AbsMap class.
1320 1320
  ///
1321 1321
  /// For example, if \c m is a map with \c double values, then
1322 1322
  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1323 1323
  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1324 1324
  /// negative.
1325 1325
  ///
1326 1326
  /// \relates AbsMap
1327 1327
  template<typename M>
1328 1328
  inline AbsMap<M> absMap(const M &m) {
1329 1329
    return AbsMap<M>(m);
1330 1330
  }
1331 1331

	
1332 1332
  /// @}
1333 1333

	
1334 1334
  // Logical maps and map adaptors:
1335 1335

	
1336 1336
  /// \addtogroup maps
1337 1337
  /// @{
1338 1338

	
1339 1339
  /// Constant \c true map.
1340 1340

	
1341 1341
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1342 1342
  /// each key.
1343 1343
  ///
1344 1344
  /// Note that
1345 1345
  /// \code
1346 1346
  ///   TrueMap<K> tm;
1347 1347
  /// \endcode
1348 1348
  /// is equivalent to
1349 1349
  /// \code
1350 1350
  ///   ConstMap<K,bool> tm(true);
1351 1351
  /// \endcode
1352 1352
  ///
1353 1353
  /// \sa FalseMap
1354 1354
  /// \sa ConstMap
1355 1355
  template <typename K>
1356 1356
  class TrueMap : public MapBase<K, bool> {
1357 1357
  public:
1358 1358
    ///\e
1359 1359
    typedef K Key;
1360 1360
    ///\e
1361 1361
    typedef bool Value;
1362 1362

	
1363 1363
    /// Gives back \c true.
1364 1364
    Value operator[](const Key&) const { return true; }
1365 1365
  };
1366 1366

	
1367 1367
  /// Returns a \c TrueMap class
1368 1368

	
1369 1369
  /// This function just returns a \c TrueMap class.
1370 1370
  /// \relates TrueMap
1371 1371
  template<typename K>
1372 1372
  inline TrueMap<K> trueMap() {
1373 1373
    return TrueMap<K>();
1374 1374
  }
1375 1375

	
1376 1376

	
1377 1377
  /// Constant \c false map.
1378 1378

	
1379 1379
  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1380 1380
  /// each key.
1381 1381
  ///
1382 1382
  /// Note that
1383 1383
  /// \code
1384 1384
  ///   FalseMap<K> fm;
1385 1385
  /// \endcode
1386 1386
  /// is equivalent to
1387 1387
  /// \code
1388 1388
  ///   ConstMap<K,bool> fm(false);
1389 1389
  /// \endcode
1390 1390
  ///
1391 1391
  /// \sa TrueMap
1392 1392
  /// \sa ConstMap
1393 1393
  template <typename K>
1394 1394
  class FalseMap : public MapBase<K, bool> {
1395 1395
  public:
1396 1396
    ///\e
1397 1397
    typedef K Key;
1398 1398
    ///\e
1399 1399
    typedef bool Value;
1400 1400

	
1401 1401
    /// Gives back \c false.
1402 1402
    Value operator[](const Key&) const { return false; }
1403 1403
  };
1404 1404

	
1405 1405
  /// Returns a \c FalseMap class
1406 1406

	
1407 1407
  /// This function just returns a \c FalseMap class.
1408 1408
  /// \relates FalseMap
1409 1409
  template<typename K>
1410 1410
  inline FalseMap<K> falseMap() {
1411 1411
    return FalseMap<K>();
1412 1412
  }
1413 1413

	
1414 1414
  /// @}
1415 1415

	
1416 1416
  /// \addtogroup map_adaptors
1417 1417
  /// @{
1418 1418

	
1419 1419
  /// Logical 'and' of two maps
1420 1420

	
1421 1421
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1422 1422
  /// 'and' of the values of the two given maps.
1423 1423
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1424 1424
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1425 1425
  ///
1426 1426
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1427 1427
  /// \code
1428 1428
  ///   AndMap<M1,M2> am(m1,m2);
1429 1429
  /// \endcode
1430 1430
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
1431 1431
  ///
1432 1432
  /// The simplest way of using this map is through the andMap()
1433 1433
  /// function.
1434 1434
  ///
1435 1435
  /// \sa OrMap
1436 1436
  /// \sa NotMap, NotWriteMap
1437 1437
  template<typename M1, typename M2>
1438 1438
  class AndMap : public MapBase<typename M1::Key, bool> {
1439 1439
    const M1 &_m1;
1440 1440
    const M2 &_m2;
1441 1441
  public:
1442 1442
    ///\e
1443 1443
    typedef typename M1::Key Key;
1444 1444
    ///\e
1445 1445
    typedef bool Value;
1446 1446

	
1447 1447
    /// Constructor
1448 1448
    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1449 1449
    ///\e
1450 1450
    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1451 1451
  };
1452 1452

	
1453 1453
  /// Returns an \c AndMap class
1454 1454

	
1455 1455
  /// This function just returns an \c AndMap class.
1456 1456
  ///
1457 1457
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1458 1458
  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1459 1459
  /// <tt>m1[x]&&m2[x]</tt>.
1460 1460
  ///
1461 1461
  /// \relates AndMap
1462 1462
  template<typename M1, typename M2>
1463 1463
  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1464 1464
    return AndMap<M1, M2>(m1,m2);
1465 1465
  }
1466 1466

	
1467 1467

	
1468 1468
  /// Logical 'or' of two maps
1469 1469

	
1470 1470
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1471 1471
  /// 'or' of the values of the two given maps.
1472 1472
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1473 1473
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1474 1474
  ///
1475 1475
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1476 1476
  /// \code
1477 1477
  ///   OrMap<M1,M2> om(m1,m2);
1478 1478
  /// \endcode
1479 1479
  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
1480 1480
  ///
1481 1481
  /// The simplest way of using this map is through the orMap()
1482 1482
  /// function.
1483 1483
  ///
1484 1484
  /// \sa AndMap
1485 1485
  /// \sa NotMap, NotWriteMap
1486 1486
  template<typename M1, typename M2>
1487 1487
  class OrMap : public MapBase<typename M1::Key, bool> {
1488 1488
    const M1 &_m1;
1489 1489
    const M2 &_m2;
1490 1490
  public:
1491 1491
    ///\e
1492 1492
    typedef typename M1::Key Key;
1493 1493
    ///\e
1494 1494
    typedef bool Value;
1495 1495

	
1496 1496
    /// Constructor
1497 1497
    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1498 1498
    ///\e
1499 1499
    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1500 1500
  };
1501 1501

	
1502 1502
  /// Returns an \c OrMap class
1503 1503

	
1504 1504
  /// This function just returns an \c OrMap class.
1505 1505
  ///
1506 1506
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1507 1507
  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1508 1508
  /// <tt>m1[x]||m2[x]</tt>.
1509 1509
  ///
1510 1510
  /// \relates OrMap
1511 1511
  template<typename M1, typename M2>
1512 1512
  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1513 1513
    return OrMap<M1, M2>(m1,m2);
1514 1514
  }
1515 1515

	
1516 1516

	
1517 1517
  /// Logical 'not' of a map
1518 1518

	
1519 1519
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1520 1520
  /// negation of the values of the given map.
1521 1521
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1522 1522
  ///
1523 1523
  /// The simplest way of using this map is through the notMap()
1524 1524
  /// function.
1525 1525
  ///
1526 1526
  /// \sa NotWriteMap
1527 1527
  template <typename M>
1528 1528
  class NotMap : public MapBase<typename M::Key, bool> {
1529 1529
    const M &_m;
1530 1530
  public:
1531 1531
    ///\e
1532 1532
    typedef typename M::Key Key;
1533 1533
    ///\e
1534 1534
    typedef bool Value;
1535 1535

	
1536 1536
    /// Constructor
1537 1537
    NotMap(const M &m) : _m(m) {}
1538 1538
    ///\e
1539 1539
    Value operator[](const Key &k) const { return !_m[k]; }
1540 1540
  };
1541 1541

	
1542 1542
  /// Logical 'not' of a map (read-write version)
1543 1543

	
1544 1544
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1545 1545
  /// logical negation of the values of the given map.
1546 1546
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1547 1547
  /// It makes also possible to write the map. When a value is set,
1548 1548
  /// the opposite value is set to the original map.
1549 1549
  ///
1550 1550
  /// The simplest way of using this map is through the notWriteMap()
1551 1551
  /// function.
1552 1552
  ///
1553 1553
  /// \sa NotMap
1554 1554
  template <typename M>
1555 1555
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1556 1556
    M &_m;
1557 1557
  public:
1558 1558
    ///\e
1559 1559
    typedef typename M::Key Key;
1560 1560
    ///\e
1561 1561
    typedef bool Value;
1562 1562

	
1563 1563
    /// Constructor
1564 1564
    NotWriteMap(M &m) : _m(m) {}
1565 1565
    ///\e
1566 1566
    Value operator[](const Key &k) const { return !_m[k]; }
1567 1567
    ///\e
1568 1568
    void set(const Key &k, bool v) { _m.set(k, !v); }
1569 1569
  };
1570 1570

	
1571 1571
  /// Returns a \c NotMap class
1572 1572

	
1573 1573
  /// This function just returns a \c NotMap class.
1574 1574
  ///
1575 1575
  /// For example, if \c m is a map with \c bool values, then
1576 1576
  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1577 1577
  ///
1578 1578
  /// \relates NotMap
1579 1579
  template <typename M>
1580 1580
  inline NotMap<M> notMap(const M &m) {
1581 1581
    return NotMap<M>(m);
1582 1582
  }
1583 1583

	
1584 1584
  /// Returns a \c NotWriteMap class
1585 1585

	
1586 1586
  /// This function just returns a \c NotWriteMap class.
1587 1587
  ///
1588 1588
  /// For example, if \c m is a map with \c bool values, then
1589 1589
  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1590 1590
  /// Moreover it makes also possible to write the map.
1591 1591
  ///
1592 1592
  /// \relates NotWriteMap
1593 1593
  template <typename M>
1594 1594
  inline NotWriteMap<M> notWriteMap(M &m) {
1595 1595
    return NotWriteMap<M>(m);
1596 1596
  }
1597 1597

	
1598 1598

	
1599 1599
  /// Combination of two maps using the \c == operator
1600 1600

	
1601 1601
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1602 1602
  /// the keys for which the corresponding values of the two maps are
1603 1603
  /// equal.
1604 1604
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1605 1605
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1606 1606
  ///
1607 1607
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1608 1608
  /// \code
1609 1609
  ///   EqualMap<M1,M2> em(m1,m2);
1610 1610
  /// \endcode
1611 1611
  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1612 1612
  ///
1613 1613
  /// The simplest way of using this map is through the equalMap()
1614 1614
  /// function.
1615 1615
  ///
1616 1616
  /// \sa LessMap
1617 1617
  template<typename M1, typename M2>
1618 1618
  class EqualMap : public MapBase<typename M1::Key, bool> {
1619 1619
    const M1 &_m1;
1620 1620
    const M2 &_m2;
1621 1621
  public:
1622 1622
    ///\e
1623 1623
    typedef typename M1::Key Key;
1624 1624
    ///\e
1625 1625
    typedef bool Value;
1626 1626

	
1627 1627
    /// Constructor
1628 1628
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1629 1629
    ///\e
1630 1630
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1631 1631
  };
1632 1632

	
1633 1633
  /// Returns an \c EqualMap class
1634 1634

	
1635 1635
  /// This function just returns an \c EqualMap class.
1636 1636
  ///
1637 1637
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1638 1638
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1639 1639
  /// <tt>m1[x]==m2[x]</tt>.
1640 1640
  ///
1641 1641
  /// \relates EqualMap
1642 1642
  template<typename M1, typename M2>
1643 1643
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1644 1644
    return EqualMap<M1, M2>(m1,m2);
1645 1645
  }
1646 1646

	
1647 1647

	
1648 1648
  /// Combination of two maps using the \c < operator
1649 1649

	
1650 1650
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1651 1651
  /// the keys for which the corresponding value of the first map is
1652 1652
  /// less then the value of the second map.
1653 1653
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1654 1654
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1655 1655
  ///
1656 1656
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1657 1657
  /// \code
1658 1658
  ///   LessMap<M1,M2> lm(m1,m2);
1659 1659
  /// \endcode
1660 1660
  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1661 1661
  ///
1662 1662
  /// The simplest way of using this map is through the lessMap()
1663 1663
  /// function.
1664 1664
  ///
1665 1665
  /// \sa EqualMap
1666 1666
  template<typename M1, typename M2>
1667 1667
  class LessMap : public MapBase<typename M1::Key, bool> {
1668 1668
    const M1 &_m1;
1669 1669
    const M2 &_m2;
1670 1670
  public:
1671 1671
    ///\e
1672 1672
    typedef typename M1::Key Key;
1673 1673
    ///\e
1674 1674
    typedef bool Value;
1675 1675

	
1676 1676
    /// Constructor
1677 1677
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1678 1678
    ///\e
1679 1679
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1680 1680
  };
1681 1681

	
1682 1682
  /// Returns an \c LessMap class
1683 1683

	
1684 1684
  /// This function just returns an \c LessMap class.
1685 1685
  ///
1686 1686
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1687 1687
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1688 1688
  /// <tt>m1[x]<m2[x]</tt>.
1689 1689
  ///
1690 1690
  /// \relates LessMap
1691 1691
  template<typename M1, typename M2>
1692 1692
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1693 1693
    return LessMap<M1, M2>(m1,m2);
1694 1694
  }
1695 1695

	
1696 1696
  namespace _maps_bits {
1697 1697

	
1698 1698
    template <typename _Iterator, typename Enable = void>
1699 1699
    struct IteratorTraits {
1700 1700
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1701 1701
    };
1702 1702

	
1703 1703
    template <typename _Iterator>
1704 1704
    struct IteratorTraits<_Iterator,
1705 1705
      typename exists<typename _Iterator::container_type>::type>
1706 1706
    {
1707 1707
      typedef typename _Iterator::container_type::value_type Value;
1708 1708
    };
1709 1709

	
1710 1710
  }
1711 1711

	
1712 1712
  /// @}
1713 1713

	
1714 1714
  /// \addtogroup maps
1715 1715
  /// @{
1716 1716

	
1717 1717
  /// \brief Writable bool map for logging each \c true assigned element
1718 1718
  ///
1719 1719
  /// A \ref concepts::WriteMap "writable" bool map for logging
1720 1720
  /// each \c true assigned element, i.e it copies subsequently each
1721 1721
  /// keys set to \c true to the given iterator.
1722 1722
  /// The most important usage of it is storing certain nodes or arcs
1723 1723
  /// that were marked \c true by an algorithm.
1724 1724
  ///
1725 1725
  /// There are several algorithms that provide solutions through bool
1726 1726
  /// maps and most of them assign \c true at most once for each key.
1727 1727
  /// In these cases it is a natural request to store each \c true
1728 1728
  /// assigned elements (in order of the assignment), which can be
1729 1729
  /// easily done with LoggerBoolMap.
1730 1730
  ///
1731 1731
  /// The simplest way of using this map is through the loggerBoolMap()
1732 1732
  /// function.
1733 1733
  ///
1734 1734
  /// \tparam IT The type of the iterator.
1735 1735
  /// \tparam KEY The key type of the map. The default value set
1736 1736
  /// according to the iterator type should work in most cases.
1737 1737
  ///
1738 1738
  /// \note The container of the iterator must contain enough space
1739 1739
  /// for the elements or the iterator should be an inserter iterator.
1740 1740
#ifdef DOXYGEN
1741 1741
  template <typename IT, typename KEY>
1742 1742
#else
1743 1743
  template <typename IT,
1744 1744
            typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
1745 1745
#endif
1746 1746
  class LoggerBoolMap : public MapBase<KEY, bool> {
1747 1747
  public:
1748 1748

	
1749 1749
    ///\e
1750 1750
    typedef KEY Key;
1751 1751
    ///\e
1752 1752
    typedef bool Value;
1753 1753
    ///\e
1754 1754
    typedef IT Iterator;
1755 1755

	
1756 1756
    /// Constructor
1757 1757
    LoggerBoolMap(Iterator it)
1758 1758
      : _begin(it), _end(it) {}
1759 1759

	
1760 1760
    /// Gives back the given iterator set for the first key
1761 1761
    Iterator begin() const {
1762 1762
      return _begin;
1763 1763
    }
1764 1764

	
1765 1765
    /// Gives back the the 'after the last' iterator
1766 1766
    Iterator end() const {
1767 1767
      return _end;
1768 1768
    }
1769 1769

	
1770 1770
    /// The set function of the map
1771 1771
    void set(const Key& key, Value value) {
1772 1772
      if (value) {
1773 1773
        *_end++ = key;
1774 1774
      }
1775 1775
    }
1776 1776

	
1777 1777
  private:
1778 1778
    Iterator _begin;
1779 1779
    Iterator _end;
1780 1780
  };
1781 1781

	
1782 1782
  /// Returns a \c LoggerBoolMap class
1783 1783

	
1784 1784
  /// This function just returns a \c LoggerBoolMap class.
1785 1785
  ///
1786 1786
  /// The most important usage of it is storing certain nodes or arcs
1787 1787
  /// that were marked \c true by an algorithm.
1788 1788
  /// For example, it makes easier to store the nodes in the processing
1789 1789
  /// order of Dfs algorithm, as the following examples show.
1790 1790
  /// \code
1791 1791
  ///   std::vector<Node> v;
1792 1792
  ///   dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s);
1793 1793
  /// \endcode
1794 1794
  /// \code
1795 1795
  ///   std::vector<Node> v(countNodes(g));
1796 1796
  ///   dfs(g).processedMap(loggerBoolMap(v.begin())).run(s);
1797 1797
  /// \endcode
1798 1798
  ///
1799 1799
  /// \note The container of the iterator must contain enough space
1800 1800
  /// for the elements or the iterator should be an inserter iterator.
1801 1801
  ///
1802 1802
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
1803 1803
  /// it cannot be used when a readable map is needed, for example, as
1804 1804
  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
1805 1805
  ///
1806 1806
  /// \relates LoggerBoolMap
1807 1807
  template<typename Iterator>
1808 1808
  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
1809 1809
    return LoggerBoolMap<Iterator>(it);
1810 1810
  }
1811 1811

	
1812 1812
  /// @}
1813 1813

	
1814 1814
  /// \addtogroup graph_maps
1815 1815
  /// @{
1816 1816

	
1817 1817
  /// \brief Provides an immutable and unique id for each item in a graph.
1818 1818
  ///
1819 1819
  /// IdMap provides a unique and immutable id for each item of the
1820 1820
  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1821 1821
  ///  - \b unique: different items get different ids,
1822 1822
  ///  - \b immutable: the id of an item does not change (even if you
1823 1823
  ///    delete other nodes).
1824 1824
  ///
1825 1825
  /// Using this map you get access (i.e. can read) the inner id values of
1826 1826
  /// the items stored in the graph, which is returned by the \c id()
1827 1827
  /// function of the graph. This map can be inverted with its member
1828 1828
  /// class \c InverseMap or with the \c operator()() member.
1829 1829
  ///
1830 1830
  /// \tparam GR The graph type.
1831 1831
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1832 1832
  /// \c GR::Edge).
1833 1833
  ///
1834 1834
  /// \see RangeIdMap
1835 1835
  template <typename GR, typename K>
1836 1836
  class IdMap : public MapBase<K, int> {
1837 1837
  public:
1838 1838
    /// The graph type of IdMap.
1839 1839
    typedef GR Graph;
1840 1840
    typedef GR Digraph;
1841 1841
    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1842 1842
    typedef K Item;
1843 1843
    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1844 1844
    typedef K Key;
1845 1845
    /// The value type of IdMap.
1846 1846
    typedef int Value;
1847 1847

	
1848 1848
    /// \brief Constructor.
1849 1849
    ///
1850 1850
    /// Constructor of the map.
1851 1851
    explicit IdMap(const Graph& graph) : _graph(&graph) {}
1852 1852

	
1853 1853
    /// \brief Gives back the \e id of the item.
1854 1854
    ///
1855 1855
    /// Gives back the immutable and unique \e id of the item.
1856 1856
    int operator[](const Item& item) const { return _graph->id(item);}
1857 1857

	
1858 1858
    /// \brief Gives back the \e item by its id.
1859 1859
    ///
1860 1860
    /// Gives back the \e item by its id.
1861 1861
    Item operator()(int id) { return _graph->fromId(id, Item()); }
1862 1862

	
1863 1863
  private:
1864 1864
    const Graph* _graph;
1865 1865

	
1866 1866
  public:
1867 1867

	
1868 1868
    /// \brief The inverse map type of IdMap.
1869 1869
    ///
1870 1870
    /// The inverse map type of IdMap. The subscript operator gives back
1871 1871
    /// an item by its id.
1872 1872
    /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1873 1873
    /// \see inverse()
1874 1874
    class InverseMap {
1875 1875
    public:
1876 1876

	
1877 1877
      /// \brief Constructor.
1878 1878
      ///
1879 1879
      /// Constructor for creating an id-to-item map.
1880 1880
      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
1881 1881

	
1882 1882
      /// \brief Constructor.
1883 1883
      ///
1884 1884
      /// Constructor for creating an id-to-item map.
1885 1885
      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
1886 1886

	
1887 1887
      /// \brief Gives back an item by its id.
1888 1888
      ///
1889 1889
      /// Gives back an item by its id.
1890 1890
      Item operator[](int id) const { return _graph->fromId(id, Item());}
1891 1891

	
1892 1892
    private:
1893 1893
      const Graph* _graph;
1894 1894
    };
1895 1895

	
1896 1896
    /// \brief Gives back the inverse of the map.
1897 1897
    ///
1898 1898
    /// Gives back the inverse of the IdMap.
1899 1899
    InverseMap inverse() const { return InverseMap(*_graph);}
1900 1900
  };
1901 1901

	
1902 1902
  /// \brief Returns an \c IdMap class.
1903 1903
  ///
1904 1904
  /// This function just returns an \c IdMap class.
1905 1905
  /// \relates IdMap
1906 1906
  template <typename K, typename GR>
1907 1907
  inline IdMap<GR, K> idMap(const GR& graph) {
1908 1908
    return IdMap<GR, K>(graph);
1909 1909
  }
1910 1910

	
1911 1911
  /// \brief General cross reference graph map type.
1912 1912

	
1913 1913
  /// This class provides simple invertable graph maps.
1914 1914
  /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
1915 1915
  /// and if a key is set to a new value, then stores it in the inverse map.
1916 1916
  /// The graph items can be accessed by their values either using
1917 1917
  /// \c InverseMap or \c operator()(), and the values of the map can be
1918 1918
  /// accessed with an STL compatible forward iterator (\c ValueIt).
1919 1919
  /// 
1920 1920
  /// This map is intended to be used when all associated values are
1921 1921
  /// different (the map is actually invertable) or there are only a few
1922 1922
  /// items with the same value.
1923 1923
  /// Otherwise consider to use \c IterableValueMap, which is more 
1924 1924
  /// suitable and more efficient for such cases. It provides iterators
1925 1925
  /// to traverse the items with the same associated value, but
1926 1926
  /// it does not have \c InverseMap.
1927 1927
  ///
1928 1928
  /// This type is not reference map, so it cannot be modified with
1929 1929
  /// the subscript operator.
1930 1930
  ///
1931 1931
  /// \tparam GR The graph type.
1932 1932
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1933 1933
  /// \c GR::Edge).
1934 1934
  /// \tparam V The value type of the map.
1935 1935
  ///
1936 1936
  /// \see IterableValueMap
1937 1937
  template <typename GR, typename K, typename V>
1938 1938
  class CrossRefMap
1939 1939
    : protected ItemSetTraits<GR, K>::template Map<V>::Type {
1940 1940
  private:
1941 1941

	
1942 1942
    typedef typename ItemSetTraits<GR, K>::
1943 1943
      template Map<V>::Type Map;
1944 1944

	
1945 1945
    typedef std::multimap<V, K> Container;
1946 1946
    Container _inv_map;
1947 1947

	
1948 1948
  public:
1949 1949

	
1950 1950
    /// The graph type of CrossRefMap.
1951 1951
    typedef GR Graph;
1952 1952
    typedef GR Digraph;
1953 1953
    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1954 1954
    typedef K Item;
1955 1955
    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1956 1956
    typedef K Key;
1957 1957
    /// The value type of CrossRefMap.
1958 1958
    typedef V Value;
1959 1959

	
1960 1960
    /// \brief Constructor.
1961 1961
    ///
1962 1962
    /// Construct a new CrossRefMap for the given graph.
1963 1963
    explicit CrossRefMap(const Graph& graph) : Map(graph) {}
1964 1964

	
1965 1965
    /// \brief Forward iterator for values.
1966 1966
    ///
1967 1967
    /// This iterator is an STL compatible forward
1968 1968
    /// iterator on the values of the map. The values can
1969 1969
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1970 1970
    /// They are considered with multiplicity, so each value is
1971 1971
    /// traversed for each item it is assigned to.
1972 1972
    class ValueIt
1973 1973
      : public std::iterator<std::forward_iterator_tag, Value> {
1974 1974
      friend class CrossRefMap;
1975 1975
    private:
1976 1976
      ValueIt(typename Container::const_iterator _it)
1977 1977
        : it(_it) {}
1978 1978
    public:
1979 1979

	
1980 1980
      /// Constructor
1981 1981
      ValueIt() {}
1982 1982

	
1983 1983
      /// \e
1984 1984
      ValueIt& operator++() { ++it; return *this; }
1985 1985
      /// \e
1986 1986
      ValueIt operator++(int) {
1987 1987
        ValueIt tmp(*this);
1988 1988
        operator++();
1989 1989
        return tmp;
1990 1990
      }
1991 1991

	
1992 1992
      /// \e
1993 1993
      const Value& operator*() const { return it->first; }
1994 1994
      /// \e
1995 1995
      const Value* operator->() const { return &(it->first); }
1996 1996

	
1997 1997
      /// \e
1998 1998
      bool operator==(ValueIt jt) const { return it == jt.it; }
1999 1999
      /// \e
2000 2000
      bool operator!=(ValueIt jt) const { return it != jt.it; }
2001 2001

	
2002 2002
    private:
2003 2003
      typename Container::const_iterator it;
2004 2004
    };
2005 2005
    
2006 2006
    /// Alias for \c ValueIt
2007 2007
    typedef ValueIt ValueIterator;
2008 2008

	
2009 2009
    /// \brief Returns an iterator to the first value.
2010 2010
    ///
2011 2011
    /// Returns an STL compatible iterator to the
2012 2012
    /// first value of the map. The values of the
2013 2013
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
2014 2014
    /// range.
2015 2015
    ValueIt beginValue() const {
2016 2016
      return ValueIt(_inv_map.begin());
2017 2017
    }
2018 2018

	
2019 2019
    /// \brief Returns an iterator after the last value.
2020 2020
    ///
2021 2021
    /// Returns an STL compatible iterator after the
2022 2022
    /// last value of the map. The values of the
2023 2023
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
2024 2024
    /// range.
2025 2025
    ValueIt endValue() const {
2026 2026
      return ValueIt(_inv_map.end());
2027 2027
    }
2028 2028

	
2029 2029
    /// \brief Sets the value associated with the given key.
2030 2030
    ///
2031 2031
    /// Sets the value associated with the given key.
2032 2032
    void set(const Key& key, const Value& val) {
2033 2033
      Value oldval = Map::operator[](key);
2034 2034
      typename Container::iterator it;
2035 2035
      for (it = _inv_map.equal_range(oldval).first;
2036 2036
           it != _inv_map.equal_range(oldval).second; ++it) {
2037 2037
        if (it->second == key) {
2038 2038
          _inv_map.erase(it);
2039 2039
          break;
2040 2040
        }
2041 2041
      }
2042 2042
      _inv_map.insert(std::make_pair(val, key));
2043 2043
      Map::set(key, val);
2044 2044
    }
2045 2045

	
2046 2046
    /// \brief Returns the value associated with the given key.
2047 2047
    ///
2048 2048
    /// Returns the value associated with the given key.
2049 2049
    typename MapTraits<Map>::ConstReturnValue
2050 2050
    operator[](const Key& key) const {
2051 2051
      return Map::operator[](key);
2052 2052
    }
2053 2053

	
2054 2054
    /// \brief Gives back an item by its value.
2055 2055
    ///
2056 2056
    /// This function gives back an item that is assigned to
2057 2057
    /// the given value or \c INVALID if no such item exists.
2058 2058
    /// If there are more items with the same associated value,
2059 2059
    /// only one of them is returned.
2060 2060
    Key operator()(const Value& val) const {
2061 2061
      typename Container::const_iterator it = _inv_map.find(val);
2062 2062
      return it != _inv_map.end() ? it->second : INVALID;
2063 2063
    }
2064 2064
    
2065 2065
    /// \brief Returns the number of items with the given value.
2066 2066
    ///
2067 2067
    /// This function returns the number of items with the given value
2068 2068
    /// associated with it.
2069 2069
    int count(const Value &val) const {
2070 2070
      return _inv_map.count(val);
2071 2071
    }
2072 2072

	
2073 2073
  protected:
2074 2074

	
2075 2075
    /// \brief Erase the key from the map and the inverse map.
2076 2076
    ///
2077 2077
    /// Erase the key from the map and the inverse map. It is called by the
2078 2078
    /// \c AlterationNotifier.
2079 2079
    virtual void erase(const Key& key) {
2080 2080
      Value val = Map::operator[](key);
2081 2081
      typename Container::iterator it;
2082 2082
      for (it = _inv_map.equal_range(val).first;
2083 2083
           it != _inv_map.equal_range(val).second; ++it) {
2084 2084
        if (it->second == key) {
2085 2085
          _inv_map.erase(it);
2086 2086
          break;
2087 2087
        }
2088 2088
      }
2089 2089
      Map::erase(key);
2090 2090
    }
2091 2091

	
2092 2092
    /// \brief Erase more keys from the map and the inverse map.
2093 2093
    ///
2094 2094
    /// Erase more keys from the map and the inverse map. It is called by the
2095 2095
    /// \c AlterationNotifier.
2096 2096
    virtual void erase(const std::vector<Key>& keys) {
2097 2097
      for (int i = 0; i < int(keys.size()); ++i) {
2098 2098
        Value val = Map::operator[](keys[i]);
2099 2099
        typename Container::iterator it;
2100 2100
        for (it = _inv_map.equal_range(val).first;
2101 2101
             it != _inv_map.equal_range(val).second; ++it) {
2102 2102
          if (it->second == keys[i]) {
2103 2103
            _inv_map.erase(it);
2104 2104
            break;
2105 2105
          }
2106 2106
        }
2107 2107
      }
2108 2108
      Map::erase(keys);
2109 2109
    }
2110 2110

	
2111 2111
    /// \brief Clear the keys from the map and the inverse map.
2112 2112
    ///
2113 2113
    /// Clear the keys from the map and the inverse map. It is called by the
2114 2114
    /// \c AlterationNotifier.
2115 2115
    virtual void clear() {
2116 2116
      _inv_map.clear();
2117 2117
      Map::clear();
2118 2118
    }
2119 2119

	
2120 2120
  public:
2121 2121

	
2122 2122
    /// \brief The inverse map type of CrossRefMap.
2123 2123
    ///
2124 2124
    /// The inverse map type of CrossRefMap. The subscript operator gives
2125 2125
    /// back an item by its value.
2126 2126
    /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
2127 2127
    /// \see inverse()
2128 2128
    class InverseMap {
2129 2129
    public:
2130 2130
      /// \brief Constructor
2131 2131
      ///
2132 2132
      /// Constructor of the InverseMap.
2133 2133
      explicit InverseMap(const CrossRefMap& inverted)
2134 2134
        : _inverted(inverted) {}
2135 2135

	
2136 2136
      /// The value type of the InverseMap.
2137 2137
      typedef typename CrossRefMap::Key Value;
2138 2138
      /// The key type of the InverseMap.
2139 2139
      typedef typename CrossRefMap::Value Key;
2140 2140

	
2141 2141
      /// \brief Subscript operator.
2142 2142
      ///
2143 2143
      /// Subscript operator. It gives back an item
2144 2144
      /// that is assigned to the given value or \c INVALID
2145 2145
      /// if no such item exists.
2146 2146
      Value operator[](const Key& key) const {
2147 2147
        return _inverted(key);
2148 2148
      }
2149 2149

	
2150 2150
    private:
2151 2151
      const CrossRefMap& _inverted;
2152 2152
    };
2153 2153

	
2154 2154
    /// \brief Gives back the inverse of the map.
2155 2155
    ///
2156 2156
    /// Gives back the inverse of the CrossRefMap.
2157 2157
    InverseMap inverse() const {
2158 2158
      return InverseMap(*this);
2159 2159
    }
2160 2160

	
2161 2161
  };
2162 2162

	
2163 2163
  /// \brief Provides continuous and unique id for the
2164 2164
  /// items of a graph.
2165 2165
  ///
2166 2166
  /// RangeIdMap provides a unique and continuous
2167 2167
  /// id for each item of a given type (\c Node, \c Arc or
2168 2168
  /// \c Edge) in a graph. This id is
2169 2169
  ///  - \b unique: different items get different ids,
2170 2170
  ///  - \b continuous: the range of the ids is the set of integers
2171 2171
  ///    between 0 and \c n-1, where \c n is the number of the items of
2172 2172
  ///    this type (\c Node, \c Arc or \c Edge).
2173 2173
  ///  - So, the ids can change when deleting an item of the same type.
2174 2174
  ///
2175 2175
  /// Thus this id is not (necessarily) the same as what can get using
2176 2176
  /// the \c id() function of the graph or \ref IdMap.
2177 2177
  /// This map can be inverted with its member class \c InverseMap,
2178 2178
  /// or with the \c operator()() member.
2179 2179
  ///
2180 2180
  /// \tparam GR The graph type.
2181 2181
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2182 2182
  /// \c GR::Edge).
2183 2183
  ///
2184 2184
  /// \see IdMap
2185 2185
  template <typename GR, typename K>
2186 2186
  class RangeIdMap
2187 2187
    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
2188 2188

	
2189 2189
    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
2190 2190

	
2191 2191
  public:
2192 2192
    /// The graph type of RangeIdMap.
2193 2193
    typedef GR Graph;
2194 2194
    typedef GR Digraph;
2195 2195
    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
2196 2196
    typedef K Item;
2197 2197
    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
2198 2198
    typedef K Key;
2199 2199
    /// The value type of RangeIdMap.
2200 2200
    typedef int Value;
2201 2201

	
2202 2202
    /// \brief Constructor.
2203 2203
    ///
2204 2204
    /// Constructor.
2205 2205
    explicit RangeIdMap(const Graph& gr) : Map(gr) {
2206 2206
      Item it;
2207 2207
      const typename Map::Notifier* nf = Map::notifier();
2208 2208
      for (nf->first(it); it != INVALID; nf->next(it)) {
2209 2209
        Map::set(it, _inv_map.size());
2210 2210
        _inv_map.push_back(it);
2211 2211
      }
2212 2212
    }
2213 2213

	
2214 2214
  protected:
2215 2215

	
2216 2216
    /// \brief Adds a new key to the map.
2217 2217
    ///
2218 2218
    /// Add a new key to the map. It is called by the
2219 2219
    /// \c AlterationNotifier.
2220 2220
    virtual void add(const Item& item) {
2221 2221
      Map::add(item);
2222 2222
      Map::set(item, _inv_map.size());
2223 2223
      _inv_map.push_back(item);
2224 2224
    }
2225 2225

	
2226 2226
    /// \brief Add more new keys to the map.
2227 2227
    ///
2228 2228
    /// Add more new keys to the map. It is called by the
2229 2229
    /// \c AlterationNotifier.
2230 2230
    virtual void add(const std::vector<Item>& items) {
2231 2231
      Map::add(items);
2232 2232
      for (int i = 0; i < int(items.size()); ++i) {
2233 2233
        Map::set(items[i], _inv_map.size());
2234 2234
        _inv_map.push_back(items[i]);
2235 2235
      }
2236 2236
    }
2237 2237

	
2238 2238
    /// \brief Erase the key from the map.
2239 2239
    ///
2240 2240
    /// Erase the key from the map. It is called by the
2241 2241
    /// \c AlterationNotifier.
2242 2242
    virtual void erase(const Item& item) {
2243 2243
      Map::set(_inv_map.back(), Map::operator[](item));
2244 2244
      _inv_map[Map::operator[](item)] = _inv_map.back();
2245 2245
      _inv_map.pop_back();
2246 2246
      Map::erase(item);
2247 2247
    }
2248 2248

	
2249 2249
    /// \brief Erase more keys from the map.
2250 2250
    ///
2251 2251
    /// Erase more keys from the map. It is called by the
2252 2252
    /// \c AlterationNotifier.
2253 2253
    virtual void erase(const std::vector<Item>& items) {
2254 2254
      for (int i = 0; i < int(items.size()); ++i) {
2255 2255
        Map::set(_inv_map.back(), Map::operator[](items[i]));
2256 2256
        _inv_map[Map::operator[](items[i])] = _inv_map.back();
2257 2257
        _inv_map.pop_back();
2258 2258
      }
2259 2259
      Map::erase(items);
2260 2260
    }
2261 2261

	
2262 2262
    /// \brief Build the unique map.
2263 2263
    ///
2264 2264
    /// Build the unique map. It is called by the
2265 2265
    /// \c AlterationNotifier.
2266 2266
    virtual void build() {
2267 2267
      Map::build();
2268 2268
      Item it;
2269 2269
      const typename Map::Notifier* nf = Map::notifier();
2270 2270
      for (nf->first(it); it != INVALID; nf->next(it)) {
2271 2271
        Map::set(it, _inv_map.size());
2272 2272
        _inv_map.push_back(it);
2273 2273
      }
2274 2274
    }
2275 2275

	
2276 2276
    /// \brief Clear the keys from the map.
2277 2277
    ///
2278 2278
    /// Clear the keys from the map. It is called by the
2279 2279
    /// \c AlterationNotifier.
2280 2280
    virtual void clear() {
2281 2281
      _inv_map.clear();
2282 2282
      Map::clear();
2283 2283
    }
2284 2284

	
2285 2285
  public:
2286 2286

	
2287 2287
    /// \brief Returns the maximal value plus one.
2288 2288
    ///
2289 2289
    /// Returns the maximal value plus one in the map.
2290 2290
    unsigned int size() const {
2291 2291
      return _inv_map.size();
2292 2292
    }
2293 2293

	
2294 2294
    /// \brief Swaps the position of the two items in the map.
2295 2295
    ///
2296 2296
    /// Swaps the position of the two items in the map.
2297 2297
    void swap(const Item& p, const Item& q) {
2298 2298
      int pi = Map::operator[](p);
2299 2299
      int qi = Map::operator[](q);
2300 2300
      Map::set(p, qi);
2301 2301
      _inv_map[qi] = p;
2302 2302
      Map::set(q, pi);
2303 2303
      _inv_map[pi] = q;
2304 2304
    }
2305 2305

	
2306 2306
    /// \brief Gives back the \e range \e id of the item
2307 2307
    ///
2308 2308
    /// Gives back the \e range \e id of the item.
2309 2309
    int operator[](const Item& item) const {
2310 2310
      return Map::operator[](item);
2311 2311
    }
2312 2312

	
2313 2313
    /// \brief Gives back the item belonging to a \e range \e id
2314 2314
    ///
2315 2315
    /// Gives back the item belonging to the given \e range \e id.
2316 2316
    Item operator()(int id) const {
2317 2317
      return _inv_map[id];
2318 2318
    }
2319 2319

	
2320 2320
  private:
2321 2321

	
2322 2322
    typedef std::vector<Item> Container;
2323 2323
    Container _inv_map;
2324 2324

	
2325 2325
  public:
2326 2326

	
2327 2327
    /// \brief The inverse map type of RangeIdMap.
2328 2328
    ///
2329 2329
    /// The inverse map type of RangeIdMap. The subscript operator gives
2330 2330
    /// back an item by its \e range \e id.
2331 2331
    /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
2332 2332
    class InverseMap {
2333 2333
    public:
2334 2334
      /// \brief Constructor
2335 2335
      ///
2336 2336
      /// Constructor of the InverseMap.
2337 2337
      explicit InverseMap(const RangeIdMap& inverted)
2338 2338
        : _inverted(inverted) {}
2339 2339

	
2340 2340

	
2341 2341
      /// The value type of the InverseMap.
2342 2342
      typedef typename RangeIdMap::Key Value;
2343 2343
      /// The key type of the InverseMap.
2344 2344
      typedef typename RangeIdMap::Value Key;
2345 2345

	
2346 2346
      /// \brief Subscript operator.
2347 2347
      ///
2348 2348
      /// Subscript operator. It gives back the item
2349 2349
      /// that the given \e range \e id currently belongs to.
2350 2350
      Value operator[](const Key& key) const {
2351 2351
        return _inverted(key);
2352 2352
      }
2353 2353

	
2354 2354
      /// \brief Size of the map.
2355 2355
      ///
2356 2356
      /// Returns the size of the map.
2357 2357
      unsigned int size() const {
2358 2358
        return _inverted.size();
2359 2359
      }
2360 2360

	
2361 2361
    private:
2362 2362
      const RangeIdMap& _inverted;
2363 2363
    };
2364 2364

	
2365 2365
    /// \brief Gives back the inverse of the map.
2366 2366
    ///
2367 2367
    /// Gives back the inverse of the RangeIdMap.
2368 2368
    const InverseMap inverse() const {
2369 2369
      return InverseMap(*this);
2370 2370
    }
2371 2371
  };
2372 2372

	
2373 2373
  /// \brief Returns a \c RangeIdMap class.
2374 2374
  ///
2375 2375
  /// This function just returns an \c RangeIdMap class.
2376 2376
  /// \relates RangeIdMap
2377 2377
  template <typename K, typename GR>
2378 2378
  inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
2379 2379
    return RangeIdMap<GR, K>(graph);
2380 2380
  }
2381 2381
  
2382 2382
  /// \brief Dynamic iterable \c bool map.
2383 2383
  ///
2384 2384
  /// This class provides a special graph map type which can store a
2385 2385
  /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
2386 2386
  /// For both \c true and \c false values it is possible to iterate on
2387 2387
  /// the keys mapped to the value.
2388 2388
  ///
2389 2389
  /// This type is a reference map, so it can be modified with the
2390 2390
  /// subscript operator.
2391 2391
  ///
2392 2392
  /// \tparam GR The graph type.
2393 2393
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2394 2394
  /// \c GR::Edge).
2395 2395
  ///
2396 2396
  /// \see IterableIntMap, IterableValueMap
2397 2397
  /// \see CrossRefMap
2398 2398
  template <typename GR, typename K>
2399 2399
  class IterableBoolMap
2400 2400
    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
2401 2401
  private:
2402 2402
    typedef GR Graph;
2403 2403

	
2404 2404
    typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
2405 2405
    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
2406 2406

	
2407 2407
    std::vector<K> _array;
2408 2408
    int _sep;
2409 2409

	
2410 2410
  public:
2411 2411

	
2412 2412
    /// Indicates that the map is reference map.
2413 2413
    typedef True ReferenceMapTag;
2414 2414

	
2415 2415
    /// The key type
2416 2416
    typedef K Key;
2417 2417
    /// The value type
2418 2418
    typedef bool Value;
2419 2419
    /// The const reference type.
2420 2420
    typedef const Value& ConstReference;
2421 2421

	
2422 2422
  private:
2423 2423

	
2424 2424
    int position(const Key& key) const {
2425 2425
      return Parent::operator[](key);
2426 2426
    }
2427 2427

	
2428 2428
  public:
2429 2429

	
2430 2430
    /// \brief Reference to the value of the map.
2431 2431
    ///
2432 2432
    /// This class is similar to the \c bool type. It can be converted to
2433 2433
    /// \c bool and it provides the same operators.
2434 2434
    class Reference {
2435 2435
      friend class IterableBoolMap;
2436 2436
    private:
2437 2437
      Reference(IterableBoolMap& map, const Key& key)
2438 2438
        : _key(key), _map(map) {}
2439 2439
    public:
2440 2440

	
2441 2441
      Reference& operator=(const Reference& value) {
2442 2442
        _map.set(_key, static_cast<bool>(value));
2443 2443
         return *this;
2444 2444
      }
2445 2445

	
2446 2446
      operator bool() const {
2447 2447
        return static_cast<const IterableBoolMap&>(_map)[_key];
2448 2448
      }
2449 2449

	
2450 2450
      Reference& operator=(bool value) {
2451 2451
        _map.set(_key, value);
2452 2452
        return *this;
2453 2453
      }
2454 2454
      Reference& operator&=(bool value) {
2455 2455
        _map.set(_key, _map[_key] & value);
2456 2456
        return *this;
2457 2457
      }
2458 2458
      Reference& operator|=(bool value) {
2459 2459
        _map.set(_key, _map[_key] | value);
2460 2460
        return *this;
2461 2461
      }
2462 2462
      Reference& operator^=(bool value) {
2463 2463
        _map.set(_key, _map[_key] ^ value);
2464 2464
        return *this;
2465 2465
      }
2466 2466
    private:
2467 2467
      Key _key;
2468 2468
      IterableBoolMap& _map;
2469 2469
    };
2470 2470

	
2471 2471
    /// \brief Constructor of the map with a default value.
2472 2472
    ///
2473 2473
    /// Constructor of the map with a default value.
2474 2474
    explicit IterableBoolMap(const Graph& graph, bool def = false)
2475 2475
      : Parent(graph) {
2476 2476
      typename Parent::Notifier* nf = Parent::notifier();
2477 2477
      Key it;
2478 2478
      for (nf->first(it); it != INVALID; nf->next(it)) {
2479 2479
        Parent::set(it, _array.size());
2480 2480
        _array.push_back(it);
2481 2481
      }
2482 2482
      _sep = (def ? _array.size() : 0);
2483 2483
    }
2484 2484

	
2485 2485
    /// \brief Const subscript operator of the map.
2486 2486
    ///
2487 2487
    /// Const subscript operator of the map.
2488 2488
    bool operator[](const Key& key) const {
2489 2489
      return position(key) < _sep;
2490 2490
    }
2491 2491

	
2492 2492
    /// \brief Subscript operator of the map.
2493 2493
    ///
2494 2494
    /// Subscript operator of the map.
2495 2495
    Reference operator[](const Key& key) {
2496 2496
      return Reference(*this, key);
2497 2497
    }
2498 2498

	
2499 2499
    /// \brief Set operation of the map.
2500 2500
    ///
2501 2501
    /// Set operation of the map.
2502 2502
    void set(const Key& key, bool value) {
2503 2503
      int pos = position(key);
2504 2504
      if (value) {
2505 2505
        if (pos < _sep) return;
2506 2506
        Key tmp = _array[_sep];
2507 2507
        _array[_sep] = key;
2508 2508
        Parent::set(key, _sep);
2509 2509
        _array[pos] = tmp;
2510 2510
        Parent::set(tmp, pos);
2511 2511
        ++_sep;
2512 2512
      } else {
2513 2513
        if (pos >= _sep) return;
2514 2514
        --_sep;
2515 2515
        Key tmp = _array[_sep];
2516 2516
        _array[_sep] = key;
2517 2517
        Parent::set(key, _sep);
2518 2518
        _array[pos] = tmp;
2519 2519
        Parent::set(tmp, pos);
2520 2520
      }
2521 2521
    }
2522 2522

	
2523 2523
    /// \brief Set all items.
2524 2524
    ///
2525 2525
    /// Set all items in the map.
2526 2526
    /// \note Constant time operation.
2527 2527
    void setAll(bool value) {
2528 2528
      _sep = (value ? _array.size() : 0);
2529 2529
    }
2530 2530

	
2531 2531
    /// \brief Returns the number of the keys mapped to \c true.
2532 2532
    ///
2533 2533
    /// Returns the number of the keys mapped to \c true.
2534 2534
    int trueNum() const {
2535 2535
      return _sep;
2536 2536
    }
2537 2537

	
2538 2538
    /// \brief Returns the number of the keys mapped to \c false.
2539 2539
    ///
2540 2540
    /// Returns the number of the keys mapped to \c false.
2541 2541
    int falseNum() const {
2542 2542
      return _array.size() - _sep;
2543 2543
    }
2544 2544

	
2545 2545
    /// \brief Iterator for the keys mapped to \c true.
2546 2546
    ///
2547 2547
    /// Iterator for the keys mapped to \c true. It works
2548 2548
    /// like a graph item iterator, it can be converted to
2549 2549
    /// the key type of the map, incremented with \c ++ operator, and
2550 2550
    /// if the iterator leaves the last valid key, it will be equal to
2551 2551
    /// \c INVALID.
2552 2552
    class TrueIt : public Key {
2553 2553
    public:
2554 2554
      typedef Key Parent;
2555 2555

	
2556 2556
      /// \brief Creates an iterator.
2557 2557
      ///
2558 2558
      /// Creates an iterator. It iterates on the
2559 2559
      /// keys mapped to \c true.
2560 2560
      /// \param map The IterableBoolMap.
2561 2561
      explicit TrueIt(const IterableBoolMap& map)
2562 2562
        : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
2563 2563
          _map(&map) {}
2564 2564

	
2565 2565
      /// \brief Invalid constructor \& conversion.
2566 2566
      ///
2567 2567
      /// This constructor initializes the iterator to be invalid.
2568 2568
      /// \sa Invalid for more details.
2569 2569
      TrueIt(Invalid) : Parent(INVALID), _map(0) {}
2570 2570

	
2571 2571
      /// \brief Increment operator.
2572 2572
      ///
2573 2573
      /// Increment operator.
2574 2574
      TrueIt& operator++() {
2575 2575
        int pos = _map->position(*this);
2576 2576
        Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
2577 2577
        return *this;
2578 2578
      }
2579 2579

	
2580 2580
    private:
2581 2581
      const IterableBoolMap* _map;
2582 2582
    };
2583 2583

	
2584 2584
    /// \brief Iterator for the keys mapped to \c false.
2585 2585
    ///
2586 2586
    /// Iterator for the keys mapped to \c false. It works
2587 2587
    /// like a graph item iterator, it can be converted to
2588 2588
    /// the key type of the map, incremented with \c ++ operator, and
2589 2589
    /// if the iterator leaves the last valid key, it will be equal to
2590 2590
    /// \c INVALID.
2591 2591
    class FalseIt : public Key {
2592 2592
    public:
2593 2593
      typedef Key Parent;
2594 2594

	
2595 2595
      /// \brief Creates an iterator.
2596 2596
      ///
2597 2597
      /// Creates an iterator. It iterates on the
2598 2598
      /// keys mapped to \c false.
2599 2599
      /// \param map The IterableBoolMap.
2600 2600
      explicit FalseIt(const IterableBoolMap& map)
2601 2601
        : Parent(map._sep < int(map._array.size()) ?
2602 2602
                 map._array.back() : INVALID), _map(&map) {}
2603 2603

	
2604 2604
      /// \brief Invalid constructor \& conversion.
2605 2605
      ///
2606 2606
      /// This constructor initializes the iterator to be invalid.
2607 2607
      /// \sa Invalid for more details.
2608 2608
      FalseIt(Invalid) : Parent(INVALID), _map(0) {}
2609 2609

	
2610 2610
      /// \brief Increment operator.
2611 2611
      ///
2612 2612
      /// Increment operator.
2613 2613
      FalseIt& operator++() {
2614 2614
        int pos = _map->position(*this);
2615 2615
        Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
2616 2616
        return *this;
2617 2617
      }
2618 2618

	
2619 2619
    private:
2620 2620
      const IterableBoolMap* _map;
2621 2621
    };
2622 2622

	
2623 2623
    /// \brief Iterator for the keys mapped to a given value.
2624 2624
    ///
2625 2625
    /// Iterator for the keys mapped to a given value. It works
2626 2626
    /// like a graph item iterator, it can be converted to
2627 2627
    /// the key type of the map, incremented with \c ++ operator, and
2628 2628
    /// if the iterator leaves the last valid key, it will be equal to
2629 2629
    /// \c INVALID.
2630 2630
    class ItemIt : public Key {
2631 2631
    public:
2632 2632
      typedef Key Parent;
2633 2633

	
2634 2634
      /// \brief Creates an iterator with a value.
2635 2635
      ///
2636 2636
      /// Creates an iterator with a value. It iterates on the
2637 2637
      /// keys mapped to the given value.
2638 2638
      /// \param map The IterableBoolMap.
2639 2639
      /// \param value The value.
2640 2640
      ItemIt(const IterableBoolMap& map, bool value)
2641 2641
        : Parent(value ? 
2642 2642
                 (map._sep > 0 ?
2643 2643
                  map._array[map._sep - 1] : INVALID) :
2644 2644
                 (map._sep < int(map._array.size()) ?
2645 2645
                  map._array.back() : INVALID)), _map(&map) {}
2646 2646

	
2647 2647
      /// \brief Invalid constructor \& conversion.
2648 2648
      ///
2649 2649
      /// This constructor initializes the iterator to be invalid.
2650 2650
      /// \sa Invalid for more details.
2651 2651
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2652 2652

	
2653 2653
      /// \brief Increment operator.
2654 2654
      ///
2655 2655
      /// Increment operator.
2656 2656
      ItemIt& operator++() {
2657 2657
        int pos = _map->position(*this);
2658 2658
        int _sep = pos >= _map->_sep ? _map->_sep : 0;
2659 2659
        Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
2660 2660
        return *this;
2661 2661
      }
2662 2662

	
2663 2663
    private:
2664 2664
      const IterableBoolMap* _map;
2665 2665
    };
2666 2666

	
2667 2667
  protected:
2668 2668

	
2669 2669
    virtual void add(const Key& key) {
2670 2670
      Parent::add(key);
2671 2671
      Parent::set(key, _array.size());
2672 2672
      _array.push_back(key);
2673 2673
    }
2674 2674

	
2675 2675
    virtual void add(const std::vector<Key>& keys) {
2676 2676
      Parent::add(keys);
2677 2677
      for (int i = 0; i < int(keys.size()); ++i) {
2678 2678
        Parent::set(keys[i], _array.size());
2679 2679
        _array.push_back(keys[i]);
2680 2680
      }
2681 2681
    }
2682 2682

	
2683 2683
    virtual void erase(const Key& key) {
2684 2684
      int pos = position(key);
2685 2685
      if (pos < _sep) {
2686 2686
        --_sep;
2687 2687
        Parent::set(_array[_sep], pos);
2688 2688
        _array[pos] = _array[_sep];
2689 2689
        Parent::set(_array.back(), _sep);
2690 2690
        _array[_sep] = _array.back();
2691 2691
        _array.pop_back();
2692 2692
      } else {
2693 2693
        Parent::set(_array.back(), pos);
2694 2694
        _array[pos] = _array.back();
2695 2695
        _array.pop_back();
2696 2696
      }
2697 2697
      Parent::erase(key);
2698 2698
    }
2699 2699

	
2700 2700
    virtual void erase(const std::vector<Key>& keys) {
2701 2701
      for (int i = 0; i < int(keys.size()); ++i) {
2702 2702
        int pos = position(keys[i]);
2703 2703
        if (pos < _sep) {
2704 2704
          --_sep;
2705 2705
          Parent::set(_array[_sep], pos);
2706 2706
          _array[pos] = _array[_sep];
2707 2707
          Parent::set(_array.back(), _sep);
2708 2708
          _array[_sep] = _array.back();
2709 2709
          _array.pop_back();
2710 2710
        } else {
2711 2711
          Parent::set(_array.back(), pos);
2712 2712
          _array[pos] = _array.back();
2713 2713
          _array.pop_back();
2714 2714
        }
2715 2715
      }
2716 2716
      Parent::erase(keys);
2717 2717
    }
2718 2718

	
2719 2719
    virtual void build() {
2720 2720
      Parent::build();
2721 2721
      typename Parent::Notifier* nf = Parent::notifier();
2722 2722
      Key it;
2723 2723
      for (nf->first(it); it != INVALID; nf->next(it)) {
2724 2724
        Parent::set(it, _array.size());
2725 2725
        _array.push_back(it);
2726 2726
      }
2727 2727
      _sep = 0;
2728 2728
    }
2729 2729

	
2730 2730
    virtual void clear() {
2731 2731
      _array.clear();
2732 2732
      _sep = 0;
2733 2733
      Parent::clear();
2734 2734
    }
2735 2735

	
2736 2736
  };
2737 2737

	
2738 2738

	
2739 2739
  namespace _maps_bits {
2740 2740
    template <typename Item>
2741 2741
    struct IterableIntMapNode {
2742 2742
      IterableIntMapNode() : value(-1) {}
2743 2743
      IterableIntMapNode(int _value) : value(_value) {}
2744 2744
      Item prev, next;
2745 2745
      int value;
2746 2746
    };
2747 2747
  }
2748 2748

	
2749 2749
  /// \brief Dynamic iterable integer map.
2750 2750
  ///
2751 2751
  /// This class provides a special graph map type which can store an
2752 2752
  /// integer value for graph items (\c Node, \c Arc or \c Edge).
2753 2753
  /// For each non-negative value it is possible to iterate on the keys
2754 2754
  /// mapped to the value.
2755 2755
  ///
2756 2756
  /// This map is intended to be used with small integer values, for which
2757 2757
  /// it is efficient, and supports iteration only for non-negative values.
2758 2758
  /// If you need large values and/or iteration for negative integers,
2759 2759
  /// consider to use \ref IterableValueMap instead.
2760 2760
  ///
2761 2761
  /// This type is a reference map, so it can be modified with the
2762 2762
  /// subscript operator.
2763 2763
  ///
2764 2764
  /// \note The size of the data structure depends on the largest
2765 2765
  /// value in the map.
2766 2766
  ///
2767 2767
  /// \tparam GR The graph type.
2768 2768
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2769 2769
  /// \c GR::Edge).
2770 2770
  ///
2771 2771
  /// \see IterableBoolMap, IterableValueMap
2772 2772
  /// \see CrossRefMap
2773 2773
  template <typename GR, typename K>
2774 2774
  class IterableIntMap
2775 2775
    : protected ItemSetTraits<GR, K>::
2776 2776
        template Map<_maps_bits::IterableIntMapNode<K> >::Type {
2777 2777
  public:
2778 2778
    typedef typename ItemSetTraits<GR, K>::
2779 2779
      template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
2780 2780

	
2781 2781
    /// The key type
2782 2782
    typedef K Key;
2783 2783
    /// The value type
2784 2784
    typedef int Value;
2785 2785
    /// The graph type
2786 2786
    typedef GR Graph;
2787 2787

	
2788 2788
    /// \brief Constructor of the map.
2789 2789
    ///
2790 2790
    /// Constructor of the map. It sets all values to -1.
2791 2791
    explicit IterableIntMap(const Graph& graph)
2792 2792
      : Parent(graph) {}
2793 2793

	
2794 2794
    /// \brief Constructor of the map with a given value.
2795 2795
    ///
2796 2796
    /// Constructor of the map with a given value.
2797 2797
    explicit IterableIntMap(const Graph& graph, int value)
2798 2798
      : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
2799 2799
      if (value >= 0) {
2800 2800
        for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
2801 2801
          lace(it);
2802 2802
        }
2803 2803
      }
2804 2804
    }
2805 2805

	
2806 2806
  private:
2807 2807

	
2808 2808
    void unlace(const Key& key) {
2809 2809
      typename Parent::Value& node = Parent::operator[](key);
2810 2810
      if (node.value < 0) return;
2811 2811
      if (node.prev != INVALID) {
2812 2812
        Parent::operator[](node.prev).next = node.next;
2813 2813
      } else {
2814 2814
        _first[node.value] = node.next;
2815 2815
      }
2816 2816
      if (node.next != INVALID) {
2817 2817
        Parent::operator[](node.next).prev = node.prev;
2818 2818
      }
2819 2819
      while (!_first.empty() && _first.back() == INVALID) {
2820 2820
        _first.pop_back();
2821 2821
      }
2822 2822
    }
2823 2823

	
2824 2824
    void lace(const Key& key) {
2825 2825
      typename Parent::Value& node = Parent::operator[](key);
2826 2826
      if (node.value < 0) return;
2827 2827
      if (node.value >= int(_first.size())) {
2828 2828
        _first.resize(node.value + 1, INVALID);
2829 2829
      }
2830 2830
      node.prev = INVALID;
2831 2831
      node.next = _first[node.value];
2832 2832
      if (node.next != INVALID) {
2833 2833
        Parent::operator[](node.next).prev = key;
2834 2834
      }
2835 2835
      _first[node.value] = key;
2836 2836
    }
2837 2837

	
2838 2838
  public:
2839 2839

	
2840 2840
    /// Indicates that the map is reference map.
2841 2841
    typedef True ReferenceMapTag;
2842 2842

	
2843 2843
    /// \brief Reference to the value of the map.
2844 2844
    ///
2845 2845
    /// This class is similar to the \c int type. It can
2846 2846
    /// be converted to \c int and it has the same operators.
2847 2847
    class Reference {
2848 2848
      friend class IterableIntMap;
2849 2849
    private:
2850 2850
      Reference(IterableIntMap& map, const Key& key)
2851 2851
        : _key(key), _map(map) {}
2852 2852
    public:
2853 2853

	
2854 2854
      Reference& operator=(const Reference& value) {
2855 2855
        _map.set(_key, static_cast<const int&>(value));
2856 2856
         return *this;
2857 2857
      }
2858 2858

	
2859 2859
      operator const int&() const {
2860 2860
        return static_cast<const IterableIntMap&>(_map)[_key];
2861 2861
      }
2862 2862

	
2863 2863
      Reference& operator=(int value) {
2864 2864
        _map.set(_key, value);
2865 2865
        return *this;
2866 2866
      }
2867 2867
      Reference& operator++() {
2868 2868
        _map.set(_key, _map[_key] + 1);
2869 2869
        return *this;
2870 2870
      }
2871 2871
      int operator++(int) {
2872 2872
        int value = _map[_key];
2873 2873
        _map.set(_key, value + 1);
2874 2874
        return value;
2875 2875
      }
2876 2876
      Reference& operator--() {
2877 2877
        _map.set(_key, _map[_key] - 1);
2878 2878
        return *this;
2879 2879
      }
2880 2880
      int operator--(int) {
2881 2881
        int value = _map[_key];
2882 2882
        _map.set(_key, value - 1);
2883 2883
        return value;
2884 2884
      }
2885 2885
      Reference& operator+=(int value) {
2886 2886
        _map.set(_key, _map[_key] + value);
2887 2887
        return *this;
2888 2888
      }
2889 2889
      Reference& operator-=(int value) {
2890 2890
        _map.set(_key, _map[_key] - value);
2891 2891
        return *this;
2892 2892
      }
2893 2893
      Reference& operator*=(int value) {
2894 2894
        _map.set(_key, _map[_key] * value);
2895 2895
        return *this;
2896 2896
      }
2897 2897
      Reference& operator/=(int value) {
2898 2898
        _map.set(_key, _map[_key] / value);
2899 2899
        return *this;
2900 2900
      }
2901 2901
      Reference& operator%=(int value) {
2902 2902
        _map.set(_key, _map[_key] % value);
2903 2903
        return *this;
2904 2904
      }
2905 2905
      Reference& operator&=(int value) {
2906 2906
        _map.set(_key, _map[_key] & value);
2907 2907
        return *this;
2908 2908
      }
2909 2909
      Reference& operator|=(int value) {
2910 2910
        _map.set(_key, _map[_key] | value);
2911 2911
        return *this;
2912 2912
      }
2913 2913
      Reference& operator^=(int value) {
2914 2914
        _map.set(_key, _map[_key] ^ value);
2915 2915
        return *this;
2916 2916
      }
2917 2917
      Reference& operator<<=(int value) {
2918 2918
        _map.set(_key, _map[_key] << value);
2919 2919
        return *this;
2920 2920
      }
2921 2921
      Reference& operator>>=(int value) {
2922 2922
        _map.set(_key, _map[_key] >> value);
2923 2923
        return *this;
2924 2924
      }
2925 2925

	
2926 2926
    private:
2927 2927
      Key _key;
2928 2928
      IterableIntMap& _map;
2929 2929
    };
2930 2930

	
2931 2931
    /// The const reference type.
2932 2932
    typedef const Value& ConstReference;
2933 2933

	
2934 2934
    /// \brief Gives back the maximal value plus one.
2935 2935
    ///
2936 2936
    /// Gives back the maximal value plus one.
2937 2937
    int size() const {
2938 2938
      return _first.size();
2939 2939
    }
2940 2940

	
2941 2941
    /// \brief Set operation of the map.
2942 2942
    ///
2943 2943
    /// Set operation of the map.
2944 2944
    void set(const Key& key, const Value& value) {
2945 2945
      unlace(key);
2946 2946
      Parent::operator[](key).value = value;
2947 2947
      lace(key);
2948 2948
    }
2949 2949

	
2950 2950
    /// \brief Const subscript operator of the map.
2951 2951
    ///
2952 2952
    /// Const subscript operator of the map.
2953 2953
    const Value& operator[](const Key& key) const {
2954 2954
      return Parent::operator[](key).value;
2955 2955
    }
2956 2956

	
2957 2957
    /// \brief Subscript operator of the map.
2958 2958
    ///
2959 2959
    /// Subscript operator of the map.
2960 2960
    Reference operator[](const Key& key) {
2961 2961
      return Reference(*this, key);
2962 2962
    }
2963 2963

	
2964 2964
    /// \brief Iterator for the keys with the same value.
2965 2965
    ///
2966 2966
    /// Iterator for the keys with the same value. It works
2967 2967
    /// like a graph item iterator, it can be converted to
2968 2968
    /// the item type of the map, incremented with \c ++ operator, and
2969 2969
    /// if the iterator leaves the last valid item, it will be equal to
2970 2970
    /// \c INVALID.
2971 2971
    class ItemIt : public Key {
2972 2972
    public:
2973 2973
      typedef Key Parent;
2974 2974

	
2975 2975
      /// \brief Invalid constructor \& conversion.
2976 2976
      ///
2977 2977
      /// This constructor initializes the iterator to be invalid.
2978 2978
      /// \sa Invalid for more details.
2979 2979
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2980 2980

	
2981 2981
      /// \brief Creates an iterator with a value.
2982 2982
      ///
2983 2983
      /// Creates an iterator with a value. It iterates on the
2984 2984
      /// keys mapped to the given value.
2985 2985
      /// \param map The IterableIntMap.
2986 2986
      /// \param value The value.
2987 2987
      ItemIt(const IterableIntMap& map, int value) : _map(&map) {
2988 2988
        if (value < 0 || value >= int(_map->_first.size())) {
2989 2989
          Parent::operator=(INVALID);
2990 2990
        } else {
2991 2991
          Parent::operator=(_map->_first[value]);
2992 2992
        }
2993 2993
      }
2994 2994

	
2995 2995
      /// \brief Increment operator.
2996 2996
      ///
2997 2997
      /// Increment operator.
2998 2998
      ItemIt& operator++() {
2999 2999
        Parent::operator=(_map->IterableIntMap::Parent::
3000 3000
                          operator[](static_cast<Parent&>(*this)).next);
3001 3001
        return *this;
3002 3002
      }
3003 3003

	
3004 3004
    private:
3005 3005
      const IterableIntMap* _map;
3006 3006
    };
3007 3007

	
3008 3008
  protected:
3009 3009

	
3010 3010
    virtual void erase(const Key& key) {
3011 3011
      unlace(key);
3012 3012
      Parent::erase(key);
3013 3013
    }
3014 3014

	
3015 3015
    virtual void erase(const std::vector<Key>& keys) {
3016 3016
      for (int i = 0; i < int(keys.size()); ++i) {
3017 3017
        unlace(keys[i]);
3018 3018
      }
3019 3019
      Parent::erase(keys);
3020 3020
    }
3021 3021

	
3022 3022
    virtual void clear() {
3023 3023
      _first.clear();
3024 3024
      Parent::clear();
3025 3025
    }
3026 3026

	
3027 3027
  private:
3028 3028
    std::vector<Key> _first;
3029 3029
  };
3030 3030

	
3031 3031
  namespace _maps_bits {
3032 3032
    template <typename Item, typename Value>
3033 3033
    struct IterableValueMapNode {
3034 3034
      IterableValueMapNode(Value _value = Value()) : value(_value) {}
3035 3035
      Item prev, next;
3036 3036
      Value value;
3037 3037
    };
3038 3038
  }
3039 3039

	
3040 3040
  /// \brief Dynamic iterable map for comparable values.
3041 3041
  ///
3042 3042
  /// This class provides a special graph map type which can store a
3043 3043
  /// comparable value for graph items (\c Node, \c Arc or \c Edge).
3044 3044
  /// For each value it is possible to iterate on the keys mapped to
3045 3045
  /// the value (\c ItemIt), and the values of the map can be accessed
3046 3046
  /// with an STL compatible forward iterator (\c ValueIt).
3047 3047
  /// The map stores a linked list for each value, which contains
3048 3048
  /// the items mapped to the value, and the used values are stored
3049 3049
  /// in balanced binary tree (\c std::map).
3050 3050
  ///
3051 3051
  /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
3052 3052
  /// specialized for \c bool and \c int values, respectively.
3053 3053
  ///
3054 3054
  /// This type is not reference map, so it cannot be modified with
3055 3055
  /// the subscript operator.
3056 3056
  ///
3057 3057
  /// \tparam GR The graph type.
3058 3058
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
3059 3059
  /// \c GR::Edge).
3060 3060
  /// \tparam V The value type of the map. It can be any comparable
3061 3061
  /// value type.
3062 3062
  ///
3063 3063
  /// \see IterableBoolMap, IterableIntMap
3064 3064
  /// \see CrossRefMap
3065 3065
  template <typename GR, typename K, typename V>
3066 3066
  class IterableValueMap
3067 3067
    : protected ItemSetTraits<GR, K>::
3068 3068
        template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
3069 3069
  public:
3070 3070
    typedef typename ItemSetTraits<GR, K>::
3071 3071
      template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
3072 3072

	
3073 3073
    /// The key type
3074 3074
    typedef K Key;
3075 3075
    /// The value type
3076 3076
    typedef V Value;
3077 3077
    /// The graph type
3078 3078
    typedef GR Graph;
3079 3079

	
3080 3080
  public:
3081 3081

	
3082 3082
    /// \brief Constructor of the map with a given value.
3083 3083
    ///
3084 3084
    /// Constructor of the map with a given value.
3085 3085
    explicit IterableValueMap(const Graph& graph,
3086 3086
                              const Value& value = Value())
3087 3087
      : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
3088 3088
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3089 3089
        lace(it);
3090 3090
      }
3091 3091
    }
3092 3092

	
3093 3093
  protected:
3094 3094

	
3095 3095
    void unlace(const Key& key) {
3096 3096
      typename Parent::Value& node = Parent::operator[](key);
3097 3097
      if (node.prev != INVALID) {
3098 3098
        Parent::operator[](node.prev).next = node.next;
3099 3099
      } else {
3100 3100
        if (node.next != INVALID) {
3101 3101
          _first[node.value] = node.next;
3102 3102
        } else {
3103 3103
          _first.erase(node.value);
3104 3104
        }
3105 3105
      }
3106 3106
      if (node.next != INVALID) {
3107 3107
        Parent::operator[](node.next).prev = node.prev;
3108 3108
      }
3109 3109
    }
3110 3110

	
3111 3111
    void lace(const Key& key) {
3112 3112
      typename Parent::Value& node = Parent::operator[](key);
3113 3113
      typename std::map<Value, Key>::iterator it = _first.find(node.value);
3114 3114
      if (it == _first.end()) {
3115 3115
        node.prev = node.next = INVALID;
3116 3116
        _first.insert(std::make_pair(node.value, key));
3117 3117
      } else {
3118 3118
        node.prev = INVALID;
3119 3119
        node.next = it->second;
3120 3120
        if (node.next != INVALID) {
3121 3121
          Parent::operator[](node.next).prev = key;
3122 3122
        }
3123 3123
        it->second = key;
3124 3124
      }
3125 3125
    }
3126 3126

	
3127 3127
  public:
3128 3128

	
3129 3129
    /// \brief Forward iterator for values.
3130 3130
    ///
3131 3131
    /// This iterator is an STL compatible forward
3132 3132
    /// iterator on the values of the map. The values can
3133 3133
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
3134 3134
    class ValueIt
3135 3135
      : public std::iterator<std::forward_iterator_tag, Value> {
3136 3136
      friend class IterableValueMap;
3137 3137
    private:
3138 3138
      ValueIt(typename std::map<Value, Key>::const_iterator _it)
3139 3139
        : it(_it) {}
3140 3140
    public:
3141 3141

	
3142 3142
      /// Constructor
3143 3143
      ValueIt() {}
3144 3144

	
3145 3145
      /// \e
3146 3146
      ValueIt& operator++() { ++it; return *this; }
3147 3147
      /// \e
3148 3148
      ValueIt operator++(int) {
3149 3149
        ValueIt tmp(*this);
3150 3150
        operator++();
3151 3151
        return tmp;
3152 3152
      }
3153 3153

	
3154 3154
      /// \e
3155 3155
      const Value& operator*() const { return it->first; }
3156 3156
      /// \e
3157 3157
      const Value* operator->() const { return &(it->first); }
3158 3158

	
3159 3159
      /// \e
3160 3160
      bool operator==(ValueIt jt) const { return it == jt.it; }
3161 3161
      /// \e
3162 3162
      bool operator!=(ValueIt jt) const { return it != jt.it; }
3163 3163

	
3164 3164
    private:
3165 3165
      typename std::map<Value, Key>::const_iterator it;
3166 3166
    };
3167 3167

	
3168 3168
    /// \brief Returns an iterator to the first value.
3169 3169
    ///
3170 3170
    /// Returns an STL compatible iterator to the
3171 3171
    /// first value of the map. The values of the
3172 3172
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
3173 3173
    /// range.
3174 3174
    ValueIt beginValue() const {
3175 3175
      return ValueIt(_first.begin());
3176 3176
    }
3177 3177

	
3178 3178
    /// \brief Returns an iterator after the last value.
3179 3179
    ///
3180 3180
    /// Returns an STL compatible iterator after the
3181 3181
    /// last value of the map. The values of the
3182 3182
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
3183 3183
    /// range.
3184 3184
    ValueIt endValue() const {
3185 3185
      return ValueIt(_first.end());
3186 3186
    }
3187 3187

	
3188 3188
    /// \brief Set operation of the map.
3189 3189
    ///
3190 3190
    /// Set operation of the map.
3191 3191
    void set(const Key& key, const Value& value) {
3192 3192
      unlace(key);
3193 3193
      Parent::operator[](key).value = value;
3194 3194
      lace(key);
3195 3195
    }
3196 3196

	
3197 3197
    /// \brief Const subscript operator of the map.
3198 3198
    ///
3199 3199
    /// Const subscript operator of the map.
3200 3200
    const Value& operator[](const Key& key) const {
3201 3201
      return Parent::operator[](key).value;
3202 3202
    }
3203 3203

	
3204 3204
    /// \brief Iterator for the keys with the same value.
3205 3205
    ///
3206 3206
    /// Iterator for the keys with the same value. It works
3207 3207
    /// like a graph item iterator, it can be converted to
3208 3208
    /// the item type of the map, incremented with \c ++ operator, and
3209 3209
    /// if the iterator leaves the last valid item, it will be equal to
3210 3210
    /// \c INVALID.
3211 3211
    class ItemIt : public Key {
3212 3212
    public:
3213 3213
      typedef Key Parent;
3214 3214

	
3215 3215
      /// \brief Invalid constructor \& conversion.
3216 3216
      ///
3217 3217
      /// This constructor initializes the iterator to be invalid.
3218 3218
      /// \sa Invalid for more details.
3219 3219
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
3220 3220

	
3221 3221
      /// \brief Creates an iterator with a value.
3222 3222
      ///
3223 3223
      /// Creates an iterator with a value. It iterates on the
3224 3224
      /// keys which have the given value.
3225 3225
      /// \param map The IterableValueMap
3226 3226
      /// \param value The value
3227 3227
      ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
3228 3228
        typename std::map<Value, Key>::const_iterator it =
3229 3229
          map._first.find(value);
3230 3230
        if (it == map._first.end()) {
3231 3231
          Parent::operator=(INVALID);
3232 3232
        } else {
3233 3233
          Parent::operator=(it->second);
3234 3234
        }
3235 3235
      }
3236 3236

	
3237 3237
      /// \brief Increment operator.
3238 3238
      ///
3239 3239
      /// Increment Operator.
3240 3240
      ItemIt& operator++() {
3241 3241
        Parent::operator=(_map->IterableValueMap::Parent::
3242 3242
                          operator[](static_cast<Parent&>(*this)).next);
3243 3243
        return *this;
3244 3244
      }
3245 3245

	
3246 3246

	
3247 3247
    private:
3248 3248
      const IterableValueMap* _map;
3249 3249
    };
3250 3250

	
3251 3251
  protected:
3252 3252

	
3253 3253
    virtual void add(const Key& key) {
3254 3254
      Parent::add(key);
3255 3255
      unlace(key);
3256 3256
    }
3257 3257

	
3258 3258
    virtual void add(const std::vector<Key>& keys) {
3259 3259
      Parent::add(keys);
3260 3260
      for (int i = 0; i < int(keys.size()); ++i) {
3261 3261
        lace(keys[i]);
3262 3262
      }
3263 3263
    }
3264 3264

	
3265 3265
    virtual void erase(const Key& key) {
3266 3266
      unlace(key);
3267 3267
      Parent::erase(key);
3268 3268
    }
3269 3269

	
3270 3270
    virtual void erase(const std::vector<Key>& keys) {
3271 3271
      for (int i = 0; i < int(keys.size()); ++i) {
3272 3272
        unlace(keys[i]);
3273 3273
      }
3274 3274
      Parent::erase(keys);
3275 3275
    }
3276 3276

	
3277 3277
    virtual void build() {
3278 3278
      Parent::build();
3279 3279
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3280 3280
        lace(it);
3281 3281
      }
3282 3282
    }
3283 3283

	
3284 3284
    virtual void clear() {
3285 3285
      _first.clear();
3286 3286
      Parent::clear();
3287 3287
    }
3288 3288

	
3289 3289
  private:
3290 3290
    std::map<Value, Key> _first;
3291 3291
  };
3292 3292

	
3293 3293
  /// \brief Map of the source nodes of arcs in a digraph.
3294 3294
  ///
3295 3295
  /// SourceMap provides access for the source node of each arc in a digraph,
3296 3296
  /// which is returned by the \c source() function of the digraph.
3297 3297
  /// \tparam GR The digraph type.
3298 3298
  /// \see TargetMap
3299 3299
  template <typename GR>
3300 3300
  class SourceMap {
3301 3301
  public:
3302 3302

	
3303 3303
    /// The key type (the \c Arc type of the digraph).
3304 3304
    typedef typename GR::Arc Key;
3305 3305
    /// The value type (the \c Node type of the digraph).
3306 3306
    typedef typename GR::Node Value;
3307 3307

	
3308 3308
    /// \brief Constructor
3309 3309
    ///
3310 3310
    /// Constructor.
3311 3311
    /// \param digraph The digraph that the map belongs to.
3312 3312
    explicit SourceMap(const GR& digraph) : _graph(digraph) {}
3313 3313

	
3314 3314
    /// \brief Returns the source node of the given arc.
3315 3315
    ///
3316 3316
    /// Returns the source node of the given arc.
3317 3317
    Value operator[](const Key& arc) const {
3318 3318
      return _graph.source(arc);
3319 3319
    }
3320 3320

	
3321 3321
  private:
3322 3322
    const GR& _graph;
3323 3323
  };
3324 3324

	
3325 3325
  /// \brief Returns a \c SourceMap class.
3326 3326
  ///
3327 3327
  /// This function just returns an \c SourceMap class.
3328 3328
  /// \relates SourceMap
3329 3329
  template <typename GR>
3330 3330
  inline SourceMap<GR> sourceMap(const GR& graph) {
3331 3331
    return SourceMap<GR>(graph);
3332 3332
  }
3333 3333

	
3334 3334
  /// \brief Map of the target nodes of arcs in a digraph.
3335 3335
  ///
3336 3336
  /// TargetMap provides access for the target node of each arc in a digraph,
3337 3337
  /// which is returned by the \c target() function of the digraph.
3338 3338
  /// \tparam GR The digraph type.
3339 3339
  /// \see SourceMap
3340 3340
  template <typename GR>
3341 3341
  class TargetMap {
3342 3342
  public:
3343 3343

	
3344 3344
    /// The key type (the \c Arc type of the digraph).
3345 3345
    typedef typename GR::Arc Key;
3346 3346
    /// The value type (the \c Node type of the digraph).
3347 3347
    typedef typename GR::Node Value;
3348 3348

	
3349 3349
    /// \brief Constructor
3350 3350
    ///
3351 3351
    /// Constructor.
3352 3352
    /// \param digraph The digraph that the map belongs to.
3353 3353
    explicit TargetMap(const GR& digraph) : _graph(digraph) {}
3354 3354

	
3355 3355
    /// \brief Returns the target node of the given arc.
3356 3356
    ///
3357 3357
    /// Returns the target node of the given arc.
3358 3358
    Value operator[](const Key& e) const {
3359 3359
      return _graph.target(e);
3360 3360
    }
3361 3361

	
3362 3362
  private:
3363 3363
    const GR& _graph;
3364 3364
  };
3365 3365

	
3366 3366
  /// \brief Returns a \c TargetMap class.
3367 3367
  ///
3368 3368
  /// This function just returns a \c TargetMap class.
3369 3369
  /// \relates TargetMap
3370 3370
  template <typename GR>
3371 3371
  inline TargetMap<GR> targetMap(const GR& graph) {
3372 3372
    return TargetMap<GR>(graph);
3373 3373
  }
3374 3374

	
3375 3375
  /// \brief Map of the "forward" directed arc view of edges in a graph.
3376 3376
  ///
3377 3377
  /// ForwardMap provides access for the "forward" directed arc view of
3378 3378
  /// each edge in a graph, which is returned by the \c direct() function
3379 3379
  /// of the graph with \c true parameter.
3380 3380
  /// \tparam GR The graph type.
3381 3381
  /// \see BackwardMap
3382 3382
  template <typename GR>
3383 3383
  class ForwardMap {
3384 3384
  public:
3385 3385

	
3386 3386
    /// The key type (the \c Edge type of the digraph).
3387 3387
    typedef typename GR::Edge Key;
3388 3388
    /// The value type (the \c Arc type of the digraph).
3389 3389
    typedef typename GR::Arc Value;
3390 3390

	
3391 3391
    /// \brief Constructor
3392 3392
    ///
3393 3393
    /// Constructor.
3394 3394
    /// \param graph The graph that the map belongs to.
3395 3395
    explicit ForwardMap(const GR& graph) : _graph(graph) {}
3396 3396

	
3397 3397
    /// \brief Returns the "forward" directed arc view of the given edge.
3398 3398
    ///
3399 3399
    /// Returns the "forward" directed arc view of the given edge.
3400 3400
    Value operator[](const Key& key) const {
3401 3401
      return _graph.direct(key, true);
3402 3402
    }
3403 3403

	
3404 3404
  private:
3405 3405
    const GR& _graph;
3406 3406
  };
3407 3407

	
3408 3408
  /// \brief Returns a \c ForwardMap class.
3409 3409
  ///
3410 3410
  /// This function just returns an \c ForwardMap class.
3411 3411
  /// \relates ForwardMap
3412 3412
  template <typename GR>
3413 3413
  inline ForwardMap<GR> forwardMap(const GR& graph) {
3414 3414
    return ForwardMap<GR>(graph);
3415 3415
  }
3416 3416

	
3417 3417
  /// \brief Map of the "backward" directed arc view of edges in a graph.
3418 3418
  ///
3419 3419
  /// BackwardMap provides access for the "backward" directed arc view of
3420 3420
  /// each edge in a graph, which is returned by the \c direct() function
3421 3421
  /// of the graph with \c false parameter.
3422 3422
  /// \tparam GR The graph type.
3423 3423
  /// \see ForwardMap
3424 3424
  template <typename GR>
3425 3425
  class BackwardMap {
3426 3426
  public:
3427 3427

	
3428 3428
    /// The key type (the \c Edge type of the digraph).
3429 3429
    typedef typename GR::Edge Key;
3430 3430
    /// The value type (the \c Arc type of the digraph).
3431 3431
    typedef typename GR::Arc Value;
3432 3432

	
3433 3433
    /// \brief Constructor
3434 3434
    ///
3435 3435
    /// Constructor.
3436 3436
    /// \param graph The graph that the map belongs to.
3437 3437
    explicit BackwardMap(const GR& graph) : _graph(graph) {}
3438 3438

	
3439 3439
    /// \brief Returns the "backward" directed arc view of the given edge.
3440 3440
    ///
3441 3441
    /// Returns the "backward" directed arc view of the given edge.
3442 3442
    Value operator[](const Key& key) const {
3443 3443
      return _graph.direct(key, false);
3444 3444
    }
3445 3445

	
3446 3446
  private:
3447 3447
    const GR& _graph;
3448 3448
  };
3449 3449

	
3450 3450
  /// \brief Returns a \c BackwardMap class
3451 3451

	
3452 3452
  /// This function just returns a \c BackwardMap class.
3453 3453
  /// \relates BackwardMap
3454 3454
  template <typename GR>
3455 3455
  inline BackwardMap<GR> backwardMap(const GR& graph) {
3456 3456
    return BackwardMap<GR>(graph);
3457 3457
  }
3458 3458

	
3459 3459
  /// \brief Map of the in-degrees of nodes in a digraph.
3460 3460
  ///
3461 3461
  /// This map returns the in-degree of a node. Once it is constructed,
3462 3462
  /// the degrees are stored in a standard \c NodeMap, so each query is done
3463 3463
  /// in constant time. On the other hand, the values are updated automatically
3464 3464
  /// whenever the digraph changes.
3465 3465
  ///
3466 3466
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
3467 3467
  /// may provide alternative ways to modify the digraph.
3468 3468
  /// The correct behavior of InDegMap is not guarantied if these additional
3469 3469
  /// features are used. For example, the functions
3470 3470
  /// \ref ListDigraph::changeSource() "changeSource()",
3471 3471
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3472 3472
  /// \ref ListDigraph::reverseArc() "reverseArc()"
3473 3473
  /// of \ref ListDigraph will \e not update the degree values correctly.
3474 3474
  ///
3475 3475
  /// \sa OutDegMap
3476 3476
  template <typename GR>
3477 3477
  class InDegMap
3478 3478
    : protected ItemSetTraits<GR, typename GR::Arc>
3479 3479
      ::ItemNotifier::ObserverBase {
3480 3480

	
3481 3481
  public:
3482 3482

	
3483 3483
    /// The graph type of InDegMap
3484 3484
    typedef GR Graph;
3485 3485
    typedef GR Digraph;
3486 3486
    /// The key type
3487 3487
    typedef typename Digraph::Node Key;
3488 3488
    /// The value type
3489 3489
    typedef int Value;
3490 3490

	
3491 3491
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3492 3492
    ::ItemNotifier::ObserverBase Parent;
3493 3493

	
3494 3494
  private:
3495 3495

	
3496 3496
    class AutoNodeMap
3497 3497
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3498 3498
    public:
3499 3499

	
3500 3500
      typedef typename ItemSetTraits<Digraph, Key>::
3501 3501
      template Map<int>::Type Parent;
3502 3502

	
3503 3503
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3504 3504

	
3505 3505
      virtual void add(const Key& key) {
3506 3506
        Parent::add(key);
3507 3507
        Parent::set(key, 0);
3508 3508
      }
3509 3509

	
3510 3510
      virtual void add(const std::vector<Key>& keys) {
3511 3511
        Parent::add(keys);
3512 3512
        for (int i = 0; i < int(keys.size()); ++i) {
3513 3513
          Parent::set(keys[i], 0);
3514 3514
        }
3515 3515
      }
3516 3516

	
3517 3517
      virtual void build() {
3518 3518
        Parent::build();
3519 3519
        Key it;
3520 3520
        typename Parent::Notifier* nf = Parent::notifier();
3521 3521
        for (nf->first(it); it != INVALID; nf->next(it)) {
3522 3522
          Parent::set(it, 0);
3523 3523
        }
3524 3524
      }
3525 3525
    };
3526 3526

	
3527 3527
  public:
3528 3528

	
3529 3529
    /// \brief Constructor.
3530 3530
    ///
3531 3531
    /// Constructor for creating an in-degree map.
3532 3532
    explicit InDegMap(const Digraph& graph)
3533 3533
      : _digraph(graph), _deg(graph) {
3534 3534
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3535 3535

	
3536 3536
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3537 3537
        _deg[it] = countInArcs(_digraph, it);
3538 3538
      }
3539 3539
    }
3540 3540

	
3541 3541
    /// \brief Gives back the in-degree of a Node.
3542 3542
    ///
3543 3543
    /// Gives back the in-degree of a Node.
3544 3544
    int operator[](const Key& key) const {
3545 3545
      return _deg[key];
3546 3546
    }
3547 3547

	
3548 3548
  protected:
3549 3549

	
3550 3550
    typedef typename Digraph::Arc Arc;
3551 3551

	
3552 3552
    virtual void add(const Arc& arc) {
3553 3553
      ++_deg[_digraph.target(arc)];
3554 3554
    }
3555 3555

	
3556 3556
    virtual void add(const std::vector<Arc>& arcs) {
3557 3557
      for (int i = 0; i < int(arcs.size()); ++i) {
3558 3558
        ++_deg[_digraph.target(arcs[i])];
3559 3559
      }
3560 3560
    }
3561 3561

	
3562 3562
    virtual void erase(const Arc& arc) {
3563 3563
      --_deg[_digraph.target(arc)];
3564 3564
    }
3565 3565

	
3566 3566
    virtual void erase(const std::vector<Arc>& arcs) {
3567 3567
      for (int i = 0; i < int(arcs.size()); ++i) {
3568 3568
        --_deg[_digraph.target(arcs[i])];
3569 3569
      }
3570 3570
    }
3571 3571

	
3572 3572
    virtual void build() {
3573 3573
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3574 3574
        _deg[it] = countInArcs(_digraph, it);
3575 3575
      }
3576 3576
    }
3577 3577

	
3578 3578
    virtual void clear() {
3579 3579
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3580 3580
        _deg[it] = 0;
3581 3581
      }
3582 3582
    }
3583 3583
  private:
3584 3584

	
3585 3585
    const Digraph& _digraph;
3586 3586
    AutoNodeMap _deg;
3587 3587
  };
3588 3588

	
3589 3589
  /// \brief Map of the out-degrees of nodes in a digraph.
3590 3590
  ///
3591 3591
  /// This map returns the out-degree of a node. Once it is constructed,
3592 3592
  /// the degrees are stored in a standard \c NodeMap, so each query is done
3593 3593
  /// in constant time. On the other hand, the values are updated automatically
3594 3594
  /// whenever the digraph changes.
3595 3595
  ///
3596 3596
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
3597 3597
  /// may provide alternative ways to modify the digraph.
3598 3598
  /// The correct behavior of OutDegMap is not guarantied if these additional
3599 3599
  /// features are used. For example, the functions
3600 3600
  /// \ref ListDigraph::changeSource() "changeSource()",
3601 3601
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3602 3602
  /// \ref ListDigraph::reverseArc() "reverseArc()"
3603 3603
  /// of \ref ListDigraph will \e not update the degree values correctly.
3604 3604
  ///
3605 3605
  /// \sa InDegMap
3606 3606
  template <typename GR>
3607 3607
  class OutDegMap
3608 3608
    : protected ItemSetTraits<GR, typename GR::Arc>
3609 3609
      ::ItemNotifier::ObserverBase {
3610 3610

	
3611 3611
  public:
3612 3612

	
3613 3613
    /// The graph type of OutDegMap
3614 3614
    typedef GR Graph;
3615 3615
    typedef GR Digraph;
3616 3616
    /// The key type
3617 3617
    typedef typename Digraph::Node Key;
3618 3618
    /// The value type
3619 3619
    typedef int Value;
3620 3620

	
3621 3621
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3622 3622
    ::ItemNotifier::ObserverBase Parent;
3623 3623

	
3624 3624
  private:
3625 3625

	
3626 3626
    class AutoNodeMap
3627 3627
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3628 3628
    public:
3629 3629

	
3630 3630
      typedef typename ItemSetTraits<Digraph, Key>::
3631 3631
      template Map<int>::Type Parent;
3632 3632

	
3633 3633
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3634 3634

	
3635 3635
      virtual void add(const Key& key) {
3636 3636
        Parent::add(key);
3637 3637
        Parent::set(key, 0);
3638 3638
      }
3639 3639
      virtual void add(const std::vector<Key>& keys) {
3640 3640
        Parent::add(keys);
3641 3641
        for (int i = 0; i < int(keys.size()); ++i) {
3642 3642
          Parent::set(keys[i], 0);
3643 3643
        }
3644 3644
      }
3645 3645
      virtual void build() {
3646 3646
        Parent::build();
3647 3647
        Key it;
3648 3648
        typename Parent::Notifier* nf = Parent::notifier();
3649 3649
        for (nf->first(it); it != INVALID; nf->next(it)) {
3650 3650
          Parent::set(it, 0);
3651 3651
        }
3652 3652
      }
3653 3653
    };
3654 3654

	
3655 3655
  public:
3656 3656

	
3657 3657
    /// \brief Constructor.
3658 3658
    ///
3659 3659
    /// Constructor for creating an out-degree map.
3660 3660
    explicit OutDegMap(const Digraph& graph)
3661 3661
      : _digraph(graph), _deg(graph) {
3662 3662
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3663 3663

	
3664 3664
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3665 3665
        _deg[it] = countOutArcs(_digraph, it);
3666 3666
      }
3667 3667
    }
3668 3668

	
3669 3669
    /// \brief Gives back the out-degree of a Node.
3670 3670
    ///
3671 3671
    /// Gives back the out-degree of a Node.
3672 3672
    int operator[](const Key& key) const {
3673 3673
      return _deg[key];
3674 3674
    }
3675 3675

	
3676 3676
  protected:
3677 3677

	
3678 3678
    typedef typename Digraph::Arc Arc;
3679 3679

	
3680 3680
    virtual void add(const Arc& arc) {
3681 3681
      ++_deg[_digraph.source(arc)];
3682 3682
    }
3683 3683

	
3684 3684
    virtual void add(const std::vector<Arc>& arcs) {
3685 3685
      for (int i = 0; i < int(arcs.size()); ++i) {
3686 3686
        ++_deg[_digraph.source(arcs[i])];
3687 3687
      }
3688 3688
    }
3689 3689

	
3690 3690
    virtual void erase(const Arc& arc) {
3691 3691
      --_deg[_digraph.source(arc)];
3692 3692
    }
3693 3693

	
3694 3694
    virtual void erase(const std::vector<Arc>& arcs) {
3695 3695
      for (int i = 0; i < int(arcs.size()); ++i) {
3696 3696
        --_deg[_digraph.source(arcs[i])];
3697 3697
      }
3698 3698
    }
3699 3699

	
3700 3700
    virtual void build() {
3701 3701
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3702 3702
        _deg[it] = countOutArcs(_digraph, it);
3703 3703
      }
3704 3704
    }
3705 3705

	
3706 3706
    virtual void clear() {
3707 3707
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3708 3708
        _deg[it] = 0;
3709 3709
      }
3710 3710
    }
3711 3711
  private:
3712 3712

	
3713 3713
    const Digraph& _digraph;
3714 3714
    AutoNodeMap _deg;
3715 3715
  };
3716 3716

	
3717 3717
  /// \brief Potential difference map
3718 3718
  ///
3719 3719
  /// PotentialDifferenceMap returns the difference between the potentials of
3720 3720
  /// the source and target nodes of each arc in a digraph, i.e. it returns
3721 3721
  /// \code
3722 3722
  ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3723 3723
  /// \endcode
3724 3724
  /// \tparam GR The digraph type.
3725 3725
  /// \tparam POT A node map storing the potentials.
3726 3726
  template <typename GR, typename POT>
3727 3727
  class PotentialDifferenceMap {
3728 3728
  public:
3729 3729
    /// Key type
3730 3730
    typedef typename GR::Arc Key;
3731 3731
    /// Value type
3732 3732
    typedef typename POT::Value Value;
3733 3733

	
3734 3734
    /// \brief Constructor
3735 3735
    ///
3736 3736
    /// Contructor of the map.
3737 3737
    explicit PotentialDifferenceMap(const GR& gr,
3738 3738
                                    const POT& potential)
3739 3739
      : _digraph(gr), _potential(potential) {}
3740 3740

	
3741 3741
    /// \brief Returns the potential difference for the given arc.
3742 3742
    ///
3743 3743
    /// Returns the potential difference for the given arc, i.e.
3744 3744
    /// \code
3745 3745
    ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3746 3746
    /// \endcode
3747 3747
    Value operator[](const Key& arc) const {
3748 3748
      return _potential[_digraph.target(arc)] -
3749 3749
        _potential[_digraph.source(arc)];
3750 3750
    }
3751 3751

	
3752 3752
  private:
3753 3753
    const GR& _digraph;
3754 3754
    const POT& _potential;
3755 3755
  };
3756 3756

	
3757 3757
  /// \brief Returns a PotentialDifferenceMap.
3758 3758
  ///
3759 3759
  /// This function just returns a PotentialDifferenceMap.
3760 3760
  /// \relates PotentialDifferenceMap
3761 3761
  template <typename GR, typename POT>
3762 3762
  PotentialDifferenceMap<GR, POT>
3763 3763
  potentialDifferenceMap(const GR& gr, const POT& potential) {
3764 3764
    return PotentialDifferenceMap<GR, POT>(gr, potential);
3765 3765
  }
3766 3766

	
3767

	
3768
  /// \brief Copy the values of a graph map to another map.
3769
  ///
3770
  /// This function copies the values of a graph map to another graph map.
3771
  /// \c To::Key must be equal or convertible to \c From::Key and
3772
  /// \c From::Value must be equal or convertible to \c To::Value.
3773
  ///
3774
  /// For example, an edge map of \c int value type can be copied to
3775
  /// an arc map of \c double value type in an undirected graph, but
3776
  /// an arc map cannot be copied to an edge map.
3777
  /// Note that even a \ref ConstMap can be copied to a standard graph map,
3778
  /// but \ref mapFill() can also be used for this purpose.
3779
  ///
3780
  /// \param gr The graph for which the maps are defined.
3781
  /// \param from The map from which the values have to be copied.
3782
  /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
3783
  /// \param to The map to which the values have to be copied.
3784
  /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
3785
  template <typename GR, typename From, typename To>
3786
  void mapCopy(const GR& gr, const From& from, To& to) {
3787
    typedef typename To::Key Item;
3788
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3789
    
3790
    for (ItemIt it(gr); it != INVALID; ++it) {
3791
      to.set(it, from[it]);
3792
    }
3793
  }
3794

	
3795
  /// \brief Compare two graph maps.
3796
  ///
3797
  /// This function compares the values of two graph maps. It returns 
3798
  /// \c true if the maps assign the same value for all items in the graph.
3799
  /// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
3800
  /// and their \c Value types must be comparable using \c %operator==().
3801
  ///
3802
  /// \param gr The graph for which the maps are defined.
3803
  /// \param map1 The first map.
3804
  /// \param map2 The second map.
3805
  template <typename GR, typename Map1, typename Map2>
3806
  bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
3807
    typedef typename Map2::Key Item;
3808
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3809
    
3810
    for (ItemIt it(gr); it != INVALID; ++it) {
3811
      if (!(map1[it] == map2[it])) return false;
3812
    }
3813
    return true;
3814
  }
3815

	
3816
  /// \brief Return an item having minimum value of a graph map.
3817
  ///
3818
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3819
  /// minimum value of the given graph map.
3820
  /// If the item set is empty, it returns \c INVALID.
3821
  ///
3822
  /// \param gr The graph for which the map is defined.
3823
  /// \param map The graph map.
3824
  template <typename GR, typename Map>
3825
  typename Map::Key mapMin(const GR& gr, const Map& map) {
3826
    return mapMin(gr, map, std::less<typename Map::Value>());
3827
  }
3828

	
3829
  /// \brief Return an item having minimum value of a graph map.
3830
  ///
3831
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3832
  /// minimum value of the given graph map.
3833
  /// If the item set is empty, it returns \c INVALID.
3834
  ///
3835
  /// \param gr The graph for which the map is defined.
3836
  /// \param map The graph map.
3837
  /// \param comp Comparison function object.
3838
  template <typename GR, typename Map, typename Comp>
3839
  typename Map::Key mapMin(const GR& gr, const Map& map, const Comp& comp) {
3840
    typedef typename Map::Key Item;
3841
    typedef typename Map::Value Value;
3842
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3843

	
3844
    ItemIt min_item(gr);
3845
    if (min_item == INVALID) return INVALID;
3846
    Value min = map[min_item];
3847
    for (ItemIt it(gr); it != INVALID; ++it) {
3848
      if (comp(map[it], min)) {
3849
        min = map[it];
3850
        min_item = it;
3851
      }
3852
    }
3853
    return min_item;
3854
  }
3855

	
3856
  /// \brief Return an item having maximum value of a graph map.
3857
  ///
3858
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3859
  /// maximum value of the given graph map.
3860
  /// If the item set is empty, it returns \c INVALID.
3861
  ///
3862
  /// \param gr The graph for which the map is defined.
3863
  /// \param map The graph map.
3864
  template <typename GR, typename Map>
3865
  typename Map::Key mapMax(const GR& gr, const Map& map) {
3866
    return mapMax(gr, map, std::less<typename Map::Value>());
3867
  }
3868

	
3869
  /// \brief Return an item having maximum value of a graph map.
3870
  ///
3871
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3872
  /// maximum value of the given graph map.
3873
  /// If the item set is empty, it returns \c INVALID.
3874
  ///
3875
  /// \param gr The graph for which the map is defined.
3876
  /// \param map The graph map.
3877
  /// \param comp Comparison function object.
3878
  template <typename GR, typename Map, typename Comp>
3879
  typename Map::Key mapMax(const GR& gr, const Map& map, const Comp& comp) {
3880
    typedef typename Map::Key Item;
3881
    typedef typename Map::Value Value;
3882
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3883

	
3884
    ItemIt max_item(gr);
3885
    if (max_item == INVALID) return INVALID;
3886
    Value max = map[max_item];
3887
    for (ItemIt it(gr); it != INVALID; ++it) {
3888
      if (comp(max, map[it])) {
3889
        max = map[it];
3890
        max_item = it;
3891
      }
3892
    }
3893
    return max_item;
3894
  }
3895

	
3896
  /// \brief Return the minimum value of a graph map.
3897
  ///
3898
  /// This function returns the minimum value of the given graph map.
3899
  /// The corresponding item set of the graph must not be empty.
3900
  ///
3901
  /// \param gr The graph for which the map is defined.
3902
  /// \param map The graph map.
3903
  template <typename GR, typename Map>
3904
  typename Map::Value mapMinValue(const GR& gr, const Map& map) {
3905
    return map[mapMin(gr, map, std::less<typename Map::Value>())];
3906
  }
3907

	
3908
  /// \brief Return the minimum value of a graph map.
3909
  ///
3910
  /// This function returns the minimum value of the given graph map.
3911
  /// The corresponding item set of the graph must not be empty.
3912
  ///
3913
  /// \param gr The graph for which the map is defined.
3914
  /// \param map The graph map.
3915
  /// \param comp Comparison function object.
3916
  template <typename GR, typename Map, typename Comp>
3917
  typename Map::Value
3918
  mapMinValue(const GR& gr, const Map& map, const Comp& comp) {
3919
    return map[mapMin(gr, map, comp)];
3920
  }
3921

	
3922
  /// \brief Return the maximum value of a graph map.
3923
  ///
3924
  /// This function returns the maximum value of the given graph map.
3925
  /// The corresponding item set of the graph must not be empty.
3926
  ///
3927
  /// \param gr The graph for which the map is defined.
3928
  /// \param map The graph map.
3929
  template <typename GR, typename Map>
3930
  typename Map::Value mapMaxValue(const GR& gr, const Map& map) {
3931
    return map[mapMax(gr, map, std::less<typename Map::Value>())];
3932
  }
3933

	
3934
  /// \brief Return the maximum value of a graph map.
3935
  ///
3936
  /// This function returns the maximum value of the given graph map.
3937
  /// The corresponding item set of the graph must not be empty.
3938
  ///
3939
  /// \param gr The graph for which the map is defined.
3940
  /// \param map The graph map.
3941
  /// \param comp Comparison function object.
3942
  template <typename GR, typename Map, typename Comp>
3943
  typename Map::Value
3944
  mapMaxValue(const GR& gr, const Map& map, const Comp& comp) {
3945
    return map[mapMax(gr, map, comp)];
3946
  }
3947

	
3948
  /// \brief Return an item having a specified value in a graph map.
3949
  ///
3950
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3951
  /// the specified assigned value in the given graph map.
3952
  /// If no such item exists, it returns \c INVALID.
3953
  ///
3954
  /// \param gr The graph for which the map is defined.
3955
  /// \param map The graph map.
3956
  /// \param val The value that have to be found.
3957
  template <typename GR, typename Map>
3958
  typename Map::Key
3959
  mapFind(const GR& gr, const Map& map, const typename Map::Value& val) {
3960
    typedef typename Map::Key Item;
3961
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3962

	
3963
    for (ItemIt it(gr); it != INVALID; ++it) {
3964
      if (map[it] == val) return it;
3965
    }
3966
    return INVALID;
3967
  }
3968

	
3969
  /// \brief Return an item having value for which a certain predicate is
3970
  /// true in a graph map.
3971
  ///
3972
  /// This function returns an item (\c Node, \c Arc or \c Edge) having
3973
  /// such assigned value for which the specified predicate is true
3974
  /// in the given graph map.
3975
  /// If no such item exists, it returns \c INVALID.
3976
  ///
3977
  /// \param gr The graph for which the map is defined.
3978
  /// \param map The graph map.
3979
  /// \param pred The predicate function object.
3980
  template <typename GR, typename Map, typename Pred>
3981
  typename Map::Key
3982
  mapFindIf(const GR& gr, const Map& map, const Pred& pred) {
3983
    typedef typename Map::Key Item;
3984
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3985

	
3986
    for (ItemIt it(gr); it != INVALID; ++it) {
3987
      if (pred(map[it])) return it;
3988
    }
3989
    return INVALID;
3990
  }
3991

	
3992
  /// \brief Return the number of items having a specified value in a
3993
  /// graph map.
3994
  ///
3995
  /// This function returns the number of items (\c Node, \c Arc or \c Edge)
3996
  /// having the specified assigned value in the given graph map.
3997
  ///
3998
  /// \param gr The graph for which the map is defined.
3999
  /// \param map The graph map.
4000
  /// \param val The value that have to be counted.
4001
  template <typename GR, typename Map>
4002
  int mapCount(const GR& gr, const Map& map, const typename Map::Value& val) {
4003
    typedef typename Map::Key Item;
4004
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
4005

	
4006
    int cnt = 0;
4007
    for (ItemIt it(gr); it != INVALID; ++it) {
4008
      if (map[it] == val) ++cnt;
4009
    }
4010
    return cnt;
4011
  }
4012

	
4013
  /// \brief Return the number of items having values for which a certain
4014
  /// predicate is true in a graph map.
4015
  ///
4016
  /// This function returns the number of items (\c Node, \c Arc or \c Edge)
4017
  /// having such assigned values for which the specified predicate is true
4018
  /// in the given graph map.
4019
  ///
4020
  /// \param gr The graph for which the map is defined.
4021
  /// \param map The graph map.
4022
  /// \param pred The predicate function object.
4023
  template <typename GR, typename Map, typename Pred>
4024
  int mapCountIf(const GR& gr, const Map& map, const Pred& pred) {
4025
    typedef typename Map::Key Item;
4026
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
4027

	
4028
    int cnt = 0;
4029
    for (ItemIt it(gr); it != INVALID; ++it) {
4030
      if (pred(map[it])) ++cnt;
4031
    }
4032
    return cnt;
4033
  }
4034

	
4035
  /// \brief Fill a graph map with a certain value.
4036
  ///
4037
  /// This function sets the specified value for all items (\c Node,
4038
  /// \c Arc or \c Edge) in the given graph map.
4039
  ///
4040
  /// \param gr The graph for which the map is defined.
4041
  /// \param map The graph map. It must conform to the
4042
  /// \ref concepts::WriteMap "WriteMap" concept.
4043
  /// \param val The value.
4044
  template <typename GR, typename Map>
4045
  void mapFill(const GR& gr, Map& map, const typename Map::Value& val) {
4046
    typedef typename Map::Key Item;
4047
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
4048

	
4049
    for (ItemIt it(gr); it != INVALID; ++it) {
4050
      map.set(it, val);
4051
    }
4052
  }
4053

	
3767 4054
  /// @}
3768 4055
}
3769 4056

	
3770 4057
#endif // LEMON_MAPS_H
Show white space 16384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/concepts/digraph.h>
20 20
#include <lemon/smart_graph.h>
21 21
#include <lemon/list_graph.h>
22 22
#include <lemon/lgf_reader.h>
23 23
#include <lemon/bellman_ford.h>
24 24
#include <lemon/path.h>
25 25

	
26 26
#include "graph_test.h"
27 27
#include "test_tools.h"
28 28

	
29 29
using namespace lemon;
30 30

	
31 31
char test_lgf[] =
32 32
  "@nodes\n"
33 33
  "label\n"
34 34
  "0\n"
35 35
  "1\n"
36 36
  "2\n"
37 37
  "3\n"
38 38
  "4\n"
39 39
  "@arcs\n"
40 40
  "    length\n"
41 41
  "0 1 3\n"
42 42
  "1 2 -3\n"
43 43
  "1 2 -5\n"
44 44
  "1 3 -2\n"
45 45
  "0 2 -1\n"
46 46
  "1 2 -4\n"
47 47
  "0 3 2\n"
48 48
  "4 2 -5\n"
49 49
  "2 3 1\n"
50 50
  "@attributes\n"
51 51
  "source 0\n"
52 52
  "target 3\n";
53 53

	
54 54

	
55 55
void checkBellmanFordCompile()
56 56
{
57 57
  typedef int Value;
58 58
  typedef concepts::Digraph Digraph;
59 59
  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
60 60
  typedef BellmanFord<Digraph, LengthMap> BF;
61 61
  typedef Digraph::Node Node;
62 62
  typedef Digraph::Arc Arc;
63 63

	
64 64
  Digraph gr;
65 65
  Node s, t, n;
66 66
  Arc e;
67 67
  Value l;
68
  int k;
68
  int k=3;
69 69
  bool b;
70 70
  BF::DistMap d(gr);
71 71
  BF::PredMap p(gr);
72 72
  LengthMap length;
73 73
  concepts::Path<Digraph> pp;
74 74

	
75 75
  {
76 76
    BF bf_test(gr,length);
77 77
    const BF& const_bf_test = bf_test;
78 78

	
79 79
    bf_test.run(s);
80 80
    bf_test.run(s,k);
81 81

	
82 82
    bf_test.init();
83 83
    bf_test.addSource(s);
84 84
    bf_test.addSource(s, 1);
85 85
    b = bf_test.processNextRound();
86 86
    b = bf_test.processNextWeakRound();
87 87

	
88 88
    bf_test.start();
89 89
    bf_test.checkedStart();
90 90
    bf_test.limitedStart(k);
91 91

	
92 92
    l  = const_bf_test.dist(t);
93 93
    e  = const_bf_test.predArc(t);
94 94
    s  = const_bf_test.predNode(t);
95 95
    b  = const_bf_test.reached(t);
96 96
    d  = const_bf_test.distMap();
97 97
    p  = const_bf_test.predMap();
98 98
    pp = const_bf_test.path(t);
99 99
    pp = const_bf_test.negativeCycle();
100 100
    
101 101
    for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
102 102
  }
103 103
  {
104 104
    BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
105 105
      ::SetDistMap<concepts::ReadWriteMap<Node,Value> >
106 106
      ::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> >
107 107
      ::Create bf_test(gr,length);
108 108

	
109 109
    LengthMap length_map;
110 110
    concepts::ReadWriteMap<Node,Arc> pred_map;
111 111
    concepts::ReadWriteMap<Node,Value> dist_map;
112 112
    
113 113
    bf_test
114 114
      .lengthMap(length_map)
115 115
      .predMap(pred_map)
116 116
      .distMap(dist_map);
117 117

	
118 118
    bf_test.run(s);
119 119
    bf_test.run(s,k);
120 120

	
121 121
    bf_test.init();
122 122
    bf_test.addSource(s);
123 123
    bf_test.addSource(s, 1);
124 124
    b = bf_test.processNextRound();
125 125
    b = bf_test.processNextWeakRound();
126 126

	
127 127
    bf_test.start();
128 128
    bf_test.checkedStart();
129 129
    bf_test.limitedStart(k);
130 130

	
131 131
    l  = bf_test.dist(t);
132 132
    e  = bf_test.predArc(t);
133 133
    s  = bf_test.predNode(t);
134 134
    b  = bf_test.reached(t);
135 135
    pp = bf_test.path(t);
136 136
    pp = bf_test.negativeCycle();
137 137
  }
138 138
}
139 139

	
140 140
void checkBellmanFordFunctionCompile()
141 141
{
142 142
  typedef int Value;
143 143
  typedef concepts::Digraph Digraph;
144 144
  typedef Digraph::Arc Arc;
145 145
  typedef Digraph::Node Node;
146 146
  typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
147 147

	
148 148
  Digraph g;
149 149
  bool b;
150 150
  bellmanFord(g,LengthMap()).run(Node());
151 151
  b = bellmanFord(g,LengthMap()).run(Node(),Node());
152 152
  bellmanFord(g,LengthMap())
153 153
    .predMap(concepts::ReadWriteMap<Node,Arc>())
154 154
    .distMap(concepts::ReadWriteMap<Node,Value>())
155 155
    .run(Node());
156 156
  b=bellmanFord(g,LengthMap())
157 157
    .predMap(concepts::ReadWriteMap<Node,Arc>())
158 158
    .distMap(concepts::ReadWriteMap<Node,Value>())
159 159
    .path(concepts::Path<Digraph>())
160 160
    .dist(Value())
161 161
    .run(Node(),Node());
162 162
}
163 163

	
164 164

	
165 165
template <typename Digraph, typename Value>
166 166
void checkBellmanFord() {
167 167
  TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
168 168
  typedef typename Digraph::template ArcMap<Value> LengthMap;
169 169

	
170 170
  Digraph gr;
171 171
  Node s, t;
172 172
  LengthMap length(gr);
173 173

	
174 174
  std::istringstream input(test_lgf);
175 175
  digraphReader(gr, input).
176 176
    arcMap("length", length).
177 177
    node("source", s).
178 178
    node("target", t).
179 179
    run();
180 180

	
181 181
  BellmanFord<Digraph, LengthMap>
182 182
    bf(gr, length);
183 183
  bf.run(s);
184 184
  Path<Digraph> p = bf.path(t);
185 185

	
186 186
  check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path.");
187 187
  check(p.length() == 3, "path() found a wrong path.");
188 188
  check(checkPath(gr, p), "path() found a wrong path.");
189 189
  check(pathSource(gr, p) == s, "path() found a wrong path.");
190 190
  check(pathTarget(gr, p) == t, "path() found a wrong path.");
191 191
  
192 192
  ListPath<Digraph> path;
193 193
  Value dist;
194 194
  bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t);
195 195

	
196 196
  check(reached && dist == -1, "Bellman-Ford found a wrong path.");
197 197
  check(path.length() == 3, "path() found a wrong path.");
198 198
  check(checkPath(gr, path), "path() found a wrong path.");
199 199
  check(pathSource(gr, path) == s, "path() found a wrong path.");
200 200
  check(pathTarget(gr, path) == t, "path() found a wrong path.");
201 201

	
202 202
  for(ArcIt e(gr); e!=INVALID; ++e) {
203 203
    Node u=gr.source(e);
204 204
    Node v=gr.target(e);
205 205
    check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]),
206 206
          "Wrong output. dist(target)-dist(source)-arc_length=" <<
207 207
          bf.dist(v) - bf.dist(u) - length[e]);
208 208
  }
209 209

	
210 210
  for(NodeIt v(gr); v!=INVALID; ++v) {
211 211
    if (bf.reached(v)) {
212 212
      check(v==s || bf.predArc(v)!=INVALID, "Wrong tree.");
213 213
      if (bf.predArc(v)!=INVALID ) {
214 214
        Arc e=bf.predArc(v);
215 215
        Node u=gr.source(e);
216 216
        check(u==bf.predNode(v),"Wrong tree.");
217 217
        check(bf.dist(v) - bf.dist(u) == length[e],
218 218
              "Wrong distance! Difference: " <<
219 219
              bf.dist(v) - bf.dist(u) - length[e]);
220 220
      }
221 221
    }
222 222
  }
223 223
}
224 224

	
225 225
void checkBellmanFordNegativeCycle() {
226 226
  DIGRAPH_TYPEDEFS(SmartDigraph);
227 227

	
228 228
  SmartDigraph gr;
229 229
  IntArcMap length(gr);
230 230
  
231 231
  Node n1 = gr.addNode();
232 232
  Node n2 = gr.addNode();
233 233
  Node n3 = gr.addNode();
234 234
  Node n4 = gr.addNode();
235 235
  
236 236
  Arc a1 = gr.addArc(n1, n2);
237 237
  Arc a2 = gr.addArc(n2, n2);
238 238
  
239 239
  length[a1] = 2;
240 240
  length[a2] = -1;
241 241
  
242 242
  {
243 243
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
244 244
    bf.run(n1);
245 245
    StaticPath<SmartDigraph> p = bf.negativeCycle();
246 246
    check(p.length() == 1 && p.front() == p.back() && p.front() == a2,
247 247
          "Wrong negative cycle.");
248 248
  }
249 249
 
250 250
  length[a2] = 0;
251 251
  
252 252
  {
253 253
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
254 254
    bf.run(n1);
255 255
    check(bf.negativeCycle().empty(),
256 256
          "Negative cycle should not be found.");
257 257
  }
258 258
  
259 259
  length[gr.addArc(n1, n3)] = 5;
260 260
  length[gr.addArc(n4, n3)] = 1;
261 261
  length[gr.addArc(n2, n4)] = 2;
262 262
  length[gr.addArc(n3, n2)] = -4;
263 263
  
264 264
  {
265 265
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
266 266
    bf.init();
267 267
    bf.addSource(n1);
268 268
    for (int i = 0; i < 4; ++i) {
269 269
      check(bf.negativeCycle().empty(),
270 270
            "Negative cycle should not be found.");
271 271
      bf.processNextRound();
272 272
    }
273 273
    StaticPath<SmartDigraph> p = bf.negativeCycle();
274 274
    check(p.length() == 3, "Wrong negative cycle.");
275 275
    check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1,
276 276
          "Wrong negative cycle.");
277 277
  }
278 278
}
279 279

	
280 280
int main() {
281 281
  checkBellmanFord<ListDigraph, int>();
282 282
  checkBellmanFord<SmartDigraph, double>();
283 283
  checkBellmanFordNegativeCycle();
284 284
  return 0;
285 285
}
Show white space 16384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <deque>
20 20
#include <set>
21 21

	
22 22
#include <lemon/concept_check.h>
23 23
#include <lemon/concepts/maps.h>
24 24
#include <lemon/maps.h>
25 25
#include <lemon/list_graph.h>
26 26
#include <lemon/smart_graph.h>
27 27
#include <lemon/adaptors.h>
28 28
#include <lemon/dfs.h>
29
#include <algorithm>
29 30

	
30 31
#include "test_tools.h"
31 32

	
32 33
using namespace lemon;
33 34
using namespace lemon::concepts;
34 35

	
35 36
struct A {};
36 37
inline bool operator<(A, A) { return true; }
37 38
struct B {};
38 39

	
39 40
class C {
40
  int x;
41
  int _x;
41 42
public:
42
  C(int _x) : x(_x) {}
43
  C(int x) : _x(x) {}
44
  int get() const { return _x; }
45
};
46
inline bool operator<(C c1, C c2) { return c1.get() < c2.get(); }
47
inline bool operator==(C c1, C c2) { return c1.get() == c2.get(); }
48

	
49
C createC(int x) { return C(x); }
50

	
51
template <typename T>
52
class Less {
53
  T _t;
54
public:
55
  Less(T t): _t(t) {}
56
  bool operator()(const T& t) const { return t < _t; }
43 57
};
44 58

	
45 59
class F {
46 60
public:
47 61
  typedef A argument_type;
48 62
  typedef B result_type;
49 63

	
50 64
  B operator()(const A&) const { return B(); }
51 65
private:
52 66
  F& operator=(const F&);
53 67
};
54 68

	
55 69
int func(A) { return 3; }
56 70

	
57 71
int binc(int a, B) { return a+1; }
58 72

	
73
template <typename T>
74
class Sum {
75
  T& _sum;
76
public:
77
  Sum(T& sum) : _sum(sum) {}
78
  void operator()(const T& t) { _sum += t; }
79
};
80

	
59 81
typedef ReadMap<A, double> DoubleMap;
60 82
typedef ReadWriteMap<A, double> DoubleWriteMap;
61 83
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap;
62 84

	
63 85
typedef ReadMap<A, bool> BoolMap;
64 86
typedef ReadWriteMap<A, bool> BoolWriteMap;
65 87
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap;
66 88

	
67
template<typename Map1, typename Map2, typename ItemIt>
68
void compareMap(const Map1& map1, const Map2& map2, ItemIt it) {
69
  for (; it != INVALID; ++it)
70
    check(map1[it] == map2[it], "The maps are not equal");
71
}
72

	
73 89
int main()
74 90
{
75 91
  // Map concepts
76 92
  checkConcept<ReadMap<A,B>, ReadMap<A,B> >();
77 93
  checkConcept<ReadMap<A,C>, ReadMap<A,C> >();
78 94
  checkConcept<WriteMap<A,B>, WriteMap<A,B> >();
79 95
  checkConcept<WriteMap<A,C>, WriteMap<A,C> >();
80 96
  checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >();
81 97
  checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >();
82 98
  checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >();
83 99
  checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >();
84 100

	
85 101
  // NullMap
86 102
  {
87 103
    checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >();
88 104
    NullMap<A,B> map1;
89 105
    NullMap<A,B> map2 = map1;
90 106
    map1 = nullMap<A,B>();
91 107
  }
92 108

	
93 109
  // ConstMap
94 110
  {
95 111
    checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >();
96 112
    checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >();
97 113
    ConstMap<A,B> map1;
98 114
    ConstMap<A,B> map2 = B();
99 115
    ConstMap<A,B> map3 = map1;
100 116
    map1 = constMap<A>(B());
101 117
    map1 = constMap<A,B>();
102 118
    map1.setAll(B());
103 119
    ConstMap<A,C> map4(C(1));
104 120
    ConstMap<A,C> map5 = map4;
105 121
    map4 = constMap<A>(C(2));
106 122
    map4.setAll(C(3));
107 123

	
108 124
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >();
109 125
    check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap");
110 126

	
111 127
    checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >();
112 128
    ConstMap<A,Const<int,10> > map6;
113 129
    ConstMap<A,Const<int,10> > map7 = map6;
114 130
    map6 = constMap<A,int,10>();
115 131
    map7 = constMap<A,Const<int,10> >();
116 132
    check(map6[A()] == 10 && map7[A()] == 10,
117 133
          "Something is wrong with ConstMap");
118 134
  }
119 135

	
120 136
  // IdentityMap
121 137
  {
122 138
    checkConcept<ReadMap<A,A>, IdentityMap<A> >();
123 139
    IdentityMap<A> map1;
124 140
    IdentityMap<A> map2 = map1;
125 141
    map1 = identityMap<A>();
126 142

	
127 143
    checkConcept<ReadMap<double,double>, IdentityMap<double> >();
128 144
    check(identityMap<double>()[1.0] == 1.0 &&
129 145
          identityMap<double>()[3.14] == 3.14,
130 146
          "Something is wrong with IdentityMap");
131 147
  }
132 148

	
133 149
  // RangeMap
134 150
  {
135 151
    checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >();
136 152
    RangeMap<B> map1;
137 153
    RangeMap<B> map2(10);
138 154
    RangeMap<B> map3(10,B());
139 155
    RangeMap<B> map4 = map1;
140 156
    RangeMap<B> map5 = rangeMap<B>();
141 157
    RangeMap<B> map6 = rangeMap<B>(10);
142 158
    RangeMap<B> map7 = rangeMap(10,B());
143 159

	
144 160
    checkConcept< ReferenceMap<int, double, double&, const double&>,
145 161
                  RangeMap<double> >();
146 162
    std::vector<double> v(10, 0);
147 163
    v[5] = 100;
148 164
    RangeMap<double> map8(v);
149 165
    RangeMap<double> map9 = rangeMap(v);
150 166
    check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100,
151 167
          "Something is wrong with RangeMap");
152 168
  }
153 169

	
154 170
  // SparseMap
155 171
  {
156 172
    checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >();
157 173
    SparseMap<A,B> map1;
158 174
    SparseMap<A,B> map2 = B();
159 175
    SparseMap<A,B> map3 = sparseMap<A,B>();
160 176
    SparseMap<A,B> map4 = sparseMap<A>(B());
161 177

	
162 178
    checkConcept< ReferenceMap<double, int, int&, const int&>,
163 179
                  SparseMap<double, int> >();
164 180
    std::map<double, int> m;
165 181
    SparseMap<double, int> map5(m);
166 182
    SparseMap<double, int> map6(m,10);
167 183
    SparseMap<double, int> map7 = sparseMap(m);
168 184
    SparseMap<double, int> map8 = sparseMap(m,10);
169 185

	
170 186
    check(map5[1.0] == 0 && map5[3.14] == 0 &&
171 187
          map6[1.0] == 10 && map6[3.14] == 10,
172 188
          "Something is wrong with SparseMap");
173 189
    map5[1.0] = map6[3.14] = 100;
174 190
    check(map5[1.0] == 100 && map5[3.14] == 0 &&
175 191
          map6[1.0] == 10 && map6[3.14] == 100,
176 192
          "Something is wrong with SparseMap");
177 193
  }
178 194

	
179 195
  // ComposeMap
180 196
  {
181 197
    typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap;
182 198
    checkConcept<ReadMap<B,double>, CompMap>();
183 199
    CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>());
184 200
    CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>());
185 201

	
186 202
    SparseMap<double, bool> m1(false); m1[3.14] = true;
187 203
    RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14;
188 204
    check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1],
189 205
          "Something is wrong with ComposeMap")
190 206
  }
191 207

	
192 208
  // CombineMap
193 209
  {
194 210
    typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap;
195 211
    checkConcept<ReadMap<A,double>, CombMap>();
196 212
    CombMap map1 = CombMap(DoubleMap(), DoubleMap());
197 213
    CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>());
198 214

	
199 215
    check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3,
200 216
          "Something is wrong with CombineMap");
201 217
  }
202 218

	
203 219
  // FunctorToMap, MapToFunctor
204 220
  {
205 221
    checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >();
206 222
    checkConcept<ReadMap<A,B>, FunctorToMap<F> >();
207 223
    FunctorToMap<F> map1;
208 224
    FunctorToMap<F> map2 = FunctorToMap<F>(F());
209 225
    B b = functorToMap(F())[A()];
210 226

	
211 227
    checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >();
212 228
    MapToFunctor<ReadMap<A,B> > map = MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>());
213 229

	
214 230
    check(functorToMap(&func)[A()] == 3,
215 231
          "Something is wrong with FunctorToMap");
216 232
    check(mapToFunctor(constMap<A,int>(2))(A()) == 2,
217 233
          "Something is wrong with MapToFunctor");
218 234
    check(mapToFunctor(functorToMap(&func))(A()) == 3 &&
219 235
          mapToFunctor(functorToMap(&func))[A()] == 3,
220 236
          "Something is wrong with FunctorToMap or MapToFunctor");
221 237
    check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2,
222 238
          "Something is wrong with FunctorToMap or MapToFunctor");
223 239
  }
224 240

	
225 241
  // ConvertMap
226 242
  {
227 243
    checkConcept<ReadMap<double,double>,
228 244
      ConvertMap<ReadMap<double, int>, double> >();
229 245
    ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true));
230 246
    ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false));
231 247
  }
232 248

	
233 249
  // ForkMap
234 250
  {
235 251
    checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >();
236 252

	
237 253
    typedef RangeMap<double> RM;
238 254
    typedef SparseMap<int, double> SM;
239 255
    RM m1(10, -1);
240 256
    SM m2(-1);
241 257
    checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >();
242 258
    checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >();
243 259
    ForkMap<RM, SM> map1(m1,m2);
244 260
    ForkMap<SM, RM> map2 = forkMap(m2,m1);
245 261
    map2.set(5, 10);
246 262
    check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 &&
247 263
          m2[5] == 10 && map2[1] == -1 && map2[5] == 10,
248 264
          "Something is wrong with ForkMap");
249 265
  }
250 266

	
251 267
  // Arithmetic maps:
252 268
  // - AddMap, SubMap, MulMap, DivMap
253 269
  // - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap
254 270
  // - NegMap, NegWriteMap, AbsMap
255 271
  {
256 272
    checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >();
257 273
    checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >();
258 274
    checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >();
259 275
    checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >();
260 276

	
261 277
    ConstMap<int, double> c1(1.0), c2(3.14);
262 278
    IdentityMap<int> im;
263 279
    ConvertMap<IdentityMap<int>, double> id(im);
264 280
    check(addMap(c1,id)[0] == 1.0  && addMap(c1,id)[10] == 11.0,
265 281
          "Something is wrong with AddMap");
266 282
    check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0,
267 283
          "Something is wrong with SubMap");
268 284
    check(mulMap(id,c2)[0] == 0    && mulMap(id,c2)[2]  == 6.28,
269 285
          "Something is wrong with MulMap");
270 286
    check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2]  == 1.57,
271 287
          "Something is wrong with DivMap");
272 288

	
273 289
    checkConcept<DoubleMap, ShiftMap<DoubleMap> >();
274 290
    checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >();
275 291
    checkConcept<DoubleMap, ScaleMap<DoubleMap> >();
276 292
    checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >();
277 293
    checkConcept<DoubleMap, NegMap<DoubleMap> >();
278 294
    checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >();
279 295
    checkConcept<DoubleMap, AbsMap<DoubleMap> >();
280 296

	
281 297
    check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0,
282 298
          "Something is wrong with ShiftMap");
283 299
    check(shiftWriteMap(id, 2.0)[1] == 3.0 &&
284 300
          shiftWriteMap(id, 2.0)[10] == 12.0,
285 301
          "Something is wrong with ShiftWriteMap");
286 302
    check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0,
287 303
          "Something is wrong with ScaleMap");
288 304
    check(scaleWriteMap(id, 2.0)[1] == 2.0 &&
289 305
          scaleWriteMap(id, 2.0)[10] == 20.0,
290 306
          "Something is wrong with ScaleWriteMap");
291 307
    check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0,
292 308
          "Something is wrong with NegMap");
293 309
    check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0,
294 310
          "Something is wrong with NegWriteMap");
295 311
    check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0,
296 312
          "Something is wrong with AbsMap");
297 313
  }
298 314

	
299 315
  // Logical maps:
300 316
  // - TrueMap, FalseMap
301 317
  // - AndMap, OrMap
302 318
  // - NotMap, NotWriteMap
303 319
  // - EqualMap, LessMap
304 320
  {
305 321
    checkConcept<BoolMap, TrueMap<A> >();
306 322
    checkConcept<BoolMap, FalseMap<A> >();
307 323
    checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >();
308 324
    checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >();
309 325
    checkConcept<BoolMap, NotMap<BoolMap> >();
310 326
    checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >();
311 327
    checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >();
312 328
    checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >();
313 329

	
314 330
    TrueMap<int> tm;
315 331
    FalseMap<int> fm;
316 332
    RangeMap<bool> rm(2);
317 333
    rm[0] = true; rm[1] = false;
318 334
    check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] &&
319 335
          !andMap(fm,rm)[0] && !andMap(fm,rm)[1],
320 336
          "Something is wrong with AndMap");
321 337
    check(orMap(tm,rm)[0] && orMap(tm,rm)[1] &&
322 338
          orMap(fm,rm)[0] && !orMap(fm,rm)[1],
323 339
          "Something is wrong with OrMap");
324 340
    check(!notMap(rm)[0] && notMap(rm)[1],
325 341
          "Something is wrong with NotMap");
326 342
    check(!notWriteMap(rm)[0] && notWriteMap(rm)[1],
327 343
          "Something is wrong with NotWriteMap");
328 344

	
329 345
    ConstMap<int, double> cm(2.0);
330 346
    IdentityMap<int> im;
331 347
    ConvertMap<IdentityMap<int>, double> id(im);
332 348
    check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3],
333 349
          "Something is wrong with LessMap");
334 350
    check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3],
335 351
          "Something is wrong with EqualMap");
336 352
  }
337 353

	
338 354
  // LoggerBoolMap
339 355
  {
340 356
    typedef std::vector<int> vec;
341 357
    checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >();
342 358
    checkConcept<WriteMap<int, bool>,
343 359
                 LoggerBoolMap<std::back_insert_iterator<vec> > >();
344 360

	
345 361
    vec v1;
346 362
    vec v2(10);
347 363
    LoggerBoolMap<std::back_insert_iterator<vec> >
348 364
      map1(std::back_inserter(v1));
349 365
    LoggerBoolMap<vec::iterator> map2(v2.begin());
350 366
    map1.set(10, false);
351 367
    map1.set(20, true);   map2.set(20, true);
352 368
    map1.set(30, false);  map2.set(40, false);
353 369
    map1.set(50, true);   map2.set(50, true);
354 370
    map1.set(60, true);   map2.set(60, true);
355 371
    check(v1.size() == 3 && v2.size() == 10 &&
356 372
          v1[0]==20 && v1[1]==50 && v1[2]==60 &&
357 373
          v2[0]==20 && v2[1]==50 && v2[2]==60,
358 374
          "Something is wrong with LoggerBoolMap");
359 375

	
360 376
    int i = 0;
361 377
    for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin();
362 378
          it != map2.end(); ++it )
363 379
      check(v1[i++] == *it, "Something is wrong with LoggerBoolMap");
364 380
    
365 381
    typedef ListDigraph Graph;
366 382
    DIGRAPH_TYPEDEFS(Graph);
367 383
    Graph gr;
368 384

	
369 385
    Node n0 = gr.addNode();
370 386
    Node n1 = gr.addNode();
371 387
    Node n2 = gr.addNode();
372 388
    Node n3 = gr.addNode();
373 389
    
374 390
    gr.addArc(n3, n0);
375 391
    gr.addArc(n3, n2);
376 392
    gr.addArc(n0, n2);
377 393
    gr.addArc(n2, n1);
378 394
    gr.addArc(n0, n1);
379 395
    
380 396
    {
381 397
      std::vector<Node> v;
382 398
      dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run();
383 399

	
384 400
      check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3,
385 401
            "Something is wrong with LoggerBoolMap");
386 402
    }
387 403
    {
388 404
      std::vector<Node> v(countNodes(gr));
389 405
      dfs(gr).processedMap(loggerBoolMap(v.begin())).run();
390 406
      
391 407
      check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3,
392 408
            "Something is wrong with LoggerBoolMap");
393 409
    }
394 410
  }
395 411
  
396 412
  // IdMap, RangeIdMap
397 413
  {
398 414
    typedef ListDigraph Graph;
399 415
    DIGRAPH_TYPEDEFS(Graph);
400 416

	
401 417
    checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >();
402 418
    checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >();
403 419
    checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >();
404 420
    checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >();
405 421
    
406 422
    Graph gr;
407 423
    IdMap<Graph, Node> nmap(gr);
408 424
    IdMap<Graph, Arc> amap(gr);
409 425
    RangeIdMap<Graph, Node> nrmap(gr);
410 426
    RangeIdMap<Graph, Arc> armap(gr);
411 427
    
412 428
    Node n0 = gr.addNode();
413 429
    Node n1 = gr.addNode();
414 430
    Node n2 = gr.addNode();
415 431
    
416 432
    Arc a0 = gr.addArc(n0, n1);
417 433
    Arc a1 = gr.addArc(n0, n2);
418 434
    Arc a2 = gr.addArc(n2, n1);
419 435
    Arc a3 = gr.addArc(n2, n0);
420 436
    
421 437
    check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap");
422 438
    check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap");
423 439
    check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap");
424 440

	
425 441
    check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap");
426 442
    check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap");
427 443
    check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap");
428 444
    check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap");
429 445

	
430 446
    check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap");
431 447
    check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap");
432 448
    
433 449
    check(nrmap.size() == 3 && armap.size() == 4,
434 450
          "Wrong RangeIdMap::size()");
435 451

	
436 452
    check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap");
437 453
    check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap");
438 454
    check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap");
439 455
    
440 456
    check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap");
441 457
    check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap");
442 458
    check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap");
443 459
    check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap");
444 460

	
445 461
    check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap");
446 462
    check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap");
447 463
    
448 464
    gr.erase(n1);
449 465
    
450 466
    if (nrmap[n0] == 1) nrmap.swap(n0, n2);
451 467
    nrmap.swap(n2, n0);
452 468
    if (armap[a1] == 1) armap.swap(a1, a3);
453 469
    armap.swap(a3, a1);
454 470
    
455 471
    check(nrmap.size() == 2 && armap.size() == 2,
456 472
          "Wrong RangeIdMap::size()");
457 473

	
458 474
    check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap");
459 475
    check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap");
460 476
    
461 477
    check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap");
462 478
    check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap");
463 479

	
464 480
    check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap");
465 481
    check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap");
466 482
  }
467 483
  
468 484
  // SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap
469 485
  {
470 486
    typedef ListGraph Graph;
471 487
    GRAPH_TYPEDEFS(Graph);
472 488
    
473 489
    checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >();
474 490
    checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >();
475 491
    checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >();
476 492
    checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >();
477 493
    checkConcept<ReadMap<Node, int>, InDegMap<Graph> >();
478 494
    checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >();
479 495

	
480 496
    Graph gr;
481 497
    Node n0 = gr.addNode();
482 498
    Node n1 = gr.addNode();
483 499
    Node n2 = gr.addNode();
484 500
    
485 501
    gr.addEdge(n0,n1);
486 502
    gr.addEdge(n1,n2);
487 503
    gr.addEdge(n0,n2);
488 504
    gr.addEdge(n2,n1);
489 505
    gr.addEdge(n1,n2);
490 506
    gr.addEdge(n0,n1);
491 507
    
492 508
    for (EdgeIt e(gr); e != INVALID; ++e) {
493 509
      check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap");
494 510
      check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap");
495 511
    }
496 512
    
497
    compareMap(sourceMap(orienter(gr, constMap<Edge, bool>(true))),
498
               targetMap(orienter(gr, constMap<Edge, bool>(false))),
499
               EdgeIt(gr));
513
    check(mapCompare(gr,
514
          sourceMap(orienter(gr, constMap<Edge, bool>(true))),
515
          targetMap(orienter(gr, constMap<Edge, bool>(false)))),
516
          "Wrong SourceMap or TargetMap");
500 517

	
501 518
    typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph;
502 519
    Digraph dgr(gr, constMap<Edge, bool>(true));
503 520
    OutDegMap<Digraph> odm(dgr);
504 521
    InDegMap<Digraph> idm(dgr);
505 522
    
506 523
    check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap");
507 524
    check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap");
508 525
   
509 526
    gr.addEdge(n2, n0);
510 527

	
511 528
    check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap");
512 529
    check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap");
513 530
  }
514 531
  
515 532
  // CrossRefMap
516 533
  {
517 534
    typedef ListDigraph Graph;
518 535
    DIGRAPH_TYPEDEFS(Graph);
519 536

	
520 537
    checkConcept<ReadWriteMap<Node, int>,
521 538
                 CrossRefMap<Graph, Node, int> >();
522 539
    checkConcept<ReadWriteMap<Node, bool>,
523 540
                 CrossRefMap<Graph, Node, bool> >();
524 541
    checkConcept<ReadWriteMap<Node, double>,
525 542
                 CrossRefMap<Graph, Node, double> >();
526 543
    
527 544
    Graph gr;
528 545
    typedef CrossRefMap<Graph, Node, char> CRMap;
529 546
    CRMap map(gr);
530 547
    
531 548
    Node n0 = gr.addNode();
532 549
    Node n1 = gr.addNode();
533 550
    Node n2 = gr.addNode();
534 551
    
535 552
    map.set(n0, 'A');
536 553
    map.set(n1, 'B');
537 554
    map.set(n2, 'C');
538 555
    
539 556
    check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0,
540 557
          "Wrong CrossRefMap");
541 558
    check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1,
542 559
          "Wrong CrossRefMap");
543 560
    check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2,
544 561
          "Wrong CrossRefMap");
545 562
    check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
546 563
          "Wrong CrossRefMap::count()");
547 564
    
548 565
    CRMap::ValueIt it = map.beginValue();
549 566
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
550 567
          it == map.endValue(), "Wrong value iterator");
551 568
    
552 569
    map.set(n2, 'A');
553 570

	
554 571
    check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A',
555 572
          "Wrong CrossRefMap");
556 573
    check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap");
557 574
    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
558 575
    check(map('C') == INVALID && map.inverse()['C'] == INVALID,
559 576
          "Wrong CrossRefMap");
560 577
    check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0,
561 578
          "Wrong CrossRefMap::count()");
562 579

	
563 580
    it = map.beginValue();
564 581
    check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' &&
565 582
          it == map.endValue(), "Wrong value iterator");
566 583

	
567 584
    map.set(n0, 'C');
568 585

	
569 586
    check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A',
570 587
          "Wrong CrossRefMap");
571 588
    check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
572 589
    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
573 590
    check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
574 591
    check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
575 592
          "Wrong CrossRefMap::count()");
576 593

	
577 594
    it = map.beginValue();
578 595
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
579 596
          it == map.endValue(), "Wrong value iterator");
580 597
  }
581 598

	
582 599
  // CrossRefMap
583 600
  {
584 601
    typedef SmartDigraph Graph;
585 602
    DIGRAPH_TYPEDEFS(Graph);
586 603

	
587 604
    checkConcept<ReadWriteMap<Node, int>,
588 605
                 CrossRefMap<Graph, Node, int> >();
589 606
    
590 607
    Graph gr;
591 608
    typedef CrossRefMap<Graph, Node, char> CRMap;
592 609
    typedef CRMap::ValueIterator ValueIt;
593 610
    CRMap map(gr);
594 611
    
595 612
    Node n0 = gr.addNode();
596 613
    Node n1 = gr.addNode();
597 614
    Node n2 = gr.addNode();
598 615
    
599 616
    map.set(n0, 'A');
600 617
    map.set(n1, 'B');
601 618
    map.set(n2, 'C');
602 619
    map.set(n2, 'A');
603 620
    map.set(n0, 'C');
604 621

	
605 622
    check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A',
606 623
          "Wrong CrossRefMap");
607 624
    check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap");
608 625
    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
609 626
    check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
610 627

	
611 628
    ValueIt it = map.beginValue();
612 629
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
613 630
          it == map.endValue(), "Wrong value iterator");
614 631
  }
615 632
  
616 633
  // Iterable bool map
617 634
  {
618 635
    typedef SmartGraph Graph;
619 636
    typedef SmartGraph::Node Item;
620 637

	
621 638
    typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm;
622 639
    checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>();
623 640

	
624 641
    const int num = 10;
625 642
    Graph g;
626 643
    std::vector<Item> items;
627 644
    for (int i = 0; i < num; ++i) {
628 645
      items.push_back(g.addNode());
629 646
    }
630 647

	
631 648
    Ibm map1(g, true);
632 649
    int n = 0;
633 650
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
634 651
      check(map1[static_cast<Item>(it)], "Wrong TrueIt");
635 652
      ++n;
636 653
    }
637 654
    check(n == num, "Wrong number");
638 655

	
639 656
    n = 0;
640 657
    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
641 658
        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
642 659
        ++n;
643 660
    }
644 661
    check(n == num, "Wrong number");
645 662
    check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt");
646 663
    check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false");
647 664

	
648 665
    map1[items[5]] = true;
649 666

	
650 667
    n = 0;
651 668
    for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) {
652 669
        check(map1[static_cast<Item>(it)], "Wrong ItemIt for true");
653 670
        ++n;
654 671
    }
655 672
    check(n == num, "Wrong number");
656 673

	
657 674
    map1[items[num / 2]] = false;
658 675
    check(map1[items[num / 2]] == false, "Wrong map value");
659 676

	
660 677
    n = 0;
661 678
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
662 679
        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
663 680
        ++n;
664 681
    }
665 682
    check(n == num - 1, "Wrong number");
666 683

	
667 684
    n = 0;
668 685
    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
669 686
        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
670 687
        ++n;
671 688
    }
672 689
    check(n == 1, "Wrong number");
673 690

	
674 691
    map1[items[0]] = false;
675 692
    check(map1[items[0]] == false, "Wrong map value");
676 693

	
677 694
    map1[items[num - 1]] = false;
678 695
    check(map1[items[num - 1]] == false, "Wrong map value");
679 696

	
680 697
    n = 0;
681 698
    for (Ibm::TrueIt it(map1); it != INVALID; ++it) {
682 699
        check(map1[static_cast<Item>(it)], "Wrong TrueIt for true");
683 700
        ++n;
684 701
    }
685 702
    check(n == num - 3, "Wrong number");
686 703
    check(map1.trueNum() == num - 3, "Wrong number");
687 704

	
688 705
    n = 0;
689 706
    for (Ibm::FalseIt it(map1); it != INVALID; ++it) {
690 707
        check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true");
691 708
        ++n;
692 709
    }
693 710
    check(n == 3, "Wrong number");
694 711
    check(map1.falseNum() == 3, "Wrong number");
695 712
  }
696 713

	
697 714
  // Iterable int map
698 715
  {
699 716
    typedef SmartGraph Graph;
700 717
    typedef SmartGraph::Node Item;
701 718
    typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim;
702 719

	
703 720
    checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>();
704 721

	
705 722
    const int num = 10;
706 723
    Graph g;
707 724
    std::vector<Item> items;
708 725
    for (int i = 0; i < num; ++i) {
709 726
      items.push_back(g.addNode());
710 727
    }
711 728

	
712 729
    Iim map1(g);
713 730
    check(map1.size() == 0, "Wrong size");
714 731

	
715 732
    for (int i = 0; i < num; ++i) {
716 733
      map1[items[i]] = i;
717 734
    }
718 735
    check(map1.size() == num, "Wrong size");
719 736

	
720 737
    for (int i = 0; i < num; ++i) {
721 738
      Iim::ItemIt it(map1, i);
722 739
      check(static_cast<Item>(it) == items[i], "Wrong value");
723 740
      ++it;
724 741
      check(static_cast<Item>(it) == INVALID, "Wrong value");
725 742
    }
726 743

	
727 744
    for (int i = 0; i < num; ++i) {
728 745
      map1[items[i]] = i % 2;
729 746
    }
730 747
    check(map1.size() == 2, "Wrong size");
731 748

	
732 749
    int n = 0;
733 750
    for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) {
734 751
      check(map1[static_cast<Item>(it)] == 0, "Wrong value");
735 752
      ++n;
736 753
    }
737 754
    check(n == (num + 1) / 2, "Wrong number");
738 755

	
739 756
    for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) {
740 757
      check(map1[static_cast<Item>(it)] == 1, "Wrong value");
741 758
      ++n;
742 759
    }
743 760
    check(n == num, "Wrong number");
744 761

	
745 762
  }
746 763

	
747 764
  // Iterable value map
748 765
  {
749 766
    typedef SmartGraph Graph;
750 767
    typedef SmartGraph::Node Item;
751 768
    typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm;
752 769

	
753 770
    checkConcept<ReadWriteMap<Item, double>, Ivm>();
754 771

	
755 772
    const int num = 10;
756 773
    Graph g;
757 774
    std::vector<Item> items;
758 775
    for (int i = 0; i < num; ++i) {
759 776
      items.push_back(g.addNode());
760 777
    }
761 778

	
762 779
    Ivm map1(g, 0.0);
763 780
    check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size");
764 781
    check(*map1.beginValue() == 0.0, "Wrong value");
765 782

	
766 783
    for (int i = 0; i < num; ++i) {
767 784
      map1.set(items[i], static_cast<double>(i));
768 785
    }
769 786
    check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size");
770 787

	
771 788
    for (int i = 0; i < num; ++i) {
772 789
      Ivm::ItemIt it(map1, static_cast<double>(i));
773 790
      check(static_cast<Item>(it) == items[i], "Wrong value");
774 791
      ++it;
775 792
      check(static_cast<Item>(it) == INVALID, "Wrong value");
776 793
    }
777 794

	
778 795
    for (Ivm::ValueIt vit = map1.beginValue();
779 796
         vit != map1.endValue(); ++vit) {
780 797
      check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit,
781 798
            "Wrong ValueIt");
782 799
    }
783 800

	
784 801
    for (int i = 0; i < num; ++i) {
785 802
      map1.set(items[i], static_cast<double>(i % 2));
786 803
    }
787 804
    check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size");
788 805

	
789 806
    int n = 0;
790 807
    for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) {
791 808
      check(map1[static_cast<Item>(it)] == 0.0, "Wrong value");
792 809
      ++n;
793 810
    }
794 811
    check(n == (num + 1) / 2, "Wrong number");
795 812

	
796 813
    for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) {
797 814
      check(map1[static_cast<Item>(it)] == 1.0, "Wrong value");
798 815
      ++n;
799 816
    }
800 817
    check(n == num, "Wrong number");
801 818

	
802 819
  }
820
  
821
  // Graph map utilities:
822
  // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
823
  // mapFind(), mapFindIf(), mapCount(), mapCountIf()
824
  // mapCopy(), mapCompare(), mapFill()
825
  {
826
    DIGRAPH_TYPEDEFS(SmartDigraph);
827

	
828
    SmartDigraph g;
829
    Node n1 = g.addNode();
830
    Node n2 = g.addNode();
831
    Node n3 = g.addNode();
832
    
833
    SmartDigraph::NodeMap<int> map1(g);
834
    SmartDigraph::ArcMap<char> map2(g);
835
    ConstMap<Node, A> cmap1 = A();
836
    ConstMap<Arc, C> cmap2 = C(0);
837
    
838
    map1[n1] = 10;
839
    map1[n2] = 5;
840
    map1[n3] = 12;
841
    
842
    // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
843
    check(mapMin(g, map1) == n2, "Wrong mapMin()");
844
    check(mapMax(g, map1) == n3, "Wrong mapMax()");
845
    check(mapMin(g, map1, std::greater<int>()) == n3, "Wrong mapMin()");
846
    check(mapMax(g, map1, std::greater<int>()) == n2, "Wrong mapMax()");
847
    check(mapMinValue(g, map1) == 5, "Wrong mapMinValue()");
848
    check(mapMaxValue(g, map1) == 12, "Wrong mapMaxValue()");
849

	
850
    check(mapMin(g, map2) == INVALID, "Wrong mapMin()");
851
    check(mapMax(g, map2) == INVALID, "Wrong mapMax()");
852

	
853
    check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()");
854
    check(mapMax(g, cmap2) == INVALID, "Wrong mapMax()");
855

	
856
    Arc a1 = g.addArc(n1, n2);
857
    Arc a2 = g.addArc(n1, n3);
858
    Arc a3 = g.addArc(n2, n3);
859
    Arc a4 = g.addArc(n3, n1);
860
    
861
    map2[a1] = 'b';
862
    map2[a2] = 'a';
863
    map2[a3] = 'b';
864
    map2[a4] = 'c';
865

	
866
    // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
867
    check(mapMin(g, map2) == a2, "Wrong mapMin()");
868
    check(mapMax(g, map2) == a4, "Wrong mapMax()");
869
    check(mapMin(g, map2, std::greater<int>()) == a4, "Wrong mapMin()");
870
    check(mapMax(g, map2, std::greater<int>()) == a2, "Wrong mapMax()");
871
    check(mapMinValue(g, map2, std::greater<int>()) == 'c',
872
          "Wrong mapMinValue()");
873
    check(mapMaxValue(g, map2, std::greater<int>()) == 'a',
874
          "Wrong mapMaxValue()");
875

	
876
    check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()");
877
    check(mapMax(g, cmap2) != INVALID, "Wrong mapMax()");
878
    check(mapMaxValue(g, cmap2) == C(0), "Wrong mapMaxValue()");
879

	
880
    check(mapMin(g, composeMap(functorToMap(&createC), map2)) == a2,
881
          "Wrong mapMin()");
882
    check(mapMax(g, composeMap(functorToMap(&createC), map2)) == a4,
883
          "Wrong mapMax()");
884
    check(mapMinValue(g, composeMap(functorToMap(&createC), map2)) == C('a'),
885
          "Wrong mapMinValue()");
886
    check(mapMaxValue(g, composeMap(functorToMap(&createC), map2)) == C('c'),
887
          "Wrong mapMaxValue()");
888

	
889
    // mapFind(), mapFindIf()
890
    check(mapFind(g, map1, 5) == n2, "Wrong mapFind()");
891
    check(mapFind(g, map1, 6) == INVALID, "Wrong mapFind()");
892
    check(mapFind(g, map2, 'a') == a2, "Wrong mapFind()");
893
    check(mapFind(g, map2, 'e') == INVALID, "Wrong mapFind()");
894
    check(mapFind(g, cmap2, C(0)) == ArcIt(g), "Wrong mapFind()");
895
    check(mapFind(g, cmap2, C(1)) == INVALID, "Wrong mapFind()");
896

	
897
    check(mapFindIf(g, map1, Less<int>(7)) == n2,
898
          "Wrong mapFindIf()");
899
    check(mapFindIf(g, map1, Less<int>(5)) == INVALID,
900
          "Wrong mapFindIf()");
901
    check(mapFindIf(g, map2, Less<char>('d')) == ArcIt(g),
902
          "Wrong mapFindIf()");
903
    check(mapFindIf(g, map2, Less<char>('a')) == INVALID,
904
          "Wrong mapFindIf()");
905

	
906
    // mapCount(), mapCountIf()
907
    check(mapCount(g, map1, 5) == 1, "Wrong mapCount()");
908
    check(mapCount(g, map1, 6) == 0, "Wrong mapCount()");
909
    check(mapCount(g, map2, 'a') == 1, "Wrong mapCount()");
910
    check(mapCount(g, map2, 'b') == 2, "Wrong mapCount()");
911
    check(mapCount(g, map2, 'e') == 0, "Wrong mapCount()");
912
    check(mapCount(g, cmap2, C(0)) == 4, "Wrong mapCount()");
913
    check(mapCount(g, cmap2, C(1)) == 0, "Wrong mapCount()");
914

	
915
    check(mapCountIf(g, map1, Less<int>(11)) == 2,
916
          "Wrong mapCountIf()");
917
    check(mapCountIf(g, map1, Less<int>(13)) == 3,
918
          "Wrong mapCountIf()");
919
    check(mapCountIf(g, map1, Less<int>(5)) == 0,
920
          "Wrong mapCountIf()");
921
    check(mapCountIf(g, map2, Less<char>('d')) == 4,
922
          "Wrong mapCountIf()");
923
    check(mapCountIf(g, map2, Less<char>('c')) == 3,
924
          "Wrong mapCountIf()");
925
    check(mapCountIf(g, map2, Less<char>('a')) == 0,
926
          "Wrong mapCountIf()");
927
     
928
    // MapIt, ConstMapIt
929
/*
930
These tests can be used after applying bugfix #330
931
    typedef SmartDigraph::NodeMap<int>::MapIt MapIt;
932
    typedef SmartDigraph::NodeMap<int>::ConstMapIt ConstMapIt;
933
    check(*std::min_element(MapIt(map1), MapIt(INVALID)) == 5,
934
          "Wrong NodeMap<>::MapIt");
935
    check(*std::max_element(ConstMapIt(map1), ConstMapIt(INVALID)) == 12,
936
          "Wrong NodeMap<>::MapIt");
937
    
938
    int sum = 0;
939
    std::for_each(MapIt(map1), MapIt(INVALID), Sum<int>(sum));
940
    check(sum == 27, "Wrong NodeMap<>::MapIt");
941
    std::for_each(ConstMapIt(map1), ConstMapIt(INVALID), Sum<int>(sum));
942
    check(sum == 54, "Wrong NodeMap<>::ConstMapIt");
943
*/
944

	
945
    // mapCopy(), mapCompare(), mapFill()
946
    check(mapCompare(g, map1, map1), "Wrong mapCompare()");
947
    check(mapCompare(g, cmap2, cmap2), "Wrong mapCompare()");
948
    check(mapCompare(g, map1, shiftMap(map1, 0)), "Wrong mapCompare()");
949
    check(mapCompare(g, map2, scaleMap(map2, 1)), "Wrong mapCompare()");
950
    check(!mapCompare(g, map1, shiftMap(map1, 1)), "Wrong mapCompare()");
951

	
952
    SmartDigraph::NodeMap<int> map3(g, 0);
953
    SmartDigraph::ArcMap<char> map4(g, 'a');
954
    
955
    check(!mapCompare(g, map1, map3), "Wrong mapCompare()");
956
    check(!mapCompare(g, map2, map4), "Wrong mapCompare()");    
957
    
958
    mapCopy(g, map1, map3);
959
    mapCopy(g, map2, map4);
960

	
961
    check(mapCompare(g, map1, map3), "Wrong mapCompare() or mapCopy()");
962
    check(mapCompare(g, map2, map4), "Wrong mapCompare() or mapCopy()");    
963
    
964
    Undirector<SmartDigraph> ug(g);
965
    Undirector<SmartDigraph>::EdgeMap<char> umap1(ug, 'x');
966
    Undirector<SmartDigraph>::ArcMap<double> umap2(ug, 3.14);
967
    
968
    check(!mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()");
969
    check(!mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()");
970
    check(!mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()");
971
    check(!mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()");
972
    
973
    mapCopy(g, map2, umap1);
974

	
975
    check(mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()");
976
    check(mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()");
977
    check(mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()");
978
    check(mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()");
979
    
980
    mapCopy(g, map2, umap1);
981
    mapCopy(g, umap1, map2);
982
    mapCopy(ug, map2, umap1);
983
    mapCopy(ug, umap1, map2);
984
    
985
    check(!mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()");
986
    mapCopy(ug, umap1, umap2);
987
    check(mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()");
988
    
989
    check(!mapCompare(g, map1, constMap<Node>(2)), "Wrong mapCompare()");
990
    mapFill(g, map1, 2);
991
    check(mapCompare(g, constMap<Node>(2), map1), "Wrong mapFill()");
992

	
993
    check(!mapCompare(g, map2, constMap<Arc>('z')), "Wrong mapCompare()");
994
    mapCopy(g, constMap<Arc>('z'), map2);
995
    check(mapCompare(g, constMap<Arc>('z'), map2), "Wrong mapCopy()");
996
  }
997
  
803 998
  return 0;
804 999
}
0 comments (0 inline)