No children
0
7
0
1 | 1 |
CMAKE_MINIMUM_REQUIRED(VERSION 2.6) |
2 | 2 |
|
3 | 3 |
SET(PROJECT_NAME "LEMON") |
4 | 4 |
PROJECT(${PROJECT_NAME}) |
5 | 5 |
|
6 | 6 |
INCLUDE(FindPythonInterp) |
7 | 7 |
INCLUDE(FindWget) |
8 | 8 |
|
9 | 9 |
IF(EXISTS ${PROJECT_SOURCE_DIR}/cmake/version.cmake) |
10 | 10 |
INCLUDE(${PROJECT_SOURCE_DIR}/cmake/version.cmake) |
11 | 11 |
ELSEIF(DEFINED ENV{LEMON_VERSION}) |
12 | 12 |
SET(LEMON_VERSION $ENV{LEMON_VERSION} CACHE STRING "LEMON version string.") |
13 | 13 |
ELSE() |
14 | 14 |
EXECUTE_PROCESS( |
15 | 15 |
COMMAND ${PYTHON_EXECUTABLE} ./scripts/chg-len.py |
16 | 16 |
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR} |
17 | 17 |
OUTPUT_VARIABLE HG_REVISION_PATH |
18 | 18 |
ERROR_QUIET |
19 | 19 |
OUTPUT_STRIP_TRAILING_WHITESPACE |
20 | 20 |
) |
21 | 21 |
EXECUTE_PROCESS( |
22 | 22 |
COMMAND hg id -i |
23 | 23 |
WORKING_DIRECTORY ${PROJECT_SOURCE_DIR} |
24 | 24 |
OUTPUT_VARIABLE HG_REVISION |
25 | 25 |
ERROR_QUIET |
26 | 26 |
OUTPUT_STRIP_TRAILING_WHITESPACE |
27 | 27 |
) |
28 | 28 |
IF(HG_REVISION STREQUAL "") |
29 | 29 |
SET(HG_REVISION_ID "hg-tip") |
30 | 30 |
ELSE() |
31 | 31 |
IF(HG_REVISION_PATH STREQUAL "") |
32 | 32 |
SET(HG_REVISION_ID ${HG_REVISION}) |
33 | 33 |
ELSE() |
34 | 34 |
SET(HG_REVISION_ID ${HG_REVISION_PATH}.${HG_REVISION}) |
35 | 35 |
ENDIF() |
36 | 36 |
ENDIF() |
37 | 37 |
SET(LEMON_VERSION ${HG_REVISION_ID} CACHE STRING "LEMON version string.") |
38 | 38 |
ENDIF() |
39 | 39 |
|
40 | 40 |
SET(PROJECT_VERSION ${LEMON_VERSION}) |
41 | 41 |
|
42 | 42 |
SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake) |
43 | 43 |
|
44 | 44 |
FIND_PACKAGE(Doxygen) |
45 | 45 |
FIND_PACKAGE(Ghostscript) |
46 | 46 |
FIND_PACKAGE(GLPK 4.33) |
47 | 47 |
FIND_PACKAGE(CPLEX) |
48 | 48 |
FIND_PACKAGE(COIN) |
49 | 49 |
|
50 | 50 |
IF(DEFINED ENV{LEMON_CXX_WARNING}) |
51 | 51 |
SET(CXX_WARNING $ENV{LEMON_CXX_WARNING}) |
52 | 52 |
ELSE() |
53 | 53 |
IF(CMAKE_COMPILER_IS_GNUCXX) |
54 | 54 |
SET(CXX_WARNING "-Wall -W -Wunused -Wformat=2 -Wctor-dtor-privacy -Wnon-virtual-dtor -Wno-char-subscripts -Wwrite-strings -Wno-char-subscripts -Wreturn-type -Wcast-qual -Wcast-align -Wsign-promo -Woverloaded-virtual -fno-strict-aliasing -Wold-style-cast -Wno-unknown-pragmas") |
55 | 55 |
SET(CMAKE_CXX_FLAGS_DEBUG CACHE STRING "-ggdb") |
56 | 56 |
SET(CMAKE_C_FLAGS_DEBUG CACHE STRING "-ggdb") |
57 | 57 |
ELSEIF(MSVC) |
58 | 58 |
# This part is unnecessary 'casue the same is set by the lemon/core.h. |
59 | 59 |
# Still keep it as an example. |
60 | 60 |
SET(CXX_WARNING "/wd4250 /wd4355 /wd4503 /wd4800 /wd4996") |
61 | 61 |
# Suppressed warnings: |
62 | 62 |
# C4250: 'class1' : inherits 'class2::member' via dominance |
63 | 63 |
# C4355: 'this' : used in base member initializer list |
64 | 64 |
# C4503: 'function' : decorated name length exceeded, name was truncated |
65 | 65 |
# C4800: 'type' : forcing value to bool 'true' or 'false' |
66 | 66 |
# (performance warning) |
67 | 67 |
# C4996: 'function': was declared deprecated |
68 | 68 |
ELSE() |
69 |
SET(CXX_WARNING "-Wall |
|
69 |
SET(CXX_WARNING "-Wall") |
|
70 | 70 |
ENDIF() |
71 | 71 |
ENDIF() |
72 | 72 |
SET(LEMON_CXX_WARNING_FLAGS ${CXX_WARNING} CACHE STRING "LEMON warning flags.") |
73 | 73 |
|
74 | 74 |
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${LEMON_CXX_WARNING_FLAGS}") |
75 | 75 |
|
76 |
SET( CMAKE_CXX_FLAGS_MAINTAINER "-Werror -ggdb" CACHE STRING |
|
76 |
SET( CMAKE_CXX_FLAGS_MAINTAINER "-Werror -ggdb -O0" CACHE STRING |
|
77 | 77 |
"Flags used by the C++ compiler during maintainer builds." |
78 | 78 |
FORCE ) |
79 |
SET( CMAKE_C_FLAGS_MAINTAINER "-Werror" CACHE STRING |
|
79 |
SET( CMAKE_C_FLAGS_MAINTAINER "-Werror -O0" CACHE STRING |
|
80 | 80 |
"Flags used by the C compiler during maintainer builds." |
81 | 81 |
FORCE ) |
82 | 82 |
SET( CMAKE_EXE_LINKER_FLAGS_MAINTAINER |
83 | 83 |
"-Wl,--warn-unresolved-symbols,--warn-once" CACHE STRING |
84 | 84 |
"Flags used for linking binaries during maintainer builds." |
85 | 85 |
FORCE ) |
86 | 86 |
SET( CMAKE_SHARED_LINKER_FLAGS_MAINTAINER |
87 | 87 |
"-Wl,--warn-unresolved-symbols,--warn-once" CACHE STRING |
88 | 88 |
"Flags used by the shared libraries linker during maintainer builds." |
89 | 89 |
FORCE ) |
90 | 90 |
MARK_AS_ADVANCED( |
91 | 91 |
CMAKE_CXX_FLAGS_MAINTAINER |
92 | 92 |
CMAKE_C_FLAGS_MAINTAINER |
93 | 93 |
CMAKE_EXE_LINKER_FLAGS_MAINTAINER |
94 | 94 |
CMAKE_SHARED_LINKER_FLAGS_MAINTAINER ) |
95 | 95 |
|
96 | 96 |
IF(CMAKE_CONFIGURATION_TYPES) |
97 | 97 |
LIST(APPEND CMAKE_CONFIGURATION_TYPES Maintainer) |
98 | 98 |
LIST(REMOVE_DUPLICATES CMAKE_CONFIGURATION_TYPES) |
99 | 99 |
SET(CMAKE_CONFIGURATION_TYPES "${CMAKE_CONFIGURATION_TYPES}" CACHE STRING |
100 | 100 |
"Add the configurations that we need" |
101 | 101 |
FORCE) |
102 | 102 |
endif() |
103 | 103 |
|
104 | 104 |
IF(NOT CMAKE_BUILD_TYPE) |
105 | 105 |
SET(CMAKE_BUILD_TYPE "Release") |
106 | 106 |
ENDIF() |
107 | 107 |
|
108 | 108 |
SET( CMAKE_BUILD_TYPE "${CMAKE_BUILD_TYPE}" CACHE STRING |
109 | 109 |
"Choose the type of build, options are: None(CMAKE_CXX_FLAGS or CMAKE_C_FLAGS used) Debug Release RelWithDebInfo MinSizeRel Maintainer." |
110 | 110 |
FORCE ) |
111 | 111 |
|
112 | 112 |
|
113 | 113 |
INCLUDE(CheckTypeSize) |
114 | 114 |
CHECK_TYPE_SIZE("long long" LONG_LONG) |
115 | 115 |
SET(LEMON_HAVE_LONG_LONG ${HAVE_LONG_LONG}) |
116 | 116 |
|
117 | 117 |
ENABLE_TESTING() |
118 | 118 |
|
119 | 119 |
IF(${CMAKE_BUILD_TYPE} STREQUAL "Maintainer") |
120 | 120 |
ADD_CUSTOM_TARGET(check ALL COMMAND ${CMAKE_CTEST_COMMAND}) |
121 | 121 |
ELSE() |
122 | 122 |
ADD_CUSTOM_TARGET(check COMMAND ${CMAKE_CTEST_COMMAND}) |
123 | 123 |
ENDIF() |
124 | 124 |
|
125 | 125 |
ADD_SUBDIRECTORY(lemon) |
126 | 126 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
127 | 127 |
ADD_SUBDIRECTORY(demo) |
128 | 128 |
ADD_SUBDIRECTORY(tools) |
129 | 129 |
ADD_SUBDIRECTORY(doc) |
130 | 130 |
ADD_SUBDIRECTORY(test) |
131 | 131 |
ENDIF() |
132 | 132 |
|
133 | 133 |
CONFIGURE_FILE( |
134 | 134 |
${PROJECT_SOURCE_DIR}/cmake/LEMONConfig.cmake.in |
135 | 135 |
${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake |
136 | 136 |
@ONLY |
137 | 137 |
) |
138 | 138 |
IF(UNIX) |
139 | 139 |
INSTALL( |
140 | 140 |
FILES ${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake |
141 | 141 |
DESTINATION share/lemon/cmake |
142 | 142 |
) |
143 | 143 |
ELSEIF(WIN32) |
144 | 144 |
INSTALL( |
145 | 145 |
FILES ${PROJECT_BINARY_DIR}/cmake/LEMONConfig.cmake |
146 | 146 |
DESTINATION cmake |
147 | 147 |
) |
148 | 148 |
ENDIF() |
149 | 149 |
|
150 | 150 |
IF(${CMAKE_SOURCE_DIR} STREQUAL ${PROJECT_SOURCE_DIR}) |
151 | 151 |
SET(CPACK_PACKAGE_NAME ${PROJECT_NAME}) |
152 | 152 |
SET(CPACK_PACKAGE_VENDOR "EGRES") |
153 | 153 |
SET(CPACK_PACKAGE_DESCRIPTION_SUMMARY |
154 | 154 |
"LEMON - Library for Efficient Modeling and Optimization in Networks") |
155 | 155 |
SET(CPACK_RESOURCE_FILE_LICENSE "${PROJECT_SOURCE_DIR}/LICENSE") |
156 | 156 |
|
157 | 157 |
SET(CPACK_PACKAGE_VERSION ${PROJECT_VERSION}) |
158 | 158 |
|
159 | 159 |
SET(CPACK_PACKAGE_INSTALL_DIRECTORY |
160 | 160 |
"${PROJECT_NAME} ${PROJECT_VERSION}") |
161 | 161 |
SET(CPACK_PACKAGE_INSTALL_REGISTRY_KEY |
162 | 162 |
"${PROJECT_NAME} ${PROJECT_VERSION}") |
163 | 163 |
|
164 | 164 |
SET(CPACK_COMPONENTS_ALL headers library html_documentation bin) |
165 | 165 |
|
166 | 166 |
SET(CPACK_COMPONENT_HEADERS_DISPLAY_NAME "C++ headers") |
167 | 167 |
SET(CPACK_COMPONENT_LIBRARY_DISPLAY_NAME "Dynamic-link library") |
168 | 168 |
SET(CPACK_COMPONENT_BIN_DISPLAY_NAME "Command line utilities") |
169 | 169 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DISPLAY_NAME "HTML documentation") |
170 | 170 |
|
171 | 171 |
SET(CPACK_COMPONENT_HEADERS_DESCRIPTION |
172 | 172 |
"C++ header files") |
173 | 173 |
SET(CPACK_COMPONENT_LIBRARY_DESCRIPTION |
174 | 174 |
"DLL and import library") |
175 | 175 |
SET(CPACK_COMPONENT_BIN_DESCRIPTION |
176 | 176 |
"Command line utilities") |
177 | 177 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_DESCRIPTION |
178 | 178 |
"Doxygen generated documentation") |
179 | 179 |
|
180 | 180 |
SET(CPACK_COMPONENT_HEADERS_DEPENDS library) |
181 | 181 |
|
182 | 182 |
SET(CPACK_COMPONENT_HEADERS_GROUP "Development") |
183 | 183 |
SET(CPACK_COMPONENT_LIBRARY_GROUP "Development") |
184 | 184 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_GROUP "Documentation") |
185 | 185 |
|
186 | 186 |
SET(CPACK_COMPONENT_GROUP_DEVELOPMENT_DESCRIPTION |
187 | 187 |
"Components needed to develop software using LEMON") |
188 | 188 |
SET(CPACK_COMPONENT_GROUP_DOCUMENTATION_DESCRIPTION |
189 | 189 |
"Documentation of LEMON") |
190 | 190 |
|
191 | 191 |
SET(CPACK_ALL_INSTALL_TYPES Full Developer) |
192 | 192 |
|
193 | 193 |
SET(CPACK_COMPONENT_HEADERS_INSTALL_TYPES Developer Full) |
194 | 194 |
SET(CPACK_COMPONENT_LIBRARY_INSTALL_TYPES Developer Full) |
195 | 195 |
SET(CPACK_COMPONENT_HTML_DOCUMENTATION_INSTALL_TYPES Full) |
196 | 196 |
|
197 | 197 |
SET(CPACK_GENERATOR "NSIS") |
198 | 198 |
SET(CPACK_NSIS_MUI_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis/lemon.ico") |
199 | 199 |
SET(CPACK_NSIS_MUI_UNIICON "${PROJECT_SOURCE_DIR}/cmake/nsis/uninstall.ico") |
200 | 200 |
#SET(CPACK_PACKAGE_ICON "${PROJECT_SOURCE_DIR}/cmake/nsis\\\\installer.bmp") |
201 | 201 |
SET(CPACK_NSIS_INSTALLED_ICON_NAME "bin\\\\lemon.ico") |
202 | 202 |
SET(CPACK_NSIS_DISPLAY_NAME "${CPACK_PACKAGE_INSTALL_DIRECTORY} ${PROJECT_NAME}") |
203 | 203 |
SET(CPACK_NSIS_HELP_LINK "http:\\\\\\\\lemon.cs.elte.hu") |
204 | 204 |
SET(CPACK_NSIS_URL_INFO_ABOUT "http:\\\\\\\\lemon.cs.elte.hu") |
205 | 205 |
SET(CPACK_NSIS_CONTACT "lemon-user@lemon.cs.elte.hu") |
206 | 206 |
SET(CPACK_NSIS_CREATE_ICONS_EXTRA " |
207 | 207 |
CreateShortCut \\\"$SMPROGRAMS\\\\$STARTMENU_FOLDER\\\\Documentation.lnk\\\" \\\"$INSTDIR\\\\share\\\\doc\\\\index.html\\\" |
208 | 208 |
") |
209 | 209 |
SET(CPACK_NSIS_DELETE_ICONS_EXTRA " |
210 | 210 |
!insertmacro MUI_STARTMENU_GETFOLDER Application $MUI_TEMP |
211 | 211 |
Delete \\\"$SMPROGRAMS\\\\$MUI_TEMP\\\\Documentation.lnk\\\" |
212 | 212 |
") |
213 | 213 |
|
214 | 214 |
INCLUDE(CPack) |
215 | 215 |
ENDIF() |
... | ... |
@@ -866,768 +866,769 @@ |
866 | 866 |
} |
867 | 867 |
|
868 | 868 |
///The type of the map that indicates which nodes are reached. |
869 | 869 |
|
870 | 870 |
///The type of the map that indicates which nodes are reached. |
871 | 871 |
///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
872 | 872 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
873 | 873 |
///Instantiates a ReachedMap. |
874 | 874 |
|
875 | 875 |
///This function instantiates a ReachedMap. |
876 | 876 |
///\param g is the digraph, to which |
877 | 877 |
///we would like to define the ReachedMap. |
878 | 878 |
static ReachedMap *createReachedMap(const Digraph &g) |
879 | 879 |
{ |
880 | 880 |
return new ReachedMap(g); |
881 | 881 |
} |
882 | 882 |
|
883 | 883 |
///The type of the map that stores the distances of the nodes. |
884 | 884 |
|
885 | 885 |
///The type of the map that stores the distances of the nodes. |
886 | 886 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
887 | 887 |
typedef typename Digraph::template NodeMap<int> DistMap; |
888 | 888 |
///Instantiates a DistMap. |
889 | 889 |
|
890 | 890 |
///This function instantiates a DistMap. |
891 | 891 |
///\param g is the digraph, to which we would like to define |
892 | 892 |
///the DistMap |
893 | 893 |
static DistMap *createDistMap(const Digraph &g) |
894 | 894 |
{ |
895 | 895 |
return new DistMap(g); |
896 | 896 |
} |
897 | 897 |
|
898 | 898 |
///The type of the shortest paths. |
899 | 899 |
|
900 | 900 |
///The type of the shortest paths. |
901 | 901 |
///It must meet the \ref concepts::Path "Path" concept. |
902 | 902 |
typedef lemon::Path<Digraph> Path; |
903 | 903 |
}; |
904 | 904 |
|
905 | 905 |
/// Default traits class used by BfsWizard |
906 | 906 |
|
907 | 907 |
/// To make it easier to use Bfs algorithm |
908 | 908 |
/// we have created a wizard class. |
909 | 909 |
/// This \ref BfsWizard class needs default traits, |
910 | 910 |
/// as well as the \ref Bfs class. |
911 | 911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
912 | 912 |
/// \ref BfsWizard class. |
913 | 913 |
template<class GR> |
914 | 914 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 915 |
{ |
916 | 916 |
|
917 | 917 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 918 |
protected: |
919 | 919 |
//The type of the nodes in the digraph. |
920 | 920 |
typedef typename Base::Digraph::Node Node; |
921 | 921 |
|
922 | 922 |
//Pointer to the digraph the algorithm runs on. |
923 | 923 |
void *_g; |
924 | 924 |
//Pointer to the map of reached nodes. |
925 | 925 |
void *_reached; |
926 | 926 |
//Pointer to the map of processed nodes. |
927 | 927 |
void *_processed; |
928 | 928 |
//Pointer to the map of predecessors arcs. |
929 | 929 |
void *_pred; |
930 | 930 |
//Pointer to the map of distances. |
931 | 931 |
void *_dist; |
932 | 932 |
//Pointer to the shortest path to the target node. |
933 | 933 |
void *_path; |
934 | 934 |
//Pointer to the distance of the target node. |
935 | 935 |
int *_di; |
936 | 936 |
|
937 | 937 |
public: |
938 | 938 |
/// Constructor. |
939 | 939 |
|
940 | 940 |
/// This constructor does not require parameters, therefore it initiates |
941 | 941 |
/// all of the attributes to \c 0. |
942 | 942 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 943 |
_dist(0), _path(0), _di(0) {} |
944 | 944 |
|
945 | 945 |
/// Constructor. |
946 | 946 |
|
947 | 947 |
/// This constructor requires one parameter, |
948 | 948 |
/// others are initiated to \c 0. |
949 | 949 |
/// \param g The digraph the algorithm runs on. |
950 | 950 |
BfsWizardBase(const GR &g) : |
951 | 951 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 952 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 953 |
|
954 | 954 |
}; |
955 | 955 |
|
956 | 956 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 957 |
|
958 | 958 |
/// This auxiliary class is created to implement the |
959 | 959 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 960 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
961 | 961 |
/// functions and features of the plain \ref Bfs. |
962 | 962 |
/// |
963 | 963 |
/// This class should only be used through the \ref bfs() function, |
964 | 964 |
/// which makes it easier to use the algorithm. |
965 | 965 |
template<class TR> |
966 | 966 |
class BfsWizard : public TR |
967 | 967 |
{ |
968 | 968 |
typedef TR Base; |
969 | 969 |
|
970 | 970 |
///The type of the digraph the algorithm runs on. |
971 | 971 |
typedef typename TR::Digraph Digraph; |
972 | 972 |
|
973 | 973 |
typedef typename Digraph::Node Node; |
974 | 974 |
typedef typename Digraph::NodeIt NodeIt; |
975 | 975 |
typedef typename Digraph::Arc Arc; |
976 | 976 |
typedef typename Digraph::OutArcIt OutArcIt; |
977 | 977 |
|
978 | 978 |
///\brief The type of the map that stores the predecessor |
979 | 979 |
///arcs of the shortest paths. |
980 | 980 |
typedef typename TR::PredMap PredMap; |
981 | 981 |
///\brief The type of the map that stores the distances of the nodes. |
982 | 982 |
typedef typename TR::DistMap DistMap; |
983 | 983 |
///\brief The type of the map that indicates which nodes are reached. |
984 | 984 |
typedef typename TR::ReachedMap ReachedMap; |
985 | 985 |
///\brief The type of the map that indicates which nodes are processed. |
986 | 986 |
typedef typename TR::ProcessedMap ProcessedMap; |
987 | 987 |
///The type of the shortest paths |
988 | 988 |
typedef typename TR::Path Path; |
989 | 989 |
|
990 | 990 |
public: |
991 | 991 |
|
992 | 992 |
/// Constructor. |
993 | 993 |
BfsWizard() : TR() {} |
994 | 994 |
|
995 | 995 |
/// Constructor that requires parameters. |
996 | 996 |
|
997 | 997 |
/// Constructor that requires parameters. |
998 | 998 |
/// These parameters will be the default values for the traits class. |
999 | 999 |
/// \param g The digraph the algorithm runs on. |
1000 | 1000 |
BfsWizard(const Digraph &g) : |
1001 | 1001 |
TR(g) {} |
1002 | 1002 |
|
1003 | 1003 |
///Copy constructor |
1004 | 1004 |
BfsWizard(const TR &b) : TR(b) {} |
1005 | 1005 |
|
1006 | 1006 |
~BfsWizard() {} |
1007 | 1007 |
|
1008 | 1008 |
///Runs BFS algorithm from the given source node. |
1009 | 1009 |
|
1010 | 1010 |
///This method runs BFS algorithm from node \c s |
1011 | 1011 |
///in order to compute the shortest path to each node. |
1012 | 1012 |
void run(Node s) |
1013 | 1013 |
{ |
1014 | 1014 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1015 | 1015 |
if (Base::_pred) |
1016 | 1016 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1017 | 1017 |
if (Base::_dist) |
1018 | 1018 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1019 | 1019 |
if (Base::_reached) |
1020 | 1020 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1021 | 1021 |
if (Base::_processed) |
1022 | 1022 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1023 | 1023 |
if (s!=INVALID) |
1024 | 1024 |
alg.run(s); |
1025 | 1025 |
else |
1026 | 1026 |
alg.run(); |
1027 | 1027 |
} |
1028 | 1028 |
|
1029 | 1029 |
///Finds the shortest path between \c s and \c t. |
1030 | 1030 |
|
1031 | 1031 |
///This method runs BFS algorithm from node \c s |
1032 | 1032 |
///in order to compute the shortest path to node \c t |
1033 | 1033 |
///(it stops searching when \c t is processed). |
1034 | 1034 |
/// |
1035 | 1035 |
///\return \c true if \c t is reachable form \c s. |
1036 | 1036 |
bool run(Node s, Node t) |
1037 | 1037 |
{ |
1038 | 1038 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1039 | 1039 |
if (Base::_pred) |
1040 | 1040 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1041 | 1041 |
if (Base::_dist) |
1042 | 1042 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1043 | 1043 |
if (Base::_reached) |
1044 | 1044 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1045 | 1045 |
if (Base::_processed) |
1046 | 1046 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1047 | 1047 |
alg.run(s,t); |
1048 | 1048 |
if (Base::_path) |
1049 | 1049 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1050 | 1050 |
if (Base::_di) |
1051 | 1051 |
*Base::_di = alg.dist(t); |
1052 | 1052 |
return alg.reached(t); |
1053 | 1053 |
} |
1054 | 1054 |
|
1055 | 1055 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1056 | 1056 |
|
1057 | 1057 |
///This method runs BFS algorithm in order to compute |
1058 | 1058 |
///the shortest path to each node. |
1059 | 1059 |
void run() |
1060 | 1060 |
{ |
1061 | 1061 |
run(INVALID); |
1062 | 1062 |
} |
1063 | 1063 |
|
1064 | 1064 |
template<class T> |
1065 | 1065 |
struct SetPredMapBase : public Base { |
1066 | 1066 |
typedef T PredMap; |
1067 | 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1068 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1069 |
}; |
1070 | 1070 |
///\brief \ref named-func-param "Named parameter" |
1071 | 1071 |
///for setting PredMap object. |
1072 | 1072 |
/// |
1073 | 1073 |
///\ref named-func-param "Named parameter" |
1074 | 1074 |
///for setting PredMap object. |
1075 | 1075 |
template<class T> |
1076 | 1076 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1077 | 1077 |
{ |
1078 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1079 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1080 | 1080 |
} |
1081 | 1081 |
|
1082 | 1082 |
template<class T> |
1083 | 1083 |
struct SetReachedMapBase : public Base { |
1084 | 1084 |
typedef T ReachedMap; |
1085 | 1085 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1086 | 1086 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1087 | 1087 |
}; |
1088 | 1088 |
///\brief \ref named-func-param "Named parameter" |
1089 | 1089 |
///for setting ReachedMap object. |
1090 | 1090 |
/// |
1091 | 1091 |
/// \ref named-func-param "Named parameter" |
1092 | 1092 |
///for setting ReachedMap object. |
1093 | 1093 |
template<class T> |
1094 | 1094 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1095 | 1095 |
{ |
1096 | 1096 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1097 | 1097 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1098 | 1098 |
} |
1099 | 1099 |
|
1100 | 1100 |
template<class T> |
1101 | 1101 |
struct SetDistMapBase : public Base { |
1102 | 1102 |
typedef T DistMap; |
1103 | 1103 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1104 | 1104 |
SetDistMapBase(const TR &b) : TR(b) {} |
1105 | 1105 |
}; |
1106 | 1106 |
///\brief \ref named-func-param "Named parameter" |
1107 | 1107 |
///for setting DistMap object. |
1108 | 1108 |
/// |
1109 | 1109 |
/// \ref named-func-param "Named parameter" |
1110 | 1110 |
///for setting DistMap object. |
1111 | 1111 |
template<class T> |
1112 | 1112 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1113 |
{ |
1114 | 1114 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1115 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1116 |
} |
1117 | 1117 |
|
1118 | 1118 |
template<class T> |
1119 | 1119 |
struct SetProcessedMapBase : public Base { |
1120 | 1120 |
typedef T ProcessedMap; |
1121 | 1121 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1122 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1123 |
}; |
1124 | 1124 |
///\brief \ref named-func-param "Named parameter" |
1125 | 1125 |
///for setting ProcessedMap object. |
1126 | 1126 |
/// |
1127 | 1127 |
/// \ref named-func-param "Named parameter" |
1128 | 1128 |
///for setting ProcessedMap object. |
1129 | 1129 |
template<class T> |
1130 | 1130 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1131 | 1131 |
{ |
1132 | 1132 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1133 | 1133 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1134 | 1134 |
} |
1135 | 1135 |
|
1136 | 1136 |
template<class T> |
1137 | 1137 |
struct SetPathBase : public Base { |
1138 | 1138 |
typedef T Path; |
1139 | 1139 |
SetPathBase(const TR &b) : TR(b) {} |
1140 | 1140 |
}; |
1141 | 1141 |
///\brief \ref named-func-param "Named parameter" |
1142 | 1142 |
///for getting the shortest path to the target node. |
1143 | 1143 |
/// |
1144 | 1144 |
///\ref named-func-param "Named parameter" |
1145 | 1145 |
///for getting the shortest path to the target node. |
1146 | 1146 |
template<class T> |
1147 | 1147 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1148 | 1148 |
{ |
1149 | 1149 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1150 | 1150 |
return BfsWizard<SetPathBase<T> >(*this); |
1151 | 1151 |
} |
1152 | 1152 |
|
1153 | 1153 |
///\brief \ref named-func-param "Named parameter" |
1154 | 1154 |
///for getting the distance of the target node. |
1155 | 1155 |
/// |
1156 | 1156 |
///\ref named-func-param "Named parameter" |
1157 | 1157 |
///for getting the distance of the target node. |
1158 | 1158 |
BfsWizard dist(const int &d) |
1159 | 1159 |
{ |
1160 | 1160 |
Base::_di=const_cast<int*>(&d); |
1161 | 1161 |
return *this; |
1162 | 1162 |
} |
1163 | 1163 |
|
1164 | 1164 |
}; |
1165 | 1165 |
|
1166 | 1166 |
///Function-type interface for BFS algorithm. |
1167 | 1167 |
|
1168 | 1168 |
/// \ingroup search |
1169 | 1169 |
///Function-type interface for BFS algorithm. |
1170 | 1170 |
/// |
1171 | 1171 |
///This function also has several \ref named-func-param "named parameters", |
1172 | 1172 |
///they are declared as the members of class \ref BfsWizard. |
1173 | 1173 |
///The following examples show how to use these parameters. |
1174 | 1174 |
///\code |
1175 | 1175 |
/// // Compute shortest path from node s to each node |
1176 | 1176 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1177 | 1177 |
/// |
1178 | 1178 |
/// // Compute shortest path from s to t |
1179 | 1179 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1180 | 1180 |
///\endcode |
1181 | 1181 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
1182 | 1182 |
///to the end of the parameter list. |
1183 | 1183 |
///\sa BfsWizard |
1184 | 1184 |
///\sa Bfs |
1185 | 1185 |
template<class GR> |
1186 | 1186 |
BfsWizard<BfsWizardBase<GR> > |
1187 | 1187 |
bfs(const GR &digraph) |
1188 | 1188 |
{ |
1189 | 1189 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1190 | 1190 |
} |
1191 | 1191 |
|
1192 | 1192 |
#ifdef DOXYGEN |
1193 | 1193 |
/// \brief Visitor class for BFS. |
1194 | 1194 |
/// |
1195 | 1195 |
/// This class defines the interface of the BfsVisit events, and |
1196 | 1196 |
/// it could be the base of a real visitor class. |
1197 | 1197 |
template <typename GR> |
1198 | 1198 |
struct BfsVisitor { |
1199 | 1199 |
typedef GR Digraph; |
1200 | 1200 |
typedef typename Digraph::Arc Arc; |
1201 | 1201 |
typedef typename Digraph::Node Node; |
1202 | 1202 |
/// \brief Called for the source node(s) of the BFS. |
1203 | 1203 |
/// |
1204 | 1204 |
/// This function is called for the source node(s) of the BFS. |
1205 | 1205 |
void start(const Node& node) {} |
1206 | 1206 |
/// \brief Called when a node is reached first time. |
1207 | 1207 |
/// |
1208 | 1208 |
/// This function is called when a node is reached first time. |
1209 | 1209 |
void reach(const Node& node) {} |
1210 | 1210 |
/// \brief Called when a node is processed. |
1211 | 1211 |
/// |
1212 | 1212 |
/// This function is called when a node is processed. |
1213 | 1213 |
void process(const Node& node) {} |
1214 | 1214 |
/// \brief Called when an arc reaches a new node. |
1215 | 1215 |
/// |
1216 | 1216 |
/// This function is called when the BFS finds an arc whose target node |
1217 | 1217 |
/// is not reached yet. |
1218 | 1218 |
void discover(const Arc& arc) {} |
1219 | 1219 |
/// \brief Called when an arc is examined but its target node is |
1220 | 1220 |
/// already discovered. |
1221 | 1221 |
/// |
1222 | 1222 |
/// This function is called when an arc is examined but its target node is |
1223 | 1223 |
/// already discovered. |
1224 | 1224 |
void examine(const Arc& arc) {} |
1225 | 1225 |
}; |
1226 | 1226 |
#else |
1227 | 1227 |
template <typename GR> |
1228 | 1228 |
struct BfsVisitor { |
1229 | 1229 |
typedef GR Digraph; |
1230 | 1230 |
typedef typename Digraph::Arc Arc; |
1231 | 1231 |
typedef typename Digraph::Node Node; |
1232 | 1232 |
void start(const Node&) {} |
1233 | 1233 |
void reach(const Node&) {} |
1234 | 1234 |
void process(const Node&) {} |
1235 | 1235 |
void discover(const Arc&) {} |
1236 | 1236 |
void examine(const Arc&) {} |
1237 | 1237 |
|
1238 | 1238 |
template <typename _Visitor> |
1239 | 1239 |
struct Constraints { |
1240 | 1240 |
void constraints() { |
1241 | 1241 |
Arc arc; |
1242 | 1242 |
Node node; |
1243 | 1243 |
visitor.start(node); |
1244 | 1244 |
visitor.reach(node); |
1245 | 1245 |
visitor.process(node); |
1246 | 1246 |
visitor.discover(arc); |
1247 | 1247 |
visitor.examine(arc); |
1248 | 1248 |
} |
1249 | 1249 |
_Visitor& visitor; |
1250 |
Constraints() {} |
|
1250 | 1251 |
}; |
1251 | 1252 |
}; |
1252 | 1253 |
#endif |
1253 | 1254 |
|
1254 | 1255 |
/// \brief Default traits class of BfsVisit class. |
1255 | 1256 |
/// |
1256 | 1257 |
/// Default traits class of BfsVisit class. |
1257 | 1258 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1258 | 1259 |
template<class GR> |
1259 | 1260 |
struct BfsVisitDefaultTraits { |
1260 | 1261 |
|
1261 | 1262 |
/// \brief The type of the digraph the algorithm runs on. |
1262 | 1263 |
typedef GR Digraph; |
1263 | 1264 |
|
1264 | 1265 |
/// \brief The type of the map that indicates which nodes are reached. |
1265 | 1266 |
/// |
1266 | 1267 |
/// The type of the map that indicates which nodes are reached. |
1267 | 1268 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1268 | 1269 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1269 | 1270 |
|
1270 | 1271 |
/// \brief Instantiates a ReachedMap. |
1271 | 1272 |
/// |
1272 | 1273 |
/// This function instantiates a ReachedMap. |
1273 | 1274 |
/// \param digraph is the digraph, to which |
1274 | 1275 |
/// we would like to define the ReachedMap. |
1275 | 1276 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1276 | 1277 |
return new ReachedMap(digraph); |
1277 | 1278 |
} |
1278 | 1279 |
|
1279 | 1280 |
}; |
1280 | 1281 |
|
1281 | 1282 |
/// \ingroup search |
1282 | 1283 |
/// |
1283 | 1284 |
/// \brief BFS algorithm class with visitor interface. |
1284 | 1285 |
/// |
1285 | 1286 |
/// This class provides an efficient implementation of the BFS algorithm |
1286 | 1287 |
/// with visitor interface. |
1287 | 1288 |
/// |
1288 | 1289 |
/// The BfsVisit class provides an alternative interface to the Bfs |
1289 | 1290 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1290 | 1291 |
/// the member functions of the \c Visitor class on every BFS event. |
1291 | 1292 |
/// |
1292 | 1293 |
/// This interface of the BFS algorithm should be used in special cases |
1293 | 1294 |
/// when extra actions have to be performed in connection with certain |
1294 | 1295 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1295 | 1296 |
/// instead. |
1296 | 1297 |
/// |
1297 | 1298 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1298 | 1299 |
/// The default type is \ref ListDigraph. |
1299 | 1300 |
/// The value of GR is not used directly by \ref BfsVisit, |
1300 | 1301 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
1301 | 1302 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1302 | 1303 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
1303 | 1304 |
/// does not observe the BFS events. If you want to observe the BFS |
1304 | 1305 |
/// events, you should implement your own visitor class. |
1305 | 1306 |
/// \tparam TR Traits class to set various data types used by the |
1306 | 1307 |
/// algorithm. The default traits class is |
1307 | 1308 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
1308 | 1309 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1309 | 1310 |
/// a BFS visit traits class. |
1310 | 1311 |
#ifdef DOXYGEN |
1311 | 1312 |
template <typename GR, typename VS, typename TR> |
1312 | 1313 |
#else |
1313 | 1314 |
template <typename GR = ListDigraph, |
1314 | 1315 |
typename VS = BfsVisitor<GR>, |
1315 | 1316 |
typename TR = BfsVisitDefaultTraits<GR> > |
1316 | 1317 |
#endif |
1317 | 1318 |
class BfsVisit { |
1318 | 1319 |
public: |
1319 | 1320 |
|
1320 | 1321 |
///The traits class. |
1321 | 1322 |
typedef TR Traits; |
1322 | 1323 |
|
1323 | 1324 |
///The type of the digraph the algorithm runs on. |
1324 | 1325 |
typedef typename Traits::Digraph Digraph; |
1325 | 1326 |
|
1326 | 1327 |
///The visitor type used by the algorithm. |
1327 | 1328 |
typedef VS Visitor; |
1328 | 1329 |
|
1329 | 1330 |
///The type of the map that indicates which nodes are reached. |
1330 | 1331 |
typedef typename Traits::ReachedMap ReachedMap; |
1331 | 1332 |
|
1332 | 1333 |
private: |
1333 | 1334 |
|
1334 | 1335 |
typedef typename Digraph::Node Node; |
1335 | 1336 |
typedef typename Digraph::NodeIt NodeIt; |
1336 | 1337 |
typedef typename Digraph::Arc Arc; |
1337 | 1338 |
typedef typename Digraph::OutArcIt OutArcIt; |
1338 | 1339 |
|
1339 | 1340 |
//Pointer to the underlying digraph. |
1340 | 1341 |
const Digraph *_digraph; |
1341 | 1342 |
//Pointer to the visitor object. |
1342 | 1343 |
Visitor *_visitor; |
1343 | 1344 |
//Pointer to the map of reached status of the nodes. |
1344 | 1345 |
ReachedMap *_reached; |
1345 | 1346 |
//Indicates if _reached is locally allocated (true) or not. |
1346 | 1347 |
bool local_reached; |
1347 | 1348 |
|
1348 | 1349 |
std::vector<typename Digraph::Node> _list; |
1349 | 1350 |
int _list_front, _list_back; |
1350 | 1351 |
|
1351 | 1352 |
//Creates the maps if necessary. |
1352 | 1353 |
void create_maps() { |
1353 | 1354 |
if(!_reached) { |
1354 | 1355 |
local_reached = true; |
1355 | 1356 |
_reached = Traits::createReachedMap(*_digraph); |
1356 | 1357 |
} |
1357 | 1358 |
} |
1358 | 1359 |
|
1359 | 1360 |
protected: |
1360 | 1361 |
|
1361 | 1362 |
BfsVisit() {} |
1362 | 1363 |
|
1363 | 1364 |
public: |
1364 | 1365 |
|
1365 | 1366 |
typedef BfsVisit Create; |
1366 | 1367 |
|
1367 | 1368 |
/// \name Named Template Parameters |
1368 | 1369 |
|
1369 | 1370 |
///@{ |
1370 | 1371 |
template <class T> |
1371 | 1372 |
struct SetReachedMapTraits : public Traits { |
1372 | 1373 |
typedef T ReachedMap; |
1373 | 1374 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1374 | 1375 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1375 | 1376 |
return 0; // ignore warnings |
1376 | 1377 |
} |
1377 | 1378 |
}; |
1378 | 1379 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1379 | 1380 |
/// ReachedMap type. |
1380 | 1381 |
/// |
1381 | 1382 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1382 | 1383 |
template <class T> |
1383 | 1384 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1384 | 1385 |
SetReachedMapTraits<T> > { |
1385 | 1386 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1386 | 1387 |
}; |
1387 | 1388 |
///@} |
1388 | 1389 |
|
1389 | 1390 |
public: |
1390 | 1391 |
|
1391 | 1392 |
/// \brief Constructor. |
1392 | 1393 |
/// |
1393 | 1394 |
/// Constructor. |
1394 | 1395 |
/// |
1395 | 1396 |
/// \param digraph The digraph the algorithm runs on. |
1396 | 1397 |
/// \param visitor The visitor object of the algorithm. |
1397 | 1398 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1398 | 1399 |
: _digraph(&digraph), _visitor(&visitor), |
1399 | 1400 |
_reached(0), local_reached(false) {} |
1400 | 1401 |
|
1401 | 1402 |
/// \brief Destructor. |
1402 | 1403 |
~BfsVisit() { |
1403 | 1404 |
if(local_reached) delete _reached; |
1404 | 1405 |
} |
1405 | 1406 |
|
1406 | 1407 |
/// \brief Sets the map that indicates which nodes are reached. |
1407 | 1408 |
/// |
1408 | 1409 |
/// Sets the map that indicates which nodes are reached. |
1409 | 1410 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1410 | 1411 |
/// or \ref init(), an instance will be allocated automatically. |
1411 | 1412 |
/// The destructor deallocates this automatically allocated map, |
1412 | 1413 |
/// of course. |
1413 | 1414 |
/// \return <tt> (*this) </tt> |
1414 | 1415 |
BfsVisit &reachedMap(ReachedMap &m) { |
1415 | 1416 |
if(local_reached) { |
1416 | 1417 |
delete _reached; |
1417 | 1418 |
local_reached = false; |
1418 | 1419 |
} |
1419 | 1420 |
_reached = &m; |
1420 | 1421 |
return *this; |
1421 | 1422 |
} |
1422 | 1423 |
|
1423 | 1424 |
public: |
1424 | 1425 |
|
1425 | 1426 |
/// \name Execution Control |
1426 | 1427 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1427 | 1428 |
/// member functions called \ref run(Node) "run()".\n |
1428 | 1429 |
/// If you need more control on the execution, first you have to call |
1429 | 1430 |
/// \ref init(), then you can add several source nodes with |
1430 | 1431 |
/// \ref addSource(). Finally the actual path computation can be |
1431 | 1432 |
/// performed with one of the \ref start() functions. |
1432 | 1433 |
|
1433 | 1434 |
/// @{ |
1434 | 1435 |
|
1435 | 1436 |
/// \brief Initializes the internal data structures. |
1436 | 1437 |
/// |
1437 | 1438 |
/// Initializes the internal data structures. |
1438 | 1439 |
void init() { |
1439 | 1440 |
create_maps(); |
1440 | 1441 |
_list.resize(countNodes(*_digraph)); |
1441 | 1442 |
_list_front = _list_back = -1; |
1442 | 1443 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1443 | 1444 |
_reached->set(u, false); |
1444 | 1445 |
} |
1445 | 1446 |
} |
1446 | 1447 |
|
1447 | 1448 |
/// \brief Adds a new source node. |
1448 | 1449 |
/// |
1449 | 1450 |
/// Adds a new source node to the set of nodes to be processed. |
1450 | 1451 |
void addSource(Node s) { |
1451 | 1452 |
if(!(*_reached)[s]) { |
1452 | 1453 |
_reached->set(s,true); |
1453 | 1454 |
_visitor->start(s); |
1454 | 1455 |
_visitor->reach(s); |
1455 | 1456 |
_list[++_list_back] = s; |
1456 | 1457 |
} |
1457 | 1458 |
} |
1458 | 1459 |
|
1459 | 1460 |
/// \brief Processes the next node. |
1460 | 1461 |
/// |
1461 | 1462 |
/// Processes the next node. |
1462 | 1463 |
/// |
1463 | 1464 |
/// \return The processed node. |
1464 | 1465 |
/// |
1465 | 1466 |
/// \pre The queue must not be empty. |
1466 | 1467 |
Node processNextNode() { |
1467 | 1468 |
Node n = _list[++_list_front]; |
1468 | 1469 |
_visitor->process(n); |
1469 | 1470 |
Arc e; |
1470 | 1471 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1471 | 1472 |
Node m = _digraph->target(e); |
1472 | 1473 |
if (!(*_reached)[m]) { |
1473 | 1474 |
_visitor->discover(e); |
1474 | 1475 |
_visitor->reach(m); |
1475 | 1476 |
_reached->set(m, true); |
1476 | 1477 |
_list[++_list_back] = m; |
1477 | 1478 |
} else { |
1478 | 1479 |
_visitor->examine(e); |
1479 | 1480 |
} |
1480 | 1481 |
} |
1481 | 1482 |
return n; |
1482 | 1483 |
} |
1483 | 1484 |
|
1484 | 1485 |
/// \brief Processes the next node. |
1485 | 1486 |
/// |
1486 | 1487 |
/// Processes the next node and checks if the given target node |
1487 | 1488 |
/// is reached. If the target node is reachable from the processed |
1488 | 1489 |
/// node, then the \c reach parameter will be set to \c true. |
1489 | 1490 |
/// |
1490 | 1491 |
/// \param target The target node. |
1491 | 1492 |
/// \retval reach Indicates if the target node is reached. |
1492 | 1493 |
/// It should be initially \c false. |
1493 | 1494 |
/// |
1494 | 1495 |
/// \return The processed node. |
1495 | 1496 |
/// |
1496 | 1497 |
/// \pre The queue must not be empty. |
1497 | 1498 |
Node processNextNode(Node target, bool& reach) { |
1498 | 1499 |
Node n = _list[++_list_front]; |
1499 | 1500 |
_visitor->process(n); |
1500 | 1501 |
Arc e; |
1501 | 1502 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1502 | 1503 |
Node m = _digraph->target(e); |
1503 | 1504 |
if (!(*_reached)[m]) { |
1504 | 1505 |
_visitor->discover(e); |
1505 | 1506 |
_visitor->reach(m); |
1506 | 1507 |
_reached->set(m, true); |
1507 | 1508 |
_list[++_list_back] = m; |
1508 | 1509 |
reach = reach || (target == m); |
1509 | 1510 |
} else { |
1510 | 1511 |
_visitor->examine(e); |
1511 | 1512 |
} |
1512 | 1513 |
} |
1513 | 1514 |
return n; |
1514 | 1515 |
} |
1515 | 1516 |
|
1516 | 1517 |
/// \brief Processes the next node. |
1517 | 1518 |
/// |
1518 | 1519 |
/// Processes the next node and checks if at least one of reached |
1519 | 1520 |
/// nodes has \c true value in the \c nm node map. If one node |
1520 | 1521 |
/// with \c true value is reachable from the processed node, then the |
1521 | 1522 |
/// \c rnode parameter will be set to the first of such nodes. |
1522 | 1523 |
/// |
1523 | 1524 |
/// \param nm A \c bool (or convertible) node map that indicates the |
1524 | 1525 |
/// possible targets. |
1525 | 1526 |
/// \retval rnode The reached target node. |
1526 | 1527 |
/// It should be initially \c INVALID. |
1527 | 1528 |
/// |
1528 | 1529 |
/// \return The processed node. |
1529 | 1530 |
/// |
1530 | 1531 |
/// \pre The queue must not be empty. |
1531 | 1532 |
template <typename NM> |
1532 | 1533 |
Node processNextNode(const NM& nm, Node& rnode) { |
1533 | 1534 |
Node n = _list[++_list_front]; |
1534 | 1535 |
_visitor->process(n); |
1535 | 1536 |
Arc e; |
1536 | 1537 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1537 | 1538 |
Node m = _digraph->target(e); |
1538 | 1539 |
if (!(*_reached)[m]) { |
1539 | 1540 |
_visitor->discover(e); |
1540 | 1541 |
_visitor->reach(m); |
1541 | 1542 |
_reached->set(m, true); |
1542 | 1543 |
_list[++_list_back] = m; |
1543 | 1544 |
if (nm[m] && rnode == INVALID) rnode = m; |
1544 | 1545 |
} else { |
1545 | 1546 |
_visitor->examine(e); |
1546 | 1547 |
} |
1547 | 1548 |
} |
1548 | 1549 |
return n; |
1549 | 1550 |
} |
1550 | 1551 |
|
1551 | 1552 |
/// \brief The next node to be processed. |
1552 | 1553 |
/// |
1553 | 1554 |
/// Returns the next node to be processed or \c INVALID if the queue |
1554 | 1555 |
/// is empty. |
1555 | 1556 |
Node nextNode() const { |
1556 | 1557 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1557 | 1558 |
} |
1558 | 1559 |
|
1559 | 1560 |
/// \brief Returns \c false if there are nodes |
1560 | 1561 |
/// to be processed. |
1561 | 1562 |
/// |
1562 | 1563 |
/// Returns \c false if there are nodes |
1563 | 1564 |
/// to be processed in the queue. |
1564 | 1565 |
bool emptyQueue() const { return _list_front == _list_back; } |
1565 | 1566 |
|
1566 | 1567 |
/// \brief Returns the number of the nodes to be processed. |
1567 | 1568 |
/// |
1568 | 1569 |
/// Returns the number of the nodes to be processed in the queue. |
1569 | 1570 |
int queueSize() const { return _list_back - _list_front; } |
1570 | 1571 |
|
1571 | 1572 |
/// \brief Executes the algorithm. |
1572 | 1573 |
/// |
1573 | 1574 |
/// Executes the algorithm. |
1574 | 1575 |
/// |
1575 | 1576 |
/// This method runs the %BFS algorithm from the root node(s) |
1576 | 1577 |
/// in order to compute the shortest path to each node. |
1577 | 1578 |
/// |
1578 | 1579 |
/// The algorithm computes |
1579 | 1580 |
/// - the shortest path tree (forest), |
1580 | 1581 |
/// - the distance of each node from the root(s). |
1581 | 1582 |
/// |
1582 | 1583 |
/// \pre init() must be called and at least one root node should be added |
1583 | 1584 |
/// with addSource() before using this function. |
1584 | 1585 |
/// |
1585 | 1586 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
1586 | 1587 |
/// \code |
1587 | 1588 |
/// while ( !b.emptyQueue() ) { |
1588 | 1589 |
/// b.processNextNode(); |
1589 | 1590 |
/// } |
1590 | 1591 |
/// \endcode |
1591 | 1592 |
void start() { |
1592 | 1593 |
while ( !emptyQueue() ) processNextNode(); |
1593 | 1594 |
} |
1594 | 1595 |
|
1595 | 1596 |
/// \brief Executes the algorithm until the given target node is reached. |
1596 | 1597 |
/// |
1597 | 1598 |
/// Executes the algorithm until the given target node is reached. |
1598 | 1599 |
/// |
1599 | 1600 |
/// This method runs the %BFS algorithm from the root node(s) |
1600 | 1601 |
/// in order to compute the shortest path to \c t. |
1601 | 1602 |
/// |
1602 | 1603 |
/// The algorithm computes |
1603 | 1604 |
/// - the shortest path to \c t, |
1604 | 1605 |
/// - the distance of \c t from the root(s). |
1605 | 1606 |
/// |
1606 | 1607 |
/// \pre init() must be called and at least one root node should be |
1607 | 1608 |
/// added with addSource() before using this function. |
1608 | 1609 |
/// |
1609 | 1610 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
1610 | 1611 |
/// \code |
1611 | 1612 |
/// bool reach = false; |
1612 | 1613 |
/// while ( !b.emptyQueue() && !reach ) { |
1613 | 1614 |
/// b.processNextNode(t, reach); |
1614 | 1615 |
/// } |
1615 | 1616 |
/// \endcode |
1616 | 1617 |
void start(Node t) { |
1617 | 1618 |
bool reach = false; |
1618 | 1619 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
1619 | 1620 |
} |
1620 | 1621 |
|
1621 | 1622 |
/// \brief Executes the algorithm until a condition is met. |
1622 | 1623 |
/// |
1623 | 1624 |
/// Executes the algorithm until a condition is met. |
1624 | 1625 |
/// |
1625 | 1626 |
/// This method runs the %BFS algorithm from the root node(s) in |
1626 | 1627 |
/// order to compute the shortest path to a node \c v with |
1627 | 1628 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
1628 | 1629 |
/// |
1629 | 1630 |
/// \param nm must be a bool (or convertible) node map. The |
1630 | 1631 |
/// algorithm will stop when it reaches a node \c v with |
1631 | 1632 |
/// <tt>nm[v]</tt> true. |
1632 | 1633 |
/// |
1633 | 1634 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2011 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of graph components. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
35 | 35 |
/// |
36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
37 | 37 |
/// subtypes of digraph and graph types. |
38 | 38 |
/// |
39 | 39 |
/// \note This class is a template class so that we can use it to |
40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
41 | 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
42 | 42 |
/// base class. For \c Node you should instantiate it with character |
43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
44 | 44 |
#ifndef DOXYGEN |
45 | 45 |
template <char sel = '0'> |
46 | 46 |
#endif |
47 | 47 |
class GraphItem { |
48 | 48 |
public: |
49 | 49 |
/// \brief Default constructor. |
50 | 50 |
/// |
51 | 51 |
/// Default constructor. |
52 | 52 |
/// \warning The default constructor is not required to set |
53 | 53 |
/// the item to some well-defined value. So you should consider it |
54 | 54 |
/// as uninitialized. |
55 | 55 |
GraphItem() {} |
56 | 56 |
|
57 | 57 |
/// \brief Copy constructor. |
58 | 58 |
/// |
59 | 59 |
/// Copy constructor. |
60 | 60 |
GraphItem(const GraphItem &) {} |
61 | 61 |
|
62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
63 | 63 |
/// |
64 | 64 |
/// Constructor for conversion from \c INVALID. |
65 | 65 |
/// It initializes the item to be invalid. |
66 | 66 |
/// \sa Invalid for more details. |
67 | 67 |
GraphItem(Invalid) {} |
68 | 68 |
|
69 | 69 |
/// \brief Assignment operator. |
70 | 70 |
/// |
71 | 71 |
/// Assignment operator for the item. |
72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; } |
73 | 73 |
|
74 | 74 |
/// \brief Assignment operator for INVALID. |
75 | 75 |
/// |
76 | 76 |
/// This operator makes the item invalid. |
77 | 77 |
GraphItem& operator=(Invalid) { return *this; } |
78 | 78 |
|
79 | 79 |
/// \brief Equality operator. |
80 | 80 |
/// |
81 | 81 |
/// Equality operator. |
82 | 82 |
bool operator==(const GraphItem&) const { return false; } |
83 | 83 |
|
84 | 84 |
/// \brief Inequality operator. |
85 | 85 |
/// |
86 | 86 |
/// Inequality operator. |
87 | 87 |
bool operator!=(const GraphItem&) const { return false; } |
88 | 88 |
|
89 | 89 |
/// \brief Ordering operator. |
90 | 90 |
/// |
91 | 91 |
/// This operator defines an ordering of the items. |
92 | 92 |
/// It makes possible to use graph item types as key types in |
93 | 93 |
/// associative containers (e.g. \c std::map). |
94 | 94 |
/// |
95 | 95 |
/// \note This operator only have to define some strict ordering of |
96 | 96 |
/// the items; this order has nothing to do with the iteration |
97 | 97 |
/// ordering of the items. |
98 | 98 |
bool operator<(const GraphItem&) const { return false; } |
99 | 99 |
|
100 | 100 |
template<typename _GraphItem> |
101 | 101 |
struct Constraints { |
102 | 102 |
void constraints() { |
103 | 103 |
_GraphItem i1; |
104 | 104 |
i1=INVALID; |
105 | 105 |
_GraphItem i2 = i1; |
106 | 106 |
_GraphItem i3 = INVALID; |
107 | 107 |
|
108 | 108 |
i1 = i2 = i3; |
109 | 109 |
|
110 | 110 |
bool b; |
111 | 111 |
b = (ia == ib) && (ia != ib); |
112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
113 | 113 |
b = (ia < ib); |
114 | 114 |
} |
115 | 115 |
|
116 | 116 |
const _GraphItem &ia; |
117 | 117 |
const _GraphItem &ib; |
118 |
Constraints() {} |
|
118 | 119 |
}; |
119 | 120 |
}; |
120 | 121 |
|
121 | 122 |
/// \brief Base skeleton class for directed graphs. |
122 | 123 |
/// |
123 | 124 |
/// This class describes the base interface of directed graph types. |
124 | 125 |
/// All digraph %concepts have to conform to this class. |
125 | 126 |
/// It just provides types for nodes and arcs and functions |
126 | 127 |
/// to get the source and the target nodes of arcs. |
127 | 128 |
class BaseDigraphComponent { |
128 | 129 |
public: |
129 | 130 |
|
130 | 131 |
typedef BaseDigraphComponent Digraph; |
131 | 132 |
|
132 | 133 |
/// \brief Node class of the digraph. |
133 | 134 |
/// |
134 | 135 |
/// This class represents the nodes of the digraph. |
135 | 136 |
typedef GraphItem<'n'> Node; |
136 | 137 |
|
137 | 138 |
/// \brief Arc class of the digraph. |
138 | 139 |
/// |
139 | 140 |
/// This class represents the arcs of the digraph. |
140 | 141 |
typedef GraphItem<'a'> Arc; |
141 | 142 |
|
142 | 143 |
/// \brief Return the source node of an arc. |
143 | 144 |
/// |
144 | 145 |
/// This function returns the source node of an arc. |
145 | 146 |
Node source(const Arc&) const { return INVALID; } |
146 | 147 |
|
147 | 148 |
/// \brief Return the target node of an arc. |
148 | 149 |
/// |
149 | 150 |
/// This function returns the target node of an arc. |
150 | 151 |
Node target(const Arc&) const { return INVALID; } |
151 | 152 |
|
152 | 153 |
/// \brief Return the opposite node on the given arc. |
153 | 154 |
/// |
154 | 155 |
/// This function returns the opposite node on the given arc. |
155 | 156 |
Node oppositeNode(const Node&, const Arc&) const { |
156 | 157 |
return INVALID; |
157 | 158 |
} |
158 | 159 |
|
159 | 160 |
template <typename _Digraph> |
160 | 161 |
struct Constraints { |
161 | 162 |
typedef typename _Digraph::Node Node; |
162 | 163 |
typedef typename _Digraph::Arc Arc; |
163 | 164 |
|
164 | 165 |
void constraints() { |
165 | 166 |
checkConcept<GraphItem<'n'>, Node>(); |
166 | 167 |
checkConcept<GraphItem<'a'>, Arc>(); |
167 | 168 |
{ |
168 | 169 |
Node n; |
169 | 170 |
Arc e(INVALID); |
170 | 171 |
n = digraph.source(e); |
171 | 172 |
n = digraph.target(e); |
172 | 173 |
n = digraph.oppositeNode(n, e); |
173 | 174 |
} |
174 | 175 |
} |
175 | 176 |
|
176 | 177 |
const _Digraph& digraph; |
178 |
Constraints() {} |
|
177 | 179 |
}; |
178 | 180 |
}; |
179 | 181 |
|
180 | 182 |
/// \brief Base skeleton class for undirected graphs. |
181 | 183 |
/// |
182 | 184 |
/// This class describes the base interface of undirected graph types. |
183 | 185 |
/// All graph %concepts have to conform to this class. |
184 | 186 |
/// It extends the interface of \ref BaseDigraphComponent with an |
185 | 187 |
/// \c Edge type and functions to get the end nodes of edges, |
186 | 188 |
/// to convert from arcs to edges and to get both direction of edges. |
187 | 189 |
class BaseGraphComponent : public BaseDigraphComponent { |
188 | 190 |
public: |
189 | 191 |
|
190 | 192 |
typedef BaseGraphComponent Graph; |
191 | 193 |
|
192 | 194 |
typedef BaseDigraphComponent::Node Node; |
193 | 195 |
typedef BaseDigraphComponent::Arc Arc; |
194 | 196 |
|
195 | 197 |
/// \brief Undirected edge class of the graph. |
196 | 198 |
/// |
197 | 199 |
/// This class represents the undirected edges of the graph. |
198 | 200 |
/// Undirected graphs can be used as directed graphs, each edge is |
199 | 201 |
/// represented by two opposite directed arcs. |
200 | 202 |
class Edge : public GraphItem<'e'> { |
201 | 203 |
typedef GraphItem<'e'> Parent; |
202 | 204 |
|
203 | 205 |
public: |
204 | 206 |
/// \brief Default constructor. |
205 | 207 |
/// |
206 | 208 |
/// Default constructor. |
207 | 209 |
/// \warning The default constructor is not required to set |
208 | 210 |
/// the item to some well-defined value. So you should consider it |
209 | 211 |
/// as uninitialized. |
210 | 212 |
Edge() {} |
211 | 213 |
|
212 | 214 |
/// \brief Copy constructor. |
213 | 215 |
/// |
214 | 216 |
/// Copy constructor. |
215 | 217 |
Edge(const Edge &) : Parent() {} |
216 | 218 |
|
217 | 219 |
/// \brief Constructor for conversion from \c INVALID. |
218 | 220 |
/// |
219 | 221 |
/// Constructor for conversion from \c INVALID. |
220 | 222 |
/// It initializes the item to be invalid. |
221 | 223 |
/// \sa Invalid for more details. |
222 | 224 |
Edge(Invalid) {} |
223 | 225 |
|
224 | 226 |
/// \brief Constructor for conversion from an arc. |
225 | 227 |
/// |
226 | 228 |
/// Constructor for conversion from an arc. |
227 | 229 |
/// Besides the core graph item functionality each arc should |
228 | 230 |
/// be convertible to the represented edge. |
229 | 231 |
Edge(const Arc&) {} |
230 | 232 |
}; |
231 | 233 |
|
232 | 234 |
/// \brief Return one end node of an edge. |
233 | 235 |
/// |
234 | 236 |
/// This function returns one end node of an edge. |
235 | 237 |
Node u(const Edge&) const { return INVALID; } |
236 | 238 |
|
237 | 239 |
/// \brief Return the other end node of an edge. |
238 | 240 |
/// |
239 | 241 |
/// This function returns the other end node of an edge. |
240 | 242 |
Node v(const Edge&) const { return INVALID; } |
241 | 243 |
|
242 | 244 |
/// \brief Return a directed arc related to an edge. |
243 | 245 |
/// |
244 | 246 |
/// This function returns a directed arc from its direction and the |
245 | 247 |
/// represented edge. |
246 | 248 |
Arc direct(const Edge&, bool) const { return INVALID; } |
247 | 249 |
|
248 | 250 |
/// \brief Return a directed arc related to an edge. |
249 | 251 |
/// |
250 | 252 |
/// This function returns a directed arc from its source node and the |
251 | 253 |
/// represented edge. |
252 | 254 |
Arc direct(const Edge&, const Node&) const { return INVALID; } |
253 | 255 |
|
254 | 256 |
/// \brief Return the direction of the arc. |
255 | 257 |
/// |
256 | 258 |
/// Returns the direction of the arc. Each arc represents an |
257 | 259 |
/// edge with a direction. It gives back the |
258 | 260 |
/// direction. |
259 | 261 |
bool direction(const Arc&) const { return true; } |
260 | 262 |
|
261 | 263 |
/// \brief Return the opposite arc. |
262 | 264 |
/// |
263 | 265 |
/// This function returns the opposite arc, i.e. the arc representing |
264 | 266 |
/// the same edge and has opposite direction. |
265 | 267 |
Arc oppositeArc(const Arc&) const { return INVALID; } |
266 | 268 |
|
267 | 269 |
template <typename _Graph> |
268 | 270 |
struct Constraints { |
269 | 271 |
typedef typename _Graph::Node Node; |
270 | 272 |
typedef typename _Graph::Arc Arc; |
271 | 273 |
typedef typename _Graph::Edge Edge; |
272 | 274 |
|
273 | 275 |
void constraints() { |
274 | 276 |
checkConcept<BaseDigraphComponent, _Graph>(); |
275 | 277 |
checkConcept<GraphItem<'e'>, Edge>(); |
276 | 278 |
{ |
277 | 279 |
Node n; |
278 | 280 |
Edge ue(INVALID); |
279 | 281 |
Arc e; |
280 | 282 |
n = graph.u(ue); |
281 | 283 |
n = graph.v(ue); |
282 | 284 |
e = graph.direct(ue, true); |
283 | 285 |
e = graph.direct(ue, false); |
284 | 286 |
e = graph.direct(ue, n); |
285 | 287 |
e = graph.oppositeArc(e); |
286 | 288 |
ue = e; |
287 | 289 |
bool d = graph.direction(e); |
288 | 290 |
ignore_unused_variable_warning(d); |
289 | 291 |
} |
290 | 292 |
} |
291 | 293 |
|
292 | 294 |
const _Graph& graph; |
295 |
Constraints() {} |
|
293 | 296 |
}; |
294 | 297 |
|
295 | 298 |
}; |
296 | 299 |
|
297 | 300 |
/// \brief Skeleton class for \e idable directed graphs. |
298 | 301 |
/// |
299 | 302 |
/// This class describes the interface of \e idable directed graphs. |
300 | 303 |
/// It extends \ref BaseDigraphComponent with the core ID functions. |
301 | 304 |
/// The ids of the items must be unique and immutable. |
302 | 305 |
/// This concept is part of the Digraph concept. |
303 | 306 |
template <typename BAS = BaseDigraphComponent> |
304 | 307 |
class IDableDigraphComponent : public BAS { |
305 | 308 |
public: |
306 | 309 |
|
307 | 310 |
typedef BAS Base; |
308 | 311 |
typedef typename Base::Node Node; |
309 | 312 |
typedef typename Base::Arc Arc; |
310 | 313 |
|
311 | 314 |
/// \brief Return a unique integer id for the given node. |
312 | 315 |
/// |
313 | 316 |
/// This function returns a unique integer id for the given node. |
314 | 317 |
int id(const Node&) const { return -1; } |
315 | 318 |
|
316 | 319 |
/// \brief Return the node by its unique id. |
317 | 320 |
/// |
318 | 321 |
/// This function returns the node by its unique id. |
319 | 322 |
/// If the digraph does not contain a node with the given id, |
320 | 323 |
/// then the result of the function is undefined. |
321 | 324 |
Node nodeFromId(int) const { return INVALID; } |
322 | 325 |
|
323 | 326 |
/// \brief Return a unique integer id for the given arc. |
324 | 327 |
/// |
325 | 328 |
/// This function returns a unique integer id for the given arc. |
326 | 329 |
int id(const Arc&) const { return -1; } |
327 | 330 |
|
328 | 331 |
/// \brief Return the arc by its unique id. |
329 | 332 |
/// |
330 | 333 |
/// This function returns the arc by its unique id. |
331 | 334 |
/// If the digraph does not contain an arc with the given id, |
332 | 335 |
/// then the result of the function is undefined. |
333 | 336 |
Arc arcFromId(int) const { return INVALID; } |
334 | 337 |
|
335 | 338 |
/// \brief Return an integer greater or equal to the maximum |
336 | 339 |
/// node id. |
337 | 340 |
/// |
338 | 341 |
/// This function returns an integer greater or equal to the |
339 | 342 |
/// maximum node id. |
340 | 343 |
int maxNodeId() const { return -1; } |
341 | 344 |
|
342 | 345 |
/// \brief Return an integer greater or equal to the maximum |
343 | 346 |
/// arc id. |
344 | 347 |
/// |
345 | 348 |
/// This function returns an integer greater or equal to the |
346 | 349 |
/// maximum arc id. |
347 | 350 |
int maxArcId() const { return -1; } |
348 | 351 |
|
349 | 352 |
template <typename _Digraph> |
350 | 353 |
struct Constraints { |
351 | 354 |
|
352 | 355 |
void constraints() { |
353 | 356 |
checkConcept<Base, _Digraph >(); |
354 | 357 |
typename _Digraph::Node node; |
355 | 358 |
node=INVALID; |
356 | 359 |
int nid = digraph.id(node); |
357 | 360 |
nid = digraph.id(node); |
358 | 361 |
node = digraph.nodeFromId(nid); |
359 | 362 |
typename _Digraph::Arc arc; |
360 | 363 |
arc=INVALID; |
361 | 364 |
int eid = digraph.id(arc); |
362 | 365 |
eid = digraph.id(arc); |
363 | 366 |
arc = digraph.arcFromId(eid); |
364 | 367 |
|
365 | 368 |
nid = digraph.maxNodeId(); |
366 | 369 |
ignore_unused_variable_warning(nid); |
367 | 370 |
eid = digraph.maxArcId(); |
368 | 371 |
ignore_unused_variable_warning(eid); |
369 | 372 |
} |
370 | 373 |
|
371 | 374 |
const _Digraph& digraph; |
375 |
Constraints() {} |
|
372 | 376 |
}; |
373 | 377 |
}; |
374 | 378 |
|
375 | 379 |
/// \brief Skeleton class for \e idable undirected graphs. |
376 | 380 |
/// |
377 | 381 |
/// This class describes the interface of \e idable undirected |
378 | 382 |
/// graphs. It extends \ref IDableDigraphComponent with the core ID |
379 | 383 |
/// functions of undirected graphs. |
380 | 384 |
/// The ids of the items must be unique and immutable. |
381 | 385 |
/// This concept is part of the Graph concept. |
382 | 386 |
template <typename BAS = BaseGraphComponent> |
383 | 387 |
class IDableGraphComponent : public IDableDigraphComponent<BAS> { |
384 | 388 |
public: |
385 | 389 |
|
386 | 390 |
typedef BAS Base; |
387 | 391 |
typedef typename Base::Edge Edge; |
388 | 392 |
|
389 | 393 |
using IDableDigraphComponent<Base>::id; |
390 | 394 |
|
391 | 395 |
/// \brief Return a unique integer id for the given edge. |
392 | 396 |
/// |
393 | 397 |
/// This function returns a unique integer id for the given edge. |
394 | 398 |
int id(const Edge&) const { return -1; } |
395 | 399 |
|
396 | 400 |
/// \brief Return the edge by its unique id. |
397 | 401 |
/// |
398 | 402 |
/// This function returns the edge by its unique id. |
399 | 403 |
/// If the graph does not contain an edge with the given id, |
400 | 404 |
/// then the result of the function is undefined. |
401 | 405 |
Edge edgeFromId(int) const { return INVALID; } |
402 | 406 |
|
403 | 407 |
/// \brief Return an integer greater or equal to the maximum |
404 | 408 |
/// edge id. |
405 | 409 |
/// |
406 | 410 |
/// This function returns an integer greater or equal to the |
407 | 411 |
/// maximum edge id. |
408 | 412 |
int maxEdgeId() const { return -1; } |
409 | 413 |
|
410 | 414 |
template <typename _Graph> |
411 | 415 |
struct Constraints { |
412 | 416 |
|
413 | 417 |
void constraints() { |
414 | 418 |
checkConcept<IDableDigraphComponent<Base>, _Graph >(); |
415 | 419 |
typename _Graph::Edge edge; |
416 | 420 |
int ueid = graph.id(edge); |
417 | 421 |
ueid = graph.id(edge); |
418 | 422 |
edge = graph.edgeFromId(ueid); |
419 | 423 |
ueid = graph.maxEdgeId(); |
420 | 424 |
ignore_unused_variable_warning(ueid); |
421 | 425 |
} |
422 | 426 |
|
423 | 427 |
const _Graph& graph; |
428 |
Constraints() {} |
|
424 | 429 |
}; |
425 | 430 |
}; |
426 | 431 |
|
427 | 432 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
428 | 433 |
/// |
429 | 434 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
430 | 435 |
/// \c EdgeIt subtypes of digraph and graph types. |
431 | 436 |
template <typename GR, typename Item> |
432 | 437 |
class GraphItemIt : public Item { |
433 | 438 |
public: |
434 | 439 |
/// \brief Default constructor. |
435 | 440 |
/// |
436 | 441 |
/// Default constructor. |
437 | 442 |
/// \warning The default constructor is not required to set |
438 | 443 |
/// the iterator to some well-defined value. So you should consider it |
439 | 444 |
/// as uninitialized. |
440 | 445 |
GraphItemIt() {} |
441 | 446 |
|
442 | 447 |
/// \brief Copy constructor. |
443 | 448 |
/// |
444 | 449 |
/// Copy constructor. |
445 | 450 |
GraphItemIt(const GraphItemIt& it) : Item(it) {} |
446 | 451 |
|
447 | 452 |
/// \brief Constructor that sets the iterator to the first item. |
448 | 453 |
/// |
449 | 454 |
/// Constructor that sets the iterator to the first item. |
450 | 455 |
explicit GraphItemIt(const GR&) {} |
451 | 456 |
|
452 | 457 |
/// \brief Constructor for conversion from \c INVALID. |
453 | 458 |
/// |
454 | 459 |
/// Constructor for conversion from \c INVALID. |
455 | 460 |
/// It initializes the iterator to be invalid. |
456 | 461 |
/// \sa Invalid for more details. |
457 | 462 |
GraphItemIt(Invalid) {} |
458 | 463 |
|
459 | 464 |
/// \brief Assignment operator. |
460 | 465 |
/// |
461 | 466 |
/// Assignment operator for the iterator. |
462 | 467 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; } |
463 | 468 |
|
464 | 469 |
/// \brief Increment the iterator. |
465 | 470 |
/// |
466 | 471 |
/// This operator increments the iterator, i.e. assigns it to the |
467 | 472 |
/// next item. |
468 | 473 |
GraphItemIt& operator++() { return *this; } |
469 | 474 |
|
470 | 475 |
/// \brief Equality operator |
471 | 476 |
/// |
472 | 477 |
/// Equality operator. |
473 | 478 |
/// Two iterators are equal if and only if they point to the |
474 | 479 |
/// same object or both are invalid. |
475 | 480 |
bool operator==(const GraphItemIt&) const { return true;} |
476 | 481 |
|
477 | 482 |
/// \brief Inequality operator |
478 | 483 |
/// |
479 | 484 |
/// Inequality operator. |
480 | 485 |
/// Two iterators are equal if and only if they point to the |
481 | 486 |
/// same object or both are invalid. |
482 | 487 |
bool operator!=(const GraphItemIt&) const { return true;} |
483 | 488 |
|
484 | 489 |
template<typename _GraphItemIt> |
485 | 490 |
struct Constraints { |
486 | 491 |
void constraints() { |
487 | 492 |
checkConcept<GraphItem<>, _GraphItemIt>(); |
488 | 493 |
_GraphItemIt it1(g); |
489 | 494 |
_GraphItemIt it2; |
490 | 495 |
_GraphItemIt it3 = it1; |
491 | 496 |
_GraphItemIt it4 = INVALID; |
492 | 497 |
|
493 | 498 |
it2 = ++it1; |
494 | 499 |
++it2 = it1; |
495 | 500 |
++(++it1); |
496 | 501 |
|
497 | 502 |
Item bi = it1; |
498 | 503 |
bi = it2; |
499 | 504 |
} |
500 | 505 |
const GR& g; |
506 |
Constraints() {} |
|
501 | 507 |
}; |
502 | 508 |
}; |
503 | 509 |
|
504 | 510 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
505 | 511 |
/// \c IncEdgeIt types. |
506 | 512 |
/// |
507 | 513 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
508 | 514 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
509 | 515 |
/// |
510 | 516 |
/// \note Since these iterator classes do not inherit from the same |
511 | 517 |
/// base class, there is an additional template parameter (selector) |
512 | 518 |
/// \c sel. For \c InArcIt you should instantiate it with character |
513 | 519 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
514 | 520 |
template <typename GR, |
515 | 521 |
typename Item = typename GR::Arc, |
516 | 522 |
typename Base = typename GR::Node, |
517 | 523 |
char sel = '0'> |
518 | 524 |
class GraphIncIt : public Item { |
519 | 525 |
public: |
520 | 526 |
/// \brief Default constructor. |
521 | 527 |
/// |
522 | 528 |
/// Default constructor. |
523 | 529 |
/// \warning The default constructor is not required to set |
524 | 530 |
/// the iterator to some well-defined value. So you should consider it |
525 | 531 |
/// as uninitialized. |
526 | 532 |
GraphIncIt() {} |
527 | 533 |
|
528 | 534 |
/// \brief Copy constructor. |
529 | 535 |
/// |
530 | 536 |
/// Copy constructor. |
531 | 537 |
GraphIncIt(const GraphIncIt& it) : Item(it) {} |
532 | 538 |
|
533 | 539 |
/// \brief Constructor that sets the iterator to the first |
534 | 540 |
/// incoming or outgoing arc. |
535 | 541 |
/// |
536 | 542 |
/// Constructor that sets the iterator to the first arc |
537 | 543 |
/// incoming to or outgoing from the given node. |
538 | 544 |
explicit GraphIncIt(const GR&, const Base&) {} |
539 | 545 |
|
540 | 546 |
/// \brief Constructor for conversion from \c INVALID. |
541 | 547 |
/// |
542 | 548 |
/// Constructor for conversion from \c INVALID. |
543 | 549 |
/// It initializes the iterator to be invalid. |
544 | 550 |
/// \sa Invalid for more details. |
545 | 551 |
GraphIncIt(Invalid) {} |
546 | 552 |
|
547 | 553 |
/// \brief Assignment operator. |
548 | 554 |
/// |
549 | 555 |
/// Assignment operator for the iterator. |
550 | 556 |
GraphIncIt& operator=(const GraphIncIt&) { return *this; } |
551 | 557 |
|
552 | 558 |
/// \brief Increment the iterator. |
553 | 559 |
/// |
554 | 560 |
/// This operator increments the iterator, i.e. assigns it to the |
555 | 561 |
/// next arc incoming to or outgoing from the given node. |
556 | 562 |
GraphIncIt& operator++() { return *this; } |
557 | 563 |
|
558 | 564 |
/// \brief Equality operator |
559 | 565 |
/// |
560 | 566 |
/// Equality operator. |
561 | 567 |
/// Two iterators are equal if and only if they point to the |
562 | 568 |
/// same object or both are invalid. |
563 | 569 |
bool operator==(const GraphIncIt&) const { return true;} |
564 | 570 |
|
565 | 571 |
/// \brief Inequality operator |
566 | 572 |
/// |
567 | 573 |
/// Inequality operator. |
568 | 574 |
/// Two iterators are equal if and only if they point to the |
569 | 575 |
/// same object or both are invalid. |
570 | 576 |
bool operator!=(const GraphIncIt&) const { return true;} |
571 | 577 |
|
572 | 578 |
template <typename _GraphIncIt> |
573 | 579 |
struct Constraints { |
574 | 580 |
void constraints() { |
575 | 581 |
checkConcept<GraphItem<sel>, _GraphIncIt>(); |
576 | 582 |
_GraphIncIt it1(graph, node); |
577 | 583 |
_GraphIncIt it2; |
578 | 584 |
_GraphIncIt it3 = it1; |
579 | 585 |
_GraphIncIt it4 = INVALID; |
580 | 586 |
|
581 | 587 |
it2 = ++it1; |
582 | 588 |
++it2 = it1; |
583 | 589 |
++(++it1); |
584 | 590 |
Item e = it1; |
585 | 591 |
e = it2; |
586 | 592 |
} |
587 | 593 |
const Base& node; |
588 | 594 |
const GR& graph; |
595 |
Constraints() {} |
|
589 | 596 |
}; |
590 | 597 |
}; |
591 | 598 |
|
592 | 599 |
/// \brief Skeleton class for iterable directed graphs. |
593 | 600 |
/// |
594 | 601 |
/// This class describes the interface of iterable directed |
595 | 602 |
/// graphs. It extends \ref BaseDigraphComponent with the core |
596 | 603 |
/// iterable interface. |
597 | 604 |
/// This concept is part of the Digraph concept. |
598 | 605 |
template <typename BAS = BaseDigraphComponent> |
599 | 606 |
class IterableDigraphComponent : public BAS { |
600 | 607 |
|
601 | 608 |
public: |
602 | 609 |
|
603 | 610 |
typedef BAS Base; |
604 | 611 |
typedef typename Base::Node Node; |
605 | 612 |
typedef typename Base::Arc Arc; |
606 | 613 |
|
607 | 614 |
typedef IterableDigraphComponent Digraph; |
608 | 615 |
|
609 | 616 |
/// \name Base Iteration |
610 | 617 |
/// |
611 | 618 |
/// This interface provides functions for iteration on digraph items. |
612 | 619 |
/// |
613 | 620 |
/// @{ |
614 | 621 |
|
615 | 622 |
/// \brief Return the first node. |
616 | 623 |
/// |
617 | 624 |
/// This function gives back the first node in the iteration order. |
618 | 625 |
void first(Node&) const {} |
619 | 626 |
|
620 | 627 |
/// \brief Return the next node. |
621 | 628 |
/// |
622 | 629 |
/// This function gives back the next node in the iteration order. |
623 | 630 |
void next(Node&) const {} |
624 | 631 |
|
625 | 632 |
/// \brief Return the first arc. |
626 | 633 |
/// |
627 | 634 |
/// This function gives back the first arc in the iteration order. |
628 | 635 |
void first(Arc&) const {} |
629 | 636 |
|
630 | 637 |
/// \brief Return the next arc. |
631 | 638 |
/// |
632 | 639 |
/// This function gives back the next arc in the iteration order. |
633 | 640 |
void next(Arc&) const {} |
634 | 641 |
|
635 | 642 |
/// \brief Return the first arc incomming to the given node. |
636 | 643 |
/// |
637 | 644 |
/// This function gives back the first arc incomming to the |
638 | 645 |
/// given node. |
639 | 646 |
void firstIn(Arc&, const Node&) const {} |
640 | 647 |
|
641 | 648 |
/// \brief Return the next arc incomming to the given node. |
642 | 649 |
/// |
643 | 650 |
/// This function gives back the next arc incomming to the |
644 | 651 |
/// given node. |
645 | 652 |
void nextIn(Arc&) const {} |
646 | 653 |
|
647 | 654 |
/// \brief Return the first arc outgoing form the given node. |
648 | 655 |
/// |
649 | 656 |
/// This function gives back the first arc outgoing form the |
650 | 657 |
/// given node. |
651 | 658 |
void firstOut(Arc&, const Node&) const {} |
652 | 659 |
|
653 | 660 |
/// \brief Return the next arc outgoing form the given node. |
654 | 661 |
/// |
655 | 662 |
/// This function gives back the next arc outgoing form the |
656 | 663 |
/// given node. |
657 | 664 |
void nextOut(Arc&) const {} |
658 | 665 |
|
659 | 666 |
/// @} |
660 | 667 |
|
661 | 668 |
/// \name Class Based Iteration |
662 | 669 |
/// |
663 | 670 |
/// This interface provides iterator classes for digraph items. |
664 | 671 |
/// |
665 | 672 |
/// @{ |
666 | 673 |
|
667 | 674 |
/// \brief This iterator goes through each node. |
668 | 675 |
/// |
669 | 676 |
/// This iterator goes through each node. |
670 | 677 |
/// |
671 | 678 |
typedef GraphItemIt<Digraph, Node> NodeIt; |
672 | 679 |
|
673 | 680 |
/// \brief This iterator goes through each arc. |
674 | 681 |
/// |
675 | 682 |
/// This iterator goes through each arc. |
676 | 683 |
/// |
677 | 684 |
typedef GraphItemIt<Digraph, Arc> ArcIt; |
678 | 685 |
|
679 | 686 |
/// \brief This iterator goes trough the incoming arcs of a node. |
680 | 687 |
/// |
681 | 688 |
/// This iterator goes trough the \e incoming arcs of a certain node |
682 | 689 |
/// of a digraph. |
683 | 690 |
typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt; |
684 | 691 |
|
685 | 692 |
/// \brief This iterator goes trough the outgoing arcs of a node. |
686 | 693 |
/// |
687 | 694 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
688 | 695 |
/// of a digraph. |
689 | 696 |
typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt; |
690 | 697 |
|
691 | 698 |
/// \brief The base node of the iterator. |
692 | 699 |
/// |
693 | 700 |
/// This function gives back the base node of the iterator. |
694 | 701 |
/// It is always the target node of the pointed arc. |
695 | 702 |
Node baseNode(const InArcIt&) const { return INVALID; } |
696 | 703 |
|
697 | 704 |
/// \brief The running node of the iterator. |
698 | 705 |
/// |
699 | 706 |
/// This function gives back the running node of the iterator. |
700 | 707 |
/// It is always the source node of the pointed arc. |
701 | 708 |
Node runningNode(const InArcIt&) const { return INVALID; } |
702 | 709 |
|
703 | 710 |
/// \brief The base node of the iterator. |
704 | 711 |
/// |
705 | 712 |
/// This function gives back the base node of the iterator. |
706 | 713 |
/// It is always the source node of the pointed arc. |
707 | 714 |
Node baseNode(const OutArcIt&) const { return INVALID; } |
708 | 715 |
|
709 | 716 |
/// \brief The running node of the iterator. |
710 | 717 |
/// |
711 | 718 |
/// This function gives back the running node of the iterator. |
712 | 719 |
/// It is always the target node of the pointed arc. |
713 | 720 |
Node runningNode(const OutArcIt&) const { return INVALID; } |
714 | 721 |
|
715 | 722 |
/// @} |
716 | 723 |
|
717 | 724 |
template <typename _Digraph> |
718 | 725 |
struct Constraints { |
719 | 726 |
void constraints() { |
720 | 727 |
checkConcept<Base, _Digraph>(); |
721 | 728 |
|
722 | 729 |
{ |
723 | 730 |
typename _Digraph::Node node(INVALID); |
724 | 731 |
typename _Digraph::Arc arc(INVALID); |
725 | 732 |
{ |
726 | 733 |
digraph.first(node); |
727 | 734 |
digraph.next(node); |
728 | 735 |
} |
729 | 736 |
{ |
730 | 737 |
digraph.first(arc); |
731 | 738 |
digraph.next(arc); |
732 | 739 |
} |
733 | 740 |
{ |
734 | 741 |
digraph.firstIn(arc, node); |
735 | 742 |
digraph.nextIn(arc); |
736 | 743 |
} |
737 | 744 |
{ |
738 | 745 |
digraph.firstOut(arc, node); |
739 | 746 |
digraph.nextOut(arc); |
740 | 747 |
} |
741 | 748 |
} |
742 | 749 |
|
743 | 750 |
{ |
744 | 751 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>, |
745 | 752 |
typename _Digraph::ArcIt >(); |
746 | 753 |
checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>, |
747 | 754 |
typename _Digraph::NodeIt >(); |
748 | 755 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
749 | 756 |
typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>(); |
750 | 757 |
checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc, |
751 | 758 |
typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>(); |
752 | 759 |
|
753 | 760 |
typename _Digraph::Node n; |
754 | 761 |
const typename _Digraph::InArcIt iait(INVALID); |
755 | 762 |
const typename _Digraph::OutArcIt oait(INVALID); |
756 | 763 |
n = digraph.baseNode(iait); |
757 | 764 |
n = digraph.runningNode(iait); |
758 | 765 |
n = digraph.baseNode(oait); |
759 | 766 |
n = digraph.runningNode(oait); |
760 | 767 |
ignore_unused_variable_warning(n); |
761 | 768 |
} |
762 | 769 |
} |
763 | 770 |
|
764 | 771 |
const _Digraph& digraph; |
772 |
Constraints() {} |
|
765 | 773 |
}; |
766 | 774 |
}; |
767 | 775 |
|
768 | 776 |
/// \brief Skeleton class for iterable undirected graphs. |
769 | 777 |
/// |
770 | 778 |
/// This class describes the interface of iterable undirected |
771 | 779 |
/// graphs. It extends \ref IterableDigraphComponent with the core |
772 | 780 |
/// iterable interface of undirected graphs. |
773 | 781 |
/// This concept is part of the Graph concept. |
774 | 782 |
template <typename BAS = BaseGraphComponent> |
775 | 783 |
class IterableGraphComponent : public IterableDigraphComponent<BAS> { |
776 | 784 |
public: |
777 | 785 |
|
778 | 786 |
typedef BAS Base; |
779 | 787 |
typedef typename Base::Node Node; |
780 | 788 |
typedef typename Base::Arc Arc; |
781 | 789 |
typedef typename Base::Edge Edge; |
782 | 790 |
|
783 | 791 |
|
784 | 792 |
typedef IterableGraphComponent Graph; |
785 | 793 |
|
786 | 794 |
/// \name Base Iteration |
787 | 795 |
/// |
788 | 796 |
/// This interface provides functions for iteration on edges. |
789 | 797 |
/// |
790 | 798 |
/// @{ |
791 | 799 |
|
792 | 800 |
using IterableDigraphComponent<Base>::first; |
793 | 801 |
using IterableDigraphComponent<Base>::next; |
794 | 802 |
|
795 | 803 |
/// \brief Return the first edge. |
796 | 804 |
/// |
797 | 805 |
/// This function gives back the first edge in the iteration order. |
798 | 806 |
void first(Edge&) const {} |
799 | 807 |
|
800 | 808 |
/// \brief Return the next edge. |
801 | 809 |
/// |
802 | 810 |
/// This function gives back the next edge in the iteration order. |
803 | 811 |
void next(Edge&) const {} |
804 | 812 |
|
805 | 813 |
/// \brief Return the first edge incident to the given node. |
806 | 814 |
/// |
807 | 815 |
/// This function gives back the first edge incident to the given |
808 | 816 |
/// node. The bool parameter gives back the direction for which the |
809 | 817 |
/// source node of the directed arc representing the edge is the |
810 | 818 |
/// given node. |
811 | 819 |
void firstInc(Edge&, bool&, const Node&) const {} |
812 | 820 |
|
813 | 821 |
/// \brief Gives back the next of the edges from the |
814 | 822 |
/// given node. |
815 | 823 |
/// |
816 | 824 |
/// This function gives back the next edge incident to the given |
817 | 825 |
/// node. The bool parameter should be used as \c firstInc() use it. |
818 | 826 |
void nextInc(Edge&, bool&) const {} |
819 | 827 |
|
820 | 828 |
using IterableDigraphComponent<Base>::baseNode; |
821 | 829 |
using IterableDigraphComponent<Base>::runningNode; |
822 | 830 |
|
823 | 831 |
/// @} |
824 | 832 |
|
825 | 833 |
/// \name Class Based Iteration |
826 | 834 |
/// |
827 | 835 |
/// This interface provides iterator classes for edges. |
828 | 836 |
/// |
829 | 837 |
/// @{ |
830 | 838 |
|
831 | 839 |
/// \brief This iterator goes through each edge. |
832 | 840 |
/// |
833 | 841 |
/// This iterator goes through each edge. |
834 | 842 |
typedef GraphItemIt<Graph, Edge> EdgeIt; |
835 | 843 |
|
836 | 844 |
/// \brief This iterator goes trough the incident edges of a |
837 | 845 |
/// node. |
838 | 846 |
/// |
839 | 847 |
/// This iterator goes trough the incident edges of a certain |
840 | 848 |
/// node of a graph. |
841 | 849 |
typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt; |
842 | 850 |
|
843 | 851 |
/// \brief The base node of the iterator. |
844 | 852 |
/// |
845 | 853 |
/// This function gives back the base node of the iterator. |
846 | 854 |
Node baseNode(const IncEdgeIt&) const { return INVALID; } |
847 | 855 |
|
848 | 856 |
/// \brief The running node of the iterator. |
849 | 857 |
/// |
850 | 858 |
/// This function gives back the running node of the iterator. |
851 | 859 |
Node runningNode(const IncEdgeIt&) const { return INVALID; } |
852 | 860 |
|
853 | 861 |
/// @} |
854 | 862 |
|
855 | 863 |
template <typename _Graph> |
856 | 864 |
struct Constraints { |
857 | 865 |
void constraints() { |
858 | 866 |
checkConcept<IterableDigraphComponent<Base>, _Graph>(); |
859 | 867 |
|
860 | 868 |
{ |
861 | 869 |
typename _Graph::Node node(INVALID); |
862 | 870 |
typename _Graph::Edge edge(INVALID); |
863 | 871 |
bool dir; |
864 | 872 |
{ |
865 | 873 |
graph.first(edge); |
866 | 874 |
graph.next(edge); |
867 | 875 |
} |
868 | 876 |
{ |
869 | 877 |
graph.firstInc(edge, dir, node); |
870 | 878 |
graph.nextInc(edge, dir); |
871 | 879 |
} |
872 | 880 |
|
873 | 881 |
} |
874 | 882 |
|
875 | 883 |
{ |
876 | 884 |
checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>, |
877 | 885 |
typename _Graph::EdgeIt >(); |
878 | 886 |
checkConcept<GraphIncIt<_Graph, typename _Graph::Edge, |
879 | 887 |
typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>(); |
880 | 888 |
|
881 | 889 |
typename _Graph::Node n; |
882 | 890 |
const typename _Graph::IncEdgeIt ieit(INVALID); |
883 | 891 |
n = graph.baseNode(ieit); |
884 | 892 |
n = graph.runningNode(ieit); |
885 | 893 |
} |
886 | 894 |
} |
887 | 895 |
|
888 | 896 |
const _Graph& graph; |
897 |
Constraints() {} |
|
889 | 898 |
}; |
890 | 899 |
}; |
891 | 900 |
|
892 | 901 |
/// \brief Skeleton class for alterable directed graphs. |
893 | 902 |
/// |
894 | 903 |
/// This class describes the interface of alterable directed |
895 | 904 |
/// graphs. It extends \ref BaseDigraphComponent with the alteration |
896 | 905 |
/// notifier interface. It implements |
897 | 906 |
/// an observer-notifier pattern for each digraph item. More |
898 | 907 |
/// obsevers can be registered into the notifier and whenever an |
899 | 908 |
/// alteration occured in the digraph all the observers will be |
900 | 909 |
/// notified about it. |
901 | 910 |
template <typename BAS = BaseDigraphComponent> |
902 | 911 |
class AlterableDigraphComponent : public BAS { |
903 | 912 |
public: |
904 | 913 |
|
905 | 914 |
typedef BAS Base; |
906 | 915 |
typedef typename Base::Node Node; |
907 | 916 |
typedef typename Base::Arc Arc; |
908 | 917 |
|
909 | 918 |
|
910 | 919 |
/// Node alteration notifier class. |
911 | 920 |
typedef AlterationNotifier<AlterableDigraphComponent, Node> |
912 | 921 |
NodeNotifier; |
913 | 922 |
/// Arc alteration notifier class. |
914 | 923 |
typedef AlterationNotifier<AlterableDigraphComponent, Arc> |
915 | 924 |
ArcNotifier; |
916 | 925 |
|
917 | 926 |
/// \brief Return the node alteration notifier. |
918 | 927 |
/// |
919 | 928 |
/// This function gives back the node alteration notifier. |
920 | 929 |
NodeNotifier& notifier(Node) const { |
921 | 930 |
return NodeNotifier(); |
922 | 931 |
} |
923 | 932 |
|
924 | 933 |
/// \brief Return the arc alteration notifier. |
925 | 934 |
/// |
926 | 935 |
/// This function gives back the arc alteration notifier. |
927 | 936 |
ArcNotifier& notifier(Arc) const { |
928 | 937 |
return ArcNotifier(); |
929 | 938 |
} |
930 | 939 |
|
931 | 940 |
template <typename _Digraph> |
932 | 941 |
struct Constraints { |
933 | 942 |
void constraints() { |
934 | 943 |
checkConcept<Base, _Digraph>(); |
935 | 944 |
typename _Digraph::NodeNotifier& nn |
936 | 945 |
= digraph.notifier(typename _Digraph::Node()); |
937 | 946 |
|
938 | 947 |
typename _Digraph::ArcNotifier& en |
939 | 948 |
= digraph.notifier(typename _Digraph::Arc()); |
940 | 949 |
|
941 | 950 |
ignore_unused_variable_warning(nn); |
942 | 951 |
ignore_unused_variable_warning(en); |
943 | 952 |
} |
944 | 953 |
|
945 | 954 |
const _Digraph& digraph; |
955 |
Constraints() {} |
|
946 | 956 |
}; |
947 | 957 |
}; |
948 | 958 |
|
949 | 959 |
/// \brief Skeleton class for alterable undirected graphs. |
950 | 960 |
/// |
951 | 961 |
/// This class describes the interface of alterable undirected |
952 | 962 |
/// graphs. It extends \ref AlterableDigraphComponent with the alteration |
953 | 963 |
/// notifier interface of undirected graphs. It implements |
954 | 964 |
/// an observer-notifier pattern for the edges. More |
955 | 965 |
/// obsevers can be registered into the notifier and whenever an |
956 | 966 |
/// alteration occured in the graph all the observers will be |
957 | 967 |
/// notified about it. |
958 | 968 |
template <typename BAS = BaseGraphComponent> |
959 | 969 |
class AlterableGraphComponent : public AlterableDigraphComponent<BAS> { |
960 | 970 |
public: |
961 | 971 |
|
962 | 972 |
typedef BAS Base; |
963 | 973 |
typedef typename Base::Edge Edge; |
964 | 974 |
|
965 | 975 |
|
966 | 976 |
/// Edge alteration notifier class. |
967 | 977 |
typedef AlterationNotifier<AlterableGraphComponent, Edge> |
968 | 978 |
EdgeNotifier; |
969 | 979 |
|
970 | 980 |
/// \brief Return the edge alteration notifier. |
971 | 981 |
/// |
972 | 982 |
/// This function gives back the edge alteration notifier. |
973 | 983 |
EdgeNotifier& notifier(Edge) const { |
974 | 984 |
return EdgeNotifier(); |
975 | 985 |
} |
976 | 986 |
|
977 | 987 |
template <typename _Graph> |
978 | 988 |
struct Constraints { |
979 | 989 |
void constraints() { |
980 | 990 |
checkConcept<AlterableDigraphComponent<Base>, _Graph>(); |
981 | 991 |
typename _Graph::EdgeNotifier& uen |
982 | 992 |
= graph.notifier(typename _Graph::Edge()); |
983 | 993 |
ignore_unused_variable_warning(uen); |
984 | 994 |
} |
985 | 995 |
|
986 | 996 |
const _Graph& graph; |
997 |
Constraints() {} |
|
987 | 998 |
}; |
988 | 999 |
}; |
989 | 1000 |
|
990 | 1001 |
/// \brief Concept class for standard graph maps. |
991 | 1002 |
/// |
992 | 1003 |
/// This class describes the concept of standard graph maps, i.e. |
993 | 1004 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
994 | 1005 |
/// graph types, which can be used for associating data to graph items. |
995 | 1006 |
/// The standard graph maps must conform to the ReferenceMap concept. |
996 | 1007 |
template <typename GR, typename K, typename V> |
997 | 1008 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> { |
998 | 1009 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
999 | 1010 |
|
1000 | 1011 |
public: |
1001 | 1012 |
|
1002 | 1013 |
/// The key type of the map. |
1003 | 1014 |
typedef K Key; |
1004 | 1015 |
/// The value type of the map. |
1005 | 1016 |
typedef V Value; |
1006 | 1017 |
/// The reference type of the map. |
1007 | 1018 |
typedef Value& Reference; |
1008 | 1019 |
/// The const reference type of the map. |
1009 | 1020 |
typedef const Value& ConstReference; |
1010 | 1021 |
|
1011 | 1022 |
// The reference map tag. |
1012 | 1023 |
typedef True ReferenceMapTag; |
1013 | 1024 |
|
1014 | 1025 |
/// \brief Construct a new map. |
1015 | 1026 |
/// |
1016 | 1027 |
/// Construct a new map for the graph. |
1017 | 1028 |
explicit GraphMap(const GR&) {} |
1018 | 1029 |
/// \brief Construct a new map with default value. |
1019 | 1030 |
/// |
1020 | 1031 |
/// Construct a new map for the graph and initalize the values. |
1021 | 1032 |
GraphMap(const GR&, const Value&) {} |
1022 | 1033 |
|
1023 | 1034 |
private: |
1024 | 1035 |
/// \brief Copy constructor. |
1025 | 1036 |
/// |
1026 | 1037 |
/// Copy Constructor. |
1027 | 1038 |
GraphMap(const GraphMap&) : Parent() {} |
1028 | 1039 |
|
1029 | 1040 |
/// \brief Assignment operator. |
1030 | 1041 |
/// |
1031 | 1042 |
/// Assignment operator. It does not mofify the underlying graph, |
1032 | 1043 |
/// it just iterates on the current item set and set the map |
1033 | 1044 |
/// with the value returned by the assigned map. |
1034 | 1045 |
template <typename CMap> |
1035 | 1046 |
GraphMap& operator=(const CMap&) { |
1036 | 1047 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
1037 | 1048 |
return *this; |
1038 | 1049 |
} |
1039 | 1050 |
|
1040 | 1051 |
public: |
1041 | 1052 |
template<typename _Map> |
1042 | 1053 |
struct Constraints { |
1043 | 1054 |
void constraints() { |
1044 | 1055 |
checkConcept |
1045 | 1056 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
1046 | 1057 |
_Map m1(g); |
1047 | 1058 |
_Map m2(g,t); |
1048 | 1059 |
|
1049 | 1060 |
// Copy constructor |
1050 | 1061 |
// _Map m3(m); |
1051 | 1062 |
|
1052 | 1063 |
// Assignment operator |
1053 | 1064 |
// ReadMap<Key, Value> cmap; |
1054 | 1065 |
// m3 = cmap; |
1055 | 1066 |
|
1056 | 1067 |
ignore_unused_variable_warning(m1); |
1057 | 1068 |
ignore_unused_variable_warning(m2); |
1058 | 1069 |
// ignore_unused_variable_warning(m3); |
1059 | 1070 |
} |
1060 | 1071 |
|
1061 | 1072 |
const _Map &m; |
1062 | 1073 |
const GR &g; |
1063 | 1074 |
const typename GraphMap::Value &t; |
1075 |
Constraints() {} |
|
1064 | 1076 |
}; |
1065 | 1077 |
|
1066 | 1078 |
}; |
1067 | 1079 |
|
1068 | 1080 |
/// \brief Skeleton class for mappable directed graphs. |
1069 | 1081 |
/// |
1070 | 1082 |
/// This class describes the interface of mappable directed graphs. |
1071 | 1083 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
1072 | 1084 |
/// map classes, namely \c NodeMap and \c ArcMap. |
1073 | 1085 |
/// This concept is part of the Digraph concept. |
1074 | 1086 |
template <typename BAS = BaseDigraphComponent> |
1075 | 1087 |
class MappableDigraphComponent : public BAS { |
1076 | 1088 |
public: |
1077 | 1089 |
|
1078 | 1090 |
typedef BAS Base; |
1079 | 1091 |
typedef typename Base::Node Node; |
1080 | 1092 |
typedef typename Base::Arc Arc; |
1081 | 1093 |
|
1082 | 1094 |
typedef MappableDigraphComponent Digraph; |
1083 | 1095 |
|
1084 | 1096 |
/// \brief Standard graph map for the nodes. |
1085 | 1097 |
/// |
1086 | 1098 |
/// Standard graph map for the nodes. |
1087 | 1099 |
/// It conforms to the ReferenceMap concept. |
1088 | 1100 |
template <typename V> |
1089 | 1101 |
class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> { |
1090 | 1102 |
typedef GraphMap<MappableDigraphComponent, Node, V> Parent; |
1091 | 1103 |
|
1092 | 1104 |
public: |
1093 | 1105 |
/// \brief Construct a new map. |
1094 | 1106 |
/// |
1095 | 1107 |
/// Construct a new map for the digraph. |
1096 | 1108 |
explicit NodeMap(const MappableDigraphComponent& digraph) |
1097 | 1109 |
: Parent(digraph) {} |
1098 | 1110 |
|
1099 | 1111 |
/// \brief Construct a new map with default value. |
1100 | 1112 |
/// |
1101 | 1113 |
/// Construct a new map for the digraph and initalize the values. |
1102 | 1114 |
NodeMap(const MappableDigraphComponent& digraph, const V& value) |
1103 | 1115 |
: Parent(digraph, value) {} |
1104 | 1116 |
|
1105 | 1117 |
private: |
1106 | 1118 |
/// \brief Copy constructor. |
1107 | 1119 |
/// |
1108 | 1120 |
/// Copy Constructor. |
1109 | 1121 |
NodeMap(const NodeMap& nm) : Parent(nm) {} |
1110 | 1122 |
|
1111 | 1123 |
/// \brief Assignment operator. |
1112 | 1124 |
/// |
1113 | 1125 |
/// Assignment operator. |
1114 | 1126 |
template <typename CMap> |
1115 | 1127 |
NodeMap& operator=(const CMap&) { |
1116 | 1128 |
checkConcept<ReadMap<Node, V>, CMap>(); |
1117 | 1129 |
return *this; |
1118 | 1130 |
} |
1119 | 1131 |
|
1120 | 1132 |
}; |
1121 | 1133 |
|
1122 | 1134 |
/// \brief Standard graph map for the arcs. |
1123 | 1135 |
/// |
1124 | 1136 |
/// Standard graph map for the arcs. |
1125 | 1137 |
/// It conforms to the ReferenceMap concept. |
1126 | 1138 |
template <typename V> |
1127 | 1139 |
class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> { |
1128 | 1140 |
typedef GraphMap<MappableDigraphComponent, Arc, V> Parent; |
1129 | 1141 |
|
1130 | 1142 |
public: |
1131 | 1143 |
/// \brief Construct a new map. |
1132 | 1144 |
/// |
1133 | 1145 |
/// Construct a new map for the digraph. |
1134 | 1146 |
explicit ArcMap(const MappableDigraphComponent& digraph) |
1135 | 1147 |
: Parent(digraph) {} |
1136 | 1148 |
|
1137 | 1149 |
/// \brief Construct a new map with default value. |
1138 | 1150 |
/// |
1139 | 1151 |
/// Construct a new map for the digraph and initalize the values. |
1140 | 1152 |
ArcMap(const MappableDigraphComponent& digraph, const V& value) |
1141 | 1153 |
: Parent(digraph, value) {} |
1142 | 1154 |
|
1143 | 1155 |
private: |
1144 | 1156 |
/// \brief Copy constructor. |
1145 | 1157 |
/// |
1146 | 1158 |
/// Copy Constructor. |
1147 | 1159 |
ArcMap(const ArcMap& nm) : Parent(nm) {} |
1148 | 1160 |
|
1149 | 1161 |
/// \brief Assignment operator. |
1150 | 1162 |
/// |
1151 | 1163 |
/// Assignment operator. |
1152 | 1164 |
template <typename CMap> |
1153 | 1165 |
ArcMap& operator=(const CMap&) { |
1154 | 1166 |
checkConcept<ReadMap<Arc, V>, CMap>(); |
1155 | 1167 |
return *this; |
1156 | 1168 |
} |
1157 | 1169 |
|
1158 | 1170 |
}; |
1159 | 1171 |
|
1160 | 1172 |
|
1161 | 1173 |
template <typename _Digraph> |
1162 | 1174 |
struct Constraints { |
1163 | 1175 |
|
1164 | 1176 |
struct Dummy { |
1165 | 1177 |
int value; |
1166 | 1178 |
Dummy() : value(0) {} |
1167 | 1179 |
Dummy(int _v) : value(_v) {} |
1168 | 1180 |
}; |
1169 | 1181 |
|
1170 | 1182 |
void constraints() { |
1171 | 1183 |
checkConcept<Base, _Digraph>(); |
1172 | 1184 |
{ // int map test |
1173 | 1185 |
typedef typename _Digraph::template NodeMap<int> IntNodeMap; |
1174 | 1186 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>, |
1175 | 1187 |
IntNodeMap >(); |
1176 | 1188 |
} { // bool map test |
1177 | 1189 |
typedef typename _Digraph::template NodeMap<bool> BoolNodeMap; |
1178 | 1190 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>, |
1179 | 1191 |
BoolNodeMap >(); |
1180 | 1192 |
} { // Dummy map test |
1181 | 1193 |
typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap; |
1182 | 1194 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>, |
1183 | 1195 |
DummyNodeMap >(); |
1184 | 1196 |
} |
1185 | 1197 |
|
1186 | 1198 |
{ // int map test |
1187 | 1199 |
typedef typename _Digraph::template ArcMap<int> IntArcMap; |
1188 | 1200 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>, |
1189 | 1201 |
IntArcMap >(); |
1190 | 1202 |
} { // bool map test |
1191 | 1203 |
typedef typename _Digraph::template ArcMap<bool> BoolArcMap; |
1192 | 1204 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>, |
1193 | 1205 |
BoolArcMap >(); |
1194 | 1206 |
} { // Dummy map test |
1195 | 1207 |
typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap; |
1196 | 1208 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
1197 | 1209 |
DummyArcMap >(); |
1198 | 1210 |
} |
1199 | 1211 |
} |
1200 | 1212 |
|
1201 | 1213 |
const _Digraph& digraph; |
1214 |
Constraints() {} |
|
1202 | 1215 |
}; |
1203 | 1216 |
}; |
1204 | 1217 |
|
1205 | 1218 |
/// \brief Skeleton class for mappable undirected graphs. |
1206 | 1219 |
/// |
1207 | 1220 |
/// This class describes the interface of mappable undirected graphs. |
1208 | 1221 |
/// It extends \ref MappableDigraphComponent with the standard graph |
1209 | 1222 |
/// map class for edges (\c EdgeMap). |
1210 | 1223 |
/// This concept is part of the Graph concept. |
1211 | 1224 |
template <typename BAS = BaseGraphComponent> |
1212 | 1225 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> { |
1213 | 1226 |
public: |
1214 | 1227 |
|
1215 | 1228 |
typedef BAS Base; |
1216 | 1229 |
typedef typename Base::Edge Edge; |
1217 | 1230 |
|
1218 | 1231 |
typedef MappableGraphComponent Graph; |
1219 | 1232 |
|
1220 | 1233 |
/// \brief Standard graph map for the edges. |
1221 | 1234 |
/// |
1222 | 1235 |
/// Standard graph map for the edges. |
1223 | 1236 |
/// It conforms to the ReferenceMap concept. |
1224 | 1237 |
template <typename V> |
1225 | 1238 |
class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> { |
1226 | 1239 |
typedef GraphMap<MappableGraphComponent, Edge, V> Parent; |
1227 | 1240 |
|
1228 | 1241 |
public: |
1229 | 1242 |
/// \brief Construct a new map. |
1230 | 1243 |
/// |
1231 | 1244 |
/// Construct a new map for the graph. |
1232 | 1245 |
explicit EdgeMap(const MappableGraphComponent& graph) |
1233 | 1246 |
: Parent(graph) {} |
1234 | 1247 |
|
1235 | 1248 |
/// \brief Construct a new map with default value. |
1236 | 1249 |
/// |
1237 | 1250 |
/// Construct a new map for the graph and initalize the values. |
1238 | 1251 |
EdgeMap(const MappableGraphComponent& graph, const V& value) |
1239 | 1252 |
: Parent(graph, value) {} |
1240 | 1253 |
|
1241 | 1254 |
private: |
1242 | 1255 |
/// \brief Copy constructor. |
1243 | 1256 |
/// |
1244 | 1257 |
/// Copy Constructor. |
1245 | 1258 |
EdgeMap(const EdgeMap& nm) : Parent(nm) {} |
1246 | 1259 |
|
1247 | 1260 |
/// \brief Assignment operator. |
1248 | 1261 |
/// |
1249 | 1262 |
/// Assignment operator. |
1250 | 1263 |
template <typename CMap> |
1251 | 1264 |
EdgeMap& operator=(const CMap&) { |
1252 | 1265 |
checkConcept<ReadMap<Edge, V>, CMap>(); |
1253 | 1266 |
return *this; |
1254 | 1267 |
} |
1255 | 1268 |
|
1256 | 1269 |
}; |
1257 | 1270 |
|
1258 | 1271 |
|
1259 | 1272 |
template <typename _Graph> |
1260 | 1273 |
struct Constraints { |
1261 | 1274 |
|
1262 | 1275 |
struct Dummy { |
1263 | 1276 |
int value; |
1264 | 1277 |
Dummy() : value(0) {} |
1265 | 1278 |
Dummy(int _v) : value(_v) {} |
1266 | 1279 |
}; |
1267 | 1280 |
|
1268 | 1281 |
void constraints() { |
1269 | 1282 |
checkConcept<MappableDigraphComponent<Base>, _Graph>(); |
1270 | 1283 |
|
1271 | 1284 |
{ // int map test |
1272 | 1285 |
typedef typename _Graph::template EdgeMap<int> IntEdgeMap; |
1273 | 1286 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>, |
1274 | 1287 |
IntEdgeMap >(); |
1275 | 1288 |
} { // bool map test |
1276 | 1289 |
typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap; |
1277 | 1290 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>, |
1278 | 1291 |
BoolEdgeMap >(); |
1279 | 1292 |
} { // Dummy map test |
1280 | 1293 |
typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap; |
1281 | 1294 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
1282 | 1295 |
DummyEdgeMap >(); |
1283 | 1296 |
} |
1284 | 1297 |
} |
1285 | 1298 |
|
1286 | 1299 |
const _Graph& graph; |
1300 |
Constraints() {} |
|
1287 | 1301 |
}; |
1288 | 1302 |
}; |
1289 | 1303 |
|
1290 | 1304 |
/// \brief Skeleton class for extendable directed graphs. |
1291 | 1305 |
/// |
1292 | 1306 |
/// This class describes the interface of extendable directed graphs. |
1293 | 1307 |
/// It extends \ref BaseDigraphComponent with functions for adding |
1294 | 1308 |
/// nodes and arcs to the digraph. |
1295 | 1309 |
/// This concept requires \ref AlterableDigraphComponent. |
1296 | 1310 |
template <typename BAS = BaseDigraphComponent> |
1297 | 1311 |
class ExtendableDigraphComponent : public BAS { |
1298 | 1312 |
public: |
1299 | 1313 |
typedef BAS Base; |
1300 | 1314 |
|
1301 | 1315 |
typedef typename Base::Node Node; |
1302 | 1316 |
typedef typename Base::Arc Arc; |
1303 | 1317 |
|
1304 | 1318 |
/// \brief Add a new node to the digraph. |
1305 | 1319 |
/// |
1306 | 1320 |
/// This function adds a new node to the digraph. |
1307 | 1321 |
Node addNode() { |
1308 | 1322 |
return INVALID; |
1309 | 1323 |
} |
1310 | 1324 |
|
1311 | 1325 |
/// \brief Add a new arc connecting the given two nodes. |
1312 | 1326 |
/// |
1313 | 1327 |
/// This function adds a new arc connecting the given two nodes |
1314 | 1328 |
/// of the digraph. |
1315 | 1329 |
Arc addArc(const Node&, const Node&) { |
1316 | 1330 |
return INVALID; |
1317 | 1331 |
} |
1318 | 1332 |
|
1319 | 1333 |
template <typename _Digraph> |
1320 | 1334 |
struct Constraints { |
1321 | 1335 |
void constraints() { |
1322 | 1336 |
checkConcept<Base, _Digraph>(); |
1323 | 1337 |
typename _Digraph::Node node_a, node_b; |
1324 | 1338 |
node_a = digraph.addNode(); |
1325 | 1339 |
node_b = digraph.addNode(); |
1326 | 1340 |
typename _Digraph::Arc arc; |
1327 | 1341 |
arc = digraph.addArc(node_a, node_b); |
1328 | 1342 |
} |
1329 | 1343 |
|
1330 | 1344 |
_Digraph& digraph; |
1345 |
Constraints() {} |
|
1331 | 1346 |
}; |
1332 | 1347 |
}; |
1333 | 1348 |
|
1334 | 1349 |
/// \brief Skeleton class for extendable undirected graphs. |
1335 | 1350 |
/// |
1336 | 1351 |
/// This class describes the interface of extendable undirected graphs. |
1337 | 1352 |
/// It extends \ref BaseGraphComponent with functions for adding |
1338 | 1353 |
/// nodes and edges to the graph. |
1339 | 1354 |
/// This concept requires \ref AlterableGraphComponent. |
1340 | 1355 |
template <typename BAS = BaseGraphComponent> |
1341 | 1356 |
class ExtendableGraphComponent : public BAS { |
1342 | 1357 |
public: |
1343 | 1358 |
|
1344 | 1359 |
typedef BAS Base; |
1345 | 1360 |
typedef typename Base::Node Node; |
1346 | 1361 |
typedef typename Base::Edge Edge; |
1347 | 1362 |
|
1348 | 1363 |
/// \brief Add a new node to the digraph. |
1349 | 1364 |
/// |
1350 | 1365 |
/// This function adds a new node to the digraph. |
1351 | 1366 |
Node addNode() { |
1352 | 1367 |
return INVALID; |
1353 | 1368 |
} |
1354 | 1369 |
|
1355 | 1370 |
/// \brief Add a new edge connecting the given two nodes. |
1356 | 1371 |
/// |
1357 | 1372 |
/// This function adds a new edge connecting the given two nodes |
1358 | 1373 |
/// of the graph. |
1359 | 1374 |
Edge addEdge(const Node&, const Node&) { |
1360 | 1375 |
return INVALID; |
1361 | 1376 |
} |
1362 | 1377 |
|
1363 | 1378 |
template <typename _Graph> |
1364 | 1379 |
struct Constraints { |
1365 | 1380 |
void constraints() { |
1366 | 1381 |
checkConcept<Base, _Graph>(); |
1367 | 1382 |
typename _Graph::Node node_a, node_b; |
1368 | 1383 |
node_a = graph.addNode(); |
1369 | 1384 |
node_b = graph.addNode(); |
1370 | 1385 |
typename _Graph::Edge edge; |
1371 | 1386 |
edge = graph.addEdge(node_a, node_b); |
1372 | 1387 |
} |
1373 | 1388 |
|
1374 | 1389 |
_Graph& graph; |
1390 |
Constraints() {} |
|
1375 | 1391 |
}; |
1376 | 1392 |
}; |
1377 | 1393 |
|
1378 | 1394 |
/// \brief Skeleton class for erasable directed graphs. |
1379 | 1395 |
/// |
1380 | 1396 |
/// This class describes the interface of erasable directed graphs. |
1381 | 1397 |
/// It extends \ref BaseDigraphComponent with functions for removing |
1382 | 1398 |
/// nodes and arcs from the digraph. |
1383 | 1399 |
/// This concept requires \ref AlterableDigraphComponent. |
1384 | 1400 |
template <typename BAS = BaseDigraphComponent> |
1385 | 1401 |
class ErasableDigraphComponent : public BAS { |
1386 | 1402 |
public: |
1387 | 1403 |
|
1388 | 1404 |
typedef BAS Base; |
1389 | 1405 |
typedef typename Base::Node Node; |
1390 | 1406 |
typedef typename Base::Arc Arc; |
1391 | 1407 |
|
1392 | 1408 |
/// \brief Erase a node from the digraph. |
1393 | 1409 |
/// |
1394 | 1410 |
/// This function erases the given node from the digraph and all arcs |
1395 | 1411 |
/// connected to the node. |
1396 | 1412 |
void erase(const Node&) {} |
1397 | 1413 |
|
1398 | 1414 |
/// \brief Erase an arc from the digraph. |
1399 | 1415 |
/// |
1400 | 1416 |
/// This function erases the given arc from the digraph. |
1401 | 1417 |
void erase(const Arc&) {} |
1402 | 1418 |
|
1403 | 1419 |
template <typename _Digraph> |
1404 | 1420 |
struct Constraints { |
1405 | 1421 |
void constraints() { |
1406 | 1422 |
checkConcept<Base, _Digraph>(); |
1407 | 1423 |
const typename _Digraph::Node node(INVALID); |
1408 | 1424 |
digraph.erase(node); |
1409 | 1425 |
const typename _Digraph::Arc arc(INVALID); |
1410 | 1426 |
digraph.erase(arc); |
1411 | 1427 |
} |
1412 | 1428 |
|
1413 | 1429 |
_Digraph& digraph; |
1430 |
Constraints() {} |
|
1414 | 1431 |
}; |
1415 | 1432 |
}; |
1416 | 1433 |
|
1417 | 1434 |
/// \brief Skeleton class for erasable undirected graphs. |
1418 | 1435 |
/// |
1419 | 1436 |
/// This class describes the interface of erasable undirected graphs. |
1420 | 1437 |
/// It extends \ref BaseGraphComponent with functions for removing |
1421 | 1438 |
/// nodes and edges from the graph. |
1422 | 1439 |
/// This concept requires \ref AlterableGraphComponent. |
1423 | 1440 |
template <typename BAS = BaseGraphComponent> |
1424 | 1441 |
class ErasableGraphComponent : public BAS { |
1425 | 1442 |
public: |
1426 | 1443 |
|
1427 | 1444 |
typedef BAS Base; |
1428 | 1445 |
typedef typename Base::Node Node; |
1429 | 1446 |
typedef typename Base::Edge Edge; |
1430 | 1447 |
|
1431 | 1448 |
/// \brief Erase a node from the graph. |
1432 | 1449 |
/// |
1433 | 1450 |
/// This function erases the given node from the graph and all edges |
1434 | 1451 |
/// connected to the node. |
1435 | 1452 |
void erase(const Node&) {} |
1436 | 1453 |
|
1437 | 1454 |
/// \brief Erase an edge from the digraph. |
1438 | 1455 |
/// |
1439 | 1456 |
/// This function erases the given edge from the digraph. |
1440 | 1457 |
void erase(const Edge&) {} |
1441 | 1458 |
|
1442 | 1459 |
template <typename _Graph> |
1443 | 1460 |
struct Constraints { |
1444 | 1461 |
void constraints() { |
1445 | 1462 |
checkConcept<Base, _Graph>(); |
1446 | 1463 |
const typename _Graph::Node node(INVALID); |
1447 | 1464 |
graph.erase(node); |
1448 | 1465 |
const typename _Graph::Edge edge(INVALID); |
1449 | 1466 |
graph.erase(edge); |
1450 | 1467 |
} |
1451 | 1468 |
|
1452 | 1469 |
_Graph& graph; |
1470 |
Constraints() {} |
|
1453 | 1471 |
}; |
1454 | 1472 |
}; |
1455 | 1473 |
|
1456 | 1474 |
/// \brief Skeleton class for clearable directed graphs. |
1457 | 1475 |
/// |
1458 | 1476 |
/// This class describes the interface of clearable directed graphs. |
1459 | 1477 |
/// It extends \ref BaseDigraphComponent with a function for clearing |
1460 | 1478 |
/// the digraph. |
1461 | 1479 |
/// This concept requires \ref AlterableDigraphComponent. |
1462 | 1480 |
template <typename BAS = BaseDigraphComponent> |
1463 | 1481 |
class ClearableDigraphComponent : public BAS { |
1464 | 1482 |
public: |
1465 | 1483 |
|
1466 | 1484 |
typedef BAS Base; |
1467 | 1485 |
|
1468 | 1486 |
/// \brief Erase all nodes and arcs from the digraph. |
1469 | 1487 |
/// |
1470 | 1488 |
/// This function erases all nodes and arcs from the digraph. |
1471 | 1489 |
void clear() {} |
1472 | 1490 |
|
1473 | 1491 |
template <typename _Digraph> |
1474 | 1492 |
struct Constraints { |
1475 | 1493 |
void constraints() { |
1476 | 1494 |
checkConcept<Base, _Digraph>(); |
1477 | 1495 |
digraph.clear(); |
1478 | 1496 |
} |
1479 | 1497 |
|
1480 | 1498 |
_Digraph& digraph; |
1499 |
Constraints() {} |
|
1481 | 1500 |
}; |
1482 | 1501 |
}; |
1483 | 1502 |
|
1484 | 1503 |
/// \brief Skeleton class for clearable undirected graphs. |
1485 | 1504 |
/// |
1486 | 1505 |
/// This class describes the interface of clearable undirected graphs. |
1487 | 1506 |
/// It extends \ref BaseGraphComponent with a function for clearing |
1488 | 1507 |
/// the graph. |
1489 | 1508 |
/// This concept requires \ref AlterableGraphComponent. |
1490 | 1509 |
template <typename BAS = BaseGraphComponent> |
1491 | 1510 |
class ClearableGraphComponent : public ClearableDigraphComponent<BAS> { |
1492 | 1511 |
public: |
1493 | 1512 |
|
1494 | 1513 |
typedef BAS Base; |
1495 | 1514 |
|
1496 | 1515 |
/// \brief Erase all nodes and edges from the graph. |
1497 | 1516 |
/// |
1498 | 1517 |
/// This function erases all nodes and edges from the graph. |
1499 | 1518 |
void clear() {} |
1500 | 1519 |
|
1501 | 1520 |
template <typename _Graph> |
1502 | 1521 |
struct Constraints { |
1503 | 1522 |
void constraints() { |
1504 | 1523 |
checkConcept<Base, _Graph>(); |
1505 | 1524 |
graph.clear(); |
1506 | 1525 |
} |
1507 | 1526 |
|
1508 | 1527 |
_Graph& graph; |
1528 |
Constraints() {} |
|
1509 | 1529 |
}; |
1510 | 1530 |
}; |
1511 | 1531 |
|
1512 | 1532 |
} |
1513 | 1533 |
|
1514 | 1534 |
} |
1515 | 1535 |
|
1516 | 1536 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of heaps. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_HEAP_H |
24 | 24 |
#define LEMON_CONCEPTS_HEAP_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief The heap concept. |
37 | 37 |
/// |
38 | 38 |
/// Concept class describing the main interface of heaps. A \e heap |
39 | 39 |
/// is a data structure for storing items with specified values called |
40 | 40 |
/// \e priorities in such a way that finding the item with minimum |
41 | 41 |
/// priority is efficient. In a heap one can change the priority of an |
42 | 42 |
/// item, add or erase an item, etc. |
43 | 43 |
/// |
44 | 44 |
/// \tparam PR Type of the priority of the items. |
45 | 45 |
/// \tparam IM A read and writable item map with int values, used |
46 | 46 |
/// internally to handle the cross references. |
47 | 47 |
/// \tparam Comp A functor class for the ordering of the priorities. |
48 | 48 |
/// The default is \c std::less<PR>. |
49 | 49 |
#ifdef DOXYGEN |
50 | 50 |
template <typename PR, typename IM, typename Comp = std::less<PR> > |
51 | 51 |
#else |
52 | 52 |
template <typename PR, typename IM> |
53 | 53 |
#endif |
54 | 54 |
class Heap { |
55 | 55 |
public: |
56 | 56 |
|
57 | 57 |
/// Type of the item-int map. |
58 | 58 |
typedef IM ItemIntMap; |
59 | 59 |
/// Type of the priorities. |
60 | 60 |
typedef PR Prio; |
61 | 61 |
/// Type of the items stored in the heap. |
62 | 62 |
typedef typename ItemIntMap::Key Item; |
63 | 63 |
|
64 | 64 |
/// \brief Type to represent the states of the items. |
65 | 65 |
/// |
66 | 66 |
/// Each item has a state associated to it. It can be "in heap", |
67 | 67 |
/// "pre heap" or "post heap". The later two are indifferent |
68 | 68 |
/// from the point of view of the heap, but may be useful for |
69 | 69 |
/// the user. |
70 | 70 |
/// |
71 | 71 |
/// The item-int map must be initialized in such way that it assigns |
72 | 72 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
73 | 73 |
enum State { |
74 | 74 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
75 | 75 |
PRE_HEAP = -1, ///< = -1. The "pre heap" state constant. |
76 | 76 |
POST_HEAP = -2 ///< = -2. The "post heap" state constant. |
77 | 77 |
}; |
78 | 78 |
|
79 | 79 |
/// \brief The constructor. |
80 | 80 |
/// |
81 | 81 |
/// The constructor. |
82 | 82 |
/// \param map A map that assigns \c int values to keys of type |
83 | 83 |
/// \c Item. It is used internally by the heap implementations to |
84 | 84 |
/// handle the cross references. The assigned value must be |
85 | 85 |
/// \c PRE_HEAP (<tt>-1</tt>) for every item. |
86 | 86 |
explicit Heap(ItemIntMap &map) {} |
87 | 87 |
|
88 | 88 |
/// \brief The number of items stored in the heap. |
89 | 89 |
/// |
90 | 90 |
/// Returns the number of items stored in the heap. |
91 | 91 |
int size() const { return 0; } |
92 | 92 |
|
93 | 93 |
/// \brief Checks if the heap is empty. |
94 | 94 |
/// |
95 | 95 |
/// Returns \c true if the heap is empty. |
96 | 96 |
bool empty() const { return false; } |
97 | 97 |
|
98 | 98 |
/// \brief Makes the heap empty. |
99 | 99 |
/// |
100 | 100 |
/// Makes the heap empty. |
101 | 101 |
void clear(); |
102 | 102 |
|
103 | 103 |
/// \brief Inserts an item into the heap with the given priority. |
104 | 104 |
/// |
105 | 105 |
/// Inserts the given item into the heap with the given priority. |
106 | 106 |
/// \param i The item to insert. |
107 | 107 |
/// \param p The priority of the item. |
108 | 108 |
void push(const Item &i, const Prio &p) {} |
109 | 109 |
|
110 | 110 |
/// \brief Returns the item having minimum priority. |
111 | 111 |
/// |
112 | 112 |
/// Returns the item having minimum priority. |
113 | 113 |
/// \pre The heap must be non-empty. |
114 | 114 |
Item top() const {} |
115 | 115 |
|
116 | 116 |
/// \brief The minimum priority. |
117 | 117 |
/// |
118 | 118 |
/// Returns the minimum priority. |
119 | 119 |
/// \pre The heap must be non-empty. |
120 | 120 |
Prio prio() const {} |
121 | 121 |
|
122 | 122 |
/// \brief Removes the item having minimum priority. |
123 | 123 |
/// |
124 | 124 |
/// Removes the item having minimum priority. |
125 | 125 |
/// \pre The heap must be non-empty. |
126 | 126 |
void pop() {} |
127 | 127 |
|
128 | 128 |
/// \brief Removes an item from the heap. |
129 | 129 |
/// |
130 | 130 |
/// Removes the given item from the heap if it is already stored. |
131 | 131 |
/// \param i The item to delete. |
132 | 132 |
void erase(const Item &i) {} |
133 | 133 |
|
134 | 134 |
/// \brief The priority of an item. |
135 | 135 |
/// |
136 | 136 |
/// Returns the priority of the given item. |
137 | 137 |
/// \param i The item. |
138 | 138 |
/// \pre \c i must be in the heap. |
139 | 139 |
Prio operator[](const Item &i) const {} |
140 | 140 |
|
141 | 141 |
/// \brief Sets the priority of an item or inserts it, if it is |
142 | 142 |
/// not stored in the heap. |
143 | 143 |
/// |
144 | 144 |
/// This method sets the priority of the given item if it is |
145 | 145 |
/// already stored in the heap. |
146 | 146 |
/// Otherwise it inserts the given item with the given priority. |
147 | 147 |
/// |
148 | 148 |
/// \param i The item. |
149 | 149 |
/// \param p The priority. |
150 | 150 |
void set(const Item &i, const Prio &p) {} |
151 | 151 |
|
152 | 152 |
/// \brief Decreases the priority of an item to the given value. |
153 | 153 |
/// |
154 | 154 |
/// Decreases the priority of an item to the given value. |
155 | 155 |
/// \param i The item. |
156 | 156 |
/// \param p The priority. |
157 | 157 |
/// \pre \c i must be stored in the heap with priority at least \c p. |
158 | 158 |
void decrease(const Item &i, const Prio &p) {} |
159 | 159 |
|
160 | 160 |
/// \brief Increases the priority of an item to the given value. |
161 | 161 |
/// |
162 | 162 |
/// Increases the priority of an item to the given value. |
163 | 163 |
/// \param i The item. |
164 | 164 |
/// \param p The priority. |
165 | 165 |
/// \pre \c i must be stored in the heap with priority at most \c p. |
166 | 166 |
void increase(const Item &i, const Prio &p) {} |
167 | 167 |
|
168 | 168 |
/// \brief Returns if an item is in, has already been in, or has |
169 | 169 |
/// never been in the heap. |
170 | 170 |
/// |
171 | 171 |
/// This method returns \c PRE_HEAP if the given item has never |
172 | 172 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
173 | 173 |
/// and \c POST_HEAP otherwise. |
174 | 174 |
/// In the latter case it is possible that the item will get back |
175 | 175 |
/// to the heap again. |
176 | 176 |
/// \param i The item. |
177 | 177 |
State state(const Item &i) const {} |
178 | 178 |
|
179 | 179 |
/// \brief Sets the state of an item in the heap. |
180 | 180 |
/// |
181 | 181 |
/// Sets the state of the given item in the heap. It can be used |
182 | 182 |
/// to manually clear the heap when it is important to achive the |
183 | 183 |
/// better time complexity. |
184 | 184 |
/// \param i The item. |
185 | 185 |
/// \param st The state. It should not be \c IN_HEAP. |
186 | 186 |
void state(const Item& i, State st) {} |
187 | 187 |
|
188 | 188 |
|
189 | 189 |
template <typename _Heap> |
190 | 190 |
struct Constraints { |
191 | 191 |
public: |
192 | 192 |
void constraints() { |
193 | 193 |
typedef typename _Heap::Item OwnItem; |
194 | 194 |
typedef typename _Heap::Prio OwnPrio; |
195 | 195 |
typedef typename _Heap::State OwnState; |
196 | 196 |
|
197 | 197 |
Item item; |
198 | 198 |
Prio prio; |
199 | 199 |
item=Item(); |
200 | 200 |
prio=Prio(); |
201 | 201 |
ignore_unused_variable_warning(item); |
202 | 202 |
ignore_unused_variable_warning(prio); |
203 | 203 |
|
204 | 204 |
OwnItem own_item; |
205 | 205 |
OwnPrio own_prio; |
206 | 206 |
OwnState own_state; |
207 | 207 |
own_item=Item(); |
208 | 208 |
own_prio=Prio(); |
209 | 209 |
ignore_unused_variable_warning(own_item); |
210 | 210 |
ignore_unused_variable_warning(own_prio); |
211 | 211 |
ignore_unused_variable_warning(own_state); |
212 | 212 |
|
213 | 213 |
_Heap heap1(map); |
214 | 214 |
_Heap heap2 = heap1; |
215 | 215 |
ignore_unused_variable_warning(heap1); |
216 | 216 |
ignore_unused_variable_warning(heap2); |
217 | 217 |
|
218 | 218 |
int s = heap.size(); |
219 | 219 |
ignore_unused_variable_warning(s); |
220 | 220 |
bool e = heap.empty(); |
221 | 221 |
ignore_unused_variable_warning(e); |
222 | 222 |
|
223 | 223 |
prio = heap.prio(); |
224 | 224 |
item = heap.top(); |
225 | 225 |
prio = heap[item]; |
226 | 226 |
own_prio = heap.prio(); |
227 | 227 |
own_item = heap.top(); |
228 | 228 |
own_prio = heap[own_item]; |
229 | 229 |
|
230 | 230 |
heap.push(item, prio); |
231 | 231 |
heap.push(own_item, own_prio); |
232 | 232 |
heap.pop(); |
233 | 233 |
|
234 | 234 |
heap.set(item, prio); |
235 | 235 |
heap.decrease(item, prio); |
236 | 236 |
heap.increase(item, prio); |
237 | 237 |
heap.set(own_item, own_prio); |
238 | 238 |
heap.decrease(own_item, own_prio); |
239 | 239 |
heap.increase(own_item, own_prio); |
240 | 240 |
|
241 | 241 |
heap.erase(item); |
242 | 242 |
heap.erase(own_item); |
243 | 243 |
heap.clear(); |
244 | 244 |
|
245 | 245 |
own_state = heap.state(own_item); |
246 | 246 |
heap.state(own_item, own_state); |
247 | 247 |
|
248 | 248 |
own_state = _Heap::PRE_HEAP; |
249 | 249 |
own_state = _Heap::IN_HEAP; |
250 | 250 |
own_state = _Heap::POST_HEAP; |
251 | 251 |
} |
252 | 252 |
|
253 | 253 |
_Heap& heap; |
254 | 254 |
ItemIntMap& map; |
255 |
Constraints() {} |
|
255 | 256 |
}; |
256 | 257 |
}; |
257 | 258 |
|
258 | 259 |
/// @} |
259 | 260 |
} // namespace lemon |
260 | 261 |
} |
261 | 262 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2011 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPTS_MAPS_H |
20 | 20 |
#define LEMON_CONCEPTS_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
///\ingroup map_concepts |
26 | 26 |
///\file |
27 | 27 |
///\brief The concept of maps. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup map_concepts |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// Readable map concept |
37 | 37 |
|
38 | 38 |
/// Readable map concept. |
39 | 39 |
/// |
40 | 40 |
template<typename K, typename T> |
41 | 41 |
class ReadMap |
42 | 42 |
{ |
43 | 43 |
public: |
44 | 44 |
/// The key type of the map. |
45 | 45 |
typedef K Key; |
46 | 46 |
/// \brief The value type of the map. |
47 | 47 |
/// (The type of objects associated with the keys). |
48 | 48 |
typedef T Value; |
49 | 49 |
|
50 | 50 |
/// Returns the value associated with the given key. |
51 | 51 |
Value operator[](const Key &) const { |
52 | 52 |
return *static_cast<Value *>(0); |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
template<typename _ReadMap> |
56 | 56 |
struct Constraints { |
57 | 57 |
void constraints() { |
58 | 58 |
Value val = m[key]; |
59 | 59 |
val = m[key]; |
60 | 60 |
typename _ReadMap::Value own_val = m[own_key]; |
61 | 61 |
own_val = m[own_key]; |
62 | 62 |
|
63 | 63 |
ignore_unused_variable_warning(key); |
64 | 64 |
ignore_unused_variable_warning(val); |
65 | 65 |
ignore_unused_variable_warning(own_key); |
66 | 66 |
ignore_unused_variable_warning(own_val); |
67 | 67 |
} |
68 | 68 |
const Key& key; |
69 | 69 |
const typename _ReadMap::Key& own_key; |
70 | 70 |
const _ReadMap& m; |
71 |
Constraints() {} |
|
71 | 72 |
}; |
72 | 73 |
|
73 | 74 |
}; |
74 | 75 |
|
75 | 76 |
|
76 | 77 |
/// Writable map concept |
77 | 78 |
|
78 | 79 |
/// Writable map concept. |
79 | 80 |
/// |
80 | 81 |
template<typename K, typename T> |
81 | 82 |
class WriteMap |
82 | 83 |
{ |
83 | 84 |
public: |
84 | 85 |
/// The key type of the map. |
85 | 86 |
typedef K Key; |
86 | 87 |
/// \brief The value type of the map. |
87 | 88 |
/// (The type of objects associated with the keys). |
88 | 89 |
typedef T Value; |
89 | 90 |
|
90 | 91 |
/// Sets the value associated with the given key. |
91 | 92 |
void set(const Key &, const Value &) {} |
92 | 93 |
|
93 | 94 |
/// Default constructor. |
94 | 95 |
WriteMap() {} |
95 | 96 |
|
96 | 97 |
template <typename _WriteMap> |
97 | 98 |
struct Constraints { |
98 | 99 |
void constraints() { |
99 | 100 |
m.set(key, val); |
100 | 101 |
m.set(own_key, own_val); |
101 | 102 |
|
102 | 103 |
ignore_unused_variable_warning(key); |
103 | 104 |
ignore_unused_variable_warning(val); |
104 | 105 |
ignore_unused_variable_warning(own_key); |
105 | 106 |
ignore_unused_variable_warning(own_val); |
106 | 107 |
} |
107 | 108 |
const Key& key; |
108 | 109 |
const Value& val; |
109 | 110 |
const typename _WriteMap::Key& own_key; |
110 | 111 |
const typename _WriteMap::Value& own_val; |
111 | 112 |
_WriteMap& m; |
113 |
Constraints() {} |
|
112 | 114 |
}; |
113 | 115 |
}; |
114 | 116 |
|
115 | 117 |
/// Read/writable map concept |
116 | 118 |
|
117 | 119 |
/// Read/writable map concept. |
118 | 120 |
/// |
119 | 121 |
template<typename K, typename T> |
120 | 122 |
class ReadWriteMap : public ReadMap<K,T>, |
121 | 123 |
public WriteMap<K,T> |
122 | 124 |
{ |
123 | 125 |
public: |
124 | 126 |
/// The key type of the map. |
125 | 127 |
typedef K Key; |
126 | 128 |
/// \brief The value type of the map. |
127 | 129 |
/// (The type of objects associated with the keys). |
128 | 130 |
typedef T Value; |
129 | 131 |
|
130 | 132 |
/// Returns the value associated with the given key. |
131 | 133 |
Value operator[](const Key &) const { |
132 |
|
|
134 |
Value *r = 0; |
|
135 |
return *r; |
|
133 | 136 |
} |
134 | 137 |
|
135 | 138 |
/// Sets the value associated with the given key. |
136 | 139 |
void set(const Key &, const Value &) {} |
137 | 140 |
|
138 | 141 |
template<typename _ReadWriteMap> |
139 | 142 |
struct Constraints { |
140 | 143 |
void constraints() { |
141 | 144 |
checkConcept<ReadMap<K, T>, _ReadWriteMap >(); |
142 | 145 |
checkConcept<WriteMap<K, T>, _ReadWriteMap >(); |
143 | 146 |
} |
144 | 147 |
}; |
145 | 148 |
}; |
146 | 149 |
|
147 | 150 |
|
148 | 151 |
/// Dereferable map concept |
149 | 152 |
|
150 | 153 |
/// Dereferable map concept. |
151 | 154 |
/// |
152 | 155 |
template<typename K, typename T, typename R, typename CR> |
153 | 156 |
class ReferenceMap : public ReadWriteMap<K,T> |
154 | 157 |
{ |
155 | 158 |
public: |
156 | 159 |
/// Tag for reference maps. |
157 | 160 |
typedef True ReferenceMapTag; |
158 | 161 |
/// The key type of the map. |
159 | 162 |
typedef K Key; |
160 | 163 |
/// \brief The value type of the map. |
161 | 164 |
/// (The type of objects associated with the keys). |
162 | 165 |
typedef T Value; |
163 | 166 |
/// The reference type of the map. |
164 | 167 |
typedef R Reference; |
165 | 168 |
/// The const reference type of the map. |
166 | 169 |
typedef CR ConstReference; |
167 | 170 |
|
168 | 171 |
public: |
169 | 172 |
|
170 | 173 |
/// Returns a reference to the value associated with the given key. |
171 | 174 |
Reference operator[](const Key &) { |
172 |
|
|
175 |
Value *r = 0; |
|
176 |
return *r; |
|
173 | 177 |
} |
174 | 178 |
|
175 | 179 |
/// Returns a const reference to the value associated with the given key. |
176 | 180 |
ConstReference operator[](const Key &) const { |
177 |
|
|
181 |
Value *r = 0; |
|
182 |
return *r; |
|
178 | 183 |
} |
179 | 184 |
|
180 | 185 |
/// Sets the value associated with the given key. |
181 | 186 |
void set(const Key &k,const Value &t) { operator[](k)=t; } |
182 | 187 |
|
183 | 188 |
template<typename _ReferenceMap> |
184 | 189 |
struct Constraints { |
185 | 190 |
typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type |
186 | 191 |
constraints() { |
187 | 192 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
188 | 193 |
ref = m[key]; |
189 | 194 |
m[key] = val; |
190 | 195 |
m[key] = ref; |
191 | 196 |
m[key] = cref; |
192 | 197 |
own_ref = m[own_key]; |
193 | 198 |
m[own_key] = own_val; |
194 | 199 |
m[own_key] = own_ref; |
195 | 200 |
m[own_key] = own_cref; |
196 | 201 |
m[key] = m[own_key]; |
197 | 202 |
m[own_key] = m[key]; |
198 | 203 |
} |
199 | 204 |
const Key& key; |
200 | 205 |
Value& val; |
201 | 206 |
Reference ref; |
202 | 207 |
ConstReference cref; |
203 | 208 |
const typename _ReferenceMap::Key& own_key; |
204 | 209 |
typename _ReferenceMap::Value& own_val; |
205 | 210 |
typename _ReferenceMap::Reference own_ref; |
206 | 211 |
typename _ReferenceMap::ConstReference own_cref; |
207 | 212 |
_ReferenceMap& m; |
213 |
Constraints() {} |
|
208 | 214 |
}; |
209 | 215 |
}; |
210 | 216 |
|
211 | 217 |
// @} |
212 | 218 |
|
213 | 219 |
} //namespace concepts |
214 | 220 |
|
215 | 221 |
} //namespace lemon |
216 | 222 |
|
217 | 223 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup concept |
20 | 20 |
///\file |
21 | 21 |
///\brief Classes for representing paths in digraphs. |
22 | 22 |
/// |
23 | 23 |
|
24 | 24 |
#ifndef LEMON_CONCEPTS_PATH_H |
25 | 25 |
#define LEMON_CONCEPTS_PATH_H |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief A skeleton structure for representing directed paths in |
37 | 37 |
/// a digraph. |
38 | 38 |
/// |
39 | 39 |
/// A skeleton structure for representing directed paths in a |
40 | 40 |
/// digraph. |
41 | 41 |
/// \tparam GR The digraph type in which the path is. |
42 | 42 |
/// |
43 | 43 |
/// In a sense, the path can be treated as a list of arcs. The |
44 | 44 |
/// lemon path type stores just this list. As a consequence it |
45 | 45 |
/// cannot enumerate the nodes in the path and the zero length |
46 | 46 |
/// paths cannot store the source. |
47 | 47 |
/// |
48 | 48 |
template <typename GR> |
49 | 49 |
class Path { |
50 | 50 |
public: |
51 | 51 |
|
52 | 52 |
/// Type of the underlying digraph. |
53 | 53 |
typedef GR Digraph; |
54 | 54 |
/// Arc type of the underlying digraph. |
55 | 55 |
typedef typename Digraph::Arc Arc; |
56 | 56 |
|
57 | 57 |
class ArcIt; |
58 | 58 |
|
59 | 59 |
/// \brief Default constructor |
60 | 60 |
Path() {} |
61 | 61 |
|
62 | 62 |
/// \brief Template constructor |
63 | 63 |
template <typename CPath> |
64 | 64 |
Path(const CPath& cpath) {} |
65 | 65 |
|
66 | 66 |
/// \brief Template assigment |
67 | 67 |
template <typename CPath> |
68 | 68 |
Path& operator=(const CPath& cpath) { |
69 | 69 |
ignore_unused_variable_warning(cpath); |
70 | 70 |
return *this; |
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
/// Length of the path ie. the number of arcs in the path. |
74 | 74 |
int length() const { return 0;} |
75 | 75 |
|
76 | 76 |
/// Returns whether the path is empty. |
77 | 77 |
bool empty() const { return true;} |
78 | 78 |
|
79 | 79 |
/// Resets the path to an empty path. |
80 | 80 |
void clear() {} |
81 | 81 |
|
82 | 82 |
/// \brief LEMON style iterator for path arcs |
83 | 83 |
/// |
84 | 84 |
/// This class is used to iterate on the arcs of the paths. |
85 | 85 |
class ArcIt { |
86 | 86 |
public: |
87 | 87 |
/// Default constructor |
88 | 88 |
ArcIt() {} |
89 | 89 |
/// Invalid constructor |
90 | 90 |
ArcIt(Invalid) {} |
91 | 91 |
/// Constructor for first arc |
92 | 92 |
ArcIt(const Path &) {} |
93 | 93 |
|
94 | 94 |
/// Conversion to Arc |
95 | 95 |
operator Arc() const { return INVALID; } |
96 | 96 |
|
97 | 97 |
/// Next arc |
98 | 98 |
ArcIt& operator++() {return *this;} |
99 | 99 |
|
100 | 100 |
/// Comparison operator |
101 | 101 |
bool operator==(const ArcIt&) const {return true;} |
102 | 102 |
/// Comparison operator |
103 | 103 |
bool operator!=(const ArcIt&) const {return true;} |
104 | 104 |
/// Comparison operator |
105 | 105 |
bool operator<(const ArcIt&) const {return false;} |
106 | 106 |
|
107 | 107 |
}; |
108 | 108 |
|
109 | 109 |
template <typename _Path> |
110 | 110 |
struct Constraints { |
111 | 111 |
void constraints() { |
112 | 112 |
Path<Digraph> pc; |
113 | 113 |
_Path p, pp(pc); |
114 | 114 |
int l = p.length(); |
115 | 115 |
int e = p.empty(); |
116 | 116 |
p.clear(); |
117 | 117 |
|
118 | 118 |
p = pc; |
119 | 119 |
|
120 | 120 |
typename _Path::ArcIt id, ii(INVALID), i(p); |
121 | 121 |
|
122 | 122 |
++i; |
123 | 123 |
typename Digraph::Arc ed = i; |
124 | 124 |
|
125 | 125 |
e = (i == ii); |
126 | 126 |
e = (i != ii); |
127 | 127 |
e = (i < ii); |
128 | 128 |
|
129 | 129 |
ignore_unused_variable_warning(l); |
130 | 130 |
ignore_unused_variable_warning(pp); |
131 | 131 |
ignore_unused_variable_warning(e); |
132 | 132 |
ignore_unused_variable_warning(id); |
133 | 133 |
ignore_unused_variable_warning(ii); |
134 | 134 |
ignore_unused_variable_warning(ed); |
135 | 135 |
} |
136 | 136 |
}; |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
namespace _path_bits { |
141 | 141 |
|
142 | 142 |
template <typename _Digraph, typename _Path, typename RevPathTag = void> |
143 | 143 |
struct PathDumperConstraints { |
144 | 144 |
void constraints() { |
145 | 145 |
int l = p.length(); |
146 | 146 |
int e = p.empty(); |
147 | 147 |
|
148 | 148 |
typename _Path::ArcIt id, i(p); |
149 | 149 |
|
150 | 150 |
++i; |
151 | 151 |
typename _Digraph::Arc ed = i; |
152 | 152 |
|
153 | 153 |
e = (i == INVALID); |
154 | 154 |
e = (i != INVALID); |
155 | 155 |
|
156 | 156 |
ignore_unused_variable_warning(l); |
157 | 157 |
ignore_unused_variable_warning(e); |
158 | 158 |
ignore_unused_variable_warning(id); |
159 | 159 |
ignore_unused_variable_warning(ed); |
160 | 160 |
} |
161 | 161 |
_Path& p; |
162 |
PathDumperConstraints() {} |
|
162 | 163 |
}; |
163 | 164 |
|
164 | 165 |
template <typename _Digraph, typename _Path> |
165 | 166 |
struct PathDumperConstraints< |
166 | 167 |
_Digraph, _Path, |
167 | 168 |
typename enable_if<typename _Path::RevPathTag, void>::type |
168 | 169 |
> { |
169 | 170 |
void constraints() { |
170 | 171 |
int l = p.length(); |
171 | 172 |
int e = p.empty(); |
172 | 173 |
|
173 | 174 |
typename _Path::RevArcIt id, i(p); |
174 | 175 |
|
175 | 176 |
++i; |
176 | 177 |
typename _Digraph::Arc ed = i; |
177 | 178 |
|
178 | 179 |
e = (i == INVALID); |
179 | 180 |
e = (i != INVALID); |
180 | 181 |
|
181 | 182 |
ignore_unused_variable_warning(l); |
182 | 183 |
ignore_unused_variable_warning(e); |
183 | 184 |
ignore_unused_variable_warning(id); |
184 | 185 |
ignore_unused_variable_warning(ed); |
185 | 186 |
} |
186 | 187 |
_Path& p; |
188 |
PathDumperConstraints() {} |
|
187 | 189 |
}; |
188 | 190 |
|
189 | 191 |
} |
190 | 192 |
|
191 | 193 |
|
192 | 194 |
/// \brief A skeleton structure for path dumpers. |
193 | 195 |
/// |
194 | 196 |
/// A skeleton structure for path dumpers. The path dumpers are |
195 | 197 |
/// the generalization of the paths. The path dumpers can |
196 | 198 |
/// enumerate the arcs of the path wheter in forward or in |
197 | 199 |
/// backward order. In most time these classes are not used |
198 | 200 |
/// directly rather it used to assign a dumped class to a real |
199 | 201 |
/// path type. |
200 | 202 |
/// |
201 | 203 |
/// The main purpose of this concept is that the shortest path |
202 | 204 |
/// algorithms can enumerate easily the arcs in reverse order. |
203 | 205 |
/// If we would like to give back a real path from these |
204 | 206 |
/// algorithms then we should create a temporarly path object. In |
205 | 207 |
/// LEMON such algorithms gives back a path dumper what can |
206 | 208 |
/// assigned to a real path and the dumpers can be implemented as |
207 | 209 |
/// an adaptor class to the predecessor map. |
208 | 210 |
/// |
209 | 211 |
/// \tparam GR The digraph type in which the path is. |
210 | 212 |
/// |
211 | 213 |
/// The paths can be constructed from any path type by a |
212 | 214 |
/// template constructor or a template assignment operator. |
213 | 215 |
template <typename GR> |
214 | 216 |
class PathDumper { |
215 | 217 |
public: |
216 | 218 |
|
217 | 219 |
/// Type of the underlying digraph. |
218 | 220 |
typedef GR Digraph; |
219 | 221 |
/// Arc type of the underlying digraph. |
220 | 222 |
typedef typename Digraph::Arc Arc; |
221 | 223 |
|
222 | 224 |
/// Length of the path ie. the number of arcs in the path. |
223 | 225 |
int length() const { return 0;} |
224 | 226 |
|
225 | 227 |
/// Returns whether the path is empty. |
226 | 228 |
bool empty() const { return true;} |
227 | 229 |
|
228 | 230 |
/// \brief Forward or reverse dumping |
229 | 231 |
/// |
230 | 232 |
/// If the RevPathTag is defined and true then reverse dumping |
231 | 233 |
/// is provided in the path dumper. In this case instead of the |
232 | 234 |
/// ArcIt the RevArcIt iterator should be implemented in the |
233 | 235 |
/// dumper. |
234 | 236 |
typedef False RevPathTag; |
235 | 237 |
|
236 | 238 |
/// \brief LEMON style iterator for path arcs |
237 | 239 |
/// |
238 | 240 |
/// This class is used to iterate on the arcs of the paths. |
239 | 241 |
class ArcIt { |
240 | 242 |
public: |
241 | 243 |
/// Default constructor |
242 | 244 |
ArcIt() {} |
243 | 245 |
/// Invalid constructor |
244 | 246 |
ArcIt(Invalid) {} |
245 | 247 |
/// Constructor for first arc |
246 | 248 |
ArcIt(const PathDumper&) {} |
247 | 249 |
|
248 | 250 |
/// Conversion to Arc |
249 | 251 |
operator Arc() const { return INVALID; } |
250 | 252 |
|
251 | 253 |
/// Next arc |
252 | 254 |
ArcIt& operator++() {return *this;} |
253 | 255 |
|
254 | 256 |
/// Comparison operator |
255 | 257 |
bool operator==(const ArcIt&) const {return true;} |
256 | 258 |
/// Comparison operator |
257 | 259 |
bool operator!=(const ArcIt&) const {return true;} |
258 | 260 |
/// Comparison operator |
259 | 261 |
bool operator<(const ArcIt&) const {return false;} |
260 | 262 |
|
261 | 263 |
}; |
262 | 264 |
|
263 | 265 |
/// \brief LEMON style iterator for path arcs |
264 | 266 |
/// |
265 | 267 |
/// This class is used to iterate on the arcs of the paths in |
266 | 268 |
/// reverse direction. |
267 | 269 |
class RevArcIt { |
268 | 270 |
public: |
269 | 271 |
/// Default constructor |
270 | 272 |
RevArcIt() {} |
271 | 273 |
/// Invalid constructor |
272 | 274 |
RevArcIt(Invalid) {} |
273 | 275 |
/// Constructor for first arc |
274 | 276 |
RevArcIt(const PathDumper &) {} |
275 | 277 |
|
276 | 278 |
/// Conversion to Arc |
277 | 279 |
operator Arc() const { return INVALID; } |
278 | 280 |
|
279 | 281 |
/// Next arc |
280 | 282 |
RevArcIt& operator++() {return *this;} |
281 | 283 |
|
282 | 284 |
/// Comparison operator |
283 | 285 |
bool operator==(const RevArcIt&) const {return true;} |
284 | 286 |
/// Comparison operator |
285 | 287 |
bool operator!=(const RevArcIt&) const {return true;} |
286 | 288 |
/// Comparison operator |
287 | 289 |
bool operator<(const RevArcIt&) const {return false;} |
288 | 290 |
|
289 | 291 |
}; |
290 | 292 |
|
291 | 293 |
template <typename _Path> |
292 | 294 |
struct Constraints { |
293 | 295 |
void constraints() { |
294 | 296 |
function_requires<_path_bits:: |
295 | 297 |
PathDumperConstraints<Digraph, _Path> >(); |
296 | 298 |
} |
297 | 299 |
}; |
298 | 300 |
|
299 | 301 |
}; |
300 | 302 |
|
301 | 303 |
|
302 | 304 |
///@} |
303 | 305 |
} |
304 | 306 |
|
305 | 307 |
} // namespace lemon |
306 | 308 |
|
307 | 309 |
#endif |
... | ... |
@@ -810,768 +810,769 @@ |
810 | 810 |
static ReachedMap *createReachedMap(const Digraph &g) |
811 | 811 |
{ |
812 | 812 |
return new ReachedMap(g); |
813 | 813 |
} |
814 | 814 |
|
815 | 815 |
///The type of the map that stores the distances of the nodes. |
816 | 816 |
|
817 | 817 |
///The type of the map that stores the distances of the nodes. |
818 | 818 |
///It must meet the \ref concepts::WriteMap "WriteMap" concept. |
819 | 819 |
typedef typename Digraph::template NodeMap<int> DistMap; |
820 | 820 |
///Instantiates a DistMap. |
821 | 821 |
|
822 | 822 |
///This function instantiates a DistMap. |
823 | 823 |
///\param g is the digraph, to which we would like to define |
824 | 824 |
///the DistMap |
825 | 825 |
static DistMap *createDistMap(const Digraph &g) |
826 | 826 |
{ |
827 | 827 |
return new DistMap(g); |
828 | 828 |
} |
829 | 829 |
|
830 | 830 |
///The type of the DFS paths. |
831 | 831 |
|
832 | 832 |
///The type of the DFS paths. |
833 | 833 |
///It must meet the \ref concepts::Path "Path" concept. |
834 | 834 |
typedef lemon::Path<Digraph> Path; |
835 | 835 |
}; |
836 | 836 |
|
837 | 837 |
/// Default traits class used by DfsWizard |
838 | 838 |
|
839 | 839 |
/// To make it easier to use Dfs algorithm |
840 | 840 |
/// we have created a wizard class. |
841 | 841 |
/// This \ref DfsWizard class needs default traits, |
842 | 842 |
/// as well as the \ref Dfs class. |
843 | 843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
844 | 844 |
/// \ref DfsWizard class. |
845 | 845 |
template<class GR> |
846 | 846 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
847 | 847 |
{ |
848 | 848 |
|
849 | 849 |
typedef DfsWizardDefaultTraits<GR> Base; |
850 | 850 |
protected: |
851 | 851 |
//The type of the nodes in the digraph. |
852 | 852 |
typedef typename Base::Digraph::Node Node; |
853 | 853 |
|
854 | 854 |
//Pointer to the digraph the algorithm runs on. |
855 | 855 |
void *_g; |
856 | 856 |
//Pointer to the map of reached nodes. |
857 | 857 |
void *_reached; |
858 | 858 |
//Pointer to the map of processed nodes. |
859 | 859 |
void *_processed; |
860 | 860 |
//Pointer to the map of predecessors arcs. |
861 | 861 |
void *_pred; |
862 | 862 |
//Pointer to the map of distances. |
863 | 863 |
void *_dist; |
864 | 864 |
//Pointer to the DFS path to the target node. |
865 | 865 |
void *_path; |
866 | 866 |
//Pointer to the distance of the target node. |
867 | 867 |
int *_di; |
868 | 868 |
|
869 | 869 |
public: |
870 | 870 |
/// Constructor. |
871 | 871 |
|
872 | 872 |
/// This constructor does not require parameters, therefore it initiates |
873 | 873 |
/// all of the attributes to \c 0. |
874 | 874 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
875 | 875 |
_dist(0), _path(0), _di(0) {} |
876 | 876 |
|
877 | 877 |
/// Constructor. |
878 | 878 |
|
879 | 879 |
/// This constructor requires one parameter, |
880 | 880 |
/// others are initiated to \c 0. |
881 | 881 |
/// \param g The digraph the algorithm runs on. |
882 | 882 |
DfsWizardBase(const GR &g) : |
883 | 883 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
884 | 884 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
885 | 885 |
|
886 | 886 |
}; |
887 | 887 |
|
888 | 888 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
889 | 889 |
|
890 | 890 |
/// This auxiliary class is created to implement the |
891 | 891 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
892 | 892 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
893 | 893 |
/// functions and features of the plain \ref Dfs. |
894 | 894 |
/// |
895 | 895 |
/// This class should only be used through the \ref dfs() function, |
896 | 896 |
/// which makes it easier to use the algorithm. |
897 | 897 |
template<class TR> |
898 | 898 |
class DfsWizard : public TR |
899 | 899 |
{ |
900 | 900 |
typedef TR Base; |
901 | 901 |
|
902 | 902 |
///The type of the digraph the algorithm runs on. |
903 | 903 |
typedef typename TR::Digraph Digraph; |
904 | 904 |
|
905 | 905 |
typedef typename Digraph::Node Node; |
906 | 906 |
typedef typename Digraph::NodeIt NodeIt; |
907 | 907 |
typedef typename Digraph::Arc Arc; |
908 | 908 |
typedef typename Digraph::OutArcIt OutArcIt; |
909 | 909 |
|
910 | 910 |
///\brief The type of the map that stores the predecessor |
911 | 911 |
///arcs of the DFS paths. |
912 | 912 |
typedef typename TR::PredMap PredMap; |
913 | 913 |
///\brief The type of the map that stores the distances of the nodes. |
914 | 914 |
typedef typename TR::DistMap DistMap; |
915 | 915 |
///\brief The type of the map that indicates which nodes are reached. |
916 | 916 |
typedef typename TR::ReachedMap ReachedMap; |
917 | 917 |
///\brief The type of the map that indicates which nodes are processed. |
918 | 918 |
typedef typename TR::ProcessedMap ProcessedMap; |
919 | 919 |
///The type of the DFS paths |
920 | 920 |
typedef typename TR::Path Path; |
921 | 921 |
|
922 | 922 |
public: |
923 | 923 |
|
924 | 924 |
/// Constructor. |
925 | 925 |
DfsWizard() : TR() {} |
926 | 926 |
|
927 | 927 |
/// Constructor that requires parameters. |
928 | 928 |
|
929 | 929 |
/// Constructor that requires parameters. |
930 | 930 |
/// These parameters will be the default values for the traits class. |
931 | 931 |
/// \param g The digraph the algorithm runs on. |
932 | 932 |
DfsWizard(const Digraph &g) : |
933 | 933 |
TR(g) {} |
934 | 934 |
|
935 | 935 |
///Copy constructor |
936 | 936 |
DfsWizard(const TR &b) : TR(b) {} |
937 | 937 |
|
938 | 938 |
~DfsWizard() {} |
939 | 939 |
|
940 | 940 |
///Runs DFS algorithm from the given source node. |
941 | 941 |
|
942 | 942 |
///This method runs DFS algorithm from node \c s |
943 | 943 |
///in order to compute the DFS path to each node. |
944 | 944 |
void run(Node s) |
945 | 945 |
{ |
946 | 946 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
947 | 947 |
if (Base::_pred) |
948 | 948 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
949 | 949 |
if (Base::_dist) |
950 | 950 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
951 | 951 |
if (Base::_reached) |
952 | 952 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
953 | 953 |
if (Base::_processed) |
954 | 954 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
955 | 955 |
if (s!=INVALID) |
956 | 956 |
alg.run(s); |
957 | 957 |
else |
958 | 958 |
alg.run(); |
959 | 959 |
} |
960 | 960 |
|
961 | 961 |
///Finds the DFS path between \c s and \c t. |
962 | 962 |
|
963 | 963 |
///This method runs DFS algorithm from node \c s |
964 | 964 |
///in order to compute the DFS path to node \c t |
965 | 965 |
///(it stops searching when \c t is processed). |
966 | 966 |
/// |
967 | 967 |
///\return \c true if \c t is reachable form \c s. |
968 | 968 |
bool run(Node s, Node t) |
969 | 969 |
{ |
970 | 970 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
971 | 971 |
if (Base::_pred) |
972 | 972 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
973 | 973 |
if (Base::_dist) |
974 | 974 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
975 | 975 |
if (Base::_reached) |
976 | 976 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
977 | 977 |
if (Base::_processed) |
978 | 978 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
979 | 979 |
alg.run(s,t); |
980 | 980 |
if (Base::_path) |
981 | 981 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
982 | 982 |
if (Base::_di) |
983 | 983 |
*Base::_di = alg.dist(t); |
984 | 984 |
return alg.reached(t); |
985 | 985 |
} |
986 | 986 |
|
987 | 987 |
///Runs DFS algorithm to visit all nodes in the digraph. |
988 | 988 |
|
989 | 989 |
///This method runs DFS algorithm in order to compute |
990 | 990 |
///the DFS path to each node. |
991 | 991 |
void run() |
992 | 992 |
{ |
993 | 993 |
run(INVALID); |
994 | 994 |
} |
995 | 995 |
|
996 | 996 |
template<class T> |
997 | 997 |
struct SetPredMapBase : public Base { |
998 | 998 |
typedef T PredMap; |
999 | 999 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1000 | 1000 |
SetPredMapBase(const TR &b) : TR(b) {} |
1001 | 1001 |
}; |
1002 | 1002 |
///\brief \ref named-func-param "Named parameter" |
1003 | 1003 |
///for setting PredMap object. |
1004 | 1004 |
/// |
1005 | 1005 |
///\ref named-func-param "Named parameter" |
1006 | 1006 |
///for setting PredMap object. |
1007 | 1007 |
template<class T> |
1008 | 1008 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1009 | 1009 |
{ |
1010 | 1010 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1011 | 1011 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1012 | 1012 |
} |
1013 | 1013 |
|
1014 | 1014 |
template<class T> |
1015 | 1015 |
struct SetReachedMapBase : public Base { |
1016 | 1016 |
typedef T ReachedMap; |
1017 | 1017 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1018 | 1018 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1019 | 1019 |
}; |
1020 | 1020 |
///\brief \ref named-func-param "Named parameter" |
1021 | 1021 |
///for setting ReachedMap object. |
1022 | 1022 |
/// |
1023 | 1023 |
/// \ref named-func-param "Named parameter" |
1024 | 1024 |
///for setting ReachedMap object. |
1025 | 1025 |
template<class T> |
1026 | 1026 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1027 | 1027 |
{ |
1028 | 1028 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1029 | 1029 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1030 | 1030 |
} |
1031 | 1031 |
|
1032 | 1032 |
template<class T> |
1033 | 1033 |
struct SetDistMapBase : public Base { |
1034 | 1034 |
typedef T DistMap; |
1035 | 1035 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1036 | 1036 |
SetDistMapBase(const TR &b) : TR(b) {} |
1037 | 1037 |
}; |
1038 | 1038 |
///\brief \ref named-func-param "Named parameter" |
1039 | 1039 |
///for setting DistMap object. |
1040 | 1040 |
/// |
1041 | 1041 |
/// \ref named-func-param "Named parameter" |
1042 | 1042 |
///for setting DistMap object. |
1043 | 1043 |
template<class T> |
1044 | 1044 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1045 | 1045 |
{ |
1046 | 1046 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1047 | 1047 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1048 | 1048 |
} |
1049 | 1049 |
|
1050 | 1050 |
template<class T> |
1051 | 1051 |
struct SetProcessedMapBase : public Base { |
1052 | 1052 |
typedef T ProcessedMap; |
1053 | 1053 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1054 | 1054 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1055 | 1055 |
}; |
1056 | 1056 |
///\brief \ref named-func-param "Named parameter" |
1057 | 1057 |
///for setting ProcessedMap object. |
1058 | 1058 |
/// |
1059 | 1059 |
/// \ref named-func-param "Named parameter" |
1060 | 1060 |
///for setting ProcessedMap object. |
1061 | 1061 |
template<class T> |
1062 | 1062 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1063 | 1063 |
{ |
1064 | 1064 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1065 | 1065 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1066 | 1066 |
} |
1067 | 1067 |
|
1068 | 1068 |
template<class T> |
1069 | 1069 |
struct SetPathBase : public Base { |
1070 | 1070 |
typedef T Path; |
1071 | 1071 |
SetPathBase(const TR &b) : TR(b) {} |
1072 | 1072 |
}; |
1073 | 1073 |
///\brief \ref named-func-param "Named parameter" |
1074 | 1074 |
///for getting the DFS path to the target node. |
1075 | 1075 |
/// |
1076 | 1076 |
///\ref named-func-param "Named parameter" |
1077 | 1077 |
///for getting the DFS path to the target node. |
1078 | 1078 |
template<class T> |
1079 | 1079 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1080 | 1080 |
{ |
1081 | 1081 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1082 | 1082 |
return DfsWizard<SetPathBase<T> >(*this); |
1083 | 1083 |
} |
1084 | 1084 |
|
1085 | 1085 |
///\brief \ref named-func-param "Named parameter" |
1086 | 1086 |
///for getting the distance of the target node. |
1087 | 1087 |
/// |
1088 | 1088 |
///\ref named-func-param "Named parameter" |
1089 | 1089 |
///for getting the distance of the target node. |
1090 | 1090 |
DfsWizard dist(const int &d) |
1091 | 1091 |
{ |
1092 | 1092 |
Base::_di=const_cast<int*>(&d); |
1093 | 1093 |
return *this; |
1094 | 1094 |
} |
1095 | 1095 |
|
1096 | 1096 |
}; |
1097 | 1097 |
|
1098 | 1098 |
///Function-type interface for DFS algorithm. |
1099 | 1099 |
|
1100 | 1100 |
///\ingroup search |
1101 | 1101 |
///Function-type interface for DFS algorithm. |
1102 | 1102 |
/// |
1103 | 1103 |
///This function also has several \ref named-func-param "named parameters", |
1104 | 1104 |
///they are declared as the members of class \ref DfsWizard. |
1105 | 1105 |
///The following examples show how to use these parameters. |
1106 | 1106 |
///\code |
1107 | 1107 |
/// // Compute the DFS tree |
1108 | 1108 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1109 | 1109 |
/// |
1110 | 1110 |
/// // Compute the DFS path from s to t |
1111 | 1111 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1112 | 1112 |
///\endcode |
1113 | 1113 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
1114 | 1114 |
///to the end of the parameter list. |
1115 | 1115 |
///\sa DfsWizard |
1116 | 1116 |
///\sa Dfs |
1117 | 1117 |
template<class GR> |
1118 | 1118 |
DfsWizard<DfsWizardBase<GR> > |
1119 | 1119 |
dfs(const GR &digraph) |
1120 | 1120 |
{ |
1121 | 1121 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1122 | 1122 |
} |
1123 | 1123 |
|
1124 | 1124 |
#ifdef DOXYGEN |
1125 | 1125 |
/// \brief Visitor class for DFS. |
1126 | 1126 |
/// |
1127 | 1127 |
/// This class defines the interface of the DfsVisit events, and |
1128 | 1128 |
/// it could be the base of a real visitor class. |
1129 | 1129 |
template <typename GR> |
1130 | 1130 |
struct DfsVisitor { |
1131 | 1131 |
typedef GR Digraph; |
1132 | 1132 |
typedef typename Digraph::Arc Arc; |
1133 | 1133 |
typedef typename Digraph::Node Node; |
1134 | 1134 |
/// \brief Called for the source node of the DFS. |
1135 | 1135 |
/// |
1136 | 1136 |
/// This function is called for the source node of the DFS. |
1137 | 1137 |
void start(const Node& node) {} |
1138 | 1138 |
/// \brief Called when the source node is leaved. |
1139 | 1139 |
/// |
1140 | 1140 |
/// This function is called when the source node is leaved. |
1141 | 1141 |
void stop(const Node& node) {} |
1142 | 1142 |
/// \brief Called when a node is reached first time. |
1143 | 1143 |
/// |
1144 | 1144 |
/// This function is called when a node is reached first time. |
1145 | 1145 |
void reach(const Node& node) {} |
1146 | 1146 |
/// \brief Called when an arc reaches a new node. |
1147 | 1147 |
/// |
1148 | 1148 |
/// This function is called when the DFS finds an arc whose target node |
1149 | 1149 |
/// is not reached yet. |
1150 | 1150 |
void discover(const Arc& arc) {} |
1151 | 1151 |
/// \brief Called when an arc is examined but its target node is |
1152 | 1152 |
/// already discovered. |
1153 | 1153 |
/// |
1154 | 1154 |
/// This function is called when an arc is examined but its target node is |
1155 | 1155 |
/// already discovered. |
1156 | 1156 |
void examine(const Arc& arc) {} |
1157 | 1157 |
/// \brief Called when the DFS steps back from a node. |
1158 | 1158 |
/// |
1159 | 1159 |
/// This function is called when the DFS steps back from a node. |
1160 | 1160 |
void leave(const Node& node) {} |
1161 | 1161 |
/// \brief Called when the DFS steps back on an arc. |
1162 | 1162 |
/// |
1163 | 1163 |
/// This function is called when the DFS steps back on an arc. |
1164 | 1164 |
void backtrack(const Arc& arc) {} |
1165 | 1165 |
}; |
1166 | 1166 |
#else |
1167 | 1167 |
template <typename GR> |
1168 | 1168 |
struct DfsVisitor { |
1169 | 1169 |
typedef GR Digraph; |
1170 | 1170 |
typedef typename Digraph::Arc Arc; |
1171 | 1171 |
typedef typename Digraph::Node Node; |
1172 | 1172 |
void start(const Node&) {} |
1173 | 1173 |
void stop(const Node&) {} |
1174 | 1174 |
void reach(const Node&) {} |
1175 | 1175 |
void discover(const Arc&) {} |
1176 | 1176 |
void examine(const Arc&) {} |
1177 | 1177 |
void leave(const Node&) {} |
1178 | 1178 |
void backtrack(const Arc&) {} |
1179 | 1179 |
|
1180 | 1180 |
template <typename _Visitor> |
1181 | 1181 |
struct Constraints { |
1182 | 1182 |
void constraints() { |
1183 | 1183 |
Arc arc; |
1184 | 1184 |
Node node; |
1185 | 1185 |
visitor.start(node); |
1186 | 1186 |
visitor.stop(arc); |
1187 | 1187 |
visitor.reach(node); |
1188 | 1188 |
visitor.discover(arc); |
1189 | 1189 |
visitor.examine(arc); |
1190 | 1190 |
visitor.leave(node); |
1191 | 1191 |
visitor.backtrack(arc); |
1192 | 1192 |
} |
1193 | 1193 |
_Visitor& visitor; |
1194 |
Constraints() {} |
|
1194 | 1195 |
}; |
1195 | 1196 |
}; |
1196 | 1197 |
#endif |
1197 | 1198 |
|
1198 | 1199 |
/// \brief Default traits class of DfsVisit class. |
1199 | 1200 |
/// |
1200 | 1201 |
/// Default traits class of DfsVisit class. |
1201 | 1202 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1202 | 1203 |
template<class GR> |
1203 | 1204 |
struct DfsVisitDefaultTraits { |
1204 | 1205 |
|
1205 | 1206 |
/// \brief The type of the digraph the algorithm runs on. |
1206 | 1207 |
typedef GR Digraph; |
1207 | 1208 |
|
1208 | 1209 |
/// \brief The type of the map that indicates which nodes are reached. |
1209 | 1210 |
/// |
1210 | 1211 |
/// The type of the map that indicates which nodes are reached. |
1211 | 1212 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
1212 | 1213 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1213 | 1214 |
|
1214 | 1215 |
/// \brief Instantiates a ReachedMap. |
1215 | 1216 |
/// |
1216 | 1217 |
/// This function instantiates a ReachedMap. |
1217 | 1218 |
/// \param digraph is the digraph, to which |
1218 | 1219 |
/// we would like to define the ReachedMap. |
1219 | 1220 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1220 | 1221 |
return new ReachedMap(digraph); |
1221 | 1222 |
} |
1222 | 1223 |
|
1223 | 1224 |
}; |
1224 | 1225 |
|
1225 | 1226 |
/// \ingroup search |
1226 | 1227 |
/// |
1227 | 1228 |
/// \brief DFS algorithm class with visitor interface. |
1228 | 1229 |
/// |
1229 | 1230 |
/// This class provides an efficient implementation of the DFS algorithm |
1230 | 1231 |
/// with visitor interface. |
1231 | 1232 |
/// |
1232 | 1233 |
/// The DfsVisit class provides an alternative interface to the Dfs |
1233 | 1234 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1234 | 1235 |
/// the member functions of the \c Visitor class on every DFS event. |
1235 | 1236 |
/// |
1236 | 1237 |
/// This interface of the DFS algorithm should be used in special cases |
1237 | 1238 |
/// when extra actions have to be performed in connection with certain |
1238 | 1239 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1239 | 1240 |
/// instead. |
1240 | 1241 |
/// |
1241 | 1242 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1242 | 1243 |
/// The default type is \ref ListDigraph. |
1243 | 1244 |
/// The value of GR is not used directly by \ref DfsVisit, |
1244 | 1245 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
1245 | 1246 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1246 | 1247 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
1247 | 1248 |
/// does not observe the DFS events. If you want to observe the DFS |
1248 | 1249 |
/// events, you should implement your own visitor class. |
1249 | 1250 |
/// \tparam TR Traits class to set various data types used by the |
1250 | 1251 |
/// algorithm. The default traits class is |
1251 | 1252 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
1252 | 1253 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1253 | 1254 |
/// a DFS visit traits class. |
1254 | 1255 |
#ifdef DOXYGEN |
1255 | 1256 |
template <typename GR, typename VS, typename TR> |
1256 | 1257 |
#else |
1257 | 1258 |
template <typename GR = ListDigraph, |
1258 | 1259 |
typename VS = DfsVisitor<GR>, |
1259 | 1260 |
typename TR = DfsVisitDefaultTraits<GR> > |
1260 | 1261 |
#endif |
1261 | 1262 |
class DfsVisit { |
1262 | 1263 |
public: |
1263 | 1264 |
|
1264 | 1265 |
///The traits class. |
1265 | 1266 |
typedef TR Traits; |
1266 | 1267 |
|
1267 | 1268 |
///The type of the digraph the algorithm runs on. |
1268 | 1269 |
typedef typename Traits::Digraph Digraph; |
1269 | 1270 |
|
1270 | 1271 |
///The visitor type used by the algorithm. |
1271 | 1272 |
typedef VS Visitor; |
1272 | 1273 |
|
1273 | 1274 |
///The type of the map that indicates which nodes are reached. |
1274 | 1275 |
typedef typename Traits::ReachedMap ReachedMap; |
1275 | 1276 |
|
1276 | 1277 |
private: |
1277 | 1278 |
|
1278 | 1279 |
typedef typename Digraph::Node Node; |
1279 | 1280 |
typedef typename Digraph::NodeIt NodeIt; |
1280 | 1281 |
typedef typename Digraph::Arc Arc; |
1281 | 1282 |
typedef typename Digraph::OutArcIt OutArcIt; |
1282 | 1283 |
|
1283 | 1284 |
//Pointer to the underlying digraph. |
1284 | 1285 |
const Digraph *_digraph; |
1285 | 1286 |
//Pointer to the visitor object. |
1286 | 1287 |
Visitor *_visitor; |
1287 | 1288 |
//Pointer to the map of reached status of the nodes. |
1288 | 1289 |
ReachedMap *_reached; |
1289 | 1290 |
//Indicates if _reached is locally allocated (true) or not. |
1290 | 1291 |
bool local_reached; |
1291 | 1292 |
|
1292 | 1293 |
std::vector<typename Digraph::Arc> _stack; |
1293 | 1294 |
int _stack_head; |
1294 | 1295 |
|
1295 | 1296 |
//Creates the maps if necessary. |
1296 | 1297 |
void create_maps() { |
1297 | 1298 |
if(!_reached) { |
1298 | 1299 |
local_reached = true; |
1299 | 1300 |
_reached = Traits::createReachedMap(*_digraph); |
1300 | 1301 |
} |
1301 | 1302 |
} |
1302 | 1303 |
|
1303 | 1304 |
protected: |
1304 | 1305 |
|
1305 | 1306 |
DfsVisit() {} |
1306 | 1307 |
|
1307 | 1308 |
public: |
1308 | 1309 |
|
1309 | 1310 |
typedef DfsVisit Create; |
1310 | 1311 |
|
1311 | 1312 |
/// \name Named Template Parameters |
1312 | 1313 |
|
1313 | 1314 |
///@{ |
1314 | 1315 |
template <class T> |
1315 | 1316 |
struct SetReachedMapTraits : public Traits { |
1316 | 1317 |
typedef T ReachedMap; |
1317 | 1318 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1318 | 1319 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1319 | 1320 |
return 0; // ignore warnings |
1320 | 1321 |
} |
1321 | 1322 |
}; |
1322 | 1323 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1323 | 1324 |
/// ReachedMap type. |
1324 | 1325 |
/// |
1325 | 1326 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1326 | 1327 |
template <class T> |
1327 | 1328 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1328 | 1329 |
SetReachedMapTraits<T> > { |
1329 | 1330 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1330 | 1331 |
}; |
1331 | 1332 |
///@} |
1332 | 1333 |
|
1333 | 1334 |
public: |
1334 | 1335 |
|
1335 | 1336 |
/// \brief Constructor. |
1336 | 1337 |
/// |
1337 | 1338 |
/// Constructor. |
1338 | 1339 |
/// |
1339 | 1340 |
/// \param digraph The digraph the algorithm runs on. |
1340 | 1341 |
/// \param visitor The visitor object of the algorithm. |
1341 | 1342 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1342 | 1343 |
: _digraph(&digraph), _visitor(&visitor), |
1343 | 1344 |
_reached(0), local_reached(false) {} |
1344 | 1345 |
|
1345 | 1346 |
/// \brief Destructor. |
1346 | 1347 |
~DfsVisit() { |
1347 | 1348 |
if(local_reached) delete _reached; |
1348 | 1349 |
} |
1349 | 1350 |
|
1350 | 1351 |
/// \brief Sets the map that indicates which nodes are reached. |
1351 | 1352 |
/// |
1352 | 1353 |
/// Sets the map that indicates which nodes are reached. |
1353 | 1354 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1354 | 1355 |
/// or \ref init(), an instance will be allocated automatically. |
1355 | 1356 |
/// The destructor deallocates this automatically allocated map, |
1356 | 1357 |
/// of course. |
1357 | 1358 |
/// \return <tt> (*this) </tt> |
1358 | 1359 |
DfsVisit &reachedMap(ReachedMap &m) { |
1359 | 1360 |
if(local_reached) { |
1360 | 1361 |
delete _reached; |
1361 | 1362 |
local_reached=false; |
1362 | 1363 |
} |
1363 | 1364 |
_reached = &m; |
1364 | 1365 |
return *this; |
1365 | 1366 |
} |
1366 | 1367 |
|
1367 | 1368 |
public: |
1368 | 1369 |
|
1369 | 1370 |
/// \name Execution Control |
1370 | 1371 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1371 | 1372 |
/// member functions called \ref run(Node) "run()".\n |
1372 | 1373 |
/// If you need more control on the execution, first you have to call |
1373 | 1374 |
/// \ref init(), then you can add a source node with \ref addSource() |
1374 | 1375 |
/// and perform the actual computation with \ref start(). |
1375 | 1376 |
/// This procedure can be repeated if there are nodes that have not |
1376 | 1377 |
/// been reached. |
1377 | 1378 |
|
1378 | 1379 |
/// @{ |
1379 | 1380 |
|
1380 | 1381 |
/// \brief Initializes the internal data structures. |
1381 | 1382 |
/// |
1382 | 1383 |
/// Initializes the internal data structures. |
1383 | 1384 |
void init() { |
1384 | 1385 |
create_maps(); |
1385 | 1386 |
_stack.resize(countNodes(*_digraph)); |
1386 | 1387 |
_stack_head = -1; |
1387 | 1388 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1388 | 1389 |
_reached->set(u, false); |
1389 | 1390 |
} |
1390 | 1391 |
} |
1391 | 1392 |
|
1392 | 1393 |
/// \brief Adds a new source node. |
1393 | 1394 |
/// |
1394 | 1395 |
/// Adds a new source node to the set of nodes to be processed. |
1395 | 1396 |
/// |
1396 | 1397 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1397 | 1398 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
1398 | 1399 |
/// except for the last one will not be visited and distances will |
1399 | 1400 |
/// also be wrong.) |
1400 | 1401 |
void addSource(Node s) |
1401 | 1402 |
{ |
1402 | 1403 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1403 | 1404 |
if(!(*_reached)[s]) { |
1404 | 1405 |
_reached->set(s,true); |
1405 | 1406 |
_visitor->start(s); |
1406 | 1407 |
_visitor->reach(s); |
1407 | 1408 |
Arc e; |
1408 | 1409 |
_digraph->firstOut(e, s); |
1409 | 1410 |
if (e != INVALID) { |
1410 | 1411 |
_stack[++_stack_head] = e; |
1411 | 1412 |
} else { |
1412 | 1413 |
_visitor->leave(s); |
1413 | 1414 |
_visitor->stop(s); |
1414 | 1415 |
} |
1415 | 1416 |
} |
1416 | 1417 |
} |
1417 | 1418 |
|
1418 | 1419 |
/// \brief Processes the next arc. |
1419 | 1420 |
/// |
1420 | 1421 |
/// Processes the next arc. |
1421 | 1422 |
/// |
1422 | 1423 |
/// \return The processed arc. |
1423 | 1424 |
/// |
1424 | 1425 |
/// \pre The stack must not be empty. |
1425 | 1426 |
Arc processNextArc() { |
1426 | 1427 |
Arc e = _stack[_stack_head]; |
1427 | 1428 |
Node m = _digraph->target(e); |
1428 | 1429 |
if(!(*_reached)[m]) { |
1429 | 1430 |
_visitor->discover(e); |
1430 | 1431 |
_visitor->reach(m); |
1431 | 1432 |
_reached->set(m, true); |
1432 | 1433 |
_digraph->firstOut(_stack[++_stack_head], m); |
1433 | 1434 |
} else { |
1434 | 1435 |
_visitor->examine(e); |
1435 | 1436 |
m = _digraph->source(e); |
1436 | 1437 |
_digraph->nextOut(_stack[_stack_head]); |
1437 | 1438 |
} |
1438 | 1439 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1439 | 1440 |
_visitor->leave(m); |
1440 | 1441 |
--_stack_head; |
1441 | 1442 |
if (_stack_head >= 0) { |
1442 | 1443 |
_visitor->backtrack(_stack[_stack_head]); |
1443 | 1444 |
m = _digraph->source(_stack[_stack_head]); |
1444 | 1445 |
_digraph->nextOut(_stack[_stack_head]); |
1445 | 1446 |
} else { |
1446 | 1447 |
_visitor->stop(m); |
1447 | 1448 |
} |
1448 | 1449 |
} |
1449 | 1450 |
return e; |
1450 | 1451 |
} |
1451 | 1452 |
|
1452 | 1453 |
/// \brief Next arc to be processed. |
1453 | 1454 |
/// |
1454 | 1455 |
/// Next arc to be processed. |
1455 | 1456 |
/// |
1456 | 1457 |
/// \return The next arc to be processed or INVALID if the stack is |
1457 | 1458 |
/// empty. |
1458 | 1459 |
Arc nextArc() const { |
1459 | 1460 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1460 | 1461 |
} |
1461 | 1462 |
|
1462 | 1463 |
/// \brief Returns \c false if there are nodes |
1463 | 1464 |
/// to be processed. |
1464 | 1465 |
/// |
1465 | 1466 |
/// Returns \c false if there are nodes |
1466 | 1467 |
/// to be processed in the queue (stack). |
1467 | 1468 |
bool emptyQueue() const { return _stack_head < 0; } |
1468 | 1469 |
|
1469 | 1470 |
/// \brief Returns the number of the nodes to be processed. |
1470 | 1471 |
/// |
1471 | 1472 |
/// Returns the number of the nodes to be processed in the queue (stack). |
1472 | 1473 |
int queueSize() const { return _stack_head + 1; } |
1473 | 1474 |
|
1474 | 1475 |
/// \brief Executes the algorithm. |
1475 | 1476 |
/// |
1476 | 1477 |
/// Executes the algorithm. |
1477 | 1478 |
/// |
1478 | 1479 |
/// This method runs the %DFS algorithm from the root node |
1479 | 1480 |
/// in order to compute the %DFS path to each node. |
1480 | 1481 |
/// |
1481 | 1482 |
/// The algorithm computes |
1482 | 1483 |
/// - the %DFS tree, |
1483 | 1484 |
/// - the distance of each node from the root in the %DFS tree. |
1484 | 1485 |
/// |
1485 | 1486 |
/// \pre init() must be called and a root node should be |
1486 | 1487 |
/// added with addSource() before using this function. |
1487 | 1488 |
/// |
1488 | 1489 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
1489 | 1490 |
/// \code |
1490 | 1491 |
/// while ( !d.emptyQueue() ) { |
1491 | 1492 |
/// d.processNextArc(); |
1492 | 1493 |
/// } |
1493 | 1494 |
/// \endcode |
1494 | 1495 |
void start() { |
1495 | 1496 |
while ( !emptyQueue() ) processNextArc(); |
1496 | 1497 |
} |
1497 | 1498 |
|
1498 | 1499 |
/// \brief Executes the algorithm until the given target node is reached. |
1499 | 1500 |
/// |
1500 | 1501 |
/// Executes the algorithm until the given target node is reached. |
1501 | 1502 |
/// |
1502 | 1503 |
/// This method runs the %DFS algorithm from the root node |
1503 | 1504 |
/// in order to compute the DFS path to \c t. |
1504 | 1505 |
/// |
1505 | 1506 |
/// The algorithm computes |
1506 | 1507 |
/// - the %DFS path to \c t, |
1507 | 1508 |
/// - the distance of \c t from the root in the %DFS tree. |
1508 | 1509 |
/// |
1509 | 1510 |
/// \pre init() must be called and a root node should be added |
1510 | 1511 |
/// with addSource() before using this function. |
1511 | 1512 |
void start(Node t) { |
1512 | 1513 |
while ( !emptyQueue() && !(*_reached)[t] ) |
1513 | 1514 |
processNextArc(); |
1514 | 1515 |
} |
1515 | 1516 |
|
1516 | 1517 |
/// \brief Executes the algorithm until a condition is met. |
1517 | 1518 |
/// |
1518 | 1519 |
/// Executes the algorithm until a condition is met. |
1519 | 1520 |
/// |
1520 | 1521 |
/// This method runs the %DFS algorithm from the root node |
1521 | 1522 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
1522 | 1523 |
/// |
1523 | 1524 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
1524 | 1525 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
1525 | 1526 |
/// |
1526 | 1527 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
1527 | 1528 |
/// \c INVALID if no such arc was found. |
1528 | 1529 |
/// |
1529 | 1530 |
/// \pre init() must be called and a root node should be added |
1530 | 1531 |
/// with addSource() before using this function. |
1531 | 1532 |
/// |
1532 | 1533 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
1533 | 1534 |
/// not a node map. |
1534 | 1535 |
template <typename AM> |
1535 | 1536 |
Arc start(const AM &am) { |
1536 | 1537 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1537 | 1538 |
processNextArc(); |
1538 | 1539 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1539 | 1540 |
} |
1540 | 1541 |
|
1541 | 1542 |
/// \brief Runs the algorithm from the given source node. |
1542 | 1543 |
/// |
1543 | 1544 |
/// This method runs the %DFS algorithm from node \c s. |
1544 | 1545 |
/// in order to compute the DFS path to each node. |
1545 | 1546 |
/// |
1546 | 1547 |
/// The algorithm computes |
1547 | 1548 |
/// - the %DFS tree, |
1548 | 1549 |
/// - the distance of each node from the root in the %DFS tree. |
1549 | 1550 |
/// |
1550 | 1551 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1551 | 1552 |
///\code |
1552 | 1553 |
/// d.init(); |
1553 | 1554 |
/// d.addSource(s); |
1554 | 1555 |
/// d.start(); |
1555 | 1556 |
///\endcode |
1556 | 1557 |
void run(Node s) { |
1557 | 1558 |
init(); |
1558 | 1559 |
addSource(s); |
1559 | 1560 |
start(); |
1560 | 1561 |
} |
1561 | 1562 |
|
1562 | 1563 |
/// \brief Finds the %DFS path between \c s and \c t. |
1563 | 1564 |
|
1564 | 1565 |
/// This method runs the %DFS algorithm from node \c s |
1565 | 1566 |
/// in order to compute the DFS path to node \c t |
1566 | 1567 |
/// (it stops searching when \c t is processed). |
1567 | 1568 |
/// |
1568 | 1569 |
/// \return \c true if \c t is reachable form \c s. |
1569 | 1570 |
/// |
1570 | 1571 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1571 | 1572 |
/// just a shortcut of the following code. |
1572 | 1573 |
///\code |
1573 | 1574 |
/// d.init(); |
1574 | 1575 |
/// d.addSource(s); |
1575 | 1576 |
/// d.start(t); |
1576 | 1577 |
///\endcode |
1577 | 1578 |
bool run(Node s,Node t) { |
0 comments (0 inline)