... | ... |
@@ -18,2 +18,4 @@ |
18 | 18 |
|
19 |
namespace lemon { |
|
20 |
|
|
19 | 21 |
/** |
... | ... |
@@ -90,3 +92,6 @@ |
90 | 92 |
This group describes maps that are specifically designed to assign |
91 |
values to the nodes and arcs of graphs. |
|
93 |
values to the nodes and arcs/edges of graphs. |
|
94 |
|
|
95 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
|
96 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
|
92 | 97 |
*/ |
... | ... |
@@ -101,3 +106,3 @@ |
101 | 106 |
|
102 |
Most of them are \ref |
|
107 |
Most of them are \ref concepts::ReadMap "read-only maps". |
|
103 | 108 |
They can make arithmetic and logical operations between one or two maps |
... | ... |
@@ -203,4 +208,4 @@ |
203 | 208 |
|
204 |
This group describes the common graph search algorithms like |
|
205 |
Breadth-First Search (BFS) and Depth-First Search (DFS). |
|
209 |
This group describes the common graph search algorithms, namely |
|
210 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
|
206 | 211 |
*/ |
... | ... |
@@ -212,3 +217,16 @@ |
212 | 217 |
|
213 |
This group describes the algorithms for finding shortest paths in |
|
218 |
This group describes the algorithms for finding shortest paths in digraphs. |
|
219 |
|
|
220 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
|
221 |
when all arc lengths are non-negative. |
|
222 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
|
223 |
from a source node when arc lenghts can be either positive or negative, |
|
224 |
but the digraph should not contain directed cycles with negative total |
|
225 |
length. |
|
226 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
|
227 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
|
228 |
lenghts can be either positive or negative, but the digraph should |
|
229 |
not contain directed cycles with negative total length. |
|
230 |
- \ref Suurballe A successive shortest path algorithm for finding |
|
231 |
arc-disjoint paths between two nodes having minimum total length. |
|
214 | 232 |
*/ |
... | ... |
@@ -223,23 +241,24 @@ |
223 | 241 |
|
224 |
The maximum flow problem is to find a flow between a single source and |
|
225 |
a single target that is maximum. Formally, there is a \f$G=(V,A)\f$ |
|
226 |
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity |
|
227 |
function and given \f$s, t \in V\f$ source and target node. The |
|
228 |
maximum flow is |
|
242 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
|
243 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
|
244 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
|
245 |
\f$s, t \in V\f$ source and target nodes. |
|
246 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
|
247 |
following optimization problem. |
|
229 | 248 |
|
230 |
\f[ 0 \le f_a \le c_a \f] |
|
231 |
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} |
|
232 |
\qquad \forall u \in V \setminus \{s,t\}\f] |
|
233 |
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f] |
|
249 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
|
250 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
|
251 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
|
252 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
|
234 | 253 |
|
235 | 254 |
LEMON contains several algorithms for solving maximum flow problems: |
236 |
- \ref lemon::EdmondsKarp "Edmonds-Karp" |
|
237 |
- \ref lemon::Preflow "Goldberg's Preflow algorithm" |
|
238 |
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees" |
|
239 |
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees" |
|
255 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
|
256 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
|
257 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
|
258 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
|
240 | 259 |
|
241 |
In most cases the \ref lemon::Preflow "Preflow" algorithm provides the |
|
242 |
fastest method to compute the maximum flow. All impelementations |
|
243 |
provides functions to query the minimum cut, which is the dual linear |
|
244 |
programming problem of the maximum flow. |
|
260 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
|
261 |
fastest method for computing a maximum flow. All implementations |
|
262 |
provides functions to also query the minimum cut, which is the dual |
|
263 |
problem of the maximum flow. |
|
245 | 264 |
*/ |
... | ... |
@@ -254,2 +273,29 @@ |
254 | 273 |
circulations. |
274 |
|
|
275 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
276 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
277 |
in a network with capacity constraints and arc costs. |
|
278 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
279 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
|
280 |
upper bounds for the flow values on the arcs, |
|
281 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
|
282 |
on the arcs, and |
|
283 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
|
284 |
of the nodes. |
|
285 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
|
286 |
the following optimization problem. |
|
287 |
|
|
288 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
|
289 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
|
290 |
supply(v) \qquad \forall v\in V \f] |
|
291 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
|
292 |
|
|
293 |
LEMON contains several algorithms for solving minimum cost flow problems: |
|
294 |
- \ref CycleCanceling Cycle-canceling algorithms. |
|
295 |
- \ref CapacityScaling Successive shortest path algorithm with optional |
|
296 |
capacity scaling. |
|
297 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
|
298 |
cost scaling. |
|
299 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
|
300 |
pivot strategies. |
|
255 | 301 |
*/ |
... | ... |
@@ -264,6 +310,6 @@ |
264 | 310 |
|
265 |
The minimum cut problem is to find a non-empty and non-complete |
|
266 |
\f$X\f$ subset of the vertices with minimum overall capacity on |
|
267 |
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an |
|
268 |
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
|
311 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
|
312 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
|
313 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
|
314 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
|
269 | 315 |
cut is the \f$X\f$ solution of the next optimization problem: |
... | ... |
@@ -271,3 +317,3 @@ |
271 | 317 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
272 |
\sum_{uv\in A, u\in X, v\not\in X} |
|
318 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
|
273 | 319 |
|
... | ... |
@@ -275,11 +321,11 @@ |
275 | 321 |
|
276 |
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut |
|
277 |
in directed graphs |
|
278 |
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to |
|
279 |
calculate minimum cut in undirected graphs |
|
280 |
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all |
|
281 |
pairs minimum cut in undirected graphs |
|
322 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
|
323 |
in directed graphs. |
|
324 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
|
325 |
calculating minimum cut in undirected graphs. |
|
326 |
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating |
|
327 |
all-pairs minimum cut in undirected graphs. |
|
282 | 328 |
|
283 | 329 |
If you want to find minimum cut just between two distinict nodes, |
284 |
|
|
330 |
see the \ref max_flow "maximum flow problem". |
|
285 | 331 |
*/ |
... | ... |
@@ -322,3 +368,3 @@ |
322 | 368 |
easier than in general graphs. The goal of the matching optimization |
323 |
can be |
|
369 |
can be finding maximum cardinality, maximum weight or minimum cost |
|
324 | 370 |
matching. The search can be constrained to find perfect or |
... | ... |
@@ -326,22 +372,20 @@ |
326 | 372 |
|
327 |
LEMON contains the next algorithms: |
|
328 |
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp |
|
329 |
augmenting path algorithm for calculate maximum cardinality matching in |
|
330 |
bipartite graphs |
|
331 |
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel |
|
332 |
algorithm for calculate maximum cardinality matching in bipartite graphs |
|
333 |
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching" |
|
334 |
Successive shortest path algorithm for calculate maximum weighted matching |
|
335 |
and maximum weighted bipartite matching in bipartite graph |
|
336 |
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching" |
|
337 |
Successive shortest path algorithm for calculate minimum cost maximum |
|
338 |
matching in bipartite graph |
|
339 |
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm |
|
340 |
for calculate maximum cardinality matching in general graph |
|
341 |
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom |
|
342 |
shrinking algorithm for calculate maximum weighted matching in general |
|
343 |
graph |
|
344 |
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching" |
|
345 |
Edmond's blossom shrinking algorithm for calculate maximum weighted |
|
346 |
perfect matching in general graph |
|
373 |
The matching algorithms implemented in LEMON: |
|
374 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
|
375 |
for calculating maximum cardinality matching in bipartite graphs. |
|
376 |
- \ref PrBipartiteMatching Push-relabel algorithm |
|
377 |
for calculating maximum cardinality matching in bipartite graphs. |
|
378 |
- \ref MaxWeightedBipartiteMatching |
|
379 |
Successive shortest path algorithm for calculating maximum weighted |
|
380 |
matching and maximum weighted bipartite matching in bipartite graphs. |
|
381 |
- \ref MinCostMaxBipartiteMatching |
|
382 |
Successive shortest path algorithm for calculating minimum cost maximum |
|
383 |
matching in bipartite graphs. |
|
384 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
|
385 |
maximum cardinality matching in general graphs. |
|
386 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
|
387 |
maximum weighted matching in general graphs. |
|
388 |
- \ref MaxWeightedPerfectMatching |
|
389 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
|
390 |
perfect matching in general graphs. |
|
347 | 391 |
|
... | ... |
@@ -357,3 +401,3 @@ |
357 | 401 |
This group describes the algorithms for finding a minimum cost spanning |
358 |
tree in a graph |
|
402 |
tree in a graph. |
|
359 | 403 |
*/ |
... | ... |
@@ -548,3 +592,3 @@ |
548 | 592 |
|
549 |
@defgroup demos Demo |
|
593 |
@defgroup demos Demo Programs |
|
550 | 594 |
|
... | ... |
@@ -558,3 +602,3 @@ |
558 | 602 |
/** |
559 |
@defgroup tools Standalone |
|
603 |
@defgroup tools Standalone Utility Applications |
|
560 | 604 |
|
... | ... |
@@ -566,1 +610,2 @@ |
566 | 610 |
|
611 |
} |
0 comments (0 inline)