... | ... |
@@ -13,12 +13,14 @@ |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 |
namespace lemon { |
|
20 |
|
|
19 | 21 |
/** |
20 | 22 |
@defgroup datas Data Structures |
21 | 23 |
This group describes the several data structures implemented in LEMON. |
22 | 24 |
*/ |
23 | 25 |
|
24 | 26 |
/** |
... | ... |
@@ -85,24 +87,27 @@ |
85 | 87 |
/** |
86 | 88 |
@defgroup graph_maps Graph Maps |
87 | 89 |
@ingroup maps |
88 | 90 |
\brief Special graph-related maps. |
89 | 91 |
|
90 | 92 |
This group describes maps that are specifically designed to assign |
91 |
values to the nodes and arcs of graphs. |
|
93 |
values to the nodes and arcs/edges of graphs. |
|
94 |
|
|
95 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
|
96 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
|
92 | 97 |
*/ |
93 | 98 |
|
94 | 99 |
/** |
95 | 100 |
\defgroup map_adaptors Map Adaptors |
96 | 101 |
\ingroup maps |
97 | 102 |
\brief Tools to create new maps from existing ones |
98 | 103 |
|
99 | 104 |
This group describes map adaptors that are used to create "implicit" |
100 | 105 |
maps from other maps. |
101 | 106 |
|
102 |
Most of them are \ref |
|
107 |
Most of them are \ref concepts::ReadMap "read-only maps". |
|
103 | 108 |
They can make arithmetic and logical operations between one or two maps |
104 | 109 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
105 | 110 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
106 | 111 |
|
107 | 112 |
The typical usage of this classes is passing implicit maps to |
108 | 113 |
algorithms. If a function type algorithm is called then the function |
... | ... |
@@ -198,93 +203,134 @@ |
198 | 203 |
|
199 | 204 |
/** |
200 | 205 |
@defgroup search Graph Search |
201 | 206 |
@ingroup algs |
202 | 207 |
\brief Common graph search algorithms. |
203 | 208 |
|
204 |
This group describes the common graph search algorithms like |
|
205 |
Breadth-First Search (BFS) and Depth-First Search (DFS). |
|
209 |
This group describes the common graph search algorithms, namely |
|
210 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
|
206 | 211 |
*/ |
207 | 212 |
|
208 | 213 |
/** |
209 | 214 |
@defgroup shortest_path Shortest Path Algorithms |
210 | 215 |
@ingroup algs |
211 | 216 |
\brief Algorithms for finding shortest paths. |
212 | 217 |
|
213 |
This group describes the algorithms for finding shortest paths in |
|
218 |
This group describes the algorithms for finding shortest paths in digraphs. |
|
219 |
|
|
220 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
|
221 |
when all arc lengths are non-negative. |
|
222 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
|
223 |
from a source node when arc lenghts can be either positive or negative, |
|
224 |
but the digraph should not contain directed cycles with negative total |
|
225 |
length. |
|
226 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
|
227 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
|
228 |
lenghts can be either positive or negative, but the digraph should |
|
229 |
not contain directed cycles with negative total length. |
|
230 |
- \ref Suurballe A successive shortest path algorithm for finding |
|
231 |
arc-disjoint paths between two nodes having minimum total length. |
|
214 | 232 |
*/ |
215 | 233 |
|
216 | 234 |
/** |
217 | 235 |
@defgroup max_flow Maximum Flow Algorithms |
218 | 236 |
@ingroup algs |
219 | 237 |
\brief Algorithms for finding maximum flows. |
220 | 238 |
|
221 | 239 |
This group describes the algorithms for finding maximum flows and |
222 | 240 |
feasible circulations. |
223 | 241 |
|
224 |
The maximum flow problem is to find a flow between a single source and |
|
225 |
a single target that is maximum. Formally, there is a \f$G=(V,A)\f$ |
|
226 |
directed graph, an \f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity |
|
227 |
function and given \f$s, t \in V\f$ source and target node. The |
|
228 |
maximum flow is |
|
242 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
|
243 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
|
244 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
|
245 |
\f$s, t \in V\f$ source and target nodes. |
|
246 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
|
247 |
following optimization problem. |
|
229 | 248 |
|
230 |
\f[ 0 \le f_a \le c_a \f] |
|
231 |
\f[ \sum_{v\in\delta^{-}(u)}f_{vu}=\sum_{v\in\delta^{+}(u)}f_{uv} |
|
232 |
\qquad \forall u \in V \setminus \{s,t\}\f] |
|
233 |
\f[ \max \sum_{v\in\delta^{+}(s)}f_{uv} - \sum_{v\in\delta^{-}(s)}f_{vu}\f] |
|
249 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
|
250 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
|
251 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
|
252 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
|
234 | 253 |
|
235 | 254 |
LEMON contains several algorithms for solving maximum flow problems: |
236 |
- \ref lemon::EdmondsKarp "Edmonds-Karp" |
|
237 |
- \ref lemon::Preflow "Goldberg's Preflow algorithm" |
|
238 |
- \ref lemon::DinitzSleatorTarjan "Dinitz's blocking flow algorithm with dynamic trees" |
|
239 |
- \ref lemon::GoldbergTarjan "Preflow algorithm with dynamic trees" |
|
255 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
|
256 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
|
257 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
|
258 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
|
240 | 259 |
|
241 |
In most cases the \ref lemon::Preflow "Preflow" algorithm provides the |
|
242 |
fastest method to compute the maximum flow. All impelementations |
|
243 |
provides functions to query the minimum cut, which is the dual linear |
|
244 |
programming problem of the maximum flow. |
|
260 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
|
261 |
fastest method for computing a maximum flow. All implementations |
|
262 |
provides functions to also query the minimum cut, which is the dual |
|
263 |
problem of the maximum flow. |
|
245 | 264 |
*/ |
246 | 265 |
|
247 | 266 |
/** |
248 | 267 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
249 | 268 |
@ingroup algs |
250 | 269 |
|
251 | 270 |
\brief Algorithms for finding minimum cost flows and circulations. |
252 | 271 |
|
253 | 272 |
This group describes the algorithms for finding minimum cost flows and |
254 | 273 |
circulations. |
274 |
|
|
275 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
|
276 |
minimum total cost from a set of supply nodes to a set of demand nodes |
|
277 |
in a network with capacity constraints and arc costs. |
|
278 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
|
279 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
|
280 |
upper bounds for the flow values on the arcs, |
|
281 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
|
282 |
on the arcs, and |
|
283 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
|
284 |
of the nodes. |
|
285 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
|
286 |
the following optimization problem. |
|
287 |
|
|
288 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
|
289 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
|
290 |
supply(v) \qquad \forall v\in V \f] |
|
291 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
|
292 |
|
|
293 |
LEMON contains several algorithms for solving minimum cost flow problems: |
|
294 |
- \ref CycleCanceling Cycle-canceling algorithms. |
|
295 |
- \ref CapacityScaling Successive shortest path algorithm with optional |
|
296 |
capacity scaling. |
|
297 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
|
298 |
cost scaling. |
|
299 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
|
300 |
pivot strategies. |
|
255 | 301 |
*/ |
256 | 302 |
|
257 | 303 |
/** |
258 | 304 |
@defgroup min_cut Minimum Cut Algorithms |
259 | 305 |
@ingroup algs |
260 | 306 |
|
261 | 307 |
\brief Algorithms for finding minimum cut in graphs. |
262 | 308 |
|
263 | 309 |
This group describes the algorithms for finding minimum cut in graphs. |
264 | 310 |
|
265 |
The minimum cut problem is to find a non-empty and non-complete |
|
266 |
\f$X\f$ subset of the vertices with minimum overall capacity on |
|
267 |
outgoing arcs. Formally, there is \f$G=(V,A)\f$ directed graph, an |
|
268 |
\f$c_a:A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
|
311 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
|
312 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
|
313 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
|
314 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
|
269 | 315 |
cut is the \f$X\f$ solution of the next optimization problem: |
270 | 316 |
|
271 | 317 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
272 |
\sum_{uv\in A, u\in X, v\not\in X} |
|
318 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
|
273 | 319 |
|
274 | 320 |
LEMON contains several algorithms related to minimum cut problems: |
275 | 321 |
|
276 |
- \ref lemon::HaoOrlin "Hao-Orlin algorithm" to calculate minimum cut |
|
277 |
in directed graphs |
|
278 |
- \ref lemon::NagamochiIbaraki "Nagamochi-Ibaraki algorithm" to |
|
279 |
calculate minimum cut in undirected graphs |
|
280 |
- \ref lemon::GomoryHuTree "Gomory-Hu tree computation" to calculate all |
|
281 |
pairs minimum cut in undirected graphs |
|
322 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
|
323 |
in directed graphs. |
|
324 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
|
325 |
calculating minimum cut in undirected graphs. |
|
326 |
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating |
|
327 |
all-pairs minimum cut in undirected graphs. |
|
282 | 328 |
|
283 | 329 |
If you want to find minimum cut just between two distinict nodes, |
284 |
|
|
330 |
see the \ref max_flow "maximum flow problem". |
|
285 | 331 |
*/ |
286 | 332 |
|
287 | 333 |
/** |
288 | 334 |
@defgroup graph_prop Connectivity and Other Graph Properties |
289 | 335 |
@ingroup algs |
290 | 336 |
\brief Algorithms for discovering the graph properties |
... | ... |
@@ -317,48 +363,46 @@ |
317 | 363 |
matchings in graphs and bipartite graphs. The general matching problem is |
318 | 364 |
finding a subset of the arcs which does not shares common endpoints. |
319 | 365 |
|
320 | 366 |
There are several different algorithms for calculate matchings in |
321 | 367 |
graphs. The matching problems in bipartite graphs are generally |
322 | 368 |
easier than in general graphs. The goal of the matching optimization |
323 |
can be |
|
369 |
can be finding maximum cardinality, maximum weight or minimum cost |
|
324 | 370 |
matching. The search can be constrained to find perfect or |
325 | 371 |
maximum cardinality matching. |
326 | 372 |
|
327 |
LEMON contains the next algorithms: |
|
328 |
- \ref lemon::MaxBipartiteMatching "MaxBipartiteMatching" Hopcroft-Karp |
|
329 |
augmenting path algorithm for calculate maximum cardinality matching in |
|
330 |
bipartite graphs |
|
331 |
- \ref lemon::PrBipartiteMatching "PrBipartiteMatching" Push-Relabel |
|
332 |
algorithm for calculate maximum cardinality matching in bipartite graphs |
|
333 |
- \ref lemon::MaxWeightedBipartiteMatching "MaxWeightedBipartiteMatching" |
|
334 |
Successive shortest path algorithm for calculate maximum weighted matching |
|
335 |
and maximum weighted bipartite matching in bipartite graph |
|
336 |
- \ref lemon::MinCostMaxBipartiteMatching "MinCostMaxBipartiteMatching" |
|
337 |
Successive shortest path algorithm for calculate minimum cost maximum |
|
338 |
matching in bipartite graph |
|
339 |
- \ref lemon::MaxMatching "MaxMatching" Edmond's blossom shrinking algorithm |
|
340 |
for calculate maximum cardinality matching in general graph |
|
341 |
- \ref lemon::MaxWeightedMatching "MaxWeightedMatching" Edmond's blossom |
|
342 |
shrinking algorithm for calculate maximum weighted matching in general |
|
343 |
graph |
|
344 |
- \ref lemon::MaxWeightedPerfectMatching "MaxWeightedPerfectMatching" |
|
345 |
Edmond's blossom shrinking algorithm for calculate maximum weighted |
|
346 |
perfect matching in general graph |
|
373 |
The matching algorithms implemented in LEMON: |
|
374 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
|
375 |
for calculating maximum cardinality matching in bipartite graphs. |
|
376 |
- \ref PrBipartiteMatching Push-relabel algorithm |
|
377 |
for calculating maximum cardinality matching in bipartite graphs. |
|
378 |
- \ref MaxWeightedBipartiteMatching |
|
379 |
Successive shortest path algorithm for calculating maximum weighted |
|
380 |
matching and maximum weighted bipartite matching in bipartite graphs. |
|
381 |
- \ref MinCostMaxBipartiteMatching |
|
382 |
Successive shortest path algorithm for calculating minimum cost maximum |
|
383 |
matching in bipartite graphs. |
|
384 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
|
385 |
maximum cardinality matching in general graphs. |
|
386 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
|
387 |
maximum weighted matching in general graphs. |
|
388 |
- \ref MaxWeightedPerfectMatching |
|
389 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
|
390 |
perfect matching in general graphs. |
|
347 | 391 |
|
348 | 392 |
\image html bipartite_matching.png |
349 | 393 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
350 | 394 |
*/ |
351 | 395 |
|
352 | 396 |
/** |
353 | 397 |
@defgroup spantree Minimum Spanning Tree Algorithms |
354 | 398 |
@ingroup algs |
355 | 399 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
356 | 400 |
|
357 | 401 |
This group describes the algorithms for finding a minimum cost spanning |
358 |
tree in a graph |
|
402 |
tree in a graph. |
|
359 | 403 |
*/ |
360 | 404 |
|
361 | 405 |
/** |
362 | 406 |
@defgroup auxalg Auxiliary Algorithms |
363 | 407 |
@ingroup algs |
364 | 408 |
\brief Auxiliary algorithms implemented in LEMON. |
... | ... |
@@ -543,24 +587,25 @@ |
543 | 587 |
This group describes the skeletons and concept checking classes of maps. |
544 | 588 |
*/ |
545 | 589 |
|
546 | 590 |
/** |
547 | 591 |
\anchor demoprograms |
548 | 592 |
|
549 |
@defgroup demos Demo |
|
593 |
@defgroup demos Demo Programs |
|
550 | 594 |
|
551 | 595 |
Some demo programs are listed here. Their full source codes can be found in |
552 | 596 |
the \c demo subdirectory of the source tree. |
553 | 597 |
|
554 | 598 |
It order to compile them, use <tt>--enable-demo</tt> configure option when |
555 | 599 |
build the library. |
556 | 600 |
*/ |
557 | 601 |
|
558 | 602 |
/** |
559 |
@defgroup tools Standalone |
|
603 |
@defgroup tools Standalone Utility Applications |
|
560 | 604 |
|
561 | 605 |
Some utility applications are listed here. |
562 | 606 |
|
563 | 607 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
564 | 608 |
them, as well. |
565 | 609 |
*/ |
566 | 610 |
|
611 |
} |
0 comments (0 inline)